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Tandem droplet locomotion in a uniform electric
field
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An isolated charge-neutral droplet in a uniform electric field experiences no net force.
However, a droplet pair can move in response to field-induced dipolar and hydrodynamic
interactions. If the droplets are identical, the centre of mass of the pair remains fixed. Here,
we show that if the droplets have different properties, the pair experiences a net motion
due to non-reciprocal electrohydrodynamic interactions. We analyse the three-dimensional
droplet trajectories using asymptotic theory, assuming spherical droplets and large
separations, and numerical simulations based on a boundary integral method. The
dynamics can be quite intricate depending on the initial orientation of the droplets
line-of-centres relative to the applied field direction. Drops tend to migrate towards a
configuration with line-of-centres either parallel or perpendicular to the applied field
direction, while either coming into contact or indefinitely separating. We elucidate the
conditions under which these different interaction scenarios take place. Intriguingly, we
find that in some cases droplets can form a pair (tandem) that translates either parallel or
perpendicular to the applied field direction.
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1. Introduction

Electric fields are widely used to steer particles and droplets for applications in directed
assembly (van Blaaderen et al. 2013; Harraq, Choudhury & Bharti 2022), microfluidics
(Link et al. 2006; Hartmann, Schuer & Hardt 2022), ink-jet printing (Basaran, Gao
& Bhat 2013), modulation of emulsion microstucture and rheology (Eow & Ghadiri
2002; Tao et al. 2016) and electrosprays (Ganan-Calvo et al. 2018). An important
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issue in practical applications is the droplet interactions due to electric polarization
and electrohydrodynamic flows. In the canonical case of an applied uniform electric
field, the induced dipoles promote particle chaining along the applied field direction
(Zukoski 1993; Sheng & Wen 2012). In addition to the electrostatic interactions, particles
may interact electrohydrodynamically due to induced-charge electrophoretic flows in the
case of ideally polarizable particles (Squires & Bazant 2004) or electric-shear-driven
flows around droplets (Melcher & Taylor 1969). These flows can be either cooperative
or antagonistic to the dipolar interactions (Baygents, Rivette & Stone 1998; Saintillan
2008; Park & Saintillan 2010; Sorgentone et al. 2021) and prevent chaining (Ha & Yang
2000). Recently, the three-dimensional interactions of a pair of identical droplets were
investigated by means of numerical simulations using the boundary integral method,
asymptotic theory for large separations and spherical droplets (Sorgentone, Tornberg &
Vlahovska 2019; Sorgentone et al. 2021; Sorgentone & Vlahovska 2021) and experiments
(Kach, Walker & Khair 2022). The systematic exploration of the effects of fluid properties
and the droplet initial configuration revealed intricate relative motions that eventually lead
to either droplet coalescence or indefinite repulsion; only if the droplets line-of-centres
were initially perpendicular to the applied field direction and the electrohydrodynamic flow
along the droplet surface were equator-to-pole, the drops’ motion is eventually arrested and
the drops remain at an equilibrium separation.
Asymmetry in terms of droplet size or properties is expected to increase the complexity

of the droplet interactions; however, the problem has been studied only to a limited extent
for small droplet deformations (Kach et al. 2022) or only configurations where droplets
are aligned with the field (Zabarankin 2020). Here, we analyse the three-dimensional
interactions of dissimilar drops using both theory and simulations. We focus on droplets
with different electrical properties (conductivity and permittivity). We find non-trivial
dynamics, such as droplets ‘dancing’, where droplets execute complex trajectories before
coming into contact or separating, or ‘swimming’, where droplets reach stable separation
and the pair translates in a direction either parallel or perpendicular to the applied
field. The intricate behaviours are linked to non-reciprocal interactions generated by the
electrohydrodynamic flows.

2. Problem formulation

Let us consider two neutrally buoyant and charge-free drops with radii ai and different
viscosities ηd,i, conductivities σd,i and permittivities εd,i, suspended in a fluid with
viscosity ηm, conductivity σm and permittivity εm. The mismatch of drop and suspending
fluid properties is characterized by the conductivity, permittivity and viscosity ratios:

Ri = σd,i

σm
, Si = εd,i

εm
, λi = ηd,i

ηm
, i = 1, 2. (2.1a–c)

The difference in drop size introduces one more parameter, ν = a2/a1. The distance
between the drops’ centroids is d and the angle between the drops’ line-of-centres with
the applied field direction is Θ . The unit separation vector between the drops is defined by
the difference between the position vectors of the drops’ centres of mass d̂ = (xc2 − xc1)/d.
The unit vector normal to the drops’ line-of-centres and orthogonal to d̂ is t̂. The problem
geometry is sketched in figure 1.
We adopt the leaky dielectric model, which is widely used to describe the

electrohydrodynamics of weakly conducting, viscous fluids (Melcher & Taylor 1969;
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Figure 1. Two initially spherical drops with different radii ai, fluid viscosities ηd,i, permittivities εd,i and
conductivities σd,i (i = 1, 2) suspended in a fluid with viscosity ηm, permittivity εm and conductivity σm and
subjected to a uniform DC electric field E∞ = E0ẑ. The angle between the line-of-centres vector and the field
direction is Θ = arccos(ẑ · d̂).

Saville 1997; Vlahovska 2019). Fluid motion is described by Stokes equations:

η∇2u − ∇p = 0, ∇ · u = 0, (2.2a,b)

where u and p are the fluid velocity and pressure. The electric field E obeys

∇ · E = 0, ∇ × E = 0. (2.3a,b)

Far away from the drops, E → E∞ = E0ẑ and u → 0.
At the drop interfaces, normal electric current is continuous (assuming negligible charge

convection, as originally proposed by Taylor 1966), Em
n = RiEd

n , where En = E · n, and n
is the outward pointing normal vector to the drop interface. The surface charge density
adjusts to satisfy the current balance, leading to a discontinuity of the displacement field
εm(Em

n − SiEd
n) = q. The conductivity and permittivity ratios, Ri and Si, are defined by

(2.1a–c).
The electric field acting on the induced surface charge q gives rise to electric shear stress

at the interface. The tangential stress balance yields

(I − nn) · (Tm − T d) · n + qEt = 0, x ∈ D, (2.4)

where Tij = −pδij + η(∂jui + ∂iuj) is the hydrodynamic stress and δij is the Kronecker
delta function. The electric tractions are calculated from the Maxwell stress tensor Tel

ij =
ε(EiEj − EkEkδij/2). Here Et = E − Enn is the tangential component of the electric field,
which is continuous across the interface, and I is the idemfactor. The normal stress balance
is

n · (Tm − T d) · n + 1
2((E

m
n )2 − S(Ed

n)
2 − (1 − S)E2

t ) = γ∇s · n, x ∈ D, (2.5)

where γ is the interfacial tension.
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Henceforth, all variables are non-dimensionalized using the radius of the undeformed
drop a1, the undisturbed field strength E0, a characteristic applied stress τc = εmE2

0, and
the properties of the suspending fluid. Accordingly, the time scale is tc = ηm/τc and the
velocity scale is uc = a1τc/ηm. The ratio of the magnitude of the electric stresses and
surface tension defines the electric capillary number Cai = εmE2

0ai/γ .

3. Methodology

We utilize a boundary integral method for the numerical simulations and analytical results
derived from an asymptotic theory for large separations and small deformations. These
approaches were presented and validated for identical drops in Sorgentone et al. (2021).
Here we summarize the extension of the theory and simulations to treat dissimilar drops.

3.1. Integral representation for the electric field and fluid velocity
The boundary integral formulation taking into account the fact that the two drops may
have different permittivities and conductivities is

E∞(x) +
2∑

i=1

∫
Di

x̂
4πr3

(Em(y) − Ed,i(y)) · n(y) dA(y)

=

⎧⎪⎪⎨
⎪⎪⎩
Ed,i(x) x inside Di,
1
2
(Ed,i(x) + Em(x)) x ∈ Di,

Em(x) x outside Di,

(3.1)

where i = 1, 2 denotes drop i, x̂ = x − y and r = |x̂| and dA is the surface area element.
Accordingly, the normal and tangential components of the electric field at the drop
interface, x ∈ Di, are calculated as

(Ri + 1)
2Ri

Em
n (x) = E∞(x) · n(x) +

2∑
j=1

Rj − 1
Rj

n(x) ·
∫
Dj

x̂
4πr3

Em
n (y) dA(y), (3.2)

Et(x) = E∞(x) − 1 + Ri

2Ri
Em
n (x)n(x) +

2∑
j=1

∫
Dj

x̂
4πr3

(
Rj − 1
Rj

)
Em
n (y) dA(y). (3.3)

For the flow field, we have developed the method for fluids of arbitrary viscosity, but
for the sake of brevity here we list the equations in the case of equiviscous drops and
suspending fluids. The velocity is given by

2u(x) = −
2∑

j=1

(
1
4π

∫
Dj

(
f (y)
Caj

− f E(y)
)

·
(
I
r

+ x̂x̂
r3

)
dA(y)

)
, (3.4)

where f and f E are the interfacial stresses due to surface tension and electric field:

f = n∇s · n, f E = (Em · n)Em − 1
2 (E

m · Em)n

−Si((Ed,i · n)Ed,i − 1
2 (E

d,i · Ed,i)n).

}
(3.5a,b)
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Tandem droplet locomotion in a uniform electric field

Drop velocity and centroid are computed from the volume averages

U j = 1
V

∫
Vj
u dV = 1

V

∫
Dj

n · (ux) dA, xcj = 1
V

∫
Vj
x dV = 1

2V

∫
Dj

n (x · x) dA.

(3.6a,b)
where dV is the volume element. To solve the system of equations (3.2) and (3.4) we
use a Galerkin formulation based on a spherical harmonics representation presented
in Sorgentone et al. (2019). All variables (position vector, velocities, electric field) are
expanded in spherical harmonics which provides an accurate representation even for
relatively low expansion order. In order to deal with the singular and nearly singular
integrals that appear in the formulation we evoke specialized quadrature methods able
to control the quadrature errors (af Klinteberg, Sorgentone & Tornberg 2022), and a
reparametrization procedure able to ensure a high-quality representation of the drops also
under deformation is used to ensure the spectral accuracy of the method (Sorgentone &
Tornberg 2018).

3.2. Asymptotic theory for large separations
Here, we modify the asymptotic theory developed in Sorgentone et al. (2021); Kach et al.
(2022) to dissimilar drops. We first evaluate the electrostatic interaction of two widely
separated spherical drops. In this case, the drops can be approximated by point dipoles.
The disturbance field E1 of the drop dipole P1 induces a dielectrophoretic (DEP) force
on the dipole P2 located at xc2 = dd̂, given by F 2(d) = (P2 · ∇E1)|r=d. Likewise, dipole
P2 induces a force on dipole 1 that is of equal magnitude and opposite sign F 1 = −F 2
(i.e. the DEP interaction is reciprocal). The drop velocity under the action of this force
can be estimated from Stokes law, U i = F i/ζi where ζ is the friction coefficient ζi =
6π(3λi + 2)/(3(λi + 1)). Thus,

Udep
i = 2βD

d4

(
3(1 + λi)
2 + 3λi

)
[(1 − 3 cos2 Θ)d̂ − sin(2Θ)t̂],

βD =
(
R1 − 1
R1 + 2

)(
R2 − 1
R2 + 2

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7a,b)

If (R1 − 1)(R2 − 1) > 0, as in the case of identical droplets, droplets attract if Θ <

Θc = arccos( 1√
3
) ≈ 54.7◦, e.g. when the drops are lined up with the field, and repel if

the line-of-centres of the two drops is perpendicular to the applied field. The droplets
line-of-centres rotates to align with the applied field. However, this situation reverses if
(R1 − 1)(R2 − 1) < 0: the droplets repel if their line-of-centres is parallel to the applied
field direction, and attract if their line-of-centres is perpendicular to the field. The DEP
interaction in this case rotates the droplet line-of-centres away from the applied field
direction.
The electrohydrodynamic (EHD) flow due to droplet 1 moves droplet 2 and, vice versa,

the flow due to droplet 2 moves droplet 1. The velocities of the droplets are

Uehd
2 = βT,1Uehd (d, λ2) , Uehd

1 = −βT,2Uehd (d, λ1) (3.8a,b)

where at leading order in separation

Uehd (d, λ) =
(

1
d2

− 2
d4

(
1 + 3λ
2 + 3λ

))
(−1 + 3 cos2 Θ)d̂ − 2

d4

(
1 + 3λ
2 + 3λ

)
sin(2Θ)t̂,

(3.9)
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and the stresslet magnitude is

βT,i = 9
10

Ri − Si
(1 + λi) (Ri + 2)2

, i = 1, 2. (3.10)

For equiviscous droplets, the relative velocity U2 − U1 shows that the EHD interaction
changes sign (attractive to repulsive or vice versa depending on βT,2 + βT,1) at the same
critical angle Θc as the DEP case. However, the EHD interaction also changes sign at
separation d2c = 2(1 + 3λ)/(2 + 3λ). Here dc ranges from 1 for bubbles (λ = 0) to

√
2 for

very viscous drops (λ→ ∞), both corresponding to centre-to-centre distance smaller than
the minimal separation of 2 for spherical drops. Accordingly, in reality the sign of the EHD
interactions does not vary with drop-drop separation. For droplets aligned with the field,
both βT negative results in EHD attraction, since the surface flow around each drop is
pole-to-equator and the fluid is being drawn away from the space between the droplets.
Both βT positive results in repulsion because the surface flow around the droplets is
equator-to-pole and the fluid is being drawn into the space between the droplets, effectively
pushing them away. Dissimilar droplets can either attract or repel depending on the
relative strength of their stresslets. These scenarios reverse for droplet with line-of-centres
perpendicular to the applied field direction.

4. Results

Here, we apply the asymptotic theory to dissimilar drops and show that the EHD
interactions turn the pair into a self-propelled entity. Using the analytical theory and
numerical simulations, we find that, depending on the initial configuration, droplets can
form a translating pair with steady separation between the droplets, can ‘chase’ each other
or come into contact.

4.1. Droplet cooperative propulsion
An isolated, charge-neutral drop in a uniform electric field does not move. The proximity
of a boundary (Yariv 2006) or another drop breaks the symmetry and can cause droplet
motion. However, if the drops are identical there is no net migration, i.e. their centre of
mass remains stationary. Difference in droplet size and properties gives rise to cooperative
droplet propulsion and motion of the pair’s centre of mass. The ‘swimming’ velocity of
the pair at leading order in separation and same-size droplets is

Ucm = 1
2 (U2 + U1) = f (d)(−1 + 3 cos2 Θ)d̂ + g(d) sin(2Θ)t̂. (4.1)

A simple difference in droplets’ viscosities, if all other properties and drop radii are the
same, gives rise to centre-of-mass motion with

f (d) = g(d) = 3(λ2 − λ1)
d4(2 + 3λ1)(2 + 3λ2)

(βT + βD) . (4.2)

The pair’s migration direction and speed are controlled by the relative importance of
the induced dipole and the EHD stresslet. The EHD flow weakens with increasing
conductivity, and for R → ∞, βT + βD → 1. The DEP interaction vanishes at R = 1, and
in this case the pair translation is solely driven by the interaction of the droplets’ stresslet
flows.
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Tandem droplet locomotion in a uniform electric field

Here, we focus on droplets with same size and viscosity but different conductivities and
permittivities. In this case, the DEP contributions to the centre-of-mass velocity cancel
and the pair migration speed is set by the droplet stresslets:

Ucm = 1
2 (U2 + U1) = 1

2 (βT,1 − βT,2)Uehd. (4.3)

Hence, the non-reciprocal EHD interaction is the source of the droplet tandem locomotion;
the pair migration speed vanishes if the droplet stresslets are the same. The direction of
motion is determined by the stresslets’ difference. For example, droplets with R1 = 0.1,
R2 = 100 and same permittivity ratio (S1 = S2 = 1) that are initially aligned with the field
translate antiparallel to the field (see supplementary movie 1 available at https://doi.org/
10.1017/jfm.2022.875); swapping the droplets reverses the direction of propulsion. In this
case, droplets settle into a stable separation. In general, however, the drop pair dynamics
is complex because the centre-of-mass motion is superimposed on changes in separation
and rotation of the line-of-centres relative to applied field direction.

4.2. Droplet trajectories
Here we examine the conditions to form a stable locomoting tandem. According to the
theory, the droplet separation and line-of-centre orientation evolve as

ḋ = U · d̂ =
[
(βT,1 + βT,2)

1
d2

− 2
d4

Φ(λ, βT,1, βT,2, βD)

]
(−1 + 3 cos2 Θ), (4.4)

Θ̇ = 1
d
U · t̂ = − 2

d5
Φ(λ, βT,1, βT,2, βD) sin (2Θ) , (4.5)

where U = U2 − U1 is the relative velocity and

Φ(λ, βT,1, βT,2, βD) =
(
1 + 3λ
2 + 3λ

) [
(βT,1 + βT,2) + 2βD

(
3(1 + λ)
1 + 3λ

)]
. (4.6)

Examination of this dynamical system shows that there are two equilibrium points:Θ∗ = 0
and d∗ = deq, and Θ∗ = π/2 and d∗ = deq, where (for viscosity ratio 1)

d2eq = 8
5

+ 32(R1 − 1)(R1+2)(R2 − 1)(R2+2)
3(R2

1(R2 − S2)+R1(R2(R2 + 8) − 4S2+4) + R2(4−(R2+4)S1)−4(S1+S2))
.

(4.7)
The equilibrium points are saddles, as seen from the phase plane plotted in figure 2(a).
If the droplet line-of-centres is initially aligned with the applied field direction, the
droplets attain a steady separation for values of the droplet conductivities corresponding
to figure 2(c) and the left branch of figure 2(b). If the droplet line-of-centres is initially
perpendicular to the applied field direction, the steady separation is given by the right
branch of figure 2(b). In these scenarios, the DEP is repulsive and stronger than the EHD
at short separations and the EHD is attractive at large separations. Accordingly, the drops
attract or repel until they reach the equilibrium separation deq.
Any misalignment of the drops line-of-centres drives the droplets away from the

equilibrium configurations towards contact or infinite separation. The trajectories d(Θ)
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Figure 2. (a) Phase plane of droplet trajectories for R1 = 0.1, R2 = 100 and S1 = S2 = 1, corresponding to
Φ < 0. The dashed lines correspond to deq and Θc. (b,c) Equilibrium separation deq for drops with different
conductivity but same permittivity S1 = S2 = 1.
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Figure 3. Droplet trajectories for R1 = 0.1 (red), R2 = 100 (blue), S1 = S2 = 1, λ1 = λ2 = 1 and initial angle
Θ0 = 10◦. For this system deq = 4.94. Lines are computed from the asymptotic theory. Symbols correspond to
the numerical simulations. Initial separation is d0 = 7 (a), see movie 2, and d0 = 4 (b), see movie 3. Simulation
time is 4161 (a) and 967 (b). Theoretical calculation ends at time 10 000 (a) and 2827 (b).

are given by

d2(Θ, d0, Θ0) = f (Θ, d0, Θ0)

1 + 2bf (Θ, d0, Θ0)
, (4.8)

where

f (Θ, d0, Θ0) = d20
1 − 2bd20

(
cosΘ sin2 Θ

cosΘ0 sin2 Θ0

)
, b = 5(βT,1 + βT,2)

16(βT,1 + βT,2 + 3βD)
. (4.9a,b)

The trajectories for different initial configurations – angle and separation – are plotted
in figure 2(a). In the case Φ < 0, if the initial separation d0 > deq, the droplets either
initially attract but then separate indefinitely if Θ0 < Θc or monotonically separate if
Θ0 > Θc. This scenario is reversed if d0 < deq, where droplets ultimately come into
contact. However, if the drops are misaligned but separated exactly by deq, i.e. d = d0,
their separation remains constant while their line-of-centres rotates continuously towards
the equilibrium points, either Θ∗ = 0 , if Φ > 0, or Θ∗ = π/2, in the opposite case, see
(4.5).
Figures 3 and 5 illustrate the droplet dynamics for the cases Φ < 0 and Φ > 0,

respectively. While for Θ0 = 0 and Φ < 0 the drops’ line-of-centres remains aligned
with the applied field and the drops form a pair with steady separation, if Θ0 /= 0, the
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Figure 4. Droplet-pair dynamics for R1 = 0.1 (a–d), R2 = 100 (e–h), S1 = S2 = 1, λ1 = λ2 = 1 and initial
angle Θ0 = 10◦ < Θc. For this system deq = 4.94. Initial separation is d0 = 7 (a–d) and d0 = 4 (e–h). Angle
(a,e), separation (b, f ), relative radial velocity (c,g) and absolute value of the pair migration speed (d,h) as a
function of time scaled by the EHD scale ηm/(εmE2

0). Lines are computed from the asymptotic theory. Symbols
correspond to the numerical simulations. Insets in (b,d) show the long-time asymptotic behaviour (red).
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Figure 5. Droplet-pair dynamics for R1 = 2 (red), R2 = 100 (blue), S1 = S2 = 1, λ1 = λ2 = 1, and initial
angle Θ0 = 80◦ > Θc. Initial separation (a) d0 = 4, leading to contact, and (b) d0 = 7, leading to indefinite
separation. Symbols correspond to the numerical simulations (end time 2200). Trajectories computed from the
asymptotic theory are over period of time 2227 (a) and 500 000 (b).

misaligned droplets migrate towards a configuration where the line-of-centres is nearly
perpendicular to the field, see figures 3 and 4(a,e). For this system, the induced dipoles
are in opposite directions, i.e. βD < 0. The stresslets also have opposite sign (βT,1 < 0
and βT,2 > 0); however, the EHD flow for the R = 0.1 droplet is stronger (|βT,1| > βT,2).
If Θ0 < Θc, the DEP is repulsive, while the pole-to-equator surface EHD flow of drop 1
results in attraction between the drops. If the initial distance between the drops is greater
than the equilibrium separation, d0 > deq, the interaction is initially dominated by the
EHD and droplets attract. However, as they get closer the DEP repulsion intensifies.
Moreover, while the relative distance between the drops is changing, the line-of-centres
is also rotating and the angle with the applied field direction enters the Θ > Θc range,
where the EHD is repulsive. As a result, the droplets indefinitely separate, while drop 1
is ‘chasing’ drop 2, with decreasing propulsion speed. The trajectory in this case is
shown in figure 3(a). The non-monotonic evolution of the separation, relative radial and
propulsion velocities is illustrated in figure 4(a–d). The long-time behaviour is dominated
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by the stresslets’ flow, which results in separation increasing as ∼ t1/3, see (4.4) and
inset in figure 4(b). Accordingly, the centre-of-mass and relative radial speeds approach
zero as the power law ∼ t−2/3. For example, the radial relative velocity decreases as
U · d̂ = (βT,1 + βT,2)

1/3(3t)−2/3 for t � 1. If the initial distance between the drops is
less than the equilibrium separation, d0 < deq, the interactions are reversed: the droplets
initially repel and then attract (if Θ0 < Θc), or monotonically attract (if Θ0 > Θc), and
eventually come in contact. The trajectory in this case is shown in figure 3(b). The
droplets’ relative velocity increases rapidly as they approach each other, see figure 4(g).
The centre-of-mass speed varies along the trajectories and it is minimal when the radial
velocity is close to zero, see figure 4(d,h). Comparison of the numerical and theoretical
results shows that the asymptotic theory qualitatively captures the drop dynamics. The
agreement between simulations and theory is better for droplets that are initially farther
apart. Thus, given the high computational costs of the simulations, the theory can
be used to estimate droplet interactions. Droplet deformation increases the deq, above
which drops evolve towards separating state. In the considered example, we found by
numerical simulations that d0 = 6 also leads to contact since the deformation causes the
drops to get too close and unable to escape the DEP attraction which ultimately leads
to contact.
In the case of droplets pairing in the transverse direction, Φ > 0, the droplets exhibit

the opposite orientational behaviour to the Φ < 0 case, and move to align with the
field. If the initial separation is smaller than the equilibrium one, drops come in contact,
and otherwise separate indefinitely, while both drops move in opposite direction (‘run
away’ from each other), see figure 5. In the latter case, the interaction is extremely
weak. The trajectory time is 500 000, which is prohibitively expensive to simulate
numerically.

5. Conclusions

We analyse the interactions of dissimilar droplets in a uniform electric field by means
of an asymptotic theory, assuming spherical droplets (Ca � 1) and large separations,
and numerical simulations, using a three-dimensional boundary integral method. The
simulations for Ca = 0.1 qualitatively agree with the theory, and thus the theory can
be used for a fast estimate of the drop trajectories. Our study focuses on the effect of
the mismatch in the electric properties, considering drops with different conductivity and
permittivity but same size and viscosity. In this case, the non-reciprocal EHD interactions
give rise to a net motion of the drop pair. The centre-of-mass motion is accompanied by
changes in drop separation and angle between their line-of-centres to the applied field
direction, which gives rise to intricate trajectories. Depending on the droplet stresslets
and dipoles in the function Φ, defined by (4.6), drops tend to orient their line-of-centres
either parallel, if Φ > 0, or perpendicular to the applied field direction, if Φ < 0. Initial
separation determines if drops will coalesce or indefinitely separate. For drops withΦ < 0,
if d0 > deq and Θ0 < Θc, drops initially attract and then separate indefinitely, while
chasing each other. If d0 < deq and Θ0 < Θc, droplets repel and then attract until contact;
the interaction is purely attractive and separation decreases monotonically if Θ0 > Θc.
In the particular case of drops aligned with the field and Φ < 0, the drops reach steady
separation and ‘swim’ along the applied field direction, if R1 < R2; direction of motion
is reversed if R1 > R2. If Φ > 0 and the drops’ line-of-centres is perpendicular to the
applied field direction, the droplets form a tandem translating transversely to the field. If
instead the drops line-of-centres is initially misaligned with the applied field direction,
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with d0 > deq and Θ0 > Θc, drops initially attract, then repel indefinitely while moving
in opposite directions to each other. If d0 < deq and Θ0 > Θc, droplets first repel and then
attract until contact. In both cases, the separation changes monotonically if Θ0 < Θc.
Our work represents the first numerical study of the three-dimensional dynamics of

electrically dissimilar drops and opens new directions of exploration of how to manipulate
droplets and direct assembly of particles with electric fields. For example, the preferential
migration to or away from the applied field direction could be exploited to separate droplets
with different conductivities and/or permittivities. The self-propelled droplet pair, which
is powered but not directed by the applied electric field, can inspire new designs of active
units and, more generally, non-equilibrium structures driven by non-reciprocal interactions
(Ivlev et al. 2015; Meredith et al. 2020; Bowick et al. 2022).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.875.
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Appendix A. Migration of a pair of droplets with different size

The most common source of droplet dissimilarity is a difference in size. The
centre-of-mass velocity in this case is (note that since the droplets are assumed to be
neutrally buoyant, their densities are the same)

Ucm = a31U1 + a32U2

a31 + a32

= (βT f ehd(d) + βDf dep(d))(−1 + 3 cos2 Θ)d̂

+ (βTgehd(d) + βDgdep(d)) sin(2Θ)t̂. (A1)

Let us consider the simplest scenario of droplets with same material properties (viscosity,
conductivity and permittivity). In this case, even though the DEP forces are reciprocal, the
droplet velocities are different due to different drag. Accordingly,

f dep(d) = −gdep(d) = 6ν3(1 + λ)(ν2 − 1)
d4(2 + 3λ)(1 + ν3)

, (A2)

where ν = a2/a1 is the ratio of droplet radii. The EHD contribution is

f ehd(d) = (ν3 − 1)
d2(1 + ν3)

+ gehd(d),

gehd(d) = − 1
d4(1 + ν3)

(
(ν3 − 1) + 3λ(ν7 − 1)

2 + 3λ

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A3)
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