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Abstract

Despite decades of micropollutant (MP) monitoring at wastewater treatment plants (WWTPs), we
lack a fundamental understanding of the time-varying metabolic processes driving MP
biotransformations. To address this knowledge gap, we collected 24-h composite samples from
the influent and effluent of the conventional activated sludge (CAS) process at a WWTP over 14
consecutive days. We used liquid chromatography and high-resolution mass spectrometry (LC-
HRMS) to: (i) quantify 184 MPs in the influent and effluent of the CAS process; (ii) characterize
temporal dynamics of MP removal and biotransformation rate constants; and (iii) discover
biotransformations linked to temporally variable MP biotransformation rate constants. We
measured 120 MPs in at least one sample and 66 MPs in every sample. There were 24 MPs
exhibiting temporally variable removal throughout the sampling campaign. We used hierarchical
clustering analysis to reveal four temporal trends in biotransformation rate constants and found
MPs with specific structural features co-located in the four clusters. We screened our HRMS
acquisitions for evidence of specific biotransformations linked to structural features among the 24
MPs. Our analyses reveal that alcohol oxidations, monohydroxylations at secondary or tertiary
aliphatic carbons, dihydroxylations of vic-unsubstituted rings, and monohydroxylations at
unsubstituted rings are biotransformations that exhibit variability on daily timescales.

Short synopsis statement.

This research uses daily, time-proportional composite samples across a conventional activated
sludge system and high-resolution mass spectrometry to reveal micropollutant biotransformations

that are temporally variable on daily timescales.
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Introduction

Organic micropollutants (MPs) are an unbounded class of xenobiotics that have negative
effects on water quality and exposed aquatic ecosystems.! Human exposure to MPs can also lead
to a variety of negative health effects including cytotoxic and developmental effects.*® Municipal
wastewater treatment plants (WWTPs) play an important role in determining the fate of MPs in
the environment.” ' One of the most important techniques for MP removal in conventional
WWTPs is through aerobic biological treatment processes. For example, it is widely known that
MP biotransformations are primarily catalyzed by non-specific enzymes produced by the
wastewater microbial communities within conventional activated sludge (CAS) processes.!! '8
Decades of research have demonstrated that some MPs are nearly always biotransformed in CAS
systems around the world (e.g., ibuprofen, acetaminophen) whereas other MPs are nearly always
persistent in CAS systems around the world (e.g., carbamazepine, sucralose).!*-?

Although it is useful to identify MPs that are either universally biotransformed or

persistent, the majority of MPs exhibit variable rates and extent of biotransformation over time

and in CAS systems around the world.'>!?? Variable biotransformation of MPs is often linked to

23-25 t 26,27 28,29
3

process variables such as temperature, redox environmen solids retention time,”*~ or the
presence or absence of specific taxa within the wastewater microbial community.’® All of these
factors ultimately shape the structure and function of the wastewater microbial community and
could influence the activity levels of specific microbial community functions. However, it remains
unclear how changes in these process variables might change the activity level of a specific
microbial community function and over what timescales changes in activity levels might be

observed in a full-scale WWTP. This knowledge gap limits our ability to tune the performance of

WWTPs to enhance the biotransformation of the majority of MPs.
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Most previous studies investigating the variable biotransformation of MPs have utilized
batch reactors seeded with wastewater microbial communities to measure the rate and extent of

31736 and to identify biotransformation products (TPs).>”*® Data from these

MP biotransformation
types of experiments have been useful for delineating biotransformation pathways* and for linking
biotransformation rates to experimental variables such as dissolved oxygen levels?® or the
taxonomic composition of the microbial community.*’ However, there are a variety of limitations
that have prevented the extrapolation of results from these types of studies to performance in full-
scale systems. For example, batch reactors seeded with wastewater microbial communities
represent only a snapshot of the dynamic microbial community at the time of sampling from the
full-scale WWTP.*! Further, removing the wastewater microbial community from its natural
environment and placing it in a laboratory reactor is expected to result in significant shifts in both
the taxonomic composition and the activity levels of specific microbial community functions.*>*
Spiking MPs into a batch reactor can also stimulate or inhibit the activity levels of specific
microbial community functions resulting in a misrepresentation of biotransformation rate
constants relative to the full-scale system. %446

We contend that novel insights on the temporal variability of MP biotransformations
performed by wastewater microbial communities are best explored through daily monitoring of
MP concentrations in the influent and effluent of the biological process at a full-scale WWTP.
Therefore, we implemented a 14-day sampling campaign at the Ithaca Area Wastewater Treatment
Facility where we collected 24-h time-proportional samples from the influent and effluent of a
CAS process, concentrated each sample by means of solid-phase extraction, and used liquid

chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to: (i) quantify the

abundance of up to 184 MPs in the influent and effluent of the full-scale CAS process daily over
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a 14-day period; (ii) characterize the temporal dynamics of MP removal and biotransformation
rate constants over the 14-day period; and (ii1) discover specific biotransformations that are linked
to temporally variable MP biotransformation rate constants. This study offers the first evaluation
of the daily variability of MP biotransformations in a full-scale WWTP over a 14-day period. Our
data demonstrate that some MP biotransformations can be variable on daily timescales and that
MP concentration and chemical structure are driving factors in the temporal variability of MP

biotransformations.
Materials and Methods

Micropollutant selection. We selected 184 MPs for target quantification in this study. The
selected MPs are commonly observed in WWTPs and consist of pharmaceuticals, industrial
chemicals, pesticides, human metabolites, and food additives.”*’*3 We selected these MPs to
observe population-driven chemical use patterns in the studied WWTP and to encompass a broad
range of MP chemical structures. Stock solutions of all 184 MPs were prepared at 1 g L! in either
LC-MS-grade methanol (OmniSolv, VWR), nanopure water (EMD Millipore), LC-MS-grade
acetonitrile (Fisher Chemical), ethanol (Decon Labs), dimethyl sulfoxide (Macron Fine
Chemicals) or acetone (Honeywell) and stored at -20°C. A standard mixture of all 184 MPs was
created in nanopure water at 5 mg L' and stored at -20°C. A list of the 184 MPs, along with their
CAS numbers, chemical formulas, and analytical parameters are provided in Table S1 of the
Supporting Information (SI). Similarly, a mixture of 51 isotope-labeled internal standards (ILIS)
was created in nanopure water at 5 mg L' and stored at -20°C. A list of the 51 ILISs is provided
in Table S2.

Sampling of wastewater in-situ. The WWTP chosen for this study is located in Ithaca, NY and

treats 6.5 MGD of raw wastewater on average for a population of approximately 30,000



102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

inhabitants. Average daily volumetric flow rates during the 14-day sampling campaign as well as
instantaneous minimum and maximum flowrates, and daily precipitation values are provided in
Figure S1. The main biological treatment process at this WWTP consists of a CAS system with
return activated sludge followed by a secondary clarifier. More information on the WWTP
operational parameters during the sampling campaign are included in Table S3. We placed two
full-size portable Teledyne ISCO 6712 autosamplers along the WWTP treatment path surrounding
the CAS system, which is the WWTP unit process where we expect most MPs will be
biotransformed.'?> One autosampler was placed directly upstream of the CAS at the effluent of the
primary clarifier before the input of return activated sludge and the other autosampler was placed
at the end of the CAS system designed with plug-flow-like hydraulics (denoted as INF and EFF
respectively, see SI Figure S2). Daily, time-weighted composite samples were collected at each
sampling location simultaneously starting from 10:00 am on November 17" and ending at 10:00
am on December 1% 2020. We chose these sampling dates to capture a demographic shift in the
community caused by the outflow of students from the Cornell University and Ithaca College
campuses for Thanksgiving break on Nov 26™ to evaluate the effect of a population change on
influent MP concentrations and wastewater microbial community functioning (we also note that
2020 was an unusual year due to the ongoing COVID-19 pandemic, but that most students were
studying on campus and left town for the Thanksgiving holiday). Teflon-lined polyethylene tubing
was used to draw 20 mL of wastewater every 20 min for 24 h into 1.8 L glass bottles such that the
total volume of each composite sample was approximately 1.4 L. Field blanks were collected
before and after wastewater sampling by running 1.4 L of nanopure water through our sample
collection system. We chose to implement a simultaneous sampling method because the hydraulic

retention time of the studied reactor was 7.3 h on average and our 24 h composite samples will
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collect most of the MP mass traveling through the system. We retrieved composite samples from
the WWTP at 10:10 am daily and prepared them in the lab within one hour of sample collection.
Preparation of wastewater samples. Wastewater samples were filtered in three different steps
before preparation via solid-phase extraction (SPE). The three filtration steps included large solids
removal using coffee filters (VWR), suspended solids removal using glass-fiber filters (grade
GF/F, diameter 4.7 cm, pore size 0.7 um, VWR), and finally cellulose acetate filters (diameter 4.7
cm, pore size 0.45 um, VWR) to generate sample filtrate for SPE. One liter of sample filtrate was
collected and titrated to a pH of 6.5 using dilute formic acid and spiked with 20 uL of the ILIS
mixture such that each sample had an ILIS concentration of 100 ng/L before loading onto mixed-
bed SPE cartridges containing 200 mg ENVI-Carb (Sigma-Aldrich), 100 mg Strata-X-AW
(Phenomenex), 100 mg Strata-X-CW (Phenomenex), 150 mg Isolute ENV+ (Separtis GmbH,
Germany) and 200 mg Oasis HLB (Waters) to concentrate the samples by a factor of 1000 as
previously described.**>* We also prepared a 9-point calibration curve by spiking the mixture of
184 MPs into 1 L of nanopure water to generate standards at concentrations of 0, 1, 5, 25, 50, 100,
250, 500, and 750 ng/L. The calibration standards were likewise spiked with 20 uL of the ILIS
mixture and loaded onto the mixed-bed SPE cartridges to concentrate by a factor of 1000. SPE
cartridges were refrigerated at 5 °C for up to one week before elution.

Sample analysis. We adopted a previously described analytical method for MP quantification and
TP identification.”*” Briefly, samples were measured in triplicate using reversed-phase liquid
chromatography (Ultimate 3000, Thermo Scientific) coupled to high-resolution quadrupole-
orbitrap mass spectrometry (QExactive, Thermo Scientific) with 30 pL injections of samples
stored at 4 °C during the analysis. Samples were separated using a mobile phase gradient of LC-

MS grade water (OmniSolv, 58201, solvent A) and methanol (OmniSolv, 58215, solvent B) —both
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containing 0.1% (v/v) formic acid — over an XBridge C18 column (Waters, 186003021, particle
size: 3.5 um, flow rate: 0.2 mL/min, gradient properties: 0 — 5 min: 5% B, 5 — 21 min: 5% B —
95% B (linear increase), 21 — 25 min: 95% B, 25 — 30 min: 5% B). We performed full-scan MS
acquisitions (100-1000 m/z, resolution 140,000) in electrospray ionization positive-negative
switch mode. Data dependent MS? spectra were acquired at the exact masses and retention times
of all target MPs and ILISs with additional MS? spectra collected for the TopN MS features if the
inclusion list was not triggered. For absolute quantification of target analytes, we used ILIS
normalized peak areas obtained with Xcalibur Quanbrowser (Thermo Scientific, Version
4.0.27.19) and a calibration series (concentration range: 0-750 ng/L after passing through SPE)
with 1/x least-squares regression. Analytical parameters for each target MP and its assigned ILIS
are provided in Table S1 and Table S2.

Quality control. We used an in-house R script to match MS? fragments to candidate target MP
peaks in wastewater samples (available for download at github.com/cmc493). Our workflow first
converts instrument .RAW files into .mzXML files using ProteoWizard v3.0.19096, then uses the
findMsMsHR.mass function from the R package RMassBank>! to search MS? spectra from picked
peaks for matching diagnostic fragments in our in-house database or from the highest calibration
point (diagnostic fragments provided in Table S1). All . RAW and .mzXML files are available as
data set MSV000092016 from the GNPS MassIVE repository
(https://massive.ucsd.edu/ProteoS AFe/static/massive.jsp) citable under DOI:

10.25345/C580Q80QT49. Confirmed MP detection in any sample required at least one diagnostic

fragment in one of the triplicate sample measurements. For pseudo-first order rate constant
estimates, concentrations greater than the highest calibration point were included and

concentrations lower than the limit of quantification (LOQ) were conservatively replaced with the
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value of the LOQ. The LOQ was defined as the lowest measured calibration point in our standard
curve (0.001 pg/L is the lowest possible value for the LOQ). We only report concentrations of
MPs where linear calibration curves consisted of at least three points and had an R? greater than
0.85, which addresses analytical uncertainties resulting from the matrix and analyte interference.
Data quality parameters such as R? and LOQ for target MPs are provided in Table S4.

Biotransformation product analysis. We used the Eawag-Pathway Prediction System’%?
(Eawag-PPS) with relative reasoning turned off and likelihood set to all to generate a list of 183
predicted TPs with masses greater than 100 Da for 24 select MPs that were biotransformed on
every day of the sampling campaign as previously described.’®*>* We cross-referenced the
predictions with those made by the enviPath software® and those contained within the sludge
package of enviPath and confirmed that all possible TPs were included in our list of suspected
TPs. We generated SMILES for each of the predicted TPs and used JChem for Excel (2019 version
19.26.0571) to calculate the exact mass of the [M+H]" and [M-H]  ions for each predicted TP. We
then used Xcalibur Qualbrowser (Thermo Scientific, Version 4.0.27.19) to visually screen HRMS
acquisitions for evidence of TP formation in the EFF dataset. We contend that TPs formed from
parent MPs during the CAS process are most likely present at the EFF sampling location, therefore
we prioritized TP detection in EFF samples. Evidence of TP formation includes: (i) peak areas
greater than 1ES; (i1) reasonable peak shape; (iii) presence of a peak in environmental samples and
absence of a peak (or peak area less than 1E4, which is a threshold for analytical noise) in blank
samples; (iv) one diagnostic fragment detected in at least one triplicate measurement of a field
sample; and (v) a retention time less than two minutes longer than the retention time of the parent
MP. The resulting list of candidate biotransformation products was further vetted by comparing

MS spectra and MS? fragmentation data to in-silico MS? fragments generated by the MassFrontier
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software (ThermoScientific). MS? fragments were matched to predicted fragments for suspect TPs
using a modified version of the in-house R script described in the Quality Control section of the
Methods with the workflow adapted to prioritize identification of suspect TPs (available for
download at github.com/slr257).

Data and statistical analysis. We used MP concentrations at the INF and EFF locations to
estimate pseudo first-order biotransformation rate constants for MPs exhibiting removal on all 14
sampling days as detailed in the SI. We used z-score normalized first-order biotransformation rate
constants to compare the variability of temporal trends in MP biotransformation rate constants
over the 14-day period due to the wide range of the absolute values of pseudo first-order MP
biotransformation rate constants. Hierarchical clustering analysis was performed on the
normalized rate constants using Ward’s agglomerative clustering method ward.D2 in RStudio®®
% (R version 4.0.4, RStudio version 1.1.463) with the package pheatmap.’® Correlation
coefficients (r) were calculated using Spearman’s rank correlation test with the function cor.fest
and significance tests were performed using two-sided, paired t-tests with the function z.zest from

the R stats package.
Results and Discussion

Quantifying MPs in INF and EFF samples. We quantified concentrations of 152 MPs that met
our quality control criteria. We found 120 of the 152 MPs at concentrations above individual LOQs
in at least one INF or EFF sample collected during the 14-day sampling period. Of the 120 MPs
measured in at least one INF or EFF sample, we observed 75 in all INF samples, 72 in all EFF
samples, and 66 in all INF and EFF samples on all 14 sampling days. Additionally, field samples
collected before and after the sampling campaign confirmed that MPs were not accumulating in or

leaching from our sampling system. A summary of the quantified MPs, concentrations, and
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removal percentages (%R) are provided in Figure 1. Figure 1A details the number of days each
MP was observed throughout the campaign, with zero representing MPs that were never measured
above the LOQ and 14 representing MPs that were a/ways measured above the LOQ at each INF
and EFF location. Most MPs at the INF location were also found at the downstream EFF location
at least once with the exception of abacavir, caffeine, coumarin, levetiracetam, and meprobamate
indicating consistent and complete removal of these five MPs. However, the antiviral medication
abacavir and anxiolytic drug meprobamate were each observed in only one INF sample (abacavir
— Nov 29" meprobamate — Nov 24™) so we cannot say if the complete removal of these two MPs
is necessarily a robust process. As shown in Figure 1A, the majority of quantified MPs fall into
extremes of either zero or 14 days observed, with 42 and 43 MPs falling between these two extreme
categories for INF and EFF respectively.

Figure 1B shows two overlaid distributions of the mean concentrations generated from
triplicate measurements for the 120 target MPs measured above the LOQ in any INF or EFF sample
with concentrations ranging from 0.001 — 660 pg/L on any one day. The mean and median
concentrations of MPs detected at the INF location were 9.6 pg/L and 0.54 pg/L respectively. The
mean and median concentrations of MPs detected at the EFF location were 2.9 pg/L and 0.32 pg/L.
Summary statistics of measured concentrations for each individual MP used in the distributions in
Figure 1B are provided in Table S5 and Table S6. As shown in Figure 1B, there was an overall
significant decrease in MP concentrations from INF to EFF samples (p < 0.05, t-test) indicating
the expected aggregate MP removal during the CAS process, especially for MPs entering the CAS
process at relatively high concentrations (5-700 ug/L). We note that although we report EFF
concentrations as high as 119 pg/L (saccharin, Nov 19'"), this represents the effluent of the CAS

process and not the concentration of MPs released into the environment at the final WWTP
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effluent; downstream unit processes at this WWTP include secondary clarification, chemical
precipitation of phosphorous, disinfection, and dechlorination.

Next, we calculated %R on each day of the sampling campaign using INF and EFF
concentrations ((INF-EFF)*100/INF) and evaluated the relationship between average INF
concentration and average %R (Figure 1C). We removed MPs exhibiting sporadic %R (< 3 days)
before generating Figure 1C, which resulted in 78 MPs for which we calculated average %R and
the associated standard deviation (SD). Figure 1C shows average %R plotted against average log-
transformed INF concentrations for these 78 MPs along with the SD represented in a color scale
ranging from yellow (low SD) to red (high SD). In Figure 1C, we observe a weak yet significant
positive relationship between average %R and average log-transformed INF concentration
indicating that, in aggregate, average %R increases with increasing INF concentration (r = 0.4, p
< 0.05), a phenomenon that has been observed for MPs at other WWTPs.>* Most MPs exhibiting
either very high (> 85) or very low (< 15) average %R were consistently measured as such (i.e.,
low SD). MPs in this category are likely biotransformed via microbial community functions with
stable activity levels. Conversely, MPs exhibiting less extreme average %R values (between 15-
85%) exhibited more variability in measured %R (i.e., high SD), demonstrating the interesting
phenomenon of temporally changing activity levels for the related microbial community functions.
Finally, we note that no significant associations were identified between %R and precipitation
level, flow rate, suspended solids concentration, or influent and effluent BODs concentrations.
Characterizing the temporal dynamics of %R. We next aimed to characterize the temporal
dynamics of %R over the 14-day sampling campaign for individual MPs. To do this, we focused
on the 66 MPs that were measured in all INF and EFF samples on all 14 days of the sampling

campaign. We then narrowed that list to 35 MPs that exhibit positive %R on all 14 days of the
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sampling campaign; the other 31 MPs exhibit negative or zero %R on at least one of the sampling
days which we attribute to formation during activated sludge treatment (e.g., back-transformation
of human metabolites to parent MPs)**$6!the measured MP being a biotransformation product
itself (e.g., metolachlor ESA), or limited transformation resulting in near-zero %R on most days
with analytical uncertainty yielding %R estimates in the range of +£15%. Temporal profiles of INF,
EFF, and %R for three representative MPs that meet these criteria are provided in Figure 2.
Temporal profiles for all 35 MPs are provided in Figure S3.

These data demonstrate that individual MPs can exhibit highly variable %R on daily
timescales within a single WWTP. For example, propranolol exhibits a sudden drop in %R on one
sampling day (Nov 25", day before Thanksgiving holiday) before returning to pre-Thanksgiving
holiday levels (Figure 2B). Gabapentin exhibits large daily increases in %R over the first four
days of the sampling campaign before leveling off at a more consistent level during the latter seven
days of the sampling campaign (Figure 2C). This important observation of highly variable %R on
daily timescales within a single WWTP has not been clearly demonstrated in previous literature
(although highly variable MP concentrations in WWTP effluents has been reported)®* and has
several practical implications. First, these data confirm that a single 24-h composite sample is
insufficient to determine the %R of an individual MP; rather, a time-series of daily composite
samples are needed to fully capture the temporal variability of %R within a single WWTP. Second,
the temporal variability itself is notable because it suggests there are factors that change on daily
(or hourly) timescales that influence the activity levels of microbial community functions involved
in MP biotransformations at a full-scale WWTP.

Next, we tested whether the demographic shift in the community due to the Thanksgiving

holiday break resulted in significant changes in aggregate INF concentrations or %R for the 35

14
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MPs. We compared the distributions of INF concentrations and %R for the 35 MPs from the five
days before the Thanksgiving holiday (Nov 20" — 25 to the five days after the Thanksgiving
holiday (Nov 26™ — Dec 1%!). We observed significant decreases in INF concentrations (p < 0.05,
t-test) and %R (p < 0.01, t-test) for the 35 MPs in the five days after the Thanksgiving holiday,
indicating that the demographic shift had effects on INF concentrations and %R. Previous studies
have demonstrated that a sudden demographic shift can be associated with the expected decreases
(and sometimes increases) in MP concentrations in WWTPs.% However, our data indicate this
type of demographic shift can likewise influence the activity levels of microbial community
functions involved in MP biotransformations at a full-scale WWTP.

Although we observed significant decreases in aggregate INF concentrations and %R in
the five days after Thanksgiving break, it is also clear from the data in Figure 2 and Figure S3
that changes in INF are not always associated with changes in %R among individual MPs. To test
the relationship between INF concentrations and %R among the 35 individual MPs, we used the
SD values of %R to evaluate the extent of variability of %R and Spearman correlations between
INF concentrations and %R to identify significant associations. We identified three major types of
relationships between INF concentrations and %R based on these metrics. First, we identified ten
MPs that did not exhibit variable %R over the fourteen-day sampling campaign (SD < 5%) despite
changes in INF concentrations. These include caffeine (Figure 2A) and nine other MPs listed in
Table S7. Examination of the temporal profiles of %R for these MPs indicates that they are all
nearly completely removed on every day of the sampling campaign. Therefore, there is no
measurable change in the activity levels of the microbial community functions involved in the
biotransformation of these MPs. Second, we identified eight MPs that exhibit variable %R (SD >

5%) and a positive and significant association between INF concentration and %R (r > 0.55, p <

15
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0.05). These include propranolol (Figure 2B) and seven other MPs listed in Table S7. These
associations suggest that INF concentrations may have an effect on the activity levels of the
microbial community functions involved in the biotransformation of these MPs. Third, we
identified sixteen MPs exhibiting variable %R (SD > 5%) with no significant association between
INF concentration and %R (-0.55 <r <0.55, p > 0.05). These include gabapentin (Figure 2C) and
15 other MPs listed in Table S7. These sixteen MPs are of particular interest for this study because
they exhibit temporal variability in %R on daily timescales, but the variability is not associated
with changes in INF concentration. Therefore, we conclude that the activity levels of the microbial
community functions involved in the biotransformation of these MPs are changing in response to
other, unknown factors. Finally, we must note that acesulfame exhibits variable %R (SD > 5%)
and a negative and significant association between INF concentration and %R (r <-0.55, p <0.05).
Variable removal of acesulfame in WWTPs has been previously reported and has been linked to
adaptation of the microbial community to continuous exposure to acesulfame.?” The negative and
significant association observed here was unique to acesulfame and has not been previously
reported for other MPs. Because this unique behavior could not be generalized to a broader group
of MPs, we do not include acesulfame in the following analyses.

Characterizing the temporal dynamics of MP biotransformation rate constants. We next
aimed to characterize the temporal dynamics of MP biotransformation rate constants over the 14-
day sampling campaign for individual MPs. Biotransformation rate constants are a complementary
metric to %R that account for large differences in INF concentrations among MPs while
incorporating daily changes in hydraulic retention time. We used Equation S1 to estimate pseudo
first-order rate constants on each day of the sampling campaign for the 24 MPs that exhibit variable

%R (SD > 5%) as described in the preceding section. The estimated average rate constants range
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from 0.02 to 24 d! with a median value of 2.8 d"!. Mean values of the rate constants for each of
the 24 MPs along with their respective maximum, minimum, and coefficient of variation (CoV)
across the 14-day sampling campaign are provided in Table S8. Metalaxyl, metaxalone,
famotidine, and dimethyl phthalate exhibited the most variable biotransformations rate constants
(CoV > 0.62) and DEET, emtricitabine, propranolol, and flucytosine exhibited the least variable
biotransformation rate constants (0.15 < CoV < 0.26).

To evaluate whether groups of MPs exhibit characteristic patterns of variability among
their biotransformation rate constants, we used z-score normalization (to eliminate the effects of
the magnitudes of the rate constants) and hierarchical clustering to generate the clustered heatmap
shown in Figure 3. This analysis revealed four clusters of MPs that exhibit correlated patterns of
variability among their biotransformation rate constants. Boxplots of actual rate constant values
by cluster per day are provided in Figure S4. The eight MPs labeled with red text in Figure 3
represent those that exhibit positive and significant associations between INF concentration and
%R as described in the preceding section. It is interesting to note that all eight of these MPs are
contained within cluster 1 and cluster 2, suggesting that INF concentrations may be an important
factor controlling the activity level of the microbial community functions involved in the
biotransformation of the MPs in these two clusters. MPs in cluster 3 are characterized by their
maximum biotransformation rate constants on Nov 21% and a general decreasing trend in rate
constant magnitudes after this date (evidenced by the shading of the heat map in Figure 3 and the
data presented in Figure S4). MPs in cluster 4 are characterized by steadily increasing rate
constants over the 14-day sampling campaign (evidenced by the shading of the heat map in Figure
3 and the data presented in Figure S4). All twelve of the MPs contained in cluster 3 and cluster 4

are among those that exhibit no significant association between INF concentration and %R,
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suggesting that the activity levels of the microbial community functions involved in the
biotransformation of the MPs in these two clusters are changing in response to other, unknown
factors. We note that changing activity levels could be the result of shifts in microbial community
structure or shifts in the expression levels of genes that encode for the associated catalytic

enzymes.5+%

The specific taxa and catalytic enzymes involved in the observed MP
biotransformations are unknown, but literature data demonstrate that the core structure of
wastewater microbial communities is stable over weekly or even monthly timescales,*® whereas
gene expression levels can vary over hourly or daily timescales.®” Therefore, it is likely that the
changes in activity levels are the result of either changes in the composition of satellite taxa around
the core structure or changing gene expression levels resulting from environmental or stochastic
processes.®® Because the specific taxa and catalytic enzymes involved in the observed MP
biotransformations are unknown, this cannot be explicitly tested but is motivation for future
research.

We hypothesize that chemical structure could be a factor that explains the patterns of
variability among the biotransformation rate constants of the MPs contained in the four clusters
revealed in Figure 3. Under this hypothesis, clusters of MPs containing common labile functional
groups would exhibit correlated patterns of temporally variable biotransformations based on
changing activity levels of related microbial community functions. To test this hypothesis, we used
the Eawag-PPS to identify the biotransformation rules (btrules) triggered by each of the 24 MPs
contained in Figure 3. This analysis revealed 36 unique btrules triggered by all 24 MPs, with nine
btrules that represent four broad categories of biotransformations predicted most consistently. A

summary of this analysis is presented in Figure 4A, where we report the number of times each of

the nine btrules was triggered by the MPs contained in each of the four clusters.
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We found that the five MPs in cluster 1 primarily contain functional groups that support
both alcohol oxidations (bt0001, bt0002) and monohydroxylations at secondary or tertiary
aliphatic carbons (bt0241, bt0242). Conversely, the seven MPs in cluster 2 contain functional
groups that support both dihydroxylations of vic-unsubstituted rings (bt0005) and
monohydroxylations at unsubstituted rings (bt0011, bt0012, bt0013, bt0014). The observation that
each cluster of MPs contains functional groups in common supports our hypothesis. Further,
because we previously noted that most of the MPs contained in cluster 1 and cluster 2 exhibit
positive and significant associations between INF concentration and %R, these data suggest that
the activity levels of these microbial community functions may be influenced by INF
concentrations. The four MPs in cluster 3 primarily contain functional groups that support
monohydroxylations at unsubstituted rings (bt0011, bt0012, bt0013, bt0014) and the eight MPs in
cluster 4 contain functional groups that support monohydroxylations at secondary or tertiary
aliphatic carbons (bt0241, bt0242). These observations likewise support our hypothesis, and our
previous observation that these MPs exhibit no significant association between INF concentration
and %R suggests that the activity levels of these microbial community functions for these MPs
may be changing in response to other, unknown factors.

Discovering specific biotransformations linked to variable rate constants. We finally aimed
to provide additional support to our hypothesis by screening the EFF samples for evidence of TPs
formed from specific biotransformations noted for each of the four MP clusters. We used the
Eawag-PPS predictions to screen the EFF samples for a total of 183 TPs. We found evidence of
37 TPs formed from 18 of the 24 MPs in at least one EFF sample. A summary of detected TPs
along with their respective SMILES, chemical formula, extracted mass, retention times, diagnostic

fragments, and associated btrules is provided in Table S9 and definitions of associated btrules are
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provided in Table S10. All 37 of the TPs are identified at confidence level 2 or 3 according to

1.° We also present an accounting of the TPs that were detected resulting from

Schymanski et a
the nine btrules most commonly triggered by the 24 MPs in Figure 4B. The data in Figure 4B
demonstrate that we found evidence of TPs representing all four broad -categories
biotransformations (or microbial community functions) sporadically across the four MP clusters.
Although we did find evidence of some of the expected biotransformations in some of the clusters
(e.g., four TPs resulting from monohydroxylations at secondary or tertiary aliphatic carbons for
MPs contained in cluster 4), this analysis does not provide unequivocal evidence in support of our
hypothesis.

It is worth discussing some of the limitations of our approach to TP analysis that may
confound our ability to definitively identify evidence of the expected biotransformations. First, we
restricted our analysis to only those TPs predicted by the Eawag-PPS. Although this is one of the
most robust tools available to predict biotransformations of MPs performed by wastewater
microbial communities,” it is not necessarily comprehensive and recent studies have reported
biotransformations performed by wastewater microbial communities that are not predicted by the
Eawag-PPS.>7**"! This limitation restricts our ability to account for likely biotransformations
(Figure 4A) and our ability to screen for TPs in the EFF samples (Figure 4B). Second, it is
possible that some of the predicted TPs cannot be detected using our analytical method that was
optimized for the quantification of the 184 MPs of interest within a certain mass range and that are
captured using our SPE method. Further, our stringent criteria for analytical data supporting TP
identification may have filtered out some TPs that actually were present. These factors highlight
the limitations of HRMS as a tool for identifying TPs in complex matrices. Third, most studies

that report on MP biotransformations are conducted in batch studies in which the MP of interest is
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spiked into a wastewater microbial community. Whereas other studies have screened for TPs in
wastewater effluent,’? our study is one of the first to try to identify TPs in-situ without prior
knowledge of expected TPs from batch experiments, which limits our ability to leverage
experimental tools to facilitate TP identification (e.g., temporal trend analysis). Nevertheless, this
approach was essential to capture the temporal dynamics and limit the effects of microbial
community harvesting and MP spiking in batch reactors. Finally, it is likely that some of the
expected biotransformations occurred as a relatively rapid first step along a biotransformation
pathway. We observed the first step as the disappearance of the MP, but the first-generation TP
may not have been formed to a measurable extent before it was subsequently biotransformed.
These limitations point to the need for improved prediction of biotransformations occurring during
wastewater treatment and analytical methods for TP detection in wastewater effluents.

Environmental implications. The primary goal of this study was to discover the extent of the
temporal variability of MP biotransformations performed by wastewater microbial communities.
Our data demonstrate that some MPs exhibit variable biotransformations (as evidenced by %R and
biotransformation rate constants) over daily timescales. The MPs that exhibited the most variable
%R and biotransformation rate constants were metalaxyl, metaxalone, famotidine, and dimethyl
phthalate. Variable biotransformation was significantly and positively associated with INF
concentrations for eight MPs including propranolol, clindamycin, ritalinic acid, benzotriazole,
lidocaine, gemfibrozil, flucytosine, and metalaxyl. These novel observations suggest a potential
link between INF concentrations and the activity levels of the microbial community functions
involved in the biotransformation of these MPs. However, variable biotransformation was not
associated with INF concentrations for most MPs, and we suggest that the activity levels of the

microbial community functions involved in the biotransformation of those MPs are changing in
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response to other, unknown factors. Our analysis of chemical structure and likely
biotransformations suggests that alcohol oxidations, monohydroxylations at secondary or tertiary
aliphatic carbons, dihydroxylations of vic-unsubstituted rings, and monohydroxylations at
unsubstituted rings are biotransformations that may exhibit variable activity levels on daily
timescales. These biotransformations are catalyzed by enzymes in the broad classes of
dehydrogenases (EC 1.1.-.-), monooxygenases (EC 1.14.-.-), and dioxygenases (EC 1.14.-.-) and
are expected to be co-metabolic.?’

There is a need to better understand the factors that control the removal of MPs during
wastewater treatment. Our data demonstrate that some MPs are always removed (e.g.,
acetaminophen, caffeine, coumarin) whereas other MPs are always persistent (e.g., sucralose,
carbamazepine). These observations agree with previous data reported from WWTPs from around
the world.®"””> However, most MPs are removed to variable extents across WWTPs and, as our
data demonstrate, within a single WWTP over daily timescales. We argue that this latter group of
MPs represent an opportunity to improve the performance of WWTPs for removing MPs. Our data
suggest this group of MPs can be completely removed during conventional wastewater treatment;
we only need to understand the causal factors that result in increased activity levels of the

associated biotransformations. This study provides a step forward toward that goal.
Supporting Information

list of target micropollutants; details on flow conditions and operational parameters at wastewater
treatment plant; analytical information on detected MPs; pseudo-first order rate constant equation;
summary statistics of detected MP; temporal profiles of INF and EFF concentrations and %R;
binned MPs according to correlation between INF concentration and %R; summary statistics of

MP rate constants over 14-day sampling period; boxplots of rate constants grouped by clusters
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from Figure 3; analytical information for detected TPs; definitions of biotransformation rules

(btrules); R code used for generating figures can be found here: https://github.com/slr257.
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Figure Captions

Figure 1: [A] Histogram of MPs observed N times (N = labels above the bars) during the sampling
campaign at each INF (red) and EFF (blue) location (y-axis) binned into groups ranging from 0-
14 days detected (x-axis). [B] Histogram of 120 target MP concentrations in samples (y-axis) at
INF and EFF locations with 30 bins ranging from 103 to 10° pg/L (x-axis). [C] Relationship
between average %R, INF concentration, and standard deviation of %R (SD) for the 78 MPs that
exhibited removal on at least three days of the sampling campaign. Red shading refers to MPs with
high SD, and yellow shading refers to MPs with low SD with respect to %R.

Figure 2: Temporal concentration profiles in ng/L at INF (red) and EFF (blue) locations plotted
with calculated %R for all 14 days of the sampling campaign for caffeine [A], propranolol [B],
and gabapentin [C].

Figure 3: Heatmap of z-score normalized pseudo-first-order biotransformation rate constant
estimates for 24 MPs that were biotransformed on all 14 days of the sampling campaign with
temporally variable %R where zero represents the mean biotransformation rate constant (white)
and red and blue cells represent higher and lower than average biotransformation rate constants
respectively. The eight MPs exhibiting positive and significant associations between %R and INF
concentration (r > 0.55, p < 0.05) are highlighted with red text. There are four distinct clusters
characterized by events with high increase or decrease in biotransformation rate constants on one
sampling day; we note that the number of clusters was determined using the sum of squared
differences.

Figure 4: Stacked barplots showing counts of the nine predicted btrules [A] representing the four
broad biotransformation trends in Figure 3 compared to observed btrules [B] for each of the four
clusters. Each hue represents a reaction type, where purples are alcohol oxidations, red is
dihydroxylations of vic-unsubstituted rings, blues are monohydroxylations at unsubstituted rings,
and oranges are monohydroxylations at secondary or tertiary aliphatic carbons. Definitions of
biotransformation rules (btrules) are provided in Table S10 of the Supporting Information. Note:
some predicted TPs may not be detectable with the analytical method used in this project.
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