

1 Daily monitoring at a full-scale wastewater treatment plant

2 reveals temporally variable micropollutant biotransformations

3 *Stephanie L. Rich and Damian E. Helbling**

4 School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA

5 *Corresponding author: damian.helbling@cornell.edu, phone: +1 607 255 5146, fax: +1 607 255

6 9004

7 **Keywords**

8 stochastic microbial processes, emerging contaminants, conventional activated sludge, composite

9 sampling, demographic shift, pharmaceuticals, organic pollutants, monohydroxylation

10 **Abstract**

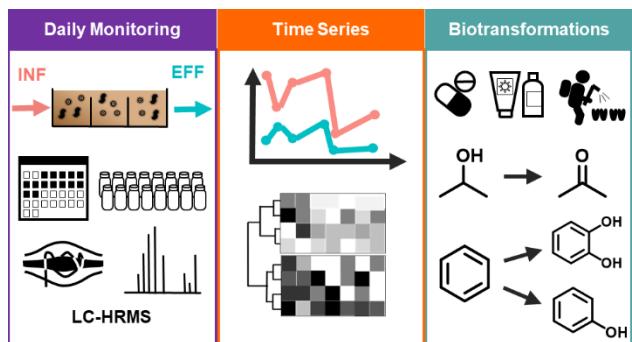
11 Despite decades of micropollutant (MP) monitoring at wastewater treatment plants (WWTPs), we
12 lack a fundamental understanding of the time-varying metabolic processes driving MP
13 biotransformations. To address this knowledge gap, we collected 24-h composite samples from
14 the influent and effluent of the conventional activated sludge (CAS) process at a WWTP over 14
15 consecutive days. We used liquid chromatography and high-resolution mass spectrometry (LC-
16 HRMS) to: (i) quantify 184 MPs in the influent and effluent of the CAS process; (ii) characterize
17 temporal dynamics of MP removal and biotransformation rate constants; and (iii) discover
18 biotransformations linked to temporally variable MP biotransformation rate constants. We
19 measured 120 MPs in at least one sample and 66 MPs in every sample. There were 24 MPs
20 exhibiting temporally variable removal throughout the sampling campaign. We used hierarchical
21 clustering analysis to reveal four temporal trends in biotransformation rate constants and found
22 MPs with specific structural features co-located in the four clusters. We screened our HRMS
23 acquisitions for evidence of specific biotransformations linked to structural features among the 24
24 MPs. Our analyses reveal that *alcohol oxidations, monohydroxylations at secondary or tertiary*
25 *aliphatic carbons, dihydroxylations of vic-unsubstituted rings, and monohydroxylations at*
26 *unsubstituted rings* are biotransformations that exhibit variability on daily timescales.

27 **Short synopsis statement.**

28 This research uses daily, time-proportional composite samples across a conventional activated
29 sludge system and high-resolution mass spectrometry to reveal micropollutant biotransformations
30 that are temporally variable on daily timescales.

31

32 Abstract art



33 **Introduction**

34 Organic micropollutants (MPs) are an unbounded class of xenobiotics that have negative
35 effects on water quality and exposed aquatic ecosystems.^{1–3} Human exposure to MPs can also lead
36 to a variety of negative health effects including cytotoxic and developmental effects.^{4–6} Municipal
37 wastewater treatment plants (WWTPs) play an important role in determining the fate of MPs in
38 the environment.^{7–10} One of the most important techniques for MP removal in conventional
39 WWTPs is through aerobic biological treatment processes. For example, it is widely known that
40 MP biotransformations are primarily catalyzed by non-specific enzymes produced by the
41 wastewater microbial communities within conventional activated sludge (CAS) processes.^{11–18}
42 Decades of research have demonstrated that some MPs are nearly always biotransformed in CAS
43 systems around the world (e.g., ibuprofen, acetaminophen) whereas other MPs are nearly always
44 persistent in CAS systems around the world (e.g., carbamazepine, sucralose).^{19,20}

45 Although it is useful to identify MPs that are either universally biotransformed or
46 persistent, the majority of MPs exhibit variable rates and extent of biotransformation over time
47 and in CAS systems around the world.^{15,21,22} Variable biotransformation of MPs is often linked to
48 process variables such as temperature,^{23–25} redox environment,^{26,27} solids retention time,^{28,29} or the
49 presence or absence of specific taxa within the wastewater microbial community.³⁰ All of these
50 factors ultimately shape the structure and function of the wastewater microbial community and
51 could influence the activity levels of specific microbial community functions. However, it remains
52 unclear how changes in these process variables might change the activity level of a specific
53 microbial community function and over what timescales changes in activity levels might be
54 observed in a full-scale WWTP. This knowledge gap limits our ability to tune the performance of
55 WWTPs to enhance the biotransformation of the majority of MPs.

56 Most previous studies investigating the variable biotransformation of MPs have utilized
57 batch reactors seeded with wastewater microbial communities to measure the rate and extent of
58 MP biotransformation³¹⁻³⁶ and to identify biotransformation products (TPs).^{37,38} Data from these
59 types of experiments have been useful for delineating biotransformation pathways³⁹ and for linking
60 biotransformation rates to experimental variables such as dissolved oxygen levels²⁶ or the
61 taxonomic composition of the microbial community.⁴⁰ However, there are a variety of limitations
62 that have prevented the extrapolation of results from these types of studies to performance in full-
63 scale systems. For example, batch reactors seeded with wastewater microbial communities
64 represent only a snapshot of the dynamic microbial community at the time of sampling from the
65 full-scale WWTP.⁴¹ Further, removing the wastewater microbial community from its natural
66 environment and placing it in a laboratory reactor is expected to result in significant shifts in both
67 the taxonomic composition and the activity levels of specific microbial community functions.^{42,43}
68 Spiking MPs into a batch reactor can also stimulate or inhibit the activity levels of specific
69 microbial community functions resulting in a misrepresentation of biotransformation rate
70 constants relative to the full-scale system.^{10,44-46}

71 We contend that novel insights on the temporal variability of MP biotransformations
72 performed by wastewater microbial communities are best explored through daily monitoring of
73 MP concentrations in the influent and effluent of the biological process at a full-scale WWTP.
74 Therefore, we implemented a 14-day sampling campaign at the Ithaca Area Wastewater Treatment
75 Facility where we collected 24-h time-proportional samples from the influent and effluent of a
76 CAS process, concentrated each sample by means of solid-phase extraction, and used liquid
77 chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to: (i) quantify the
78 abundance of up to 184 MPs in the influent and effluent of the full-scale CAS process daily over

79 a 14-day period; (ii) characterize the temporal dynamics of MP removal and biotransformation
80 rate constants over the 14-day period; and (iii) discover specific biotransformations that are linked
81 to temporally variable MP biotransformation rate constants. This study offers the first evaluation
82 of the daily variability of MP biotransformations in a full-scale WWTP over a 14-day period. Our
83 data demonstrate that some MP biotransformations can be variable on daily timescales and that
84 MP concentration and chemical structure are driving factors in the temporal variability of MP
85 biotransformations.

86 **Materials and Methods**

87 **Micropollutant selection.** We selected 184 MPs for target quantification in this study. The
88 selected MPs are commonly observed in WWTPs and consist of pharmaceuticals, industrial
89 chemicals, pesticides, human metabolites, and food additives.^{9,47,48} We selected these MPs to
90 observe population-driven chemical use patterns in the studied WWTP and to encompass a broad
91 range of MP chemical structures. Stock solutions of all 184 MPs were prepared at 1 g L⁻¹ in either
92 LC-MS-grade methanol (OmniSolv, VWR), nanopure water (EMD Millipore), LC-MS-grade
93 acetonitrile (Fisher Chemical), ethanol (Decon Labs), dimethyl sulfoxide (Macron Fine
94 Chemicals) or acetone (Honeywell) and stored at -20°C. A standard mixture of all 184 MPs was
95 created in nanopure water at 5 mg L⁻¹ and stored at -20°C. A list of the 184 MPs, along with their
96 CAS numbers, chemical formulas, and analytical parameters are provided in **Table S1** of the
97 **Supporting Information (SI).** Similarly, a mixture of 51 isotope-labeled internal standards (ILIS)
98 was created in nanopure water at 5 mg L⁻¹ and stored at -20°C. A list of the 51 ILISs is provided
99 in **Table S2.**

100 **Sampling of wastewater *in-situ*.** The WWTP chosen for this study is located in Ithaca, NY and
101 treats 6.5 MGD of raw wastewater on average for a population of approximately 30,000

102 inhabitants. Average daily volumetric flow rates during the 14-day sampling campaign as well as
103 instantaneous minimum and maximum flowrates, and daily precipitation values are provided in
104 **Figure S1**. The main biological treatment process at this WWTP consists of a CAS system with
105 return activated sludge followed by a secondary clarifier. More information on the WWTP
106 operational parameters during the sampling campaign are included in **Table S3**. We placed two
107 full-size portable Teledyne ISCO 6712 autosamplers along the WWTP treatment path surrounding
108 the CAS system, which is the WWTP unit process where we expect most MPs will be
109 biotransformed.¹² One autosampler was placed directly upstream of the CAS at the effluent of the
110 primary clarifier before the input of return activated sludge and the other autosampler was placed
111 at the end of the CAS system designed with plug-flow-like hydraulics (denoted as INF and EFF
112 respectively, see **SI Figure S2**). Daily, time-weighted composite samples were collected at each
113 sampling location simultaneously starting from 10:00 am on November 17th and ending at 10:00
114 am on December 1st 2020. We chose these sampling dates to capture a demographic shift in the
115 community caused by the outflow of students from the Cornell University and Ithaca College
116 campuses for Thanksgiving break on Nov 26th to evaluate the effect of a population change on
117 influent MP concentrations and wastewater microbial community functioning (we also note that
118 2020 was an unusual year due to the ongoing COVID-19 pandemic, but that most students were
119 studying on campus and left town for the Thanksgiving holiday). Teflon-lined polyethylene tubing
120 was used to draw 20 mL of wastewater every 20 min for 24 h into 1.8 L glass bottles such that the
121 total volume of each composite sample was approximately 1.4 L. Field blanks were collected
122 before and after wastewater sampling by running 1.4 L of nanopure water through our sample
123 collection system. We chose to implement a simultaneous sampling method because the hydraulic
124 retention time of the studied reactor was 7.3 h on average and our 24 h composite samples will

125 collect most of the MP mass traveling through the system. We retrieved composite samples from
126 the WWTP at 10:10 am daily and prepared them in the lab within one hour of sample collection.

127 **Preparation of wastewater samples.** Wastewater samples were filtered in three different steps
128 before preparation via solid-phase extraction (SPE). The three filtration steps included large solids
129 removal using coffee filters (VWR), suspended solids removal using glass-fiber filters (grade
130 GF/F, diameter 4.7 cm, pore size 0.7 μm , VWR), and finally cellulose acetate filters (diameter 4.7
131 cm, pore size 0.45 μm , VWR) to generate sample filtrate for SPE. One liter of sample filtrate was
132 collected and titrated to a pH of 6.5 using dilute formic acid and spiked with 20 μL of the ILIS
133 mixture such that each sample had an ILIS concentration of 100 ng/L before loading onto mixed-
134 bed SPE cartridges containing 200 mg ENVI-Carb (Sigma-Aldrich), 100 mg Strata-X-AW
135 (Phenomenex), 100 mg Strata-X-CW (Phenomenex), 150 mg Isolute ENV+ (Separtis GmbH,
136 Germany) and 200 mg Oasis HLB (Waters) to concentrate the samples by a factor of 1000 as
137 previously described.^{49,50} We also prepared a 9-point calibration curve by spiking the mixture of
138 184 MPs into 1 L of nanopure water to generate standards at concentrations of 0, 1, 5, 25, 50, 100,
139 250, 500, and 750 ng/L. The calibration standards were likewise spiked with 20 μL of the ILIS
140 mixture and loaded onto the mixed-bed SPE cartridges to concentrate by a factor of 1000. SPE
141 cartridges were refrigerated at 5 °C for up to one week before elution.

142 **Sample analysis.** We adopted a previously described analytical method for MP quantification and
143 TP identification.^{9,37} Briefly, samples were measured in triplicate using reversed-phase liquid
144 chromatography (Ultimate 3000, Thermo Scientific) coupled to high-resolution quadrupole-
145 orbitrap mass spectrometry (QExactive, Thermo Scientific) with 30 μL injections of samples
146 stored at 4 °C during the analysis. Samples were separated using a mobile phase gradient of LC-
147 MS grade water (OmniSolv, 58201, solvent A) and methanol (OmniSolv, 58215, solvent B) – both

148 containing 0.1% (v/v) formic acid – over an XBridge C18 column (Waters, 186003021, particle
149 size: 3.5 μ m, flow rate: 0.2 mL/min, gradient properties: 0 – 5 min: 5% B, 5 – 21 min: 5% B –
150 95% B (linear increase), 21 – 25 min: 95% B, 25 – 30 min: 5% B). We performed full-scan MS
151 acquisitions (100-1000 m/z, resolution 140,000) in electrospray ionization positive-negative
152 switch mode. Data dependent MS² spectra were acquired at the exact masses and retention times
153 of all target MPs and ILISs with additional MS² spectra collected for the TopN MS features if the
154 inclusion list was not triggered. For absolute quantification of target analytes, we used ILIS
155 normalized peak areas obtained with Xcalibur Quanbrowser (Thermo Scientific, Version
156 4.0.27.19) and a calibration series (concentration range: 0-750 μ g/L after passing through SPE)
157 with 1/x least-squares regression. Analytical parameters for each target MP and its assigned ILIS
158 are provided in **Table S1** and **Table S2**.

159 **Quality control.** We used an in-house R script to match MS² fragments to candidate target MP
160 peaks in wastewater samples (available for download at github.com/cmc493). Our workflow first
161 converts instrument .RAW files into .mzXML files using ProteoWizard v3.0.19096, then uses the
162 *findMsMsHR.mass* function from the R package *RMassBank*⁵¹ to search MS² spectra from picked
163 peaks for matching diagnostic fragments in our in-house database or from the highest calibration
164 point (diagnostic fragments provided in **Table S1**). All .RAW and .mzXML files are available as
165 data set MSV000092016 from the GNPS MassIVE repository
166 (<https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp>) citable under DOI:
167 [10.25345/C5SQ8QT49](https://doi.org/10.25345/C5SQ8QT49). Confirmed MP detection in any sample required at least one diagnostic
168 fragment in one of the triplicate sample measurements. For pseudo-first order rate constant
169 estimates, concentrations greater than the highest calibration point were included and
170 concentrations lower than the limit of quantification (LOQ) were conservatively replaced with the

171 value of the LOQ. The LOQ was defined as the lowest measured calibration point in our standard
172 curve (0.001 $\mu\text{g/L}$ is the lowest possible value for the LOQ). We only report concentrations of
173 MPs where linear calibration curves consisted of at least three points and had an R^2 greater than
174 0.85, which addresses analytical uncertainties resulting from the matrix and analyte interference.
175 Data quality parameters such as R^2 and LOQ for target MPs are provided in **Table S4**.

176 **Biotransformation product analysis.** We used the Eawag-Pathway Prediction System^{52,53}
177 (Eawag-PPS) with relative reasoning turned off and likelihood set to all to generate a list of 183
178 predicted TPs with masses greater than 100 Da for 24 select MPs that were biotransformed on
179 every day of the sampling campaign as previously described.^{38,49,54} We cross-referenced the
180 predictions with those made by the enviPath software⁵⁵ and those contained within the sludge
181 package of enviPath and confirmed that all possible TPs were included in our list of suspected
182 TPs. We generated SMILES for each of the predicted TPs and used JChem for Excel (2019 version
183 19.26.0571) to calculate the exact mass of the $[\text{M}+\text{H}]^+$ and $[\text{M}-\text{H}]^-$ ions for each predicted TP. We
184 then used Xcalibur Qualbrowser (Thermo Scientific, Version 4.0.27.19) to visually screen HRMS
185 acquisitions for evidence of TP formation in the EFF dataset. We contend that TPs formed from
186 parent MPs during the CAS process are most likely present at the EFF sampling location, therefore
187 we prioritized TP detection in EFF samples. Evidence of TP formation includes: (i) peak areas
188 greater than 1E5; (ii) reasonable peak shape; (iii) presence of a peak in environmental samples and
189 absence of a peak (or peak area less than 1E4, which is a threshold for analytical noise) in blank
190 samples; (iv) one diagnostic fragment detected in at least one triplicate measurement of a field
191 sample; and (v) a retention time less than two minutes longer than the retention time of the parent
192 MP. The resulting list of candidate biotransformation products was further vetted by comparing
193 MS spectra and MS^2 fragmentation data to *in-silico* MS^2 fragments generated by the MassFrontier

194 software (ThermoScientific). MS² fragments were matched to predicted fragments for suspect TPs
195 using a modified version of the in-house R script described in the Quality Control section of the
196 Methods with the workflow adapted to prioritize identification of suspect TPs (available for
197 download at github.com/slr257).

198 **Data and statistical analysis.** We used MP concentrations at the INF and EFF locations to
199 estimate pseudo first-order biotransformation rate constants for MPs exhibiting removal on all 14
200 sampling days as detailed in the **SI**. We used z-score normalized first-order biotransformation rate
201 constants to compare the variability of temporal trends in MP biotransformation rate constants
202 over the 14-day period due to the wide range of the absolute values of pseudo first-order MP
203 biotransformation rate constants. Hierarchical clustering analysis was performed on the
204 normalized rate constants using Ward's agglomerative clustering method *ward.D2* in RStudio⁵⁶–
205⁵⁸ (R version 4.0.4, RStudio version 1.1.463) with the package *pheatmap*.⁵⁹ Correlation
206 coefficients (r) were calculated using Spearman's rank correlation test with the function *cor.test*
207 and significance tests were performed using two-sided, paired t-tests with the function *t.test* from
208 the R *stats* package.

209 **Results and Discussion**

210 **Quantifying MPs in INF and EFF samples.** We quantified concentrations of 152 MPs that met
211 our quality control criteria. We found 120 of the 152 MPs at concentrations above individual LOQs
212 in at least one INF or EFF sample collected during the 14-day sampling period. Of the 120 MPs
213 measured in at least one INF or EFF sample, we observed 75 in all INF samples, 72 in all EFF
214 samples, and 66 in all INF *and* EFF samples on all 14 sampling days. Additionally, field samples
215 collected before and after the sampling campaign confirmed that MPs were not accumulating in or
216 leaching from our sampling system. A summary of the quantified MPs, concentrations, and

217 removal percentages (%R) are provided in **Figure 1**. **Figure 1A** details the number of days each
218 MP was observed throughout the campaign, with zero representing MPs that were *never* measured
219 above the LOQ and 14 representing MPs that were *always* measured above the LOQ at each INF
220 and EFF location. Most MPs at the INF location were also found at the downstream EFF location
221 at least once with the exception of abacavir, caffeine, coumarin, levetiracetam, and meprobamate
222 indicating consistent and complete removal of these five MPs. However, the antiviral medication
223 abacavir and anxiolytic drug meprobamate were each observed in only one INF sample (abacavir
224 – Nov 29th, meprobamate – Nov 24th) so we cannot say if the complete removal of these two MPs
225 is necessarily a robust process. As shown in **Figure 1A**, the majority of quantified MPs fall into
226 extremes of either zero or 14 days observed, with 42 and 43 MPs falling between these two extreme
227 categories for INF and EFF respectively.

228 **Figure 1B** shows two overlaid distributions of the mean concentrations generated from
229 triplicate measurements for the 120 target MPs measured above the LOQ in any INF or EFF sample
230 with concentrations ranging from 0.001 – 660 µg/L on any one day. The mean and median
231 concentrations of MPs detected at the INF location were 9.6 µg/L and 0.54 µg/L respectively. The
232 mean and median concentrations of MPs detected at the EFF location were 2.9 µg/L and 0.32 µg/L.
233 Summary statistics of measured concentrations for each individual MP used in the distributions in
234 **Figure 1B** are provided in **Table S5** and **Table S6**. As shown in **Figure 1B**, there was an overall
235 significant decrease in MP concentrations from INF to EFF samples ($p < 0.05$, t-test) indicating
236 the expected aggregate MP removal during the CAS process, especially for MPs entering the CAS
237 process at relatively high concentrations (5-700 µg/L). We note that although we report EFF
238 concentrations as high as 119 µg/L (saccharin, Nov 19th), this represents the effluent of the CAS
239 process and not the concentration of MPs released into the environment at the final WWTP

240 effluent; downstream unit processes at this WWTP include secondary clarification, chemical
241 precipitation of phosphorous, disinfection, and dechlorination.

242 Next, we calculated %R on each day of the sampling campaign using INF and EFF
243 concentrations $((\text{INF}-\text{EFF})*100/\text{INF})$ and evaluated the relationship between average INF
244 concentration and average %R (**Figure 1C**). We removed MPs exhibiting sporadic %R (< 3 days)
245 before generating **Figure 1C**, which resulted in 78 MPs for which we calculated average %R and
246 the associated standard deviation (SD). **Figure 1C** shows average %R plotted against average log-
247 transformed INF concentrations for these 78 MPs along with the SD represented in a color scale
248 ranging from yellow (low SD) to red (high SD). In **Figure 1C**, we observe a weak yet significant
249 positive relationship between average %R and average log-transformed INF concentration
250 indicating that, in aggregate, average %R increases with increasing INF concentration ($r = 0.4$, p
251 < 0.05), a phenomenon that has been observed for MPs at other WWTPs.³⁴ Most MPs exhibiting
252 either very high (> 85) or very low (< 15) average %R were consistently measured as such (*i.e.*,
253 low SD). MPs in this category are likely biotransformed via microbial community functions with
254 stable activity levels. Conversely, MPs exhibiting less extreme average %R values (between 15-
255 85%) exhibited more variability in measured %R (*i.e.*, high SD), demonstrating the interesting
256 phenomenon of temporally changing activity levels for the related microbial community functions.
257 Finally, we note that no significant associations were identified between %R and precipitation
258 level, flow rate, suspended solids concentration, or influent and effluent BOD_5 concentrations.
259 **Characterizing the temporal dynamics of %R.** We next aimed to characterize the temporal
260 dynamics of %R over the 14-day sampling campaign for individual MPs. To do this, we focused
261 on the 66 MPs that were measured in all INF and EFF samples on all 14 days of the sampling
262 campaign. We then narrowed that list to 35 MPs that exhibit positive %R on all 14 days of the

263 sampling campaign; the other 31 MPs exhibit negative or zero %R on at least one of the sampling
264 days which we attribute to formation during activated sludge treatment (*e.g.*, back-transformation
265 of human metabolites to parent MPs)^{44,60,61}, the measured MP being a biotransformation product
266 itself (*e.g.*, metolachlor ESA), or limited transformation resulting in near-zero %R on most days
267 with analytical uncertainty yielding %R estimates in the range of $\pm 15\%$. Temporal profiles of INF,
268 EFF, and %R for three representative MPs that meet these criteria are provided in **Figure 2**.
269 Temporal profiles for all 35 MPs are provided in **Figure S3**.

270 These data demonstrate that individual MPs can exhibit highly variable %R on daily
271 timescales within a single WWTP. For example, propranolol exhibits a sudden drop in %R on one
272 sampling day (Nov 25th, day before Thanksgiving holiday) before returning to pre-Thanksgiving
273 holiday levels (**Figure 2B**). Gabapentin exhibits large daily increases in %R over the first four
274 days of the sampling campaign before leveling off at a more consistent level during the latter seven
275 days of the sampling campaign (**Figure 2C**). This important observation of highly variable %R on
276 daily timescales within a single WWTP has not been clearly demonstrated in previous literature
277 (although highly variable MP concentrations in WWTP effluents has been reported)⁶² and has
278 several practical implications. First, these data confirm that a single 24-h composite sample is
279 insufficient to determine the %R of an individual MP; rather, a time-series of daily composite
280 samples are needed to fully capture the temporal variability of %R within a single WWTP. Second,
281 the temporal variability itself is notable because it suggests there are factors that change on daily
282 (or hourly) timescales that influence the activity levels of microbial community functions involved
283 in MP biotransformations at a full-scale WWTP.

284 Next, we tested whether the demographic shift in the community due to the Thanksgiving
285 holiday break resulted in significant changes in aggregate INF concentrations or %R for the 35

286 MPs. We compared the distributions of INF concentrations and %R for the 35 MPs from the five
287 days before the Thanksgiving holiday (Nov 20th – 25th) to the five days after the Thanksgiving
288 holiday (Nov 26th – Dec 1st). We observed significant decreases in INF concentrations ($p < 0.05$,
289 t-test) and %R ($p < 0.01$, t-test) for the 35 MPs in the five days after the Thanksgiving holiday,
290 indicating that the demographic shift had effects on INF concentrations and %R. Previous studies
291 have demonstrated that a sudden demographic shift can be associated with the expected decreases
292 (and sometimes increases) in MP concentrations in WWTPs.⁶³ However, our data indicate this
293 type of demographic shift can likewise influence the activity levels of microbial community
294 functions involved in MP biotransformations at a full-scale WWTP.

295 Although we observed significant decreases in *aggregate* INF concentrations and %R in
296 the five days after Thanksgiving break, it is also clear from the data in **Figure 2** and **Figure S3**
297 that changes in INF are not always associated with changes in %R among individual MPs. To test
298 the relationship between INF concentrations and %R among the 35 individual MPs, we used the
299 SD values of %R to evaluate the extent of variability of %R and Spearman correlations between
300 INF concentrations and %R to identify significant associations. We identified three major types of
301 relationships between INF concentrations and %R based on these metrics. First, we identified ten
302 MPs that did not exhibit variable %R over the fourteen-day sampling campaign ($SD < 5\%$) despite
303 changes in INF concentrations. These include caffeine (**Figure 2A**) and nine other MPs listed in
304 **Table S7**. Examination of the temporal profiles of %R for these MPs indicates that they are all
305 nearly completely removed on every day of the sampling campaign. Therefore, there is no
306 measurable change in the activity levels of the microbial community functions involved in the
307 biotransformation of these MPs. Second, we identified eight MPs that exhibit variable %R ($SD >$
308 5%) and a positive and significant association between INF concentration and %R ($r > 0.55$, $p <$

309 0.05). These include propranolol (**Figure 2B**) and seven other MPs listed in **Table S7**. These
310 associations suggest that INF concentrations may have an effect on the activity levels of the
311 microbial community functions involved in the biotransformation of these MPs. Third, we
312 identified sixteen MPs exhibiting variable %R ($SD > 5\%$) with no significant association between
313 INF concentration and %R ($-0.55 < r < 0.55$, $p > 0.05$). These include gabapentin (**Figure 2C**) and
314 15 other MPs listed in **Table S7**. These sixteen MPs are of particular interest for this study because
315 they exhibit temporal variability in %R on daily timescales, but the variability is not associated
316 with changes in INF concentration. Therefore, we conclude that the activity levels of the microbial
317 community functions involved in the biotransformation of these MPs are changing in response to
318 other, unknown factors. Finally, we must note that acesulfame exhibits variable %R ($SD > 5\%$)
319 and a negative and significant association between INF concentration and %R ($r < -0.55$, $p < 0.05$).
320 Variable removal of acesulfame in WWTPs has been previously reported and has been linked to
321 adaptation of the microbial community to continuous exposure to acesulfame.²² The negative and
322 significant association observed here was unique to acesulfame and has not been previously
323 reported for other MPs. Because this unique behavior could not be generalized to a broader group
324 of MPs, we do not include acesulfame in the following analyses.

325 **Characterizing the temporal dynamics of MP biotransformation rate constants.** We next
326 aimed to characterize the temporal dynamics of MP biotransformation rate constants over the 14-
327 day sampling campaign for individual MPs. Biotransformation rate constants are a complementary
328 metric to %R that account for large differences in INF concentrations among MPs while
329 incorporating daily changes in hydraulic retention time. We used **Equation S1** to estimate pseudo
330 first-order rate constants on each day of the sampling campaign for the 24 MPs that exhibit variable
331 %R ($SD > 5\%$) as described in the preceding section. The estimated average rate constants range

332 from 0.02 to 24 d⁻¹ with a median value of 2.8 d⁻¹. Mean values of the rate constants for each of
333 the 24 MPs along with their respective maximum, minimum, and coefficient of variation (CoV)
334 across the 14-day sampling campaign are provided in **Table S8**. Metalaxyl, metaxalone,
335 famotidine, and dimethyl phthalate exhibited the most variable biotransformations rate constants
336 (CoV > 0.62) and DEET, emtricitabine, propranolol, and flucytosine exhibited the least variable
337 biotransformation rate constants (0.15 < CoV < 0.26).

338 To evaluate whether groups of MPs exhibit characteristic patterns of variability among
339 their biotransformation rate constants, we used z-score normalization (to eliminate the effects of
340 the magnitudes of the rate constants) and hierarchical clustering to generate the clustered heatmap
341 shown in **Figure 3**. This analysis revealed four clusters of MPs that exhibit correlated patterns of
342 variability among their biotransformation rate constants. Boxplots of actual rate constant values
343 by cluster per day are provided in **Figure S4**. The eight MPs labeled with red text in **Figure 3**
344 represent those that exhibit positive and significant associations between INF concentration and
345 %R as described in the preceding section. It is interesting to note that all eight of these MPs are
346 contained within cluster 1 and cluster 2, suggesting that INF concentrations may be an important
347 factor controlling the activity level of the microbial community functions involved in the
348 biotransformation of the MPs in these two clusters. MPs in cluster 3 are characterized by their
349 maximum biotransformation rate constants on Nov 21st and a general decreasing trend in rate
350 constant magnitudes after this date (evidenced by the shading of the heat map in **Figure 3** and the
351 data presented in **Figure S4**). MPs in cluster 4 are characterized by steadily increasing rate
352 constants over the 14-day sampling campaign (evidenced by the shading of the heat map in **Figure**
353 **3** and the data presented in **Figure S4**). All twelve of the MPs contained in cluster 3 and cluster 4
354 are among those that exhibit no significant association between INF concentration and %R,

355 suggesting that the activity levels of the microbial community functions involved in the
356 biotransformation of the MPs in these two clusters are changing in response to other, unknown
357 factors. We note that changing activity levels could be the result of shifts in microbial community
358 structure or shifts in the expression levels of genes that encode for the associated catalytic
359 enzymes.^{64,65} The specific taxa and catalytic enzymes involved in the observed MP
360 biotransformations are unknown, but literature data demonstrate that the core structure of
361 wastewater microbial communities is stable over weekly or even monthly timescales,⁶⁶ whereas
362 gene expression levels can vary over hourly or daily timescales.⁶⁷ Therefore, it is likely that the
363 changes in activity levels are the result of either changes in the composition of satellite taxa around
364 the core structure or changing gene expression levels resulting from environmental or stochastic
365 processes.⁶⁸ Because the specific taxa and catalytic enzymes involved in the observed MP
366 biotransformations are unknown, this cannot be explicitly tested but is motivation for future
367 research.

368 We hypothesize that chemical structure could be a factor that explains the patterns of
369 variability among the biotransformation rate constants of the MPs contained in the four clusters
370 revealed in **Figure 3**. Under this hypothesis, clusters of MPs containing common labile functional
371 groups would exhibit correlated patterns of temporally variable biotransformations based on
372 changing activity levels of related microbial community functions. To test this hypothesis, we used
373 the Eawag-PPS to identify the biotransformation rules (btrules) triggered by each of the 24 MPs
374 contained in **Figure 3**. This analysis revealed 36 unique btrules triggered by all 24 MPs, with nine
375 btrules that represent four broad categories of biotransformations predicted most consistently. A
376 summary of this analysis is presented in **Figure 4A**, where we report the number of times each of
377 the nine btrules was triggered by the MPs contained in each of the four clusters.

378 We found that the five MPs in cluster 1 primarily contain functional groups that support
379 both *alcohol oxidations* (bt0001, bt0002) and *monohydroxylations at secondary or tertiary*
380 *aliphatic carbons* (bt0241, bt0242). Conversely, the seven MPs in cluster 2 contain functional
381 groups that support both *dihydroxylations of vic-unsubstituted rings* (bt0005) and
382 *monohydroxylations at unsubstituted rings* (bt0011, bt0012, bt0013, bt0014). The observation that
383 each cluster of MPs contains functional groups in common supports our hypothesis. Further,
384 because we previously noted that most of the MPs contained in cluster 1 and cluster 2 exhibit
385 positive and significant associations between INF concentration and %R, these data suggest that
386 the activity levels of these microbial community functions may be influenced by INF
387 concentrations. The four MPs in cluster 3 primarily contain functional groups that support
388 *monohydroxylations at unsubstituted rings* (bt0011, bt0012, bt0013, bt0014) and the eight MPs in
389 cluster 4 contain functional groups that support *monohydroxylations at secondary or tertiary*
390 *aliphatic carbons* (bt0241, bt0242). These observations likewise support our hypothesis, and our
391 previous observation that these MPs exhibit no significant association between INF concentration
392 and %R suggests that the activity levels of these microbial community functions for these MPs
393 may be changing in response to other, unknown factors.

394 **Discovering specific biotransformations linked to variable rate constants.** We finally aimed
395 to provide additional support to our hypothesis by screening the EFF samples for evidence of TPs
396 formed from specific biotransformations noted for each of the four MP clusters. We used the
397 Eawag-PPS predictions to screen the EFF samples for a total of 183 TPs. We found evidence of
398 37 TPs formed from 18 of the 24 MPs in at least one EFF sample. A summary of detected TPs
399 along with their respective SMILES, chemical formula, extracted mass, retention times, diagnostic
400 fragments, and associated btrules is provided in **Table S9** and definitions of associated btrules are

401 provided in **Table S10**. All 37 of the TPs are identified at confidence level 2 or 3 according to
402 Schymanski et al.⁶⁹ We also present an accounting of the TPs that were detected resulting from
403 the nine btrules most commonly triggered by the 24 MPs in **Figure 4B**. The data in **Figure 4B**
404 demonstrate that we found evidence of TPs representing all four broad categories
405 biotransformations (or microbial community functions) sporadically across the four MP clusters.
406 Although we did find evidence of some of the expected biotransformations in some of the clusters
407 (e.g., four TPs resulting from *monohydroxylations at secondary or tertiary aliphatic carbons* for
408 MPs contained in cluster 4), this analysis does not provide unequivocal evidence in support of our
409 hypothesis.

410 It is worth discussing some of the limitations of our approach to TP analysis that may
411 confound our ability to definitively identify evidence of the expected biotransformations. First, we
412 restricted our analysis to only those TPs predicted by the Eawag-PPS. Although this is one of the
413 most robust tools available to predict biotransformations of MPs performed by wastewater
414 microbial communities,⁷⁰ it is not necessarily comprehensive and recent studies have reported
415 biotransformations performed by wastewater microbial communities that are not predicted by the
416 Eawag-PPS.^{37,39,71} This limitation restricts our ability to account for likely biotransformations
417 (**Figure 4A**) and our ability to screen for TPs in the EFF samples (**Figure 4B**). Second, it is
418 possible that some of the predicted TPs cannot be detected using our analytical method that was
419 optimized for the quantification of the 184 MPs of interest within a certain mass range and that are
420 captured using our SPE method. Further, our stringent criteria for analytical data supporting TP
421 identification may have filtered out some TPs that actually were present. These factors highlight
422 the limitations of HRMS as a tool for identifying TPs in complex matrices. Third, most studies
423 that report on MP biotransformations are conducted in batch studies in which the MP of interest is

424 spiked into a wastewater microbial community. Whereas other studies have screened for TPs in
425 wastewater effluent,⁷² our study is one of the first to try to identify TPs *in-situ* without prior
426 knowledge of expected TPs from batch experiments, which limits our ability to leverage
427 experimental tools to facilitate TP identification (e.g., temporal trend analysis). Nevertheless, this
428 approach was essential to capture the temporal dynamics and limit the effects of microbial
429 community harvesting and MP spiking in batch reactors. Finally, it is likely that some of the
430 expected biotransformations occurred as a relatively rapid first step along a biotransformation
431 pathway. We observed the first step as the disappearance of the MP, but the first-generation TP
432 may not have been formed to a measurable extent before it was subsequently biotransformed.
433 These limitations point to the need for improved prediction of biotransformations occurring during
434 wastewater treatment and analytical methods for TP detection in wastewater effluents.

435 **Environmental implications.** The primary goal of this study was to discover the extent of the
436 temporal variability of MP biotransformations performed by wastewater microbial communities.
437 Our data demonstrate that some MPs exhibit variable biotransformations (as evidenced by %R and
438 biotransformation rate constants) over daily timescales. The MPs that exhibited the most variable
439 %R and biotransformation rate constants were metalaxyl, metaxalone, famotidine, and dimethyl
440 phthalate. Variable biotransformation was significantly and positively associated with INF
441 concentrations for eight MPs including propranolol, clindamycin, ritalinic acid, benzotriazole,
442 lidocaine, gemfibrozil, flucytosine, and metalaxyl. These novel observations suggest a potential
443 link between INF concentrations and the activity levels of the microbial community functions
444 involved in the biotransformation of these MPs. However, variable biotransformation was not
445 associated with INF concentrations for most MPs, and we suggest that the activity levels of the
446 microbial community functions involved in the biotransformation of those MPs are changing in

447 response to other, unknown factors. Our analysis of chemical structure and likely
448 biotransformations suggests that *alcohol oxidations, monohydroxylations at secondary or tertiary*
449 *aliphatic carbons, dihydroxylations of vic-unsubstituted rings, and monohydroxylations at*
450 *unsubstituted rings* are biotransformations that may exhibit variable activity levels on daily
451 timescales. These biotransformations are catalyzed by enzymes in the broad classes of
452 dehydrogenases (EC 1.1.-.-), monooxygenases (EC 1.14.-.-), and dioxygenases (EC 1.14.-.-) and
453 are expected to be co-metabolic.²⁷

454 There is a need to better understand the factors that control the removal of MPs during
455 wastewater treatment. Our data demonstrate that some MPs are always removed (e.g.,
456 acetaminophen, caffeine, coumarin) whereas other MPs are always persistent (e.g., sucralose,
457 carbamazepine). These observations agree with previous data reported from WWTPs from around
458 the world.^{61,73} However, most MPs are removed to variable extents across WWTPs and, as our
459 data demonstrate, within a single WWTP over daily timescales. We argue that this latter group of
460 MPs represent an opportunity to improve the performance of WWTPs for removing MPs. Our data
461 suggest this group of MPs *can* be completely removed during conventional wastewater treatment;
462 we only need to understand the causal factors that result in increased activity levels of the
463 associated biotransformations. This study provides a step forward toward that goal.

464 **Supporting Information**

465 list of target micropollutants; details on flow conditions and operational parameters at wastewater
466 treatment plant; analytical information on detected MPs; pseudo-first order rate constant equation;
467 summary statistics of detected MP; temporal profiles of INF and EFF concentrations and %R;
468 binned MPs according to correlation between INF concentration and %R; summary statistics of
469 MP rate constants over 14-day sampling period; boxplots of rate constants grouped by clusters

470 from Figure 3; analytical information for detected TPs; definitions of biotransformation rules
471 (btrules); R code used for generating figures can be found here: <https://github.com/slr257>.

472 **Acknowledgments**

473 We thank Jose Lozano and the team of operators at the Ithaca Area Wastewater Treatment Facility
474 for access to the treatment plant and Kevin Sarmiento for technical help during the sampling
475 campaign. This work was supported by the United States National Science Foundation, United
476 States (CBET-1748982).

477

478 **Figure Captions**

479 **Figure 1:** [A] Histogram of MPs observed N times (N = labels above the bars) during the sampling
480 campaign at each INF (red) and EFF (blue) location (y-axis) binned into groups ranging from 0-
481 14 days detected (x-axis). [B] Histogram of 120 target MP concentrations in samples (y-axis) at
482 INF and EFF locations with 30 bins ranging from 10^{-3} to 10^3 $\mu\text{g/L}$ (x-axis). [C] Relationship
483 between average %R, INF concentration, and standard deviation of %R (SD) for the 78 MPs that
484 exhibited removal on at least three days of the sampling campaign. Red shading refers to MPs with
485 high SD, and yellow shading refers to MPs with low SD with respect to %R.

486 **Figure 2:** Temporal concentration profiles in ng/L at INF (red) and EFF (blue) locations plotted
487 with calculated %R for all 14 days of the sampling campaign for caffeine [A], propranolol [B],
488 and gabapentin [C].

489 **Figure 3:** Heatmap of z-score normalized pseudo-first-order biotransformation rate constant
490 estimates for 24 MPs that were biotransformed on all 14 days of the sampling campaign with
491 temporally variable %R where zero represents the mean biotransformation rate constant (white)
492 and red and blue cells represent higher and lower than average biotransformation rate constants
493 respectively. The eight MPs exhibiting positive and significant associations between %R and INF
494 concentration ($r > 0.55$, $p < 0.05$) are highlighted with red text. There are four distinct clusters
495 characterized by events with high increase or decrease in biotransformation rate constants on one
496 sampling day; we note that the number of clusters was determined using the sum of squared
497 differences.

498 **Figure 4:** Stacked barplots showing counts of the nine predicted btrules [A] representing the four
499 broad biotransformation trends in Figure 3 compared to observed btrules [B] for each of the four
500 clusters. Each hue represents a reaction type, where purples are alcohol oxidations, red is
501 dihydroxylations of vic-unsubstituted rings, blues are monohydroxylations at unsubstituted rings,
502 and oranges are monohydroxylations at secondary or tertiary aliphatic carbons. Definitions of
503 biotransformation rules (btrules) are provided in Table S10 of the Supporting Information. Note:
504 some predicted TPs may not be detectable with the analytical method used in this project.

505 **References**

506 (1) Schwarzenbach, R.; Escher, B. I.; Fenner, K.; Hofstetter, T. B.; Johnson, C. A.; Von Gunten,
507 U.; Wehrli, B. The Challenge of Micropollutants. *Science*. **2006**, *313*, 1072–1077.

508 (2) Tian, Z.; Zhao, H.; Peter, K. T.; Gonzalez, M.; Wetzel, J.; Wu, C.; Hu, X.; Prat, J.; Mudrock,
509 E.; Hettinger, R.; Cortina, A. E.; Biswas, R. G.; Kock, F. V. C.; Soong, R.; Jenne, A.; Du,
510 B.; Hou, F.; He, H.; Lundein, R.; Gilbreath, A.; Sutton, R.; Scholz, N. L.; Davis, J. W.;
511 Dodd, M. C.; Simpson, A.; McIntyre, J. K.; Kolodziej, E. P. A Ubiquitous Tire Rubber–
512 Derived Chemical Induces Acute Mortality in Coho Salmon. *Science*. **2021**, *371* (6525),
513 185–189. <https://doi.org/10.1126/science.abd6951>.

514 (3) von Wyl, M.; Könemann, S.; vom Berg, C. Different Developmental Insecticide Exposure
515 Windows Trigger Distinct Locomotor Phenotypes in the Early Life Stages of Zebrafish.
516 *Chemosphere* **2023**, *317*, 137874. <https://doi.org/10.1016/j.chemosphere.2023.137874>.

517 (4) Colborn, T.; Vom Saal, F. S.; Soto, A. M. Developmental Effects of Endocrine-Disrupting
518 Chemicals in Wildlife and Humans Convincing Evidence Exists That a Variety Of. *Environ.*
519 *Health Perspect.* **1993**, *101* (5), 378–384.

520 (5) Paquette, A. G.; Macdonald, J.; Lapehn, S.; Bammler, T.; Kruger, L.; Day, D. B.; Price, N.
521 D.; Loftus, C.; Kannan, K.; Marsit, C.; Mason, W. A.; Bush, N. R.; Lewinn, K. Z.;
522 Enquobahrie, D. A.; Prasad, B.; Karr, C. J.; Sathyaranayana, S. A Comprehensive
523 Assessment of Associations between Prenatal Phthalate Exposure and the Placental
524 Transcriptomic Landscape. *Environ. Health Perspect.* **2021**, *129* (9).
525 <https://doi.org/10.1289/EHP8973>.

526 (6) Tang, J. Y. M.; McCarty, S.; Glenn, E.; Neale, P. A.; Warne, M. S. J.; Escher, B. I. Mixture
527 Effects of Organic Micropollutants Present in Water: Towards the Development of Effect-
528 Based Water Quality Trigger Values for Baseline Toxicity. *Water Res.* **2013**, *47* (10), 3300–
529 3314. <https://doi.org/10.1016/j.watres.2013.03.011>.

530 (7) Eggen, R. I. L.; Hollender, J.; Joss, A.; Schärer, M.; Stamm, C. Reducing the Discharge of
531 Micropollutants in the Aquatic Environment: The Benefits of Upgrading Wastewater
532 Treatment Plants. *Environ. Sci. Technol.* **2014**, *48* (14), 7683–7689.
533 <https://doi.org/10.1021/es500907n>.

534 (8) Chiaia-Hernández, A.; Günthardt, B.; Frey, M.; Hollender, J. Unravelling Contaminants in
535 the Anthropocene Using Statistical Analysis of Liquid Chromatography–High-Resolution
536 Mass Spectrometry Nontarget Screening Data Recorded in Lake Sediments. *Environ. Sci.*
537 *Technol.* **2017**, *51* (21), 12547–12556. <https://doi.org/10.1021/acs.est.7b03357>.

538 (9) Carpenter, C. M. G.; Helbling, D. E. Widespread Micropollutant Monitoring in the Hudson
539 River Estuary Reveals Spatiotemporal Micropollutant Clusters and Their Sources. *Environ.*
540 *Sci. Technol.* **2018**, *52* (11), 6187–6196. <https://doi.org/10.1021/acs.est.8b00945>.

541 (10) Zhi, H.; Mianecki, A. L.; Kolpin, D. W.; Klaper, R. D.; Iwanowicz, L. R.; LeFevre, G. H.
542 Tandem Field and Laboratory Approaches to Quantify Attenuation Mechanisms of
543 Pharmaceutical and Pharmaceutical Transformation Products in a Wastewater Effluent-
544 Dominated Stream. *Water Res.* **2021**, *203*. <https://doi.org/10.1016/j.watres.2021.117537>.

545 (11) Svendsen, S. B.; El-taliawy, H.; Carvalho, P. N.; Bester, K. Concentration Dependent
546 Degradation of Pharmaceuticals in WWTP Effluent by Biofilm Reactors. *Water Res.* **2020**,
547 *186*, 116389. <https://doi.org/10.1016/J.WATRES.2020.116389>.

548 (12) Carballa, M.; Omil, F.; Lema, J. M.; Llompart, M.; García-Jares, C.; Rodríguez, I.; Gómez,
549 M.; Ternes, T. Behavior of Pharmaceuticals, Cosmetics and Hormones in a Sewage

550 Treatment Plant. *Water Res.* **2004**, *38* (12), 2918–2926.
551 <https://doi.org/10.1016/J.WATRES.2004.03.029>.

552 (13) Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W.; Thomaidis, N. S.; Xu, J. Progress in the
553 Biological and Chemical Treatment Technologies for Emerging Contaminant Removal
554 from Wastewater: A Critical Review. *J. Hazard. Mater.* **2017**, *323*, 274–298.
555 <https://doi.org/10.1016/J.JHAZMAT.2016.04.045>.

556 (14) Fischer, K.; Majewsky, M. Cometabolic Degradation of Organic Wastewater
557 Micropollutants by Activated Sludge and Sludge-Inherent Microorganisms. *Appl.*
558 *Microbiol. Biotechnol.* **2014**, *98* (15), 6583–6597. <https://doi.org/10.1007/s00253-014-5826-0>.

559 (15) Alvarino, T.; Lema, J.; Omil, F.; Suárez, S. Trends in Organic Micropollutants Removal in
560 Secondary Treatment of Sewage. *Rev. Environ. Sci. Biotechnol.* **2018**, *17* (3), 447–469.
561 <https://doi.org/10.1007/s11157-018-9472-3>.

562 (16) Burzio, C.; Nivert, E.; Mattsson, A.; Svahn, O.; Persson, F.; Modin, O.; Wilén, B. M.
563 Removal of Organic Micropollutants in the Biological Units of a Swedish Wastewater
564 Treatment Plant. *IOP Conf. Ser. Mater. Sci. Eng.* **2021**, *1209* (1), 012016.
565 <https://doi.org/10.1088/1757-899X/1209/1/012016>.

566 (17) Zhang, Y.; Geißen, S. U.; Gal, C. Carbamazepine and Diclofenac: Removal in Wastewater
567 Treatment Plants and Occurrence in Water Bodies. *Chemosphere* **2008**, *73* (8), 1151–1161.
568 <https://doi.org/10.1016/J.CHEMOSPHERE.2008.07.086>.

569 (18) Ternes, T. A.; Joss, A.; Siegrist, H. Scrutinizing Pharmaceuticals and Personal Care
570 Products in Wastewater Treatment. *Environ. Sci. Technol.* **2004**, *38* (20), 392A–399A.
571 <https://doi.org/10.1021/es040639t>.

572 (19) Oulton, R. L.; Kohn, T.; Cwiertny, D. M. Pharmaceuticals and Personal Care Products in
573 Effluent Matrices: A Survey of Transformation and Removal during Wastewater Treatment
574 and Implications for Wastewater Management. *Journal of Environmental Monitoring*.
575 November 2010, pp 1956–1978. <https://doi.org/10.1039/c0em00068j>.

576 (20) Luo, Y.; Guo, W.; Ngo, H. H.; Nghiem, L. D.; Hai, F. I.; Zhang, J.; Liang, S.; Wang, X. C.
577 A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate
578 and Removal during Wastewater Treatment. *Sci. Total Environ.* **2014**, *473–474*, 619–641.
579 <https://doi.org/10.1016/j.scitotenv.2013.12.065>.

580 (21) Choubert, J.-M.; Martin Ruel, S.; Miege, C.; Coquery, M. Rethinking Micropollutant
581 Removal Assessment Methods for Wastewater Treatment Plants – How to Get More Robust
582 Data? *Water Sci. Technol.* **2017**, *75* (12), 2964–2972. <https://doi.org/10.2166/wst.2017.181>.

583 (22) Kahl, S.; Kleinsteuber, S.; Nivala, J.; Van Afferden, M.; Reemtsma, T. Emerging
584 Biodegradation of the Previously Persistent Artificial Sweetener Acesulfame in Biological
585 Wastewater Treatment. *Environ. Sci. Technol.* **2018**, *52* (5), 2717–2725.
586 <https://doi.org/10.1021/acs.est.7b05619>.

587 (23) Castiglioni, S.; Bagnati, R.; Fanelli, R.; Pomati, F.; Calamari, D.; Zuccato, E. Removal of
588 Pharmaceuticals in Sewage Treatment Plants in Italy. *Environ. Sci. Technol.* **2006**, *40* (1),
589 357–363. <https://doi.org/10.1021/es050991m>.

590 (24) Vieno, N.; Tuhkanen, T.; Kronberg, L. Seasonal Variation in the Occurrence of
591 Pharmaceuticals in Effluents from a Sewage Treatment Plant and in the Recipient Water.
592 *Environ. Sci. Technol.* **2005**, *39* (21), 8220–8226. <https://doi.org/10.1021/es051124k>.

593 (25) Di Marcantonio, C.; Chiavola, A.; Dossi, S.; Cecchini, G.; Leoni, S.; Frugis, A.; Spizzirri,
594 M.; Boni, M. R. Occurrence, Seasonal Variations and Removal of Organic Micropollutants
595

596 in 76 Wastewater Treatment Plants. *Process Saf. Environ. Prot.* **2020**, *141*, 61–72.
597 <https://doi.org/10.1016/j.psep.2020.05.032>.

598 (26) Stadler, L. B.; Love, N. G. Oxygen Half-Saturation Constants for Pharmaceuticals in
599 Activated Sludge and Microbial Community Activity under Varied Oxygen Levels.
600 *Environ. Sci. Technol.* **2019**, *53* (4), 1918–1927. <https://doi.org/10.1021/acs.est.8b06051>.

601 (27) Kennes-Veiga, D. M.; Gómez-Gil, L.; Carballa, M.; Lema, J. M. Enzymatic Cometabolic
602 Biotransformation of Organic Micropollutants in Wastewater Treatment Plants: A Review.
603 *Bioresour. Technol.* **2022**, *344*, 126291.
604 <https://doi.org/10.1016/J.BIORTECH.2021.126291>.

605 (28) Achermann, S.; Falås, P.; Joss, A.; Mansfeldt, C. B.; Men, Y.; Vogler, B.; Fenner, K. Trends
606 in Micropollutant Biotransformation along a Solids Retention Time Gradient. *Environ. Sci.*
607 *Technol.* **2018**, *52* (20), 11601–11611. <https://doi.org/10.1021/acs.est.8b02763>.

608 (29) Falås, P.; Wick, A.; Castronovo, S.; Habermacher, J.; Ternes, T. A.; Joss, A. Tracing the
609 Limits of Organic Micropollutant Removal in Biological Wastewater Treatment. *Water Res.*
610 **2016**, *95*, 240–249. <https://doi.org/10.1016/j.watres.2016.03.009>.

611 (30) Zhou, N. A.; Lutovsky, A. C.; Andaker, G. L.; Gough, H. L.; Ferguson, J. F. Cultivation
612 and Characterization of Bacterial Isolates Capable of Degrading Pharmaceutical and
613 Personal Care Products for Improved Removal in Activated Sludge Wastewater Treatment.
614 *Biodegradation* **2013**, *24* (6), 813–827. <https://doi.org/10.1007/s10532-013-9630-9>.

615 (31) Helbling, D. E.; Hollender, J.; Kohler, H. P. E.; Fenner, K. Structure-Based Interpretation
616 of Biotransformation Pathways of Amide-Containing Compounds in Sludge-Seeded
617 Bioreactors. *Environ. Sci. Technol.* **2010**, *44* (17), 6628–6635.
618 <https://doi.org/10.1021/es101035b>.

619 (32) Helbling, D. E.; Hollender, J.; Kohler, H. P. E.; Singer, H.; Fenner, K. High-Throughput
620 Identification of Microbial Transformation Products of Organic Micropollutants. *Environ.*
621 *Sci. Technol.* **2010**, *44* (17), 6621–6627. <https://doi.org/10.1021/es100970m>.

622 (33) Fenner, K.; Scarpanti, C.; Renold, P.; Rouchdi, M.; Vogler, B.; Rich, S. Comparison of
623 Small Molecule Biotransformation Half-Lives between Activated Sludge and Soil:
624 Opportunities for Read-Across? *Environ. Sci. Technol.* **2020**, *54* (6), 3148–3158.
625 <https://doi.org/10.1021/acs.est.9b05104>.

626 (34) van Bergen, T. J. H. M.; Rios-Miguel, A. B.; Nolte, T. M.; Ragas, A. M. J.; van Zelm, R.;
627 Graumans, M.; Scheepers, P. T. J.; Jetten, M. S. M.; Hendriks, A. J.; Welte, C. U. Do Initial
628 Concentration and Activated Sludge Seasonality Affect Pharmaceutical Biotransformation
629 Rate Constants? *Appl. Microbiol. Biotechnol.* **2021**, *105* (16), 6515–6527.
630 <https://doi.org/10.1007/s00253-021-11475-9>.

631 (35) Helbling, D. E.; Johnson, D. R.; Honti, M.; Fenner, K. Micropollutant Biotransformation
632 Kinetics Associate with WWTP Process Parameters and Microbial Community
633 Characteristics. *Environ. Sci. Technol.* **2012**, *46* (19), 10579–10588.

634 (36) Zumstein, M. T.; Werner, J. J.; Helbling, D. E. Exploring the Specificity of Extracellular
635 Wastewater Peptidases to Improve the Design of Sustainable Peptide-Based Antibiotics.
636 *Environ. Sci. Technol.* **2020**, *54* (18), 11201–11209.
637 <https://doi.org/10.1021/acs.est.0c02564>.

638 (37) Gulde, R.; Meier, U.; L. Schymanski, E.; E. Kohler, H.-P.; E. Helbling, D.; Derrer, S.;
639 Rentsch, D.; Fenner, K. Systematic Exploration of Biotransformation Reactions of Amine-
640 Containing Micropollutants in Activated Sludge. *Environ. Sci. Technol.* **2016**, *50* (6), 2908–
641 2920. <https://doi.org/10.1021/acs.est.5b05186>.

642 (38) Rich, S.; Zumstein, M.; Helbling, D. Identifying Functional Groups That Determine Rates
643 of Micropollutant Biotransformations Performed by Wastewater Microbial Communities.
644 *Environ. Sci. Technol.* **2022**, *56* (2), 984–994. <https://doi.org/10.1021/acs.est.1c06429>.

645 (39) Prasse, C.; Wagner, M.; Schulz, R.; Ternes, T. A. Biotransformation of the Antiviral Drugs
646 Acyclovir and Penciclovir in Activated Sludge Treatment. *Environ. Sci. Technol.* **2011**, *45*
647 (7), 2761–2769. <https://doi.org/10.1021/es103732y>.

648 (40) Helbling, D. E.; Johnson, D. R.; Lee, T. K.; Scheidegger, A.; Fenner, K. A Framework for
649 Establishing Predictive Relationships between Specific Bacterial 16S rRNA Sequence
650 Abundances and Biotransformation Rates. *Water Res.* **2015**, *70*, 471–484.
651 <https://doi.org/10.1016/j.watres.2014.12.013>.

652 (41) Wu, L.; Ning, D.; Zhang, B.; Li, Y.; Zhang, P.; Shan, X.; Zhang, Q.; Brown, M.; Li, Z.; Van
653 Nostrand, J. D.; Ling, F.; Xiao, N.; Zhang, Y.; Vierheilig, J.; Wells, G. F.; Yang, Y.; Deng,
654 Y.; Tu, Q.; Wang, A.; Acevedo, D.; Agullo-Barcelo, M.; Alvarez, P. J. J.; Alvarez-Cohen,
655 L.; Andersen, G. L.; de Araujo, J. C.; Boehnke, K.; Bond, P.; Bott, C. B.; Bovio, P.;
656 Brewster, R. K.; Bux, F.; Cabezas, A.; Cabrol, L.; Chen, S.; Criddle, C. S.; Deng, Y.;
657 Etchebehere, C.; Ford, A.; Frigon, D.; Gómez, J. S.; Griffin, J. S.; Gu, A. Z.; Habagil, M.;
658 Hale, L.; Hardeman, S. D.; Harmon, M.; Horn, H.; Hu, Z.; Jauffur, S.; Johnson, D. R.;
659 Keller, J.; Keucken, A.; Kumari, S.; Leal, C. D.; Lebrun, L. A.; Lee, J.; Lee, M.; Lee, Z. M.
660 P.; Li, Y.; Li, Z.; Li, M.; Li, X.; Ling, F.; Liu, Y.; Luthy, R. G.; Mendonça-Hagler, L. C.;
661 de Menezes, F. G. R.; Meyers, A. J.; Mohebbi, A.; Nielsen, P. H.; Ning, D.; Oehmen, A.;
662 Palmer, A.; Parameswaran, P.; Park, J.; Patsch, D.; Reginatto, V.; de los Reyes, F. L.;
663 Rittmann, B. E.; Robles, A. N.; Rossetti, S.; Shan, X.; Sidhu, J.; Sloan, W. T.; Smith, K.;
664 de Sousa, O. V.; Stahl, D. A.; Stephens, K.; Tian, R.; Tiedje, J. M.; Tooker, N. B.; Tu, Q.;
665 Van Nostrand, J. D.; De los Cobos Vasconcelos, D.; Vierheilig, J.; Wagner, M.; Wakelin,
666 S.; Wang, A.; Wang, B.; Weaver, J. E.; Wells, G. F.; West, S.; Wilmes, P.; Woo, S. G.; Wu,
667 L.; Wu, J. H.; Wu, L.; Xi, C.; Xiao, N.; Xu, M.; Yan, T.; Yang, Y.; Yang, M.; Young, M.;
668 Yue, H.; Zhang, B.; Zhang, P.; Zhang, Q.; Zhang, Y.; Zhang, T.; Zhang, Q.; Zhang, W.;
669 Zhang, Y.; Zhou, H.; Zhou, J.; Wen, X.; Curtis, T. P.; He, Q.; He, Z.; Brown, M.; Zhang,
670 T.; He, Z.; Keller, J.; Nielsen, P. H.; Alvarez, P. J. J.; Criddle, C. S.; Wagner, M.; Tiedje, J.
671 M.; He, Q.; Curtis, T. P.; Stahl, D. A.; Alvarez-Cohen, L.; Rittmann, B. E.; Wen, X.; Zhou,
672 J. Global Diversity and Biogeography of Bacterial Communities in Wastewater Treatment
673 Plants. *Nat. Microbiol.* **2019**, *4* (July). <https://doi.org/10.1038/s41564-019-0426-5>.

674 (42) Wells, G. F.; Wu, C. H.; Piceno, Y. M.; Eggleston, B.; Brodie, E. L.; DeSantis, T. Z.;
675 Andersen, G. L.; Hazen, T. C.; Francis, C. A.; Criddle, C. S. Microbial Biogeography across
676 a Full-Scale Wastewater Treatment Plant Transect: Evidence for Immigration between
677 Coupled Processes. *Appl. Microbiol. Biotechnol.* **2014**, *98* (10), 4723–4736.
678 <https://doi.org/10.1007/s00253-014-5564-3>.

679 (43) Perrotta, A. R.; Kumaraswamy, R.; Bastidas-Oyanedel, J. R.; Alm, E. J.; Rodríguez, J.
680 Inoculum Composition Determines Microbial Community and Function in an Anaerobic
681 Sequential Batch Reactor. *PLoS One* **2017**, *12* (2).
682 <https://doi.org/10.1371/journal.pone.0171369>.

683 (44) Polesel, F.; R. Andersen, H.; Trapp, S.; Gy. Plósz, B. Removal of Antibiotics in Biological
684 Wastewater Treatment Systems—A Critical Assessment Using the Activated Sludge
685 Modeling Framework for Xenobiotics (ASM-X). *Environ. Sci. Technol.* **2016**, *50* (19),
686 10316–10334. <https://doi.org/10.1021/acs.est.6b01899>.

687 (45) Jewell, K. S.; Castronovo, S.; Wick, A.; Falås, P.; Joss, A.; Ternes, T. A. New Insights into

688 the Transformation of Trimethoprim during Biological Wastewater Treatment. *Water Res.*
689 **2016**, *88*, 550–557. <https://doi.org/10.1016/J.WATRES.2015.10.026>.

690 (46) Tian, R.; Posselt, M.; Fenner, K.; S. McLachlan, M. Increasing the Environmental
691 Relevance of Biodegradation Testing by Focusing on Initial Biodegradation Kinetics and
692 Employing Low-Level Spiking. *Environ. Sci. Technol. Lett.* **2022**, *10* (1), 40–45.
693 <https://doi.org/10.1021/acs.estlett.2c00811>.

694 (47) Pochodylo, A. L.; Helbling, D. E. Emerging Investigators Series: Prioritization of Suspect
695 Hits in a Sensitive Suspect Screening Workflow for Comprehensive Micropollutant
696 Characterization in Environmental Samples. *Environ. Sci. Water Res. Technol.* **2017**, *3* (1),
697 54–65. <https://doi.org/10.1039/C6EW00248J>.

698 (48) Carpenter, C. M. G. G.; Wong, L. Y. J.; Johnson, C. A.; Helbling, D. E. Fall Creek
699 Monitoring Station: Highly Resolved Temporal Sampling to Prioritize the Identification of
700 Nontarget Micropollutants in a Small Stream. *Environ. Sci. Technol.* **2019**, *53* (1), 77–87.
701 <https://doi.org/10.1021/acs.est.8b05320>.

702 (49) Kern, S.; Fenner, K.; Singer, H. P.; Schwarzenbach, R. P.; Hollender, J. Identification of
703 Transformation Products of Organic Contaminants in Natural Waters by Computer-Aided
704 Prediction and High-Resolution Mass Spectrometry. *Environ. Sci. Technol.* **2009**, *43* (18),
705 7039–7046. <https://doi.org/10.1021/es901979h>.

706 (50) Vogler, B. Development of a Comprehensive Multicomponent Screening Method for Polar
707 Organic Compounds Using LC-Orbitrap. Improvement of the Solid Phase Extraction and
708 Evaluation of Data Independent Acquisition, University of Zurich, 2013.

709 (51) Stravs, M. A.; Schymanski, E. L.; Singer, H. P.; Hollender, J. Automatic Recalibration and
710 Processing of Tandem Mass Spectra Using Formula Annotation. *J. Mass Spectrom.* **2013**,
711 *48* (1), 89–99. <https://doi.org/10.1002/jms.3131>.

712 (52) Ellis, L. B. M.; Gao, J.; Fenner, K.; Wackett, L. P. The University of Minnesota Pathway
713 Prediction System: Predicting Metabolic Logic. *Nucleic Acids Res.* **2008**, *36* (Web Server
714 issue), 427–432. <https://doi.org/10.1093/nar/gkn315>.

715 (53) Ellis, L. B.; Wackett, L. P. Use of the University of Minnesota Biocatalysis/Biodegradation
716 Database for Study of Microbial Degradation. *Microb. Inform. Exp.* **2012**, *2* (1), 1–10.
717 <https://doi.org/10.1186/2042-5783-2-1>.

718 (54) Wang, Y.; Fenner, K.; Helbling, D. E. Clustering Micropollutants Based on Initial
719 Biotransformations for Improved Prediction of Micropollutant Removal during
720 Conventional Activated Sludge Treatment. *Environ. Sci. Water Res. Technol.* **2020**, *6* (3),
721 554–565. <https://doi.org/10.1039/c9ew00838a>.

722 (55) Wicker, J.; Lorsbach, T.; Gütlein, M.; Schmid, E.; Latino, D.; Kramer, S.; Fenner, K.
723 EnviPath - The Environmental Contaminant Biotransformation Pathway Resource. *Nucleic
724 Acids Res.* **2016**, *44* (D1), D502–D508. <https://doi.org/10.1093/nar/gkv1229>.

725 (56) Murtagh, F.; Legendre, P. Ward's Hierarchical Agglomerative Clustering Method: Which
726 Algorithms Implement Ward's Criterion? *J. Classif.* **2014**, *31* (3), 274–295.
727 <https://doi.org/10.1007/s00357-014-9161-z>.

728 (57) The R Project for Statistical Computing <https://www.r-project.org/>.

729 (58) RStudio Team. RStudio: Integrated Development for R. <http://www.rstudio.com/>.

730 (59) Kolde, R. *_pheatmap*: Pretty Heatmaps_. <https://cran.r-project.org/package=pheatmap>.

731 (60) Jelic, A.; Gros, M.; Ginebreda, A.; Cespedes-Sánchez, R.; Ventura, F.; Petrovic, M.;
732 Barcelo, D. Occurrence, Partition and Removal of Pharmaceuticals in Sewage Water and
733 Sludge during Wastewater Treatment. *Water Res.* **2011**, *45* (3), 1165–1176.

734 https://doi.org/https://doi.org/10.1016/j.watres.2010.11.010.

735 (61) Paíga, P.; Correia, M.; Fernandes, M. J.; Silva, A.; Carvalho, M.; Vieira, J.; Jorge, S.; Silva,
736 J. G.; Freire, C.; Delerue-Matos, C. Assessment of 83 Pharmaceuticals in WWTP Influent
737 and Effluent Samples by UHPLC-MS/MS: Hourly Variation. *Sci. Total Environ.* **2019**, *648*,
738 582–600. <https://doi.org/10.1016/J.SCITOTENV.2018.08.129>.

739 (62) Zhi, H.; Webb, D. T.; Schnoor, J. L.; Kolpin, D. W.; Klaper, R. D.; Iwanowicz, L. R.;
740 LeFevre, G. H. Modeling Risk Dynamics of Contaminants of Emerging Concern in a
741 Temperate-Region Wastewater Effluent-Dominated Stream. *Environ. Sci. Water Res.
742 Technol.* **2022**, *8* (7), 1408–1422. <https://doi.org/10.1039/d2ew00157h>.

743 (63) Vatovec, C.; Phillips, P.; Van Wagoner, E.; Scott, T. M.; Furlong, E. Investigating Dynamic
744 Sources of Pharmaceuticals: Demographic and Seasonal Use Are More Important than
745 down-the-Drain Disposal in Wastewater Effluent in a University City Setting. *Sci. Total
746 Environ.* **2016**, *572*, 906–914. <https://doi.org/10.1016/J.SCITOTENV.2016.07.199>.

747 (64) Izabel-Shen, D.; Li, S.; Luo, T.; Wang, J.; Li, Y.; Sun, Q.; Yu, C.-P.; Hu, A. Repeated
748 Introduction of Micropollutants Enhances Microbial Succession despite Stable Degradation
749 Patterns. *ISME Commun.* **2022**, *2* (1). <https://doi.org/10.1038/s43705-022-00129-0>.

750 (65) Wolff, D.; Krah, D.; Dötsch, A.; Ghattas, A. K.; Wick, A.; Ternes, T. A. Insights into the
751 Variability of Microbial Community Composition and Micropollutant Degradation in
752 Diverse Biological Wastewater Treatment Systems. *Water Res.* **2018**, *143*, 313–324.
753 <https://doi.org/10.1016/J.WATRES.2018.06.033>.

754 (66) Ju, F.; Zhang, T. Bacterial Assembly and Temporal Dynamics in Activated Sludge of a Full-
755 Scale Municipal Wastewater Treatment Plant. *ISME J.* **2015**, *9* (3), 683–695.
756 <https://doi.org/10.1038/ismej.2014.162>.

757 (67) Nguyen, J.; Lara-Gutiérrez, J.; Stocker, R. Environmental Fluctuations and Their Effects on
758 Microbial Communities, Populations and Individuals. *FEMS Microbiology Reviews*.
759 Oxford University Press July 1, 2021. <https://doi.org/10.1093/femsre/fuaa068>.

760 (68) Zhang, Y.; Zhao, Z.; Dai, M.; Jiao, N.; Herndl, G. J. Drivers Shaping the Diversity and
761 Biogeography of Total and Active Bacterial Communities in the South China Sea. *Mol.
762 Ecol.* **2014**, *23* (9), 2260–2274. <https://doi.org/10.1111/mec.12739>.

763 (69) Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J.
764 Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating
765 Confidence. *Environ. Sci. Technol.* **2014**, *48* (4), 2097–2098.
766 <https://doi.org/10.1021/es5002105>.

767 (70) Wang, X.; Yu, N.; Yang, J.; Jin, L.; Guo, H.; Shi, W.; Zhang, X.; Yang, L.; Yu, H.; Wei, S.
768 Suspect and Non-Target Screening of Pesticides and Pharmaceuticals Transformation
769 Products in Wastewater Using QTOF-MS. *Environ. Int.* **2020**, *137*, 105599.
770 <https://doi.org/10.1016/J.ENVINT.2020.105599>.

771 (71) Achermann, S.; Bianco, V.; Mansfeldt, C. B.; Vogler, B.; Kolvenbach, B. A.; Corvini, P. F.
772 X.; Fenner, K. Biotransformation of Sulfonamide Antibiotics in Activated Sludge: The
773 Formation of Pterin-Conjugates Leads to Sustained Risk. *Environ. Sci. Technol.* **2018**, *52*
774 (11), 6265–6274. <https://doi.org/10.1021/acs.est.7b06716>.

775 (72) Funke, J.; Prasse, C.; Ternes, T. A. Identification of Transformation Products of Antiviral
776 Drugs Formed during Biological Wastewater Treatment and Their Occurrence in the Urban
777 Water Cycle. *Water Res.* **2016**, *98*, 75–83.
778 <https://doi.org/10.1016/J.WATRES.2016.03.045>.

779 (73) Margot, J.; Rossi, L.; Barry, D. A.; Holliger, C. A Review of the Fate of Micropollutants in

780
781

Wastewater Treatment Plants. *Wiley Interdiscip. Rev. Water* **2015**, *2* (5), 457–487.
<https://doi.org/10.1002/WAT2.1090>.