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ABSTRACT

A star destroyed by a supermassive black hole (SMBH) in a tidal disruption event (TDE) enables the study of SMBHs. We
propose that the distance within which a star is completely destroyed by an SMBH, defined r., is accurately estimated by
equating the SMBH tidal field (including numerical factors) to the maximum gravitational field in the star. We demonstrate that
this definition accurately reproduces the critical B, = ri/ri., where 1, = R,(M,IM,)' is the standard tidal radius with R, and
M, the stellar radius and mass, and M, the SMBH mass, for multiple stellar progenitors at various ages, and can be reasonably
approximated by B, =~ [p/(4p.)]'3, where p. (p,) is the central (average) stellar density. We also calculate the peak fallback
rate and time at which the fallback rate peaks, finding excellent agreement with hydrodynamical simulations, and also suggest
that the partial disruption radius — the distance at which any mass is successfully liberated from the star —is Bpartial 4-13 ~0.6.
For given stellar and SMBH populations, this model yields, e.g. the fraction of partial TDEs, the peak luminosity distribution of

TDEs, and the number of directly captured stars.

Key words: black hole physics —methods: analytical.

1 INTRODUCTION

The tidal disruption of a star by a supermassive black hole (SMBH),
known as a tidal disruption event (TDE; e.g. Rees 1988; Gezari
2021), fuels a luminous flare in the centre of a galaxy that can offer
insight into SMBH properties, stars in galactic nuclei, and accretion
physics (including the launching of relativistic outflows; Giannios &
Metzger 2011; Bloom et al. 2011; Zauderer et al. 2011; Cenko et al.
2012; Brown et al. 2015). The detection rate of TDEs is rapidly
growing (e.g. Holoien et al. 2019; Nicholl et al. 2019; Wevers et al.
2019; Hung et al. 2020; Hinkle et al. 2021; van Velzen et al. 2021;
Hammerstein et al. 2022), and is set to explode in the era of the Rubin
Observatory (Ivezi¢ et al. 2019), but the power of a TDE to provide
this insight hinges on our ability to reliably interpret observations
with theory.

One prediction of TDE theory is that the star is destroyed by tides
if it comes within a distance r, the tidal radius, of the SMBH. The
time-scale for the stellar debris to return to the SMBH — known as
the fallback time — and the resultant accretion luminosity can then
be estimated as (Lacy, Townes & Hollenbach 1982 and Section 2
below)

7o~ r2 2 og L M, )
=\ 2R oM, " T Ty

Here R is the characteristic size of the star at the time it reaches the
tidal radius, M, is the SMBH mass, and M, is the mass of the original
star. T, represents the fundamental evolutionary time-scale of a TDE,
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and accurately constraining it therefore amounts to determining the
values of r; and R. Typically, r; is estimated by equating the tidal
force of the SMBH to the surface gravity of the star and dropping
numerical factors, which yields

re= R. (Mo/Mt)l/za (2)

and R = R,, where R, is the stellar radius. Because the tidal force
varies as the inverse cube of the distance to the SMBH, equation (2)
should be correct to within a factor of the order unity, and numerical
simulations have confirmed that this is indeed the case over a wide
range of stellar type (e.g. Guillochon & Ramirez-Ruiz 2013; Gafton
et al. 2015; Mainetti et al. 2017; Golightly, Nixon & Coughlin 2019;
Law-Smith, Guillochon & Ramirez-Ruiz 2019; Gafton & Rosswog
2019; Law-Smith et al. 2020; Miles, Coughlin & Nixon 2020; Nixon,
Coughlin & Miles 2021).

However, while the precise distance at which the star is destroyed
by tides must be ~r, the dependence of equation (1) on r} implies
that small changes in r; from its approximate value can have
large bearing on the observable properties of TDEs. Indeed, the
replacement of . — r, in equation (1) by, e.g. Evans & Kochanek
(1989), Ulmer (1999), Lodato, King & Pringle (2009), Strubbe &
Quataert (2009), Lodato & Rossi (2011), with r, the pericentre
distance of the star (which could be much less than r;), results in
a gross underestimate of Ty, and a corresponding overestimate of the
luminosity (Guillochon & Ramirez-Ruiz 2013; Stone, Sari & Loeb
2013; Norman, Nixon & Coughlin 2021). On the other hand, for
stars with a large central density (e.g. those that are highly evolved),
the core should be able to better withstand the tidal shear of the
SMBH compared to the star on average, resulting in a smaller value
for the tidal radius than equation (2). Indeed, Norman et al. (2021)

© 2022 The Author(s)

Published by Oxford University Press on behalf of Royal Astronomical Society

€20z 1snBny 0 uo Jesn Aieiqi] AusisAlun asnoelAs Aq 209699/921/1//L L S/o1one/|Seluw/woo dno-oiwspese//:sdny wolj papeojumoq



Table 1. The predicted S at which the core of the star is destroyed B,
the approximate value at which it is destroyed Bc app, and the value of f
at which the star is destroyed as obtained from numerical, hydrodynamical
simulations, B¢ num, for the type of star shown in the left column. Tjeax and
Mpcﬂk give the time to the peak fallback rate and its value, calculated with
equation (11), when the star is disrupted by a 10 My SMBH.

star ﬁc ﬂcﬂpp ﬂc,num Tpcak M, peak
5/3 polytrope 0.96 1.14 0.92 62d 1.5Mg yr!
4/3 polytrope 1.97 2.38 2 27 34
03Mp MAMS  1.34 1.67 1.6 36 0.76
0.3My TAMS 4.7 5.6 >3 15 1.8
1 Mg ZAMS 1.80 2.13 1.79 24 3.8
1 Mgy MAMS 2.7 35 35 23 4.0
1My TAMS 4.1 52 >3 25 3.8
3Mp ZAMS 2.26 2.66 <3 18 15
3Mp MAMS 4.1 4.6 >3 27 10
3Mp TAMS 6 6.8 >3 21 13

suggested that since equation (2) can be written as r, ~ (M./p,)"”
with p, = M, /(4m R3/3) the average density, the core disruption
radius at which the high-density core (and thus the entire star) is
destroyed should be replaced with r, = (M./p.)"?, with p. the central
stellar density. Law-Smith et al. (2019), Ryu et al. (2020) reached
the same conclusion on empirical grounds through comparisons to
simulations.

Additionally, the probability of a star being scattered on to an orbit
about an SMBH with a pericentre distance r, = r/f has a strong
dependence on B: in the Newtonian approximation, the probability
distribution function of B satisfies f; = 2 for stars in the pinhole
regime of scattering (e.g. Frank & Rees 1976; Lightman & Shapiro
1977), while relativistic effects cause f3 to fall off even more steeply
when the tidal radius is comparable to the direct capture radius of
4GM,/c* for anon-spinning SMBH (which is particularly relevant for
M. 2 10" Mg; Coughlin & Nixon 2022). If the star is not destroyed
at ry but at /., then even if . is only marginally greater than 1 (see
Table 1 below), a substantial fraction of TDEs will be partial and leave
a stellar core intact. In these cases, the rate at which stellar debris
from the TDE is supplied to the SMBH, which should be comparable
to the accretion luminosity, declines as oct=”* (Coughlin & Nixon
2019; Miles et al. 2020; Nixon et al. 2021), which is significantly
steeper than the canonical rate of = (Phinney 1989).

The precise value of r, can thus have a large impact on the
observable properties of TDEs. Here, we argue that the distance
at which the star is completely destroyed by tides can be more
accurately (than equation 2) identified by equating the tidal field
of the SMBH (including order-unity factors) to the maximum
self-gravitational field within the star, which occurs at a distance
within the stellar interior that we denote the core radius R.. This
radius (and the maximum self-gravitational field) can be determined
numerically and straightforwardly for any star, but, as we show
below, is approximately given by R. = R,(p./p,)~"?, and results
in a ‘core disruption radius’ that is approximately r.. ~ (M,/p.)"*,
and a core disruption B of B. = [p./(4p,)]"3. In Section 2, we
present our analysis, our results, and make comparisons to numerical
simulations, and we summarize and conclude in Section 3.
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Figure 1. The gravitational field within a y = 4/3 (yellow) and y =
5/3 (purple) polytrope normalized by its maximum value. The vertical-
dashed lines give the approximate locations at which the gravitational field is
maximized.

2 THE CORE DISRUPTION RADIUS AND PEAK
FALLBACK PROPERTIES

We define the tidal field as the difference in the gravitational field of
the SMBH across the stellar diameter:
_ GM, GM.  AGM.R,
C—-RY +RY P

fi ) 3
where M, is the SMBH mass, r is the distance of the centre of mass
of the star to the SMBH, and R, is the stellar radius, and in the last
line, we assumed r > R,. Typically, the tidal field is defined as the
difference in the gravitational field across the stellar radius, and the
factor of 4 in equation (3) is usually a factor of 2. We argue that the
factor of 4 treats the star as a material body and accounts for the fact
that tides induce a velocity divergence across its diameter. As we
also show below, this definition accurately reproduces the results of
numerical hydrodynamical simulations.

The canonical tidal radius equates the tidal field to the stellar
surface gravity and drops numerical factors, yielding equation (2).
In general, however, a star’s gravitational field is maximized in its
interior, not at its surface. This is apparent from the fact that for radii
within the star R =~ 0, the gravitational field is g(R) ~ 47 Gp .R/3
with p., the central stellar density, while for R < R,, we have g(R)
~ GM,/R*. Equating these two expressions for g(R) then yields the
approximate radius at which the gravitational field is maximized,
which we define as the core radius, R.:

0o\
R, ~ R, <7> . @)
P

Here, p, = M, /(4w R?/3) is the average stellar density, and since
Pec > p., We have R, < R,. Fig. 1 shows the gravitational field of
y = 4/3 and 5/3 polytropes (so the stellar pressure p and density p
are related via p o« p”) normalized by their maximum values. The
vertical-dashed lines show R, as given by equation (4), and are R./R,
~ 0.26 and R./Rpyax = 0.55 for the y = 4/3 and y = 5/3 polytrope,
respectively, which slightly overestimate the true locations R /R, =~
0.22 and R./R, ~ 0.51.

‘We expect the star to be completely destroyed when the tidal field
evaluated at the core radius equals the self-gravity of the core, which
corresponds to a tidal radius 7. of

AGM,R. 4 -3
% ~ —-n1Gp.R. = rec=rn < Pe ) . 5)
e 3 4p,
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Defining B. = ri/ri., we expect the core (and the entire star) to be
destroyed when

13
Be.app = <ﬁ) - ©)

Law-Smith et al. (2019) and Ryu et al. (2020) empirically found
a similar form for the B at which the star is completely disrupted
by fitting the results of numerical simulations. equation (6) is
approximate, as we extrapolated and equated the linear variation
in the gravitational field from R = 0 to the inverse-square behaviour
from R = R,. More generally, the core radius is where the self-
gravitational field is maximized, and the core/complete disruption
radius is found by equating the tidal and self-gravitational fields at
that radius:

4GM,R,
T = g(R)

tc

N AGM, R\ o
ree=rni| ——= ,
T g(RORS

corresponding to a 8 of

g— 4GM, R\ ®
e \g(RIR? ’

The left-hand panel of Fig. 2 shows B. (equation 8, solid curve)
and B .pp (equation 6, dashed curve) for a polytrope with polytropic
index y.Foray = 5/3 (y = 4/3) polytrope, we have 8. >~ 0.96 (. ~
1.97), while the approximate expression yields B¢ app 22 1.14 (B app =
2.38). By comparison, numerical hydrodynamical simulations find
that the 8 at which a y = 5/3 polytrope is completely destroyed
iS Benum = 0.92 (Guillochon & Ramirez-Ruiz 2013; Mainetti et al.
2017; Miles et al. 2020), while for a y = 4/3 polytrope Bcnum =
2 (Guillochon & Ramirez-Ruiz 2013; Mainetti et al. 2017). The
right-hand panel of Fig. 2 gives the exact and approximate S. for
a 0.3M; (blue), 1 Mg (green), and 3 Mg (red) star as a function
of the Hydrogen mass fraction in its core X, Where each star was
evolved in isolation at solar metallicity with the stellar evolution code
MESA (Paxton et al. 2011) (v. r21.12.1). The zero-age main sequence
(ZAMS) corresponds to Xeore =~ 0.7, while the terminal-age main
sequence (TAMS) has X.oe = 0. Over the lifetime of each star, 8.
increases owing to the increasing density of the core, and does so
dramatically near the TAMS. Table 1 gives the exact and approximate
values of B, for each star at ZAMS and TAMS and also at the ‘middle-
age main sequence’ (MAMS), defined to be where Xcore =~ 0.2 (the
0.3Mg, ZAMS star is effectively a y = 5/3 polytrope and has the
same f., etc. as the top row). The numerically obtained values for
the 1 Mg ZAMS, 1 Mg MAMS, and 0.3 My MAMS are taken from
Nixon et al. (2021), while upper limits are from Golightly et al.
(2019).

The fallback time given in equation (1) is estimated by making the
(crude; see Steinberg et al. 2019) approximation that upon passing
through r, the entire star moves with the centre of mass and is
undistorted, in which case the energy of each fluid element is ‘frozen-
in” at the tidal radius and calculable as a function of its position within
the star. Here, however, when the centre of mass reaches ., we do
not expect this model to be even approximately correct for the layers
of the star that are outside of the core radius, as these fluid shells
have already been overcome by the gravitational field of the SMBH.
‘We can gain some insight into the complexity that this aspect adds to
the problem by assuming that the energy of each fluid shell at radii
R > R, is established at its tidal radius, i.e. that the tidal radius as
a function of spherical R (valid for R > R.), and the corresponding
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fallback time, is (from equations 7 and 1)

4GM.R\ ' R\ 2m
rm:( g(R) ) ’ T“’(R)=< 2R > o ¥

The left-hand panel of Fig. 3 shows T, (R) for a y = 4/3 (yellow) and
5/3 (purple) polytrope that has R, = Rg, M, = Mg, and M, = 10° M,
and the vertical-dashed lines show the location of the core radius.
We see that the fallback time decreases from the surface and reaches
a relative minimum at a location near, but just outside of, the core
radius. However, this model for the outer layers cannot possibly be
correct, because the extremities of the star are closer to the SMBH
at the time of disruption. If the fallback times were distributed as
suggested by the left-hand panel of Fig. 3, fluid shells at smaller
radii in the interior of the star would cross those at larger radii, which
physically cannot happen.

Fig. 3 suggests that gas at radii R = R, must return to the SMBH
on a time-scale that is shorter than the minimum time-scale reached
by Tw(R), but that the energy is distributed dynamically and in a way
that is not captured with this model. The smallest possible value we
would expect for the return time, Ty, is obtained by letting R = R,
and r(R) = r .. in equation (9), i.e.

T 2 Tn(RIB. 10)

Note that this is the same value one would obtain by assuming that
the energy is frozen-in at pericentre. However, we are not arguing
that this expression holds for any value of §; rather, it is the shortest
return time we expect for the material provided that the centre of
mass reaches a pericentre distance smaller than r..

While the gas at R 2 R, likely evolves in a way that is not able
to be accurately captured with this model (and equation 10 should
be interpreted as a rough lower bound), the core (gas shells at R
< R.) can still be approximated as moving with the centre of mass
until reaching 7, and should return to the SMBH on a time-scale
of ~Tp(R.). Since the core contains a substantial fraction of the
mass of the star (indeed, assuming a constant density p. for R < R,
gives M. >~ M,), and hence a substantial fraction will have already
accreted by that time, we expect Ty (R.) to coincide approximately
with the peak fallback time, or Ty (R.) = NTpea, Where N ~ 1
is a constant numerical factor across all stars and determinable
from hydrodynamical calculations. Remarkably, comparing Ty, (R.)
t0 Tpear from simulations in Guillochon & Ramirez-Ruiz (2013),
Coughlin & Nixon (2015), Golightly et al. (2019), and Nixon et al.
(2021), we find that N = 2 nearly exactly reproduces the numerically
obtained peak fallback times for every star, and thus

7o — (1R o (11)
peak 2RC GM.

The right-hand panel of Fig. 3 shows the peak fallback time given
by equation (11) for a 10° My SMBH and the same stars as in the
right-hand panel of Fig. 2 as a function of their core Hydrogen
mass fraction; the values at ZAMS, MAMS, and TAMS are given
in Table 1. The striking feature of these curves is that they display
much less variation with respect to X, than does B, (see the right-
hand panel of Fig. 2), and the 1 M, star in particular has an almost
constant peak fallback time at ~24 d. This finding is consistent with
Nixon et al. (2021), as the solid-blue and dashed—green curves in the
middle panel of their Fig. 3 are effectively identical for all 8 2 2 (and
equal to ~25 d; note that the legend for this figure is incorrect — the
dashed—green curve is for the 1 Mg MAMS star). equation (11) can
also be substantially shorter than the peak fallback time derived from
the frozen-in approximation, e.g. Tpeax = 24 d for a 1 Mg ZAMS star,
whereas employing the frozen-in approximation yields Tpeax 2 1 yr,
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Figure 2. Left: The 8 at which a polytrope with polytropic index y is completely destroyed; the solid curve gives the exact expression, while the dashed curve
is the approximate value that uses only the ratio of the central to the average density of the star (equation 6). Right: The core disruption 8 as a function of the
central Hydrogen mass fraction Xcore 0f a 1 Mg (green) and 0.3 Mg (blue) star evolved through the main sequence with the stellar evolution code MESA; each
star begins on the main sequence at Xcore 2~ 0.7 and ends its main sequence evolution at Xcore =~ 0. The solid curves are found by numerically calculating the
maximum gravitational field within the star, while the dashed curves give the approximate solution obtained by using only the central density of the star.
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Figure 3. Left: The fallback time as a function of initial radius within the star for a y = 4/3 (yellow) and y = 5/3 (blue) solar-like polytrope disrupted by a
10°Mg SMBH. The vertical-dashed lines give the location of the core. Right: The peak fallback time as a function of the Hydrogen core fraction for the same

three stars as in the right-hand panel of Fig. 2.

which is over an order of magnitude longer; see Fig. 2 of Golightly
et al. (2019).

We can also estimate the magnitude of the peak fallback rate: since
half of the stellar mass is accreted during a TDE and roughly half of
that mass will have been accreted by Tca, We expect

: M,
My ~ —=. (12)
4Ty

The final column in Table 1 gives the peak fallback rate for each star;
comparing to Guillochon & Ramirez-Ruiz (2013), Golightly et al.
(2019), Nixon et al. (2021) show that these predictions are in remark-
ably good agreement with the results of numerical simulations. We
also note that while the value of g, in Table 1 is somewhat smaller
than B,,m for the 0.3 Mg MAMS and 1.0 Mgy MAMS stars, the top
panel of Fig. 3 in Nixon et al. (2021) shows that 8. coincides almost
exactly with the B at which the fallback rate reaches its maximum
value, which suggests that in these instances, the core is largely
destroyed and/or reforms at a later time and does not substantially
affect the fallback. Law-Smith et al. (2019) also noted that very
compact stars did not satisfy B. o< (pc/p.)"3.

The expression for B. (8) is only a function of the properties of
the star. Therefore, ric, Tpeak, and Mpey are valid for any SMBH
mass, and this will only break down once the tidal radius becomes
either comparable to the size of the star (i.e. the tidal approximation
becomes invalid) or highly relativistic and the gravitational radius
introduces an additional scale length. These two regimes are ap-
proached in the small- and large-SMBH-mass limits, respectively.

Finally, our inferred distance at which the tidal field equals the self-
gravitational field of the star at the stellar surface is a factor of 4!/
larger than the canonical estimate. However, given our arguments,
we would expect this distance to be the one at which the star just
begins to lose mass. Therefore, the partial disruption radius, where
we expect any mass to be stripped from the envelope, is

,Bparlial = 4_1/3 >~ 0.6, (13)

independent of the stellar properties. This agrees with simulations,
which find that the g at which any mass-loss occurs is 8 =~ 0.55-0.6
(e.g. Guillochon & Ramirez-Ruiz 2013; Nixon et al. 2021).
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3 SUMMARY AND CONCLUSIONS

‘We proposed that the complete tidal disruption radius of a star can be
accurately constrained by equating the SMBH tidal field (including
a factor of 4 that accounts for the differential stretching across the
stellar diameter) to the maximum self-gravitational field within the
star, which is generally in the stellar interior. To our knowledge, this
statement has not been made in the literature. The radius at which
this equality occurs, which we define as the core radius R., can be
straightforwardly determined numerically for any progenitor and its
value (and the self-gravitational field at R..) inserted into equation (8)
to determine S, where r/B. — with r, the canonical tidal radius —is the
distance within which the star must come to be completely destroyed.
‘We performed this exercise for a range of stellar progenitors, and we
also calculated the peak fallback time and the magnitude of the peak
fallback from the TDE (see equations 11 and 12) and found very
good agreement with the results of hydrodynamical simulations,
eg Be =~ 096 (= 1.97) for a y = 5/3 (4/3) progenitor, while
simulations yield Bcnpum = 0.92 (Bcaum = 2). In general, . must
be calculated numerically as a function of the progenitor (and only
of the progenitor, i.e. the SMBH mass does not enter, unless the
SMBH mass is very small so that the tidal approximation breaks
down, or very large so that relativistic effects become important), but
it is approximately given by B, >~ [pc/(4p )13, where p. (p.) is the
central (average) stellar density.

For any stellar population, a scattering rate of stars into the loss
cone of the SMBH, and the probability distribution function of
the pericentre distance of tidally disrupted stars, the number of
full versus partial disruptions can be determined via equation (8).
The relativistic distribution of pericentre distances was calculated by
Coughlin & Nixon (2022) in the full loss cone regime and shown to
drop sharply near the direct capture radius of the SMBH, and full
disruptions are replaced by direct captures (i.e. the star is swallowed
whole). Since high-B’s are required to disrupt high-mass (M, =
1 M) stars and the tidal radius is proportional to the stellar radius,
which is smaller (and hence more relativistic) for low-mass stars,
Fig. 2 suggests that the vast majority of disruptions by high-mass
SMBHs will be partial and yield a fallback rate that scales as ot~ .

With equations (11) and (12) for the time and magnitude of the
peak fallback rate, one can — for a given observational facility and
observing strategy — estimate the number of observable TDEs for
a given underlying SMBH mass distribution. We can also estimate
the number of TDEs that will undergo a period of substantial super-
Eddington accretion, and thus are likely to give rise to relativistic and
jetted outflows. Such information is therefore extremely useful for
constraining the demographics of SMBHs throughout cosmic time
with high-cadence surveys such as the Rubin Observatory.
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