
Vol.:(0123456789)1 3

TechTrends 
https://doi.org/10.1007/s11528-022-00782-1

ORIGINAL PAPER

Real Coding and Real Games: Design and Development of a Middle 
School Curriculum Using Unity 3D

Mete Akcaoglu1   · Selcuk Dogan1 · Charles B. Hodges1

Accepted: 10 September 2022 
© Association for Educational Communications & Technology 2022

Abstract
In this paper, we describe the design, development, and implementation of a curriculum based on teaching computer science 
using an industry-standard game-design software: Unity 3D. We discuss the theoretical underpinnings of our instructional 
design process and steps we have taken to introduce complexity and maintain student motivation. We discuss the challenges 
of this implementation and possible solutions and detail the additional steps related to teacher professional development, 
which is a key element for success of new and innovative curricular implementations such as ours.

Keywords  Game-design · Unity3D · Computer science education · C#

Computer technology has become an indispensable part of our 
lives. In recent years, our interaction with computers has become 
more integrated, requiring us to talk the language of computers 
(Sullivan & Denner, 2017) to command our smart home devices 
by creating automations, or creating task flows in our computers 
to do certain tasks more effectively. Although such tasks may not 
directly require coding, they require understanding the computa-
tional principles to become computationally literate. Outpacing 
the home integration, computational literacy is already becom-
ing a requirement for many jobs, and the job market for people 
with these skills will only grow bigger.

Despite the national push for computer science (CS) 
education, however, the progress is still slow: few teachers 
have the capacity to teach CS, and there is a disproportion-
ate attendance from underrepresented groups (Sullivan & 
Denner, 2017). The progress is even slower in contexts with 
sizable low-socioeconomic status (SES) and disadvantaged 
student populations. Despite the fact that CS jobs can be 
provide paths for economic mobility, the number of students 
pursing CS education and careers are moving slowly.

To address the lack of opportunities in CSEd, we must 
find ways to provide practicing teachers with high-quality 
professional development (PD) and support to teach CS in 
K-12 schools. Although CS PD opportunities are sporadically 
available through local Regional Education Service Agencies 
or nation-wide (e.g., online workshops), the majority are not 
sustainable, insufficient in duration, do not focus clearly on 
teacher-specific CS knowledge, or offer sustained support 
(Menekse, 2015). PD should be high-quality, structured, and 
engaging so that it leads to changes in teacher knowledge, 
practices, and eventually improvements in student outcomes 
(Goode et al., 2014). But PD alone will not solve the problem; 
we also need to work with the school systems to form func-
tioning Research and Practitioner Partnerships (RPPs) to cre-
ate research-informed practices that are tailored to meet local 
and national needs. In our local context, despite a push for 
partnership between university (researchers) and practitioners 
(teachers, school leaders, and district officials), these parties 
have been historically disconnected in their efforts.

In addition to effective PD opportunities for teachers and 
forming an RPP, preparing today’s students for success in CS 
education and future employment in the CS fields requires 
designing learning environments that are relevant and attrac-
tive to all students. To provide a more accessible CS curricu-
lum that appeals to a wider range of students, especially in 
low-SES, low-motivation contexts, methods that have benefits 
over traditional CS instruction need to be developed. Among 
the programs that have gained momentum in CSEd is the use 
of game-design activities not only to teach CS but also to 

 *	 Mete Akcaoglu 
	 makcaoglu@georgiasouthern.edu

	 Selcuk Dogan 
	 sdogan@georgiasouthern.edu

	 Charles B. Hodges 
	 chodges@georgiasouthern.edu

1	 College of Education, Georgia Southern University, 
Statesboro, GA 30458, USA

http://orcid.org/0000-0002-1454-9104
http://crossmark.crossref.org/dialog/?doi=10.1007/s11528-022-00782-1&domain=pdf


	 TechTrends

1 3

introduce students to an engaging and meaningful context for 
design and higher-order thinking skills (Akcaoglu, 2014; Den-
ner et al., 2012; Kafai & Burke, 2016). NSF-funded efforts, 
like Repenning’s Scalable Game Design (Basawapatna et al., 
2010), our previous work (e.g., Akcaoglu & Koehler, 2014), 
and state-wide efforts target teaching CS through game-design 
courses have demonstrated how educators can develop robust 
and engaging game-design based CS learning. Almost all the 
previous game-design CS efforts, however, incorporated soft-
ware that were visually attractive but limited in their real-world 
usage or immediate relevance.

In this paper, we detail the design and development pro-
cess of our game-design-based computer science middle 
school curriculum to increase their motivation and learn-
ing of CS, using an industry-standard game design software 
(Unity 3D) that has real-world relevance.

Why Game Design?

Digital game design has been an attractive and appropriate con-
text to engage young students in higher-order thinking (e.g., 
Akcaoglu, 2014), explore STEM content (e.g., Baytak & Land, 
2011), learn basic knowledge of and develop interest toward 
computer programming (Comber et al., 2019), and form positive 
attitudes toward CS (Denner et al., 2019). Embedding computer 
programming in meaningful media-rich project-based contexts 
has promise for increased equity: i.e., it helps decrease the gender 
gap in CS (Guzdial, 2015). Game-design activities are meaning-
ful media-rich contexts and can, therefore, provide benefits in 
terms of broadening participation by encouraging participation 
of underrepresented students in CS (Denner et al., 2012; Werner 
et al., 2020). When incorporated into regular curricula, game-
design courses help broaden participation by attracting students 
from different backgrounds into CS (Repenning et al., 2015).

Research on digital game design has unearthed its poten-
tial for teaching and learning, highlighting its suitability to 
teach CS. There are, however, a few key elements that have 
been lacking in game design instruction and research. First, 
most studies did not report key research elements and were 
not rigorously designed (Denner et al., 2019), which hinders 
knowledge-building in the field. Second, being offered as 
either after-school or summer camp activities (Repenning 
et al., 2015), most game-design courses reach a limited set 
of highly motivated students (Werner et al., 2020). Finally, 
in such informal settings, teachers usually are in support 
roles and not fully involved in design and teaching. There-
fore, many do not incorporate game-design as a classroom 
activity after the research concludes. In Project GAME, we 
alleviated these shortcomings by (a) designing rigorous 
research around the development and learning outcomes, 
(b) embedding teaching into the formal school curriculum 

and offering it to a diverse body of students, and (c) giving 
teachers lead designer and teaching roles.

Why Unity over Block‑based Software?

Instead of block-based software, in this project we used a profes-
sional game-design engine: Unity 3D. Block-based programming 
tools have been popular platforms to introduce students to CS 
(Grover & Basu, 2017) and digital game-design (Earp, 2015). 
Despite their popularity and wide use in game-design contexts, 
however, researchers and practitioners have also pointed to some 
shortcomings of block-based programming and similar “opaque” 
(i.e., the inner mechanisms are hidden from users) approaches to 
CS (Grover & Basu, 2017; Repenning, 2017; Meerbaum-Salant 
et al., 2011). One issue with a visually attractive, but opaque, CS 
approach is that while learners might benefit from a quick learning 
curve, they eventually come to a halt when they reach complex-
ity (Repenning, 2017). For example, students creating games in 
Scratch were found to infrequently use advanced concepts like 
variables, loops, and Boolean operations (Grover & Basu, 2017). 
In addition, it was found that without appropriate pedagogical 
approaches (i.e., guided-discovery learning), due to the opaque-
ness in their approach, block-based tools can lead to misconcep-
tions (Meerbaum-Salant et al., 2011). Finally, although block-based 
coding tools excel in providing syntactic support and, thus, ease 
entry to coding (Grover & Basu, 2017), they lack support in other 
essentials: semantics and pragmatics (Repenning, 2017). Just hav-
ing tools for only syntax is akin to spell-checking features in word-
processing software: they can make you a more accurate writer, 
but do not automatically help you to produce best-selling novels 
(Repenning, 2017). Therefore, we needed a game-design software 
and curriculum addressing these issues stated above.

Unity 3D is an industry-standard (Deals, 2016) cross-
platform (over 25 platforms) game design engine built on C# 
programming language (Comber et al., 2019; Dickson, 2015; 
Unity, n.d.). It is popular: it has been installed on over three 
billion devices worldwide. Unity allows designers to develop 
games in multiple genres ranging from simple to complex, 2D 
to 3D, AR to VR. Unity employs a transparent approach to 
coding: code is in text form and its outcome is immediately 
shown in the game output. It has a low threshold and high ceil-
ing (Repenning et al., 2010); the software allows the creation 
of beginner-level games as well as full-fledged games to be 
shared and played in many platforms the students have access 
to (including mobile). It has real-world and industry accept-
ability and relevance. Unity can scaffold flow (can be adjusted 
for challenge), enable transfer (transparent CS tasks), and can 
be designed to support equity (through game-design and other 
curriculum design and activities), which are important ele-
ments of CS tools (Repenning et al., 2010). Notably, Unity 
is free to educational institutions and students, and does not 
require special hardware: it can run on most basic computers.



TechTrends	

1 3

Underpinnings of Project GAME Curriculum

Our curriculum was informed by an interrelated network of theo-
ries in learning and instructional design, curricular standards, 
student needs, and the desired learning outcomes the school dis-
tricts value. Both our previous Game Design and Learning (GDL) 
curriculum and courses (e.g., Akcaoglu, 2014, 2016; Akcaoglu 
& Green, 2019; Akcaoglu & Kale, 2016; Akcaoglu et al., 2016; 
Akcaoglu & Koehler, 2014) that we taught to hundreds of K-12 
students and preservice teachers in various formal and informal 
school settings to teach higher-order thinking and game-design 
skills, as well as Repenning’s similar work with the Scalable Game 
Design (SGD) project (e.g., Repenning et al., 2015) will provide 
theoretical and practical design guidance. Below, we discuss how 
the specific applications from this previous work inform our cur-
rent curriculum design and curriculum development model.

A common design element in both GDL and SGD is that 
the curriculum introduces the students to simple game-design 
tasks initially and incrementally increases the difficulty and 
breadth of content and skills covered (e.g., Akcaoglu, 2016). 
For example, in the initial lessons, students design a very 
simple game where they reach one goal and the game is com-
pleted, while, in the later stages, they develop games with 
more complex rules and goals requiring more advanced CS 
and game-design knowledge. Through such a “project-first” 
(Repenning et al., 2015) approach, students are rewarded with 
a tangible outcome at the end of each instructional experi-
ence. This approach provides students with an initial sense 
of accomplishment and gives them enough challenges and 
rewards for their progress instantly (i.e., Repenning et al.'s 
(2015) Zones of Proximal Flow framework). This approach 
also allows us to moderate or reduce the effects of the cog-
nitive load (Mayer & Wittrock, 2006) or expertise reversal 
effect (Sweller, 2020) the software would otherwise pose. By 
keeping the initial tasks simpler, we ensure software is mas-
tered before moving to cognitively-taxing tasks. Similarly, 
with hard skills mastered, in the final stages of the curricu-
lum, time is devoted to more soft skill activities such as “free 
design” which allow both flexibility in teachers’ curriculum 
implementation and a creativity to students who can indepen-
dently choose the upper limits of complexity and develop a 
game that they personally value (Akcaoglu, 2016). To ensure 
CS knowledge is mastered, we provided appropriate scaffold-
ing (i.e., guided discovery) by explicitly teaching concepts 
when needed. Such approaches have been effective teaching 
approaches in CS including game-design settings (Akcaoglu, 
2014; Kirschner & Neelen, 2020).

In this project, we served low-SES and underserved students 
with low motivation and self-efficacy. Therefore, we also used 
a well-established instructional design approach: the Attention, 
Relevance, Confidence, and Satisfaction (ARCS) model (Li & 
Keller, 2018) to address the challenges in motivating students 
to learn. The ARCS model has been used successfully to design 

and develop learning experiences that increase learner motiva-
tion in game design, computer science (e.g. Tlili et al., 2017), 
and STEM disciplines for underrepresented groups (e.g. Bos-
man et al., 2017). In the design process, the team worked to 
determine ways to establish relevance for computer science 
and game-design to gain students’ attention. For example, we 
established relevance by inviting individuals from the game-
design industry (through our partnership with Unity) to present 
their work and talk about game-design and computer science 
careers. Students build their confidence by appropriately pacing 
the curriculum (i.e., ZPF). Student motivation and satisfaction 
will be maintained by helping students feel a sense of reward 
(i.e., “project-first”). Through this design, we hoped to improve 
students’ motivation for CS, especially their utility value, self-
efficacy, and interest. Finally, a central design element for our 
instructional activities was Campe et al.’s (2019) NSF-supported 
work: pair programming. As a CSEd approach, it has been ben-
eficial for students’ learning programming (Esquenazi, 2020; 
Hartl et al., 2015), especially for underrepresented populations 
(e.g., girls) or low-motivation students with low access to quality 
teaching as in our schools. Through pair programming, Denner 
et al. (2019) found that students benefited both cognitively (i.e., 
increased knowledge) and motivationally (i.e., increased self-
efficacy). As such, based on the findings of existing research 
on pair-programming and the recent toolkit, our instructional 
activities were built on pair-programming.

The Curriculum Development Process

We followed a curriculum development model (Fig. 1), 
which includes input and design guidance to create draft 
unit plans, followed by curriculum revision through feed-
back from teachers and advisory board members. The cur-
riculum was modular (along a continuum) in that it is sepa-
rated by individual unit plans.

Our process included a co-development approach aligned 
with our effort to form a research practitioner partnership 
(RPP). We embraced Penuel et al.’s (2007) principles to 
structure our co-development process: “a highly facilitated, 
team-based process in which teachers, researchers, and a 
content expert work together in defined roles to design an 
educational innovation, realize the design in one or more 
prototypes, and evaluate each prototype’s significance for 
addressing a concrete educational need” (p. 53). Through 
online and in-person means, teachers provided their diverse 
and practical expertise to co-develop and shape the curricu-
lum and assist with revisions through their self-reflections.

During the Content Mapping Phase in online professional 
learning communities (PLC), researchers and the teachers first 
reviewed and created an overall map of CS concepts, game 
design skills, and drew the alignments to state and national 
CS standards. With the guidance of the CS content expert, 



	 TechTrends

1 3

they developed content outlines (principles and processes that 
should serve as the focal point of our curriculum), student 
learning outcomes, and learning objectives as well as decided 
the sequence of all in terms of how they would fit into game 
projects to progress from simple to advanced. Unity already 
had some units available that worked as a starting point in 
terms of CS and game-design skills and content to be covered, 
as well as some sample game projects. They used these as a 
baseline to identify possible game projects and the breakdown 
of game-design and CS concepts and topics to be covered in 
our curriculum map. Second, based on discussions and reflec-
tion from our teachers in the online discussion boards, they 
prioritized and adjusted the content based on the needs of the 
teachers and the target students (e.g., extended time devoted 
to a topic). Clarifying content priorities included categorizing 
the content according to the essential and big ideas as well as 
core tasks students were expected to complete.

In the Design Phase, our primary goal was to create draft units 
and learning activities. The researchers created a lesson plan 
template (sample below) and the initial draft lesson plans using 
design principles (ARCS, pair-programming). Each draft unit plan 
included learning objectives in various levels of cognitive domain 
and learning activities in which students were engaged to learn 
about CS concepts and game-design skills. For example, a lesson 
covered the conditionals (i.e., if-then statements) as a CS concept. 
After explaining this concept and making connections by giving 
real-life examples (e.g., if the light is red, then stop the car), the con-
cept of conditionals was introduced in the game-design context. The 
assignment required students to limit the player from going out of 
bounds of the game space. To this end, students worked to write the 
code so that “if a bouncing ball touches the boundaries of the game 
space, then the ball will deflect back into the game space.” Through 
a working example and explicit explanation and real-life connec-
tions, the students worked in pairs to integrate this component into 

their games. Learning assessments were in the form of students’ 
authentic work (i.e., games or planning documents) graded using 
rubrics created by teachers during co-development.

Teachers also created and shared lessons within each unit 
for review. In online PLC, the teachers independently and as 
a group reviewed and provided feedback until all lessons were 
finalized. A design checklist and a structured protocol were used 
to scrutinize each element in the lessons. Our advisory board 
members (CS content experts) provided their input on the design 
and structure of the curriculum and its specific components and 
evaluated them in terms of their capacity to offer learning oppor-
tunities for CS during and toward the end of the CD process.

During the Implementation Phase, our teachers piloted 
the curriculum for one semester. The teachers implemented 
individual lessons in each unit and moved along the CS top-
ics from simple to more complex. We revised the lessons 
based on teacher and student feedback during and after the 
pilot and implemented a revised version of it the following 
semester. A map of our curriculum along with all the lesson 
plans (and the accompanying videos) can be found on the 
project website: https://​www.​proje​ctgame.​org/.

Lesson Plan Sample

The following template shows what the teachers and stu-
dents did in one lesson (Table 1). The lesson used the ARCS 
model and pair-programming elements, focusing on moti-
vational aspects of instructional design for the high-need 
students, as well as covering essential CS and game-design 
skills. All the lesson plans and materials, as well as a cur-
riculum map for the project can be accessed at https://​proje​
ctgame.​org.

CS Concept: if-statements in Unity 3D, game-design = boundaries

Fig. 1   Curriculum development 
process

https://www.projectgame.org/
https://www.projectgame.org/
https://www.projectgame.org/


TechTrends	

1 3

Objectives

•	 Students will be able to describe the role of if-then state-
ments in coding

•	 Students will be able to give an example of an if-then 
statement

•	 Students will be able to incorporate one if-then statement 
into their games

•	 Students will be able to describe the role of if-then state-
ments in games as elements of games

Standards

•	 Computer Science Teachers Association (CSTA): (a) 
1B-AP-10: Create programs that include sequences, events, 
loops, and conditionals. (b) 1B-AP-12: Modify, remix, or 
incorporate portions of an existing program into one’s work, 
to develop something new or add more advanced features.

•	 GA-K-8 CS Standards (also found in Georgia Middle Grades 
Foundations of Interactive Design (MS-CS-FID) Course 
Number: 11.01300): (a) CSS.KC.6–8.20 Design, develop, 
debug, and implement computer programs. (b) CSS.KC.6–
8.27: Create a functional game, using a game development 
platform, based on the storyboards, wireframes, and compre-
hensive layout. (c) CSS.CT.6–8.37 Use and compare simple 
coding control structures (e.g., if-then, loops).

Summary of Key Concepts on the Curriculum 
and the Lessons

We believe the following key concepts that we benefited 
from while designing and implementing our curriculum 
can inform future work that targets creating technology-rich 
learning experiences, including computer science education:

•	 The curriculum should be built on bottom-up: start with 
the basic concepts and move steadily up in complexity

•	 Building units around products is important. For exam-
ple, in our curriculum, we had two units that led to a 
finished game each time.

•	 Create opportunities to build student interest and main-
tain engagement (i.e., following the ARCS model)

•	 Have specific goals for each lesson but allow for expandability. 
In other words, the pacing should allow for everyone to com-
plete the lesson tasks within the lesson time, but if there are 
extra time, there should be opportunities for extra challenges

•	 Build for repeating key concepts throughout the curriculum.

Lessons Learned and Going Forward

Following our initial design and piloting and implementation 
in this section, we discuss what the design and the imple-
mentation phases taught us that are generalizable across 
other similar efforts, as well specific to this curriculum.

Table 1   Sample lesson plan and flow

Activity Justification and Explanation

In the previous lesson, the teacher asked students the following guiding 
question: “How can we make sure the character does not go out of 
bounds in our game?”

The teacher first seeks answers to the question from the day before. 
Then, they show an example of an if-statement (the character stops at 
the edge of the screen) and ask what’s happening on the screen.

10 minutes

• The guiding question from the lesson before and the new behavior 
of the game character (stopping at the boundary) serve as a novelty 
for the students. With a unique ability added to their game, students’ 
attention is attracted.

• The teacher, then, goes into explaining the role of if-statements in 
coding and gives examples from real-life. A good example would 
be to “code” a student to stop at the classroom door. The teacher 
instructs a student to “stop if you touch the door,” and the class 
watches one student perform the command. The teacher then elicits 
another command for the student to complete. This activity acts as 
the relevance. Students not only see the use of if-statements in cod-
ing, but they also experience how it applies to real-life settings.

Following the introduction, the teacher gives instructions for the activity 
that will take the rest of the lesson:

- Students are to implement borders into their games by using if-then 
statements: if the bot touches the boundaries, it stops.

30 minutes

• Students work in pairs —set at the beginning of the semester follow-
ing pair-programming guidelines (Campe et al., 2019).

• Following the use-modify-create process, they first review a working 
example. Students first decompose the working model to see how if-
statements work and then modify the code to fit into their own game. 
This step, although small, gives students a sense of accomplishment, 
satisfaction, and helps build their confidence for later stages.

• The teacher floats around the room to help students as they test and 
debug their games. Pairs that finish early can either make further 
adjustments to their game or provide support to peers.

The lesson is wrapped up by introducing the next topic by asking a lead-
ing question: what if we have two rules instead of one (i.e., else-if)?

5 minutes

• Students receive the question for the next day, and this builds curios-
ity (i.e., inquiry arousal) for the next day’s work.



	 TechTrends

1 3

In this project our goal was to introduce students to real cod-
ing and real game-design through an industry standard software. 
Based on the feedback from our teachers, the implementation 
was more successful with 7th graders than 6th graders. Although 
we do not have the specific reasons at this point (will be dis-
cussed in future papers), we suspect that the level of complex-
ity was cognitively beyond the capabilities of the younger age 
group. It should be noted, however, that through instructional 
approaches to coding such as pair programming some of the 
challenges can be addressed. For instance, we found that stu-
dents working in dyads supporting each other cognitively and 
emotionally was essential for the success of the curriculum. We 
believe that the flow of the curriculum, as well as the theoreti-
cally sound design allowed for a successful implementation of 
challenging content through industry-standard software. This 
risk is highly associated with a big reward in that students 
through this experience can develop a more realistic identity 
as a computer programmer and game-designer and can in fact 
idealize themselves as future game-designers.

Another key aspect of this project was teacher profes-
sional development. Teaching the curriculum (implementa-
tion) requires teachers to develop some specific skills and 
knowledge, such as being proficient in Unity. Therefore, 
we believe that effective PD opportunities are necessary. 
As noted in our study (Hodges et al., 2022), the teach-
ers in this project benefitted from weekly meetings with 
an expert and support from the researchers as they were 
teaching the curriculum. With an effective PD, it is highly 
likely that the outcomes of the curriculum would become 
more robust and transformative of student learning and 
motivation toward CS and coding. Another key concept in 
our project design was the perfect match between teach-
ers’ and students’ learning experiences: teachers followed 
the same lesson plans and the curriculum as their students 
the previous year. This allowed teachers to experience the 
difficulties their students may face, develop strategies for 
how to overcome them, and be prepared to be flexible dur-
ing their teaching.

Finally, we should note the difficulties related to hard-
ware and software that is associated with such an innovative 
approach. Increasingly more school systems are switching 
to bring your own device (BYOD) or other approaches 
that tend to prefer tablet-like (e.g., Chromebooks) over 
full-fledged PCs. Although there are many benefits to this 
approach, in cases like ours where the innovation comes 
through proprietary software, these computers are not pow-
erful enough. In fact, our implementation was delayed in 
some schools where they only had Chromebooks or other 
tablets. In addition, installation of unusual software is chal-
lenging some school systems. Therefore, steps should be 
taken ahead of the time to include the district IT personnel 
in the implementation process.

Conclusions

We believe the curriculum described in this paper can serve as 
a blueprint for other curricula for different software or higher 
order skills. Especially for teaching CS in middle schools, we 
believe a direct approach like ours can be beneficial in get-
ting students more motivated to learn to continue CS due to 
its direct link to the game-design industry. We believe that the 
core concepts such as simple-to-difficult, and specific attention 
to motivational design (e.g., ARCS) can help overcome the dif-
ficulties brought about by the complexity of the content (and 
hardware). Finally, teacher learning is an important first step, 
and they should be given enough time to master the content (and 
the software) beforehand. We believe approaches to teacher PD 
where the teachers follow the same material as their learners can 
be good models for teacher PD in technology-rich topics. Our 
curriculum is publicly available and customizable. Similarly, our 
PD plans and documents are available as prototypes and can be 
accessed through our project website (https://​proje​ctgame.​org).

Funding  This study was funded by National Science Foundation 
(Grant #2027948). The authors declare they have no financial interests. 
All authors certify that they have no affiliations with or involvement in 
any organization or entity with any financial interest or non-financial 
interest in the subject matter or materials discussed in this manuscript.

References

Akcaoglu, M. (2014). Learning problem-solving through making 
games at the game design and learning summer program. Edu-
cational Technology Research and Development, 62(5), 583–600.

Akcaoglu, M. (2016). Design and implementation of the game-design 
and learning program. TechTrends, 60(2), 114–123.

Akcaoglu, M., & Green, L. S. (2019). Teaching systems thinking 
through game design. Educational Technology Research and 
Development, 67(1), 1–19.

Akcaoglu, M., & Kale, U. (2016). Teaching to teach (with) game 
design: Game design and learning workshops for preservice teach-
ers. Contemporary Issues in Technology and Teacher Education, 
16(1), 60–81.

Akcaoglu, M., & Koehler, M. J. (2014). Cognitive outcomes from the 
Game-Design and Learning (GDL) after-school program. Com-
puters & Education, 75, 72–81.

Akcaoglu, M., Sonnleitner, P., Hodges, C., & Gutierrez, A. (2016). 
Teaching Complex Problem Solving Through Digital Game 
Design. In R. Zheng & M. Gardner (Eds.), Handbook of research 
on serious games for educational applications (pp. 217–233). 
IGN Publishing.

Basawapatna, A. R., Koh, K. H., & Repenning, A. (2010). Using scal-
able game design to teach computer science from middle school 
to graduate school. In Proceedings of the fifteenth annual confer-
ence on Innovation and technology in computer science education 
(pp. 224–228).

Baytak, A., & Land, S. M. (2011). An investigation of the artifacts 
and process of constructing computer games about environmen-
tal science in a fifth grade classroom. Educational Technology 

https://projectgame.org


TechTrends	

1 3

Research and Development, 59(6), 765–782. https://​doi.​org/​10.​
1007/​s11423-​010-​9184-z

Bosman, L., Chelberg, K., & Winn, R. (2017). How does service 
learning increase and sustain interest in engineering education 
for underrepresented pre-engineering college students? Journal 
of STEM Education, 18(2), 5–9.

Campe, S., Green, E. & Denner, J. (2019). K-12 Pair Programming 
Toolkit. ETR, Scotts Valley, CA.

Comber, O., Motschnig, R., Mayer, H., & Haselberger, D. (2019). 
Engaging students in computer science education through game 
development with Unity. In 2019 IEEE Global Engineering Edu-
cation Conference (EDUCON) (pp. 199–205). IEEE.

Deals, T. (2016). This engine is dominating the gaming industry right 
now. The Next Web. https://​thene​xtweb.​com/​gaming/​2016/​03/​24/​
engine-​domin​ating-​gaming-​indus​try-​right-​now/. 12 Sept 2022.

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by 
middle school girls: Can they be used to measure understanding of 
computer science concepts? Computers & Education, 58(1), 240–249.

Denner, J., Campe, S., & Werner, L. (2019). Does computer game design 
and programming benefit children? A meta-synthesis of research. 
ACM Transactions on Computing Education (TOCE), 19(3), 19.

Dickson, P. E. (2015). Using unity to teach game development: When 
you've never written a game. In Proceedings of the 2015 ACM 
Conference on Innovation and Technology in Computer Science 
Education (pp. 75–80).

Earp, J. (2015). Game making for learning: A systematic review of the 
research literature. In Proceedings of 8th international conference of 
education, research and innovation (ICERI2015) (pp. 6426–6435).

Esquenazi, N. (2020). Coding Is collaborative and STEM education 
should be, too. Bloomberg. https://​www.​bloom​berg.​com/​opini​
on/​artic​les/​2020-​01-​07/​coding-​is-​colla​borat​ive-​and-​stem-​educa​
tion-​should-​be-​too. 12 Sept 2022.

Goode, J., Margolis, J., & Chapman, G. (2014). Curriculum is not 
enough: The educational theory and research foundation of the 
exploring computer science professional development model. In 
Proceedings of the 45th ACM technical symposium on Computer 
science education (pp. 493–498).

Grover, S., & Basu, S. (2017). Measuring student learning in intro-
ductory block-based programming: Examining misconceptions 
of loops, variables, and boolean logic. In Proceedings of the 
2017 ACM SIGCSE technical symposium on computer science 
education (pp. 267–272).

Guzdial, M. (2015). Learner-centered design of computing educa-
tion: Research on computing for everyone. Morgan & Claypool.

Hartl, A. C., DeLay, D., Laursen, B., Denner, J., Werner, L., Campe, 
S., & Ortiz, E. (2015). Dyadic instruction for middle school 
students: Liking promotes learning. Learning and Individual 
Differences, 44, 33–39.

Hodges, Akcaoglu M., Allen, A., & Dogan, S. (2022). Teacher Self-
efficacy During Professional Development for Game Design and 
Unity. Proceedings of the 53rd ACM Technical Symposium on 
Computer Science Education V. 2, 1–1144. https://​doi.​org/​10.​
1145/​34784​32.​34990​39.

Kafai, Y. B., & Burke, Q. (2016). Connected gaming: What making 
video games can teach us about learning and literacy. MIT 
Press.

Kirschner, P. A., & Neelen, M. (2020). Learning through play is more 
than play. 3-Star Learning Experiences: An Evidence-Informed 

Blog for Learning Professionals. https://​3star​learn​ingex​perie​nces.​
wordp​ress.​com/​2020/​02/​18/​learn​ingth​rough-​play-​is-​more-​than-​
play/. 12 Sept 2022.

Li, K., & Keller, J. M. (2018). Use of the ARCS model in education: A 
literature review. Computers & Education, 122, 54–62.

Mayer, R. E., & Wittrock, M. C. (2006). Problem solving. In P. A. 
Alexander & P. H. Winne (Eds.), Handbook of educational psy-
chology (pp. 287–303). Lawrence Erlbaum Associates.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011). Habits of 
programming in scratch. In Proceedings of the 16th annual joint 
conference on Innovation and technology in computer science 
education (pp. 168–172).

Menekse, M. (2015). Computer science teacher professional develop-
ment in the United States: A review of studies published between 
2004 and 2014. Computer Science Education, 25(4), 325–350.

Penuel, W. R., Roschelle, J., & Shechtman, N. (2007). Designing form-
ative assessment software with teachers: An analysis of the co-
design process. Research and Practice in Technology Enhanced 
Learning, 2(01), 51–74.

Repenning, A. (2017). Moving beyond syntax: Lessons from 20 years 
of blocks programing in AgentSheets. Journal of Visual Lan-
guages and Sentient Systems, 3(1), 68–89.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game 
design and the development of a checklist for getting computa-
tional thinking into public schools. In Proceedings of the 41st 
ACM technical symposium on Computer science education (pp. 
265–269).

Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., 
Brand, C., ... & Gutierrez, K. (2015). Scalable game design: A strat-
egy to bring systemic computer science education to schools through 
game design and simulation creation. ACM Transactions on Comput-
ing Education (TOCE), 15(2), 11.

Sullivan, F. R., & Denner, J. (2017). Why don't we do a better job of 
teaching computer science? Education Week, 36(36), 24.

Sweller, J. (2020). Cognitive load theory and educational technology. 
Educational Technology Research and Development, 68(1), 1–16. 
https://​doi.​org/​10.​1007/​s11423-​019-​09701-3

Tlili, A., Essalmi, F., & Jemni, M. (2017). Towards applying Keller’s 
ARCS model and learning by doing strategy in classroom courses. 
In E. Popescu, Kinshuk, M.K. Khribi, R. Huang, M. Jemni, N. 
Chen, D. G. Sampson (Eds) Innovations in Smart Learning (pp. 
189–198). Springer. https://​doi.​org/​10.​1007/​978-​981-​10-​2419-1_​
26

Unity 3D (n.d.). Powering the real-time revolution. Public Relations. 
https://​unity​3d.​com/​public-​relat​ions. 12 Sept 2022.

Werner, L., Denner, J., Campe, S., & Torres, D. M. (2020). Computa-
tional sophistication of games programmed by children: A model 
for its measurement. ACM Transactions on Computing Education 
(TOCE), 20(2), 1–23.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.

https://doi.org/10.1007/s11423-010-9184-z
https://doi.org/10.1007/s11423-010-9184-z
https://thenextweb.com/gaming/2016/03/24/engine-dominating-gaming-industry-right-now/
https://thenextweb.com/gaming/2016/03/24/engine-dominating-gaming-industry-right-now/
https://www.bloomberg.com/opinion/articles/2020-01-07/coding-is-collaborative-and-stem-education-should-be-too
https://www.bloomberg.com/opinion/articles/2020-01-07/coding-is-collaborative-and-stem-education-should-be-too
https://www.bloomberg.com/opinion/articles/2020-01-07/coding-is-collaborative-and-stem-education-should-be-too
https://doi.org/10.1145/3478432.3499039
https://doi.org/10.1145/3478432.3499039
https://3starlearningexperiences.wordpress.com/2020/02/18/learningthrough-play-is-more-than-play/
https://3starlearningexperiences.wordpress.com/2020/02/18/learningthrough-play-is-more-than-play/
https://3starlearningexperiences.wordpress.com/2020/02/18/learningthrough-play-is-more-than-play/
https://doi.org/10.1007/s11423-019-09701-3
https://doi.org/10.1007/978-981-10-2419-1_26
https://doi.org/10.1007/978-981-10-2419-1_26
https://unity3d.com/public-relations

	Real Coding and Real Games: Design and Development of a Middle School Curriculum Using Unity 3D
	Abstract
	Why Game Design?
	Why Unity over Block-based Software?
	Underpinnings of Project GAME Curriculum

	The Curriculum Development Process
	Lesson Plan Sample
	Objectives
	Standards
	Summary of Key Concepts on the Curriculum and the Lessons

	Lessons Learned and Going Forward
	Conclusions
	References


