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Abstract 10 

Despite decades of micropollutant (MP) monitoring at wastewater treatment plants (WWTPs), we 11 

lack a fundamental understanding of the time-varying metabolic processes driving MP 12 

biotransformations. To address this knowledge gap, we collected 24-h composite samples from 13 

the influent and effluent of the conventional activated sludge (CAS) process at a WWTP over 14 14 

consecutive days. We used liquid chromatography and high-resolution mass spectrometry (LC-15 

HRMS) to: (i) quantify 184 MPs in the influent and effluent of the CAS process; (ii) characterize 16 

temporal dynamics of MP removal and biotransformation rate constants; and (iii) discover 17 

biotransformations linked to temporally variable MP biotransformation rate constants. We 18 

measured 120 MPs in at least one sample and 66 MPs in every sample. There were 24 MPs 19 

exhibiting temporally variable removal throughout the sampling campaign. We used hierarchical 20 

clustering analysis to reveal four temporal trends in biotransformation rate constants and found 21 

MPs with specific structural features co-located in the four clusters. We screened our HRMS 22 

acquisitions for evidence of specific biotransformations linked to structural features among the 24 23 

MPs. Our analyses reveal that alcohol oxidations, monohydroxylations at secondary or tertiary 24 

aliphatic carbons, dihydroxylations of vic-unsubstituted rings, and monohydroxylations at 25 

unsubstituted rings are biotransformations that exhibit variability on daily timescales. 26 

Short synopsis statement.  27 

This research uses daily, time-proportional composite samples across a conventional activated 28 

sludge system and high-resolution mass spectrometry to reveal micropollutant biotransformations 29 

that are temporally variable on daily timescales. 30 

  31 
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Introduction 33 

Organic micropollutants (MPs) are an unbounded class of xenobiotics that have negative 34 

effects on water quality and exposed aquatic ecosystems.1–3 Human exposure to MPs can also lead 35 

to a variety of negative health effects including cytotoxic and developmental effects.4–6 Municipal 36 

wastewater treatment plants (WWTPs) play an important role in determining the fate of MPs in 37 

the environment.7–10 One of the most important techniques for MP removal in conventional 38 

WWTPs is through aerobic biological treatment processes. For example, it is widely known that 39 

MP biotransformations are primarily catalyzed by non-specific enzymes produced by the 40 

wastewater microbial communities within conventional activated sludge (CAS) processes.11–18 41 

Decades of research have demonstrated that some MPs are nearly always biotransformed in CAS 42 

systems around the world (e.g., ibuprofen, acetaminophen) whereas other MPs are nearly always 43 

persistent in CAS systems around the world (e.g., carbamazepine, sucralose).19,20  44 

Although it is useful to identify MPs that are either universally biotransformed or 45 

persistent, the majority of MPs exhibit variable rates and extent of biotransformation over time 46 

and in CAS systems around the world.15,21,22 Variable biotransformation of MPs is often linked to 47 

process variables such as temperature,23–25 redox environment,26,27 solids retention time,28,29 or the 48 

presence or absence of specific taxa within the wastewater microbial community.30 All of these 49 

factors ultimately shape the structure and function of the wastewater microbial community and 50 

could influence the activity levels of specific microbial community functions. However, it remains 51 

unclear how changes in these process variables might change the activity level of a specific 52 

microbial community function and over what timescales changes in activity levels might be 53 

observed in a full-scale WWTP. This knowledge gap limits our ability to tune the performance of 54 

WWTPs to enhance the biotransformation of the majority of MPs.  55 
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Most previous studies investigating the variable biotransformation of MPs have utilized 56 

batch reactors seeded with wastewater microbial communities to measure the rate and extent of 57 

MP biotransformation31–36 and to identify biotransformation products (TPs).37,38 Data from these 58 

types of experiments have been useful for delineating biotransformation pathways39 and for linking 59 

biotransformation rates to experimental variables such as dissolved oxygen levels26 or the 60 

taxonomic composition of the microbial community.40 However, there are a variety of limitations 61 

that have prevented the extrapolation of results from these types of studies to performance in full-62 

scale systems. For example, batch reactors seeded with wastewater microbial communities 63 

represent only a snapshot of the dynamic microbial community at the time of sampling from the 64 

full-scale WWTP.41 Further, removing the wastewater microbial community from its natural 65 

environment and placing it in a laboratory reactor is expected to result in significant shifts in both 66 

the taxonomic composition and the activity levels of specific microbial community functions.42,43 67 

Spiking MPs into a batch reactor can also stimulate or inhibit the activity levels of specific 68 

microbial community functions resulting in a misrepresentation of biotransformation rate 69 

constants relative to the full-scale system.10,44–46   70 

We contend that novel insights on the temporal variability of MP biotransformations 71 

performed by wastewater microbial communities are best explored through daily monitoring of 72 

MP concentrations in the influent and effluent of the biological process at a full-scale WWTP. 73 

Therefore, we implemented a 14-day sampling campaign at the Ithaca Area Wastewater Treatment 74 

Facility where we collected 24-h time-proportional samples from the influent and effluent of a 75 

CAS process, concentrated each sample by means of solid-phase extraction, and used liquid 76 

chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to: (i) quantify the 77 

abundance of up to 184 MPs in the influent and effluent of the full-scale CAS process daily over 78 
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a 14-day period; (ii) characterize the temporal dynamics of MP removal and biotransformation 79 

rate constants over the 14-day period; and (iii) discover specific biotransformations that are linked 80 

to temporally variable MP biotransformation rate constants. This study offers the first evaluation 81 

of the daily variability of MP biotransformations in a full-scale WWTP over a 14-day period. Our 82 

data demonstrate that some MP biotransformations can be variable on daily timescales and that 83 

MP concentration and chemical structure are driving factors in the temporal variability of MP 84 

biotransformations. 85 

Materials and Methods 86 

Micropollutant selection. We selected 184 MPs for target quantification in this study. The 87 

selected MPs are commonly observed in WWTPs and consist of pharmaceuticals, industrial 88 

chemicals, pesticides, human metabolites, and food additives.9,47,48 We selected these MPs to 89 

observe population-driven chemical use patterns in the studied WWTP and to encompass a broad 90 

range of MP chemical structures. Stock solutions of all 184 MPs were prepared at 1 g L-1 in either 91 

LC-MS-grade methanol (OmniSolv, VWR), nanopure water (EMD Millipore), LC-MS-grade 92 

acetonitrile (Fisher Chemical), ethanol (Decon Labs), dimethyl sulfoxide (Macron Fine 93 

Chemicals) or acetone (Honeywell) and stored at -20°C. A standard mixture of all 184 MPs was 94 

created in nanopure water at 5 mg L-1 and stored at -20°C. A list of the 184 MPs, along with their 95 

CAS numbers, chemical formulas, and analytical parameters are provided in Table S1 of the 96 

Supporting Information (SI). Similarly, a mixture of 51 isotope-labeled internal standards (ILIS) 97 

was created in nanopure water at 5 mg L-1 and stored at -20°C. A list of the 51 ILISs is provided 98 

in Table S2.   99 

Sampling of wastewater in-situ. The WWTP chosen for this study is located in Ithaca, NY and 100 

treats 6.5 MGD of raw wastewater on average for a population of approximately 30,000 101 
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inhabitants. Average daily volumetric flow rates during the 14-day sampling campaign as well as 102 

instantaneous minimum and maximum flowrates, and daily precipitation values are provided in 103 

Figure S1. The main biological treatment process at this WWTP consists of a CAS system with 104 

return activated sludge followed by a secondary clarifier. More information on the WWTP 105 

operational parameters during the sampling campaign are included in Table S3. We placed two 106 

full-size portable Teledyne ISCO 6712 autosamplers along the WWTP treatment path surrounding 107 

the CAS system, which is the WWTP unit process where we expect most MPs will be 108 

biotransformed.12 One autosampler was placed directly upstream of the CAS at the effluent of the 109 

primary clarifier before the input of return activated sludge and the other autosampler was placed 110 

at the end of the CAS system designed with plug-flow-like hydraulics (denoted as INF and EFF 111 

respectively, see SI Figure S2). Daily, time-weighted composite samples were collected at each 112 

sampling location simultaneously starting from 10:00 am on November 17th and ending at 10:00 113 

am on December 1st 2020. We chose these sampling dates to capture a demographic shift in the 114 

community caused by the outflow of students from the Cornell University and Ithaca College 115 

campuses for Thanksgiving break on Nov 26th to evaluate the effect of a population change on 116 

influent MP concentrations and wastewater microbial community functioning (we also note that 117 

2020 was an unusual year due to the ongoing COVID-19 pandemic, but that most students were 118 

studying on campus and left town for the Thanksgiving holiday). Teflon-lined polyethylene tubing 119 

was used to draw 20 mL of wastewater every 20 min for 24 h into 1.8 L glass bottles such that the 120 

total volume of each composite sample was approximately 1.4 L. Field blanks were collected 121 

before and after wastewater sampling by running 1.4 L of nanopure water through our sample 122 

collection system. We chose to implement a simultaneous sampling method because the hydraulic 123 

retention time of the studied reactor was 7.3 h on average and our 24 h composite samples will 124 



8 

  

collect most of the MP mass traveling through the system. We retrieved composite samples from 125 

the WWTP at 10:10 am daily and prepared them in the lab within one hour of sample collection. 126 

Preparation of wastewater samples. Wastewater samples were filtered in three different steps 127 

before preparation via solid-phase extraction (SPE). The three filtration steps included large solids 128 

removal using coffee filters (VWR), suspended solids removal using glass-fiber filters (grade 129 

GF/F, diameter 4.7 cm, pore size 0.7 µm, VWR), and finally cellulose acetate filters (diameter 4.7 130 

cm, pore size 0.45 µm, VWR) to generate sample filtrate for SPE. One liter of sample filtrate was 131 

collected and titrated to a pH of 6.5 using dilute formic acid and spiked with 20 µL of the ILIS 132 

mixture such that each sample had an ILIS concentration of 100 ng/L before loading onto mixed-133 

bed SPE cartridges containing 200 mg ENVI-Carb (Sigma-Aldrich), 100 mg Strata-X-AW 134 

(Phenomenex), 100 mg Strata-X-CW (Phenomenex), 150 mg Isolute ENV+ (Separtis GmbH, 135 

Germany) and 200 mg Oasis HLB (Waters) to concentrate the samples by a factor of 1000 as 136 

previously described.49,50 We also prepared a 9-point calibration curve by spiking the mixture of 137 

184 MPs into 1 L of nanopure water to generate standards at concentrations of 0, 1, 5, 25, 50, 100, 138 

250, 500, and 750 ng/L. The calibration standards were likewise spiked with 20 µL of the ILIS 139 

mixture and loaded onto the mixed-bed SPE cartridges to concentrate by a factor of 1000. SPE 140 

cartridges were refrigerated at 5 °C for up to one week before elution. 141 

Sample analysis. We adopted a previously described analytical method for MP quantification and 142 

TP identification.9,37 Briefly, samples were measured in triplicate using reversed-phase liquid 143 

chromatography (Ultimate 3000, Thermo Scientific) coupled to high-resolution quadrupole-144 

orbitrap mass spectrometry (QExactive, Thermo Scientific) with 30 µL injections of samples 145 

stored at 4 °C during the analysis. Samples were separated using a mobile phase gradient of LC-146 

MS grade water (OmniSolv, 58201, solvent A) and methanol (OmniSolv, 58215, solvent B) – both 147 
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containing 0.1% (v/v) formic acid – over an XBridge C18 column (Waters, 186003021, particle 148 

size: 3.5 µm, flow rate: 0.2 mL/min, gradient properties: 0 – 5 min: 5% B, 5 – 21 min: 5% B – 149 

95% B (linear increase), 21 – 25 min: 95% B, 25 – 30 min: 5% B). We performed full-scan MS 150 

acquisitions (100-1000 m/z, resolution 140,000) in electrospray ionization positive-negative 151 

switch mode. Data dependent MS2 spectra were acquired at the exact masses and retention times 152 

of all target MPs and ILISs with additional MS2 spectra collected for the TopN MS features if the 153 

inclusion list was not triggered. For absolute quantification of target analytes, we used ILIS 154 

normalized peak areas obtained with Xcalibur Quanbrowser (Thermo Scientific, Version 155 

4.0.27.19) and a calibration series (concentration range: 0-750 µg/L after passing through SPE) 156 

with 1/x least-squares regression. Analytical parameters for each target MP and its assigned ILIS 157 

are provided in Table S1 and Table S2. 158 

Quality control.  We used an in-house R script to match MS2 fragments to candidate target MP 159 

peaks in wastewater samples (available for download at github.com/cmc493). Our workflow first 160 

converts instrument .RAW files into .mzXML files using ProteoWizard v3.0.19096, then uses the 161 

findMsMsHR.mass function from the R package RMassBank51 to search MS2 spectra from picked 162 

peaks for matching diagnostic fragments in our in-house database or from the highest calibration 163 

point (diagnostic fragments provided in Table S1). All .RAW and .mzXML files are available as 164 

data set MSV000092016 from the GNPS MassIVE repository 165 

(https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp) citable under DOI: 166 

10.25345/C5SQ8QT49. Confirmed MP detection in any sample required at least one diagnostic 167 

fragment in one of the triplicate sample measurements. For pseudo-first order rate constant 168 

estimates, concentrations greater than the highest calibration point were included and 169 

concentrations lower than the limit of quantification (LOQ) were conservatively replaced with the 170 

https://doi.org/doi:10.25345/C5SQ8QT49
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value of the LOQ. The LOQ was defined as the lowest measured calibration point in our standard 171 

curve (0.001 µg/L is the lowest possible value for the LOQ). We only report concentrations of 172 

MPs where linear calibration curves consisted of at least three points and had an R2 greater than 173 

0.85, which addresses analytical uncertainties resulting from the matrix and analyte interference. 174 

Data quality parameters such as R2 and LOQ for target MPs are provided in Table S4. 175 

Biotransformation product analysis. We used the Eawag-Pathway Prediction System52,53 176 

(Eawag-PPS) with relative reasoning turned off and likelihood set to all to generate a list of 183 177 

predicted TPs with masses greater than 100 Da for 24 select MPs that were biotransformed on 178 

every day of the sampling campaign as previously described.38,49,54 We cross-referenced the 179 

predictions with those made by the enviPath software55 and those contained within the sludge 180 

package of enviPath and confirmed that all possible TPs were included in our list of suspected 181 

TPs. We generated SMILES for each of the predicted TPs and used JChem for Excel (2019 version 182 

19.26.0571) to calculate the exact mass of the [M+H]+ and [M-H]- ions for each predicted TP. We 183 

then used Xcalibur Qualbrowser (Thermo Scientific, Version 4.0.27.19) to visually screen HRMS 184 

acquisitions for evidence of TP formation in the EFF dataset. We contend that TPs formed from 185 

parent MPs during the CAS process are most likely present at the EFF sampling location, therefore 186 

we prioritized TP detection in EFF samples. Evidence of TP formation includes: (i) peak areas 187 

greater than 1E5; (ii) reasonable peak shape; (iii) presence of a peak in environmental samples and 188 

absence of a peak (or peak area less than 1E4, which is a threshold for analytical noise) in blank 189 

samples; (iv) one diagnostic fragment detected in at least one triplicate measurement of a field 190 

sample; and (v) a retention time less than two minutes longer than the retention time of the parent 191 

MP. The resulting list of candidate biotransformation products was further vetted by comparing 192 

MS spectra and MS2 fragmentation data to in-silico MS2 fragments generated by the MassFrontier 193 
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software (ThermoScientific). MS2 fragments were matched to predicted fragments for suspect TPs 194 

using a modified version of the in-house R script described in the Quality Control section of the 195 

Methods with the workflow adapted to prioritize identification of suspect TPs (available for 196 

download at github.com/slr257). 197 

Data and statistical analysis. We used MP concentrations at the INF and EFF locations to 198 

estimate pseudo first-order biotransformation rate constants for MPs exhibiting removal on all 14 199 

sampling days as detailed in the SI. We used z-score normalized first-order biotransformation rate 200 

constants to compare the variability of temporal trends in MP biotransformation rate constants 201 

over the 14-day period due to the wide range of the absolute values of pseudo first-order MP 202 

biotransformation rate constants. Hierarchical clustering analysis was performed on the 203 

normalized rate constants using Ward’s agglomerative clustering method ward.D2 in RStudio56–204 

58 (R version 4.0.4, RStudio version 1.1.463) with the package pheatmap.59 Correlation 205 

coefficients (r) were calculated using Spearman’s rank correlation test with the function cor.test 206 

and significance tests were performed using two-sided, paired t-tests with the function t.test from 207 

the R stats package. 208 

Results and Discussion 209 

Quantifying MPs in INF and EFF samples. We quantified concentrations of 152 MPs that met 210 

our quality control criteria. We found 120 of the 152 MPs at concentrations above individual LOQs 211 

in at least one INF or EFF sample collected during the 14-day sampling period. Of the 120 MPs 212 

measured in at least one INF or EFF sample, we observed 75 in all INF samples, 72 in all EFF 213 

samples, and 66 in all INF and EFF samples on all 14 sampling days. Additionally, field samples 214 

collected before and after the sampling campaign confirmed that MPs were not accumulating in or 215 

leaching from our sampling system. A summary of the quantified MPs, concentrations, and 216 
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removal percentages (%R) are provided in Figure 1.  Figure 1A details the number of days each 217 

MP was observed throughout the campaign, with zero representing MPs that were never measured 218 

above the LOQ and 14 representing MPs that were always measured above the LOQ at each INF 219 

and EFF location. Most MPs at the INF location were also found at the downstream EFF location 220 

at least once with the exception of abacavir, caffeine, coumarin, levetiracetam, and meprobamate 221 

indicating consistent and complete removal of these five MPs. However, the antiviral medication 222 

abacavir and anxiolytic drug meprobamate were each observed in only one INF sample (abacavir 223 

– Nov 29th, meprobamate – Nov 24th) so we cannot say if the complete removal of these two MPs 224 

is necessarily a robust process. As shown in Figure 1A, the majority of quantified MPs fall into 225 

extremes of either zero or 14 days observed, with 42 and 43 MPs falling between these two extreme 226 

categories for INF and EFF respectively.  227 

 Figure 1B shows two overlaid distributions of the mean concentrations generated from 228 

triplicate measurements for the 120 target MPs measured above the LOQ in any INF or EFF sample 229 

with concentrations ranging from 0.001 – 660 µg/L on any one day. The mean and median 230 

concentrations of MPs detected at the INF location were 9.6 µg/L and 0.54 µg/L respectively. The 231 

mean and median concentrations of MPs detected at the EFF location were 2.9 µg/L and 0.32 µg/L. 232 

Summary statistics of measured concentrations for each individual MP used in the distributions in 233 

Figure 1B are provided in Table S5 and Table S6. As shown in Figure 1B, there was an overall 234 

significant decrease in MP concentrations from INF to EFF samples (p < 0.05, t-test) indicating 235 

the expected aggregate MP removal during the CAS process, especially for MPs entering the CAS 236 

process at relatively high concentrations (5-700 µg/L). We note that although we report EFF 237 

concentrations as high as 119 µg/L (saccharin, Nov 19th), this represents the effluent of the CAS 238 

process and not the concentration of MPs released into the environment at the final WWTP 239 
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effluent; downstream unit processes at this WWTP include secondary clarification, chemical 240 

precipitation of phosphorous, disinfection, and dechlorination. 241 

 Next, we calculated %R on each day of the sampling campaign using INF and EFF 242 

concentrations ((INF-EFF)*100/INF) and evaluated the relationship between average INF 243 

concentration and average %R (Figure 1C). We removed MPs exhibiting sporadic %R (< 3 days) 244 

before generating Figure 1C, which resulted in 78 MPs for which we calculated average %R and 245 

the associated standard deviation (SD). Figure 1C shows average %R plotted against average log-246 

transformed INF concentrations for these 78 MPs along with the SD represented in a color scale 247 

ranging from yellow (low SD) to red (high SD). In Figure 1C, we observe a weak yet significant 248 

positive relationship between average %R and average log-transformed INF concentration 249 

indicating that, in aggregate, average %R increases with increasing INF concentration (r = 0.4, p 250 

< 0.05), a phenomenon that has been observed for MPs at other WWTPs.34 Most MPs exhibiting 251 

either very high (> 85) or very low (< 15) average %R were consistently measured as such (i.e., 252 

low SD). MPs in this category are likely biotransformed via microbial community functions with 253 

stable activity levels. Conversely, MPs exhibiting less extreme average %R values (between 15-254 

85%) exhibited more variability in measured %R (i.e., high SD), demonstrating the interesting 255 

phenomenon of temporally changing activity levels for the related microbial community functions. 256 

Finally, we note that no significant associations were identified between %R and precipitation 257 

level, flow rate, suspended solids concentration, or influent and effluent BOD5 concentrations.  258 

Characterizing the temporal dynamics of %R. We next aimed to characterize the temporal 259 

dynamics of %R over the 14-day sampling campaign for individual MPs. To do this, we focused 260 

on the 66 MPs that were measured in all INF and EFF samples on all 14 days of the sampling 261 

campaign. We then narrowed that list to 35 MPs that exhibit positive %R on all 14 days of the 262 
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sampling campaign; the other 31 MPs exhibit negative or zero %R on at least one of the sampling 263 

days which we attribute to formation during activated sludge treatment (e.g., back-transformation 264 

of human metabolites to parent MPs)44,60,61, the measured MP being a biotransformation product 265 

itself (e.g., metolachlor ESA), or limited transformation resulting in near-zero %R on most days 266 

with analytical uncertainty yielding %R estimates in the range of ±15%. Temporal profiles of INF, 267 

EFF, and %R for three representative MPs that meet these criteria are provided in Figure 2. 268 

Temporal profiles for all 35 MPs are provided in Figure S3.  269 

These data demonstrate that individual MPs can exhibit highly variable %R on daily 270 

timescales within a single WWTP. For example, propranolol exhibits a sudden drop in %R on one 271 

sampling day (Nov 25th, day before Thanksgiving holiday) before returning to pre-Thanksgiving 272 

holiday levels (Figure 2B). Gabapentin exhibits large daily increases in %R over the first four 273 

days of the sampling campaign before leveling off at a more consistent level during the latter seven 274 

days of the sampling campaign (Figure 2C). This important observation of highly variable %R on 275 

daily timescales within a single WWTP has not been clearly demonstrated in previous literature 276 

(although highly variable MP concentrations in WWTP effluents has been reported)62 and has 277 

several practical implications. First, these data confirm that a single 24-h composite sample is 278 

insufficient to determine the %R of an individual MP; rather, a time-series of daily composite 279 

samples are needed to fully capture the temporal variability of %R within a single WWTP. Second, 280 

the temporal variability itself is notable because it suggests there are factors that change on daily 281 

(or hourly) timescales that influence the activity levels of microbial community functions involved 282 

in MP biotransformations at a full-scale WWTP. 283 

 Next, we tested whether the demographic shift in the community due to the Thanksgiving 284 

holiday break resulted in significant changes in aggregate INF concentrations or %R for the 35 285 
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MPs. We compared the distributions of INF concentrations and %R for the 35 MPs from the five 286 

days before the Thanksgiving holiday (Nov 20th – 25th) to the five days after the Thanksgiving 287 

holiday (Nov 26th – Dec 1st). We observed significant decreases in INF concentrations (p < 0.05, 288 

t-test) and %R (p < 0.01, t-test) for the 35 MPs in the five days after the Thanksgiving holiday, 289 

indicating that the demographic shift had effects on INF concentrations and %R. Previous studies 290 

have demonstrated that a sudden demographic shift can be associated with the expected decreases 291 

(and sometimes increases) in MP concentrations in WWTPs.63 However, our data indicate this 292 

type of demographic shift can likewise influence the activity levels of microbial community 293 

functions involved in MP biotransformations at a full-scale WWTP.  294 

 Although we observed significant decreases in aggregate INF concentrations and %R in 295 

the five days after Thanksgiving break, it is also clear from the data in Figure 2 and Figure S3 296 

that changes in INF are not always associated with changes in %R among individual MPs. To test 297 

the relationship between INF concentrations and %R among the 35 individual MPs, we used the 298 

SD values of %R to evaluate the extent of variability of %R and Spearman correlations between 299 

INF concentrations and %R to identify significant associations. We identified three major types of 300 

relationships between INF concentrations and %R based on these metrics. First, we identified ten 301 

MPs that did not exhibit variable %R over the fourteen-day sampling campaign (SD < 5%) despite 302 

changes in INF concentrations. These include caffeine (Figure 2A) and nine other MPs listed in 303 

Table S7. Examination of the temporal profiles of %R for these MPs indicates that they are all 304 

nearly completely removed on every day of the sampling campaign. Therefore, there is no 305 

measurable change in the activity levels of the microbial community functions involved in the 306 

biotransformation of these MPs. Second, we identified eight MPs that exhibit variable %R (SD > 307 

5%) and a positive and significant association between INF concentration and %R (r > 0.55, p < 308 
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0.05). These include propranolol (Figure 2B) and seven other MPs listed in Table S7. These 309 

associations suggest that INF concentrations may have an effect on the activity levels of the 310 

microbial community functions involved in the biotransformation of these MPs. Third, we 311 

identified sixteen MPs exhibiting variable %R (SD > 5%) with no significant association between 312 

INF concentration and %R (-0.55 < r < 0.55, p > 0.05). These include gabapentin (Figure 2C) and 313 

15 other MPs listed in Table S7. These sixteen MPs are of particular interest for this study because 314 

they exhibit temporal variability in %R on daily timescales, but the variability is not associated 315 

with changes in INF concentration. Therefore, we conclude that the activity levels of the microbial 316 

community functions involved in the biotransformation of these MPs are changing in response to 317 

other, unknown factors. Finally, we must note that acesulfame exhibits variable %R (SD > 5%) 318 

and a negative and significant association between INF concentration and %R (r < -0.55, p < 0.05). 319 

Variable removal of acesulfame in WWTPs has been previously reported and has been linked to 320 

adaptation of the microbial community to continuous exposure to acesulfame.22 The negative and 321 

significant association observed here was unique to acesulfame and has not been previously 322 

reported for other MPs. Because this unique behavior could not be generalized to a broader group 323 

of MPs, we do not include acesulfame in the following analyses. 324 

Characterizing the temporal dynamics of MP biotransformation rate constants. We next 325 

aimed to characterize the temporal dynamics of MP biotransformation rate constants over the 14-326 

day sampling campaign for individual MPs. Biotransformation rate constants are a complementary 327 

metric to %R that account for large differences in INF concentrations among MPs while 328 

incorporating daily changes in hydraulic retention time. We used Equation S1 to estimate pseudo 329 

first-order rate constants on each day of the sampling campaign for the 24 MPs that exhibit variable 330 

%R (SD > 5%) as described in the preceding section. The estimated average rate constants range 331 
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from 0.02 to 24 d-1 with a median value of 2.8 d-1. Mean values of the rate constants for each of 332 

the 24 MPs along with their respective maximum, minimum, and coefficient of variation (CoV) 333 

across the 14-day sampling campaign are provided in Table S8. Metalaxyl, metaxalone, 334 

famotidine, and dimethyl phthalate exhibited the most variable biotransformations rate constants 335 

(CoV > 0.62) and DEET, emtricitabine, propranolol, and flucytosine exhibited the least variable 336 

biotransformation rate constants (0.15 < CoV < 0.26).   337 

 To evaluate whether groups of MPs exhibit characteristic patterns of variability among 338 

their biotransformation rate constants, we used z-score normalization (to eliminate the effects of 339 

the magnitudes of the rate constants) and hierarchical clustering to generate the clustered heatmap 340 

shown in Figure 3. This analysis revealed four clusters of MPs that exhibit correlated patterns of 341 

variability among their biotransformation rate constants. Boxplots of actual rate constant values 342 

by cluster per day are provided in Figure S4.  The eight MPs labeled with red text in Figure 3 343 

represent those that exhibit positive and significant associations between INF concentration and 344 

%R as described in the preceding section. It is interesting to note that all eight of these MPs are 345 

contained within cluster 1 and cluster 2, suggesting that INF concentrations may be an important 346 

factor controlling the activity level of the microbial community functions involved in the 347 

biotransformation of the MPs in these two clusters. MPs in cluster 3 are characterized by their 348 

maximum biotransformation rate constants on Nov 21st and a general decreasing trend in rate 349 

constant magnitudes after this date (evidenced by the shading of the heat map in Figure 3 and the 350 

data presented in Figure S4). MPs in cluster 4 are characterized by steadily increasing rate 351 

constants over the 14-day sampling campaign (evidenced by the shading of the heat map in Figure 352 

3 and the data presented in Figure S4). All twelve of the MPs contained in cluster 3 and cluster 4 353 

are among those that exhibit no significant association between INF concentration and %R, 354 
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suggesting that the activity levels of the microbial community functions involved in the 355 

biotransformation of the MPs in these two clusters are changing in response to other, unknown 356 

factors. We note that changing activity levels could be the result of shifts in microbial community 357 

structure or shifts in the expression levels of genes that encode for the associated catalytic 358 

enzymes.64,65 The specific taxa and catalytic enzymes involved in the observed MP 359 

biotransformations are unknown, but literature data demonstrate that the core structure of 360 

wastewater microbial communities is stable over weekly or even monthly timescales,66 whereas 361 

gene expression levels can vary over hourly or daily timescales.67 Therefore, it is likely that the 362 

changes in activity levels are the result of either changes in the composition of satellite taxa around 363 

the core structure or changing gene expression levels resulting from environmental or stochastic 364 

processes.68 Because the specific taxa and catalytic enzymes involved in the observed MP 365 

biotransformations are unknown, this cannot be explicitly tested but is motivation for future 366 

research. 367 

 We hypothesize that chemical structure could be a factor that explains the patterns of 368 

variability among the biotransformation rate constants of the MPs contained in the four clusters 369 

revealed in Figure 3. Under this hypothesis, clusters of MPs containing common labile functional 370 

groups would exhibit correlated patterns of temporally variable biotransformations based on 371 

changing activity levels of related microbial community functions. To test this hypothesis, we used 372 

the Eawag-PPS to identify the biotransformation rules (btrules) triggered by each of the 24 MPs 373 

contained in Figure 3. This analysis revealed 36 unique btrules triggered by all 24 MPs, with nine 374 

btrules that represent four broad categories of biotransformations predicted most consistently. A 375 

summary of this analysis is presented in Figure 4A, where we report the number of times each of 376 

the nine btrules was triggered by the MPs contained in each of the four clusters.  377 
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We found that the five MPs in cluster 1 primarily contain functional groups that support 378 

both alcohol oxidations (bt0001, bt0002) and monohydroxylations at secondary or tertiary 379 

aliphatic carbons (bt0241, bt0242). Conversely, the seven MPs in cluster 2 contain functional 380 

groups that support both dihydroxylations of vic-unsubstituted rings (bt0005) and 381 

monohydroxylations at unsubstituted rings (bt0011, bt0012, bt0013, bt0014). The observation that 382 

each cluster of MPs contains functional groups in common supports our hypothesis. Further, 383 

because we previously noted that most of the MPs contained in cluster 1 and cluster 2 exhibit 384 

positive and significant associations between INF concentration and %R, these data suggest that 385 

the activity levels of these microbial community functions may be influenced by INF 386 

concentrations. The four MPs in cluster 3 primarily contain functional groups that support 387 

monohydroxylations at unsubstituted rings (bt0011, bt0012, bt0013, bt0014) and the eight MPs in 388 

cluster 4 contain functional groups that support monohydroxylations at secondary or tertiary 389 

aliphatic carbons (bt0241, bt0242). These observations likewise support our hypothesis, and our 390 

previous observation that these MPs exhibit no significant association between INF concentration 391 

and %R suggests that the activity levels of these microbial community functions for these MPs 392 

may be changing in response to other, unknown factors.   393 

Discovering specific biotransformations linked to variable rate constants. We finally aimed 394 

to provide additional support to our hypothesis by screening the EFF samples for evidence of TPs 395 

formed from specific biotransformations noted for each of the four MP clusters. We used the 396 

Eawag-PPS predictions to screen the EFF samples for a total of 183 TPs. We found evidence of 397 

37 TPs formed from 18 of the 24 MPs in at least one EFF sample. A summary of detected TPs 398 

along with their respective SMILES, chemical formula, extracted mass, retention times, diagnostic 399 

fragments, and associated btrules is provided in Table S9 and definitions of associated btrules are 400 



20 

  

provided in Table S10. All 37 of the TPs are identified at confidence level 2 or 3 according to 401 

Schymanski et al.69 We also present an accounting of the TPs that were detected resulting from 402 

the nine btrules most commonly triggered by the 24 MPs in Figure 4B. The data in Figure 4B 403 

demonstrate that we found evidence of TPs representing all four broad categories 404 

biotransformations (or microbial community functions) sporadically across the four MP clusters. 405 

Although we did find evidence of some of the expected biotransformations in some of the clusters 406 

(e.g., four TPs resulting from monohydroxylations at secondary or tertiary aliphatic carbons for 407 

MPs contained in cluster 4), this analysis does not provide unequivocal evidence in support of our 408 

hypothesis.  409 

 It is worth discussing some of the limitations of our approach to TP analysis that may 410 

confound our ability to definitively identify evidence of the expected biotransformations. First, we 411 

restricted our analysis to only those TPs predicted by the Eawag-PPS. Although this is one of the 412 

most robust tools available to predict biotransformations of MPs performed by wastewater 413 

microbial communities,70 it is not necessarily comprehensive and recent studies have reported 414 

biotransformations performed by wastewater microbial communities that are not predicted by the 415 

Eawag-PPS.37,39,71 This limitation restricts our ability to account for likely biotransformations 416 

(Figure 4A) and our ability to screen for TPs in the EFF samples (Figure 4B). Second, it is 417 

possible that some of the predicted TPs cannot be detected using our analytical method that was 418 

optimized for the quantification of the 184 MPs of interest within a certain mass range and that are 419 

captured using our SPE method. Further, our stringent criteria for analytical data supporting TP 420 

identification may have filtered out some TPs that actually were present. These factors highlight 421 

the limitations of HRMS as a tool for identifying TPs in complex matrices. Third, most studies 422 

that report on MP biotransformations are conducted in batch studies in which the MP of interest is 423 
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spiked into a wastewater microbial community. Whereas other studies have screened for TPs in 424 

wastewater effluent,72 our study is one of the first to try to identify TPs in-situ without prior 425 

knowledge of expected TPs from batch experiments, which limits our ability to leverage 426 

experimental tools to facilitate TP identification (e.g., temporal trend analysis). Nevertheless, this 427 

approach was essential to capture the temporal dynamics and limit the effects of microbial 428 

community harvesting and MP spiking in batch reactors. Finally, it is likely that some of the 429 

expected biotransformations occurred as a relatively rapid first step along a biotransformation 430 

pathway. We observed the first step as the disappearance of the MP, but the first-generation TP 431 

may not have been formed to a measurable extent before it was subsequently biotransformed. 432 

These limitations point to the need for improved prediction of biotransformations occurring during 433 

wastewater treatment and analytical methods for TP detection in wastewater effluents.          434 

Environmental implications. The primary goal of this study was to discover the extent of the 435 

temporal variability of MP biotransformations performed by wastewater microbial communities. 436 

Our data demonstrate that some MPs exhibit variable biotransformations (as evidenced by %R and 437 

biotransformation rate constants) over daily timescales. The MPs that exhibited the most variable 438 

%R and biotransformation rate constants were metalaxyl, metaxalone, famotidine, and dimethyl 439 

phthalate. Variable biotransformation was significantly and positively associated with INF 440 

concentrations for eight MPs including propranolol, clindamycin, ritalinic acid, benzotriazole, 441 

lidocaine, gemfibrozil, flucytosine, and metalaxyl. These novel observations suggest a potential 442 

link between INF concentrations and the activity levels of the microbial community functions 443 

involved in the biotransformation of these MPs. However, variable biotransformation was not 444 

associated with INF concentrations for most MPs, and we suggest that the activity levels of the 445 

microbial community functions involved in the biotransformation of those MPs are changing in 446 
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response to other, unknown factors. Our analysis of chemical structure and likely 447 

biotransformations suggests that alcohol oxidations, monohydroxylations at secondary or tertiary 448 

aliphatic carbons, dihydroxylations of vic-unsubstituted rings, and monohydroxylations at 449 

unsubstituted rings are biotransformations that may exhibit variable activity levels on daily 450 

timescales. These biotransformations are catalyzed by enzymes in the broad classes of 451 

dehydrogenases (EC 1.1.-.-), monooxygenases (EC 1.14.-.-), and dioxygenases (EC 1.14.-.-) and 452 

are expected to be co-metabolic.27 453 

 There is a need to better understand the factors that control the removal of MPs during 454 

wastewater treatment. Our data demonstrate that some MPs are always removed (e.g., 455 

acetaminophen, caffeine, coumarin) whereas other MPs are always persistent (e.g., sucralose, 456 

carbamazepine). These observations agree with previous data reported from WWTPs from around 457 

the world.61,73 However, most MPs are removed to variable extents across WWTPs and, as our 458 

data demonstrate, within a single WWTP over daily timescales. We argue that this latter group of 459 

MPs represent an opportunity to improve the performance of WWTPs for removing MPs. Our data 460 

suggest this group of MPs can be completely removed during conventional wastewater treatment; 461 

we only need to understand the causal factors that result in increased activity levels of the 462 

associated biotransformations. This study provides a step forward toward that goal.  463 

Supporting Information 464 

list of target micropollutants; details on flow conditions and operational parameters at wastewater 465 

treatment plant; analytical information on detected MPs; pseudo-first order rate constant equation; 466 

summary statistics of detected MP; temporal profiles of INF and EFF concentrations and %R; 467 

binned MPs according to correlation between INF concentration and %R; summary statistics of 468 

MP rate constants over 14-day sampling period; boxplots of rate constants grouped by clusters 469 
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from Figure 3; analytical information for detected TPs; definitions of biotransformation rules 470 

(btrules);  R code used for generating figures can be found here: https://github.com/slr257.  471 
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Figure Captions 478 

Figure 1: [A] Histogram of MPs observed N times (N = labels above the bars) during the sampling 479 

campaign at each INF (red) and EFF (blue) location (y-axis) binned into groups ranging from 0-480 

14 days detected (x-axis). [B] Histogram of 120 target MP concentrations in samples (y-axis) at 481 

INF and EFF locations with 30 bins ranging from 10-3 to 103 µg/L (x-axis). [C] Relationship 482 

between average %R, INF concentration, and standard deviation of %R (SD) for the 78 MPs that 483 

exhibited removal on at least three days of the sampling campaign. Red shading refers to MPs with 484 

high SD, and yellow shading refers to MPs with low SD with respect to %R. 485 

Figure 2: Temporal concentration profiles in ng/L at INF (red) and EFF (blue) locations plotted 486 

with calculated %R for all 14 days of the sampling campaign for caffeine [A], propranolol [B], 487 

and gabapentin [C]. 488 

Figure 3: Heatmap of z-score normalized pseudo-first-order biotransformation rate constant 489 

estimates for 24 MPs that were biotransformed on all 14 days of the sampling campaign with 490 

temporally variable %R where zero represents the mean biotransformation rate constant (white) 491 

and red and blue cells represent higher and lower than average biotransformation rate constants 492 

respectively. The eight MPs exhibiting positive and significant associations between %R and INF 493 

concentration (r > 0.55, p < 0.05) are highlighted with red text. There are four distinct clusters 494 

characterized by events with high increase or decrease in biotransformation rate constants on one 495 

sampling day; we note that the number of clusters was determined using the sum of squared 496 

differences. 497 

Figure 4: Stacked barplots showing counts of the nine predicted btrules [A] representing the four 498 

broad biotransformation trends in Figure 3 compared to observed btrules [B] for each of the four 499 

clusters. Each hue represents a reaction type, where purples are alcohol oxidations, red is 500 

dihydroxylations of vic-unsubstituted rings, blues are monohydroxylations at unsubstituted rings, 501 

and oranges are monohydroxylations at secondary or tertiary aliphatic carbons. Definitions of 502 

biotransformation rules (btrules) are provided in Table S10 of the Supporting Information. Note: 503 

some predicted TPs may not be detectable with the analytical method used in this project.  504 
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