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ABSTRACT

Given raster imagery features and imperfect vector training labels

with registration uncertainty, this paper studies a deep learning

framework that can quantify and reduce the registration uncer-

tainty of training labels as well as train neural network parameters

simultaneously. The problem is important in broad applications

such as streamline classification on Earth imagery or tissue seg-

mentation on medical imagery, whereby annotating precise vector

labels is expensive and time-consuming. However, the problem is

challenging due to the gap between the vector representation of

class labels and the raster representation of image features and the

need for training neural networks with uncertain label locations.

Existing research on uncertain training labels often focuses on un-

certainty in label class semantics or characterizes label registration

uncertainty at the pixel level (not contiguous vectors). To fill the

gap, this paper proposes a novel learning framework that explic-

itly quantifies vector labels’ registration uncertainty. We propose a

registration-uncertainty-aware loss function and design an iterative

uncertainty reduction algorithm by re-estimating the posterior of

true vector label locations distribution based on a Gaussian pro-

cess. Evaluations on real-world datasets in National Hydrography

Dataset refinement show that the proposed approach significantly

outperforms several baselines in the registration uncertainty esti-

mations performance and classification performance.
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1 INTRODUCTION

Over the last decade, deep learning technologies have achieved

tremendous success in computer vision and natural language pro-

cessing applications. Unfortunately, the broader success of deep

learning in geoscience (e.g., Earth image classification ) has been

hindered by the lack of high-quality training labels. In these appli-

cations, collecting high-quality vector labels is slow, tedious, and

expensive due to sending a field crew on the ground or visually

interpreting high-resolution imagery pixels. On the other hand, it is

often much easier to annotate coarse vector labels with registration

errors (i.e., vector labels that may not align well with image pixels).

Given raster imagery features and imperfect vector training la-

bels with registration uncertainty, this paper studies a weakly super-

vised spatial deep learning framework that can quantify and reduce

vector label registration uncertainty as well as train neural network

parameters simultaneously. For example in the application of Na-

tional Hydrography Dataset refinement, the input raster features

include spectral bands of Earth observation imagery, the digital

elevation model, lidar point intensity, and topographic indices. The

input vector labels of river streams are polylines misaligned with

the actual stream pixels on the Earth imagery (i.e., with registration
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errors). Given such inputs, the goal is to design a learning frame-

work that can quantify and reduce the registration uncertain of

the imperfect label (i.e., refine the polyline labels) and train a deep

neural network model that can accurately classify feature imagery

pixels into binary classes (stream and non-stream).

However, the problem poses several unique challenges. First,

there exists registration uncertainty in vector label registration

errors due to unknown true vector label locations. Second, modeling

such uncertainty is non-trivial given that the vector labels are often

continuous polylines on a 2D plane while input features are discrete

pixels in a 2D grid. Such a gap poses additional challenges when

designing a pixel-wise loss function of a neural network based on

uncertain vector-level training labels and in exploring uncertainty

reduction (vector refinement) based on pixel-level class predictions.

Third, the problem requires learning neural network parameters

and inferring true vector label locations simultaneously.

Existing research on weakly-supervised learning with label un-

certainty often focuses on addressing uncertainty in label class

semantics, assuming label locations to be correct or irrelevant

(e.g., samples are independent and identically distributed) [2, 20,

27]. Techniques include simple data cleaning to filter noise [6],

choosing relatively noise-tolerant models [5], designing robust loss

function [18, 19] and learning noise distribution [14, 24]. Thus,

these techniques cannot address the registration uncertainty in

the ground truth labels. Some works focus on label location errors

and uncertainty [1, 3, 8, 15, 17, 18, 25, 28] but only infer true label

locations at the raster pixel level (e.g., small square patches, object

boundary, edge pixels, or medical pixel alignment). These methods

do not fully address the label registration uncertainty in the vector

representation and cannot guarantee line contiguity during label

refinement. One recent work [9] focuses on registration errors of

vector labels, but the method is ad-hoc and cannot quantify the

registration uncertainty, causing over-confident label refinement.

Note that the word "uncertainty" in our work should not be con-

fused with other relevant works [10ś12] focusing on "ambiguity" or

"uncertainty", which refers to nonunanimous training labels due to

different opinions of several experts, even though all of the different

opinions are considered correct. In contrast, we assume there exists

a single unknown true vector label location that perfectly aligns

with corresponding imagery features. In summary, none of existing

works can quantify and reduce the uncertainty of vector labels.

To fill the gap, we propose a novel learning framework that can

quantify and reduce registration uncertainty of the vector labels.

Specifically, we make the following contributions:

• First, we propose a registration-uncertainty-aware loss func-

tion to train neural network, which calculates the loss between the

probability of each pixel contained in the buffered area of the uncer-

tain vector label and the neural network prediction probabilities.

• Second, we propose to reduce the vector label uncertainty by

re-estimating the posterior of true vector locations as a Gaussian

process based on the prior vector label distribution (from the pre-

vious iteration) and the likelihood (from the predicted pixel class

probabilities).

• Third, evaluations on real-world high-resolution remote sens-

ing datasets in National Hydrography Dataset (NHD) refinement

show that the proposed framework outperforms baseline meth-

ods in both uncertainty estimation performance and classification

accuracy. Case studies also confirm the quality of refined vector

labels and uncertainty estimations. (e.g., improve Accuracy-versus-

Uncertainty from 0.25 to 0.54) (e.g., reducing the false positives and

false negatives by 67% and 55%, respectively)

2 PROBLEM STATEMENT

2.1 Preliminaries
Spatial raster framework: A spatial raster framework is a tes-

sellation of a 2D plane into a regular grid. Each grid cell is a pixel.

We denote the features of all raster pixels as X ∈ R𝑛×𝑛×𝑘 , and the

corresponding pixel class labels as Y ∈ {0, 1}𝑛×𝑛 , where 𝑛 is the

raster length, and 𝑘 is the input feature channel number. An Exam-

ple of feature layers are spectral bands of Earth imagery. The class

layer can be whether pixels are stream or non-stream. Figure 1(a)

provides an example of a spatial raster with 20 by 20 pixels.

Spatial vector: A spatial vector is a geometric representation

of a spatial object such as a point, polyline, and polygon on a 2D

plane. It is an alternative way of representing spatial data. This

paper focuses on polyline vectors (i.e., one or more consecutive

line segments joined end to end), such as river streams or road

segments. Mathematically, a polyline can be expressed by a curve

function L(𝑠) = (𝑢 (𝑠), 𝑣 (𝑠)), 𝑠 ∈ [𝑠𝑎, 𝑠𝑏 ], where 𝑢 and 𝑣 are 2D

coordinates and 𝑠 is a variable to reflect the one degree of freedom.

Note that for simplicity, we may omit the variable 𝑠 and use L to

denote a polyline in this paper. In reality, a stream has a non-zero

width, which can be captured by a buffer on top of a polyline,

denoted as B(L). Figure 1(b) provides an example.

A spatial vector can be co-registered into a raster-based on their

common spatial reference system. After registration, a (buffered)

vector shape can be converted into a class layer Y in the raster

format (also called rasterization), i.e., pixels overlapping with the

vector are assigned with corresponding thematic class labels. After

rasterization of vector training labels, we can train neural network

parameters based on the feature layers X and the class layer Y.

(a)

𝐋(s)

𝐁(L)

(b)

𝐋(s)

𝐋% (𝐬')
∆𝐋(s")

{
s

s'

(c)

Figure 1: Examples of a spatial raster (a), a vector label and

rasterization (b), and registration errors (c)

Registration errors: Registration errors refer to the misalign-

ment between different spatial layers when they are co-registered

together. This paper focuses on registration errors between a vector

class label layer (e.g., polylines of river streams) and raster image

feature layers (e.g., Earth imagery). Such registration errors exist

due to manual annotation mistakes at a coarse resolution [7, 23].

Mathematically, we express registration errors between uncer-

tain vector labels L̃(𝑠) and raster image features by assuming an un-

known true vector label locations L(𝑠) (perfectly align with image
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Input features 𝐗

Registration-uncertainty-
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Imperfect vector label 𝐋#
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map

Refined vector label 𝐋 and

uncertainty 𝚺

Deep learning model with

optimized parameters 𝚯

Figure 2: Illustration of the Registration-uncertainty-aware Deep Learning (RuaDL) framework

features). Specifically, the registration error at a particular point

L̃(𝑠0) on the polyline L̃(𝑠) is the vector difference between that

point to a corresponding point L(𝑠0) along perpendicular direc-

tion on the true polyline L(𝑠) as illustrated in Figure 1(c). That

is, ∆L (𝑠0) = L(𝑠0) − L̃(𝑠0). Since the direction of the registration

error is fixed (perpendicular) at every point on the polyline, we

only need to express it as a scalar ΔL (𝑠0), whose magnitude reflects

the distance and whose sign reflects the direction. Then, we can

express the registration errors along a polyline as a scalar function

ΔL (𝑠), 𝑠 ∈ [𝑠𝑎, 𝑠𝑏 ].

Registration uncertainty (uncertainty of registration er-

rors): In the above expression of registration errors, the imperfect

vector L̃(𝑠) is often given, but the true vector label location L(𝑠)

is unknown (uncertain). Thus, the registration errors ΔL (𝑠) has

uncertainty. One of the major goals of this work is to model this

uncertainty and even reduce it through weakly supervised learning

based on image features. Note that reducing the uncertainty of

registration errors also means refining the vector training labels, as

we can easily calculate the true vector L(𝑠) from imperfect vector

L̃(𝑠) if ΔL (𝑠) is known (certain).

Uncertainty of pixel labels: As for the spatial raster frame-

work, the pixel labels Ỹ are obtained by rasterization around the

spatial vector label locations L̃. Since the observed spatial vector

labels are uncertain, the raster class layer Ỹ are also uncertain.

Note that our notion of rasterized pixel class uncertainty Ỹ is dif-

ferent from existing works which assume independence between

pixel labels [20, 27]. In our problem, the pixel label uncertainty are

generated from spatial vector registration errors, and there exists

auto-correlation between nearby locations.

2.2 Problem definition

Based on the above definitions, we formally define our problem.

Input:

• A spatial raster framework with explanatory feature layers X

• Uncertain training labels as a set of polylines L̃ = {L̃1, L̃2, ..., L̃𝑛}

• A base deep neural network type (e.g., U-Net, DeepLab)

Output:

• Refined vector labels L = {L1, L2, ..., L𝑛} and the uncertainty

• Deep neural network parameters Θ that can predict the class

layer Y from features X.

Objective:

• Maximize the quality of the refined vector labels

• Maximize the uncertainty estimation performance

Constraint:

• Registration errors of a polyline is assumed to be point shift along

perpendicular directions and within a maximum distance range

Δ𝑚𝑎𝑥 , which is a hyper-parameter

• The class is binary (one type of vector label)

3 THE PROPOSED APPROACH

This section introduces the proposed approach that performs model

training and vector label refinement in a unified framework. The

problem is technically challenging in several aspects. First, we need

tomodel the geometric registration errors in vector shape to capture

the uncertainty and auto-correlation of the polyline registration

error between nearby spatial locations. Second, to learn the neural

network parameters we need to incorporate the uncertainty of the

vector labels into the uncertainty of pixel-wise labels. Thirdly, we

need to reduce the uncertainty of registration errors based on the

pixel-wise prediction of the neural network. To address these chal-

lenges, we propose a generic spatial deep learning framework that

iteratively updates deep learning model parameters while inferring

hidden true vector label distributions. The framework is illustrated

in Figure 2. Given an imperfect polyline label L̃, we model the un-

derlying ground truth L based on a Gaussian process that explicitly

captures the uncertainty of vector label registration errors along

a continuous polyline. Based on the uncertainty model, we pro-

pose a registration-uncertainty-aware loss function that can learn

neural network parameters. The main intuition is to translate the

uncertain vector line into soft weights of image pixels in the loss

function. Then we propose to reduce the uncertainty of registration

errors by re-estimating the posterior distribution of true vector

label locations based on predicted pixel class probabilities from

neural network model. We now introduce each component.
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3.1 Probabilistic model of the registration
uncertainty of polylines

Design a probabilistic model for registration uncertainty of polyline

is non-trivial for three reasons. First, the registration error at any

point on the polyline is a 2D vector with both a distance and a

direction. Second, the distance of registration error is a continuous

variable. Third, a continuous polyline concerns an infinite number

of points, whose registration errors are mutually dependent due to

spatial auto-correlation.

To address the above challenges, we propose to use a Gaussian

process to model the uncertainty of polyline registration errors. Re-

call that in the previous section, we express the registration errors

along a polyline as a scalar function ΔL (𝑠), 𝑠 ∈ [𝑠𝑎, 𝑠𝑏 ]. Thus, we

assume ΔL (𝑠) to follow a Gaussian process [16], as expressed in

Equation 1with the priormean 𝜇 (𝑠) = 0 and the covariance function

based on a kernel 𝑘 (𝑠, 𝑠 ′) = 𝜎20 exp(−|𝑠 − 𝑠 ′ |2/2𝑙2), where 𝜎20 is the

variance and 𝑙 is the length scale (kernel bandwidth). These hyper-

parameters can be determined based on prior knowledge about the

quality of the observed polyline label or through cross-validation.

Intuitively, we should select a relatively large variance at the begin-

ning to reflect the high uncertainty of true polyline locations. Note

that our work is different from existing Gaussian process models for

registration uncertainty in medical images [15], which focuses on

registration errors between pixels from two corresponding images.

ΔL (𝑠) ∼ GP(𝜇 (𝑠), 𝑘 (𝑠, 𝑠 ′)), 𝑠, 𝑠 ′ ∈ [𝑠𝑎, 𝑠𝑏 ] (1)

𝐋" (𝑠̃)

𝐋(s)

𝑃(∆𝐋|𝐋" )~ 𝒩(𝝁𝟎, Σ 𝟎)

s/#

𝑠̃$

𝑠̃%

𝝁𝟎(𝑠$)

𝝁𝟎(𝑠%)

𝝁𝟎(𝑠# )

∆
𝐋 (𝑠
# ){

Σ

(a) Gaussian process model

𝑳"(𝒔$)

𝐩

𝒩(𝜇 𝒔! , 𝜎 𝒔! )

b {
𝑟 {

Φ𝒔 (r# − 𝑏)

Φ𝒔 (r# + 𝑏)

	𝒔%

(b) The probability of a pixel falling into
the buffer of true polyline given reg-

istration error distribution 𝑃 (ΔL |L̃) ∼
N(𝝁0, 𝚺0)

Figure 3: Gaussian processmodel for registration uncertainty

In order to allow re-estimation (refine) the Gaussian process

model (reduce its uncertainty through learning iterations), we sam-

ple a finite number of equal-interval points along the imperfect

polyline L̃(𝑠), denoted as L̃ = {L̃(𝑠1), L̃(𝑠2), ..., L̃(𝑠𝑛L )}, where 𝑛L is

the number of sample points. We denote the corresponding sample

points along the true polyline L(𝑠) as L = {L(𝑠1), L(𝑠2), ..., L(𝑠𝑛L )}.

Thus, given the imperfect polyline location L̃, the true vector la-

bel locations L can be uniquely determined by ΔL, which follows

a multi-variate Gaussian distribution, as expressed in Equation 2.

The mean vector 𝝁0 and covariance matrix 𝚺0 are determined by

the mean function 𝜇 (𝑠) and kernel function 𝑘 (𝑠, 𝑠 ′) of the Gaussian

process in Equation 1. As shown in Figure 3(a), the red bracket

shows the registration errors ΔL = {ΔL (𝑠1),ΔL (𝑠𝑖 ), ...,ΔL (𝑠𝑛L )} at

each point. The green line illustrates the registration errors distri-

bution, which follow a multi-variate Gaussian distribution, with

mean vector of 𝝁0 = {𝝁0 (𝑠1), 𝝁0 (𝑠𝑖 ), ..., 𝝁0 (𝑠𝑛L )} and covariance

𝚺0. The non-zero covariance between sampled points can capture

the spatial auto-correlation of registration errors.

𝑃 (ΔL |L̃) ∼ N (𝝁0, 𝚺0) (2)

3.2 Training neural network parameters with
uncertain polyline label

This part aims to learn neural network parameters with uncertain

vector labels. Instead of training a neural network with the ob-

served imperfect vector label L̃ directly, we employ a probabilistic

distribution of the unknown true vector label 𝑃 (L|L̃), which can be

determined from 𝑃 (ΔL |L̃). Then we designed an uncertainty-aware

loss function. This is challenging because we need to incorporate

the pixel-level class probability predictions from the network and

vector-level uncertainty of training labels.

Let us first review the common binary cross-entropy loss func-

tion based on a fixed (certain) polyline training label L in Equation 3,

where p𝑗 represents a pixel, Ip𝑗 ∈𝐵 (L) is an indicator function to

check if pixel p𝑗 is within the polyline buffer 𝐵(L), Ŷ and 𝑦 𝑗 are

the predicted class probabilities on all pixels and on pixel p𝑗 , re-

spectively. The indicator function Ip𝑗 ∈𝐵 (L) is a hard label (0 or 1)

for pixels acquired from the certain polyline label and 𝑝 (𝑦 𝑗 |X,Θ)

is the neural network prediction probability.

𝐿 (Ŷ, L) =
∑︁
𝑗

{Ip𝑗 ∈𝐵 (L) log𝑝 (𝑦̂ 𝑗 |X,Θ)

+ (1 − Ip𝑗 ∈𝐵 (L) ) (1 − log𝑝 (𝑦̂ 𝑗 |X,Θ)) }

(3)

When the vector training labels are uncertain, i.e., the vector

label L follows a probabilistic distribution 𝑃 (L|L̃), we generalize

the above loss function into its expectation on L. This is expressed

in Equation 4, where the distribution of unknown true vector label

location L can be calculated from a Gaussian prior (Equation 1) or

from a posterior estimation given image features (Equation 8). For

now, we assume that 𝑃 (L|L̃) is already calculated.

𝐿 (Ŷ, L) =EL∼𝑃 (L|L̃)

∑︁
𝑗

{Ip𝑗 ∈𝐵 (L) log𝑝 (𝑦̂ 𝑗 |X,Θ)

+ (1 − Ip𝑗 ∈𝐵 (L) ) (1 − log𝑝 (𝑦̂ 𝑗 |X,Θ)) }

(4)

We can simplify the above uncertainty-aware loss function by

taking the expectation operation onto the indicator function inside

the sum. As shown in Equation 5, where the expectation of the

indicator function becomes the probability of a pixel falling into the

buffer of the true polyline 𝐵(L). The probability 𝑃 (p𝑗 ∈ 𝐵(L)) can

be considered as a soft weight on each pixel in the loss function. The

soft weight can capture the uncertainty of pixel labels (in contrast

to the hard weight in the indicator function based on a certain

polyline label in Equation 3).

𝐿 (Ŷ, L) =
∑︁
𝑗

EL∼𝑃 (L|L̃) Ip𝑗 ∈𝐵 (L) log𝑝 (𝑦̂ 𝑗 |X,Θ)

+ EL∼𝑃 (L|L̃) (1 − Ip𝑗 ∈𝐵 (L) ) (1 − log𝑝 (𝑦̂ 𝑗 |X,Θ))

=

∑︁
𝑗

𝑃 (p𝑗 ∈ 𝐵 (L)) log𝑝 (𝑦̂ 𝑗 |X,Θ)

+ (1 − 𝑃 (p𝑗 ∈ 𝐵 (L))) (1 − log𝑝 (𝑦̂ 𝑗 |X,Θ))

(5)

However, it is still non-trivial to compute the probability of a

pixel falling into the buffer of the true polyline label, i.e., 𝑃 (p𝑗 ∈ 𝐵(L)),
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given the probabilistic distribution of the polyline. We present a

theorem to compute this probability.

Theorem 3.1. Given an imperfect polyline L̃(𝑠), whose registration

errors follow a Gaussian process ΔL (𝑠) ∼ GP(𝜇 (𝑠), 𝑘 (𝑠, 𝑠 ′)), and an

image pixel p𝑗 . Assume that the projection of p𝑗 to the polyline is point

𝑠0, whose corresponding registration error along the perpendicular

direction isΔL (𝑠0) ∼ N(𝜇 (𝑠0), 𝜎
2 (𝑠0)).B(L) is the polygon that buffer

on top of the polyline L. Then 𝑃 (p𝑗 ∈ B(L)) can be computed by

Equation 6, where Φ is the cumulative distribution function of a

standard normal distribution, 𝑟 𝑗 is the scalar distance to pixel p𝑗 to

the imperfect polyline, and 𝑏 is the buffer width.

𝑃 (p𝑗 ∈ 𝐵 (L)) = Φ(
𝑟 𝑗 − 𝜇 (𝑠0) + 𝑏

𝜎 (𝑠0)
) − Φ(

𝑟 𝑗 − 𝜇 (𝑠0) − 𝑏

𝜎 (𝑠0)
) (6)

Proof. As illustrated in Figure 3(b), the main intuition is that the

probability of a pixel falling into the true polyline buffer 𝑃 (p𝑗 ∈ B(L))

equals the probability of the true polyline location 𝑠0 being located

within the buffer distance of the pixel 𝑟 𝑗 − 𝑏 and 𝑟 𝑗 + 𝑏, which is

equal to Φ𝑠0 (𝑟 𝑗 +𝑏) −Φ𝑠0 (𝑟 𝑗 −𝑏). The detailed proof is provided in

the supplementary materials. □

3.3 Reducing uncertainty of polyline labels
through posterior estimation

The previous two subsections introduce a probabilistic model of the

uncertainty of polyline label registration errors and an uncertainty-

aware loss function to train deep neural network parameters. This

subsection proposes a method to re-estimate the uncertainty distri-

bution (i.e., to reduce the uncertainty) of polyline labels based on

the neural network pixel class predictions.

The main idea is expressed in Figure 4. The posterior is re-

estimated from the prior distribution and likelihood function based

on neural network predictions. First, the prior distribution of poly-

line registration errors is modeled with Gaussian process in subsec-

tion 3.1 𝑃 (ΔL |L̃) ∼ N (𝝁0, 𝚺0) as shown in the Figure 4(a). Second,

we denote streamline class (positive) from the neural netowork

prediction as Ỹ (black and red pixels in Figure 4(b)). Then we

model the the likelihood function F (ΔL |Ỹ,X,Θ) as a multi-variate

Gaussian distribution N(𝝁1, 𝚺1), whose mean and variance are

determined by the prediction positive class along the perpendic-

ular line of the imperfect polyline location (as illustrated by the

red pixels in Figure 4(b)). Specifically, we compute the location

mean and variance (𝝁1 (𝑠𝑖 ),𝝈1 (𝑠𝑖 )) independently at different sam-

ple points. Then 𝝁1 = {𝝁1 (𝑠1), 𝝁1 (𝑠2), ..., 𝝁1 (𝑠𝑛L )} and covariance

𝚺1 = 𝑑𝑖𝑎𝑔{𝝈1 (𝑠1),𝝈1 (𝑠2), ...,𝝈1 (𝑠𝑛L )}. Then the posterior of regis-

tration error follows a Gaussian distribution as Theorem 3.2 shown.

The posterior estimation of Gaussian process can take advantage

of the covariance between samples to interpolate its mean estimate

and variance. As an example in Figure 4(c), there is no positive

class prediction along the perpendicular direction of point 𝑠1, and

the variance 𝝈1 (𝑠1) is relative larger than other points. For next

iteration the registration errors prior distribution can be updated

by the estimated posterior.

Theorem 3.2. Given the registration error prior distribution 𝑃 (ΔL) ∼

N (𝝁0, 𝚺0) and likelihood estimation F (ΔL |Ỹ,X,Θ) ∼ N (𝝁1, 𝚺1)

from neural netowrk prediction Ỹ. The posterior true polyline location

distribution follows a Gaussian distribution

𝑃 (ΔL |Ỹ,X,Θ) ∼ N (𝝁, 𝚺) (7)

where

𝚺 = (Σ−10 + Σ−11 )−1, 𝝁 = Σ(Σ−10 𝝁0 + Σ−11 𝝁1) (8)

Proof. The intuition is to compute the posterior by Bayes’ the-

orem with the prior and likelihood function. We omit the details

due to limited space. □

3.4 Overall algorithm

Algorithm 1 provides an overview of the proposed weakly super-

vised learning framework. The framework first initializes a Gauss-

ian process prior of the uncertain polyline registration errors. Based

on the uncertainty-aware loss function, it trains a neural network

and predicts pixel classes. Then the framework conducts iterations.

Each iteration first estimates the independent Gaussian distribution

of true polyline locations at sample points based on predicted pixel

classes. Based on the prior (or posterior) distribution of true poly-

line locations from the previous iteration, the algorithm updates

the new posterior distribution. After that, it re-trains the neural

network based on the new posterior distribution and makes class

predictions. The iterations continue until the model converges (e.g.,

no improvement in converged validation loss).

Algorithm 1 The overview of RuaDL framework

Input:

• X: Explanatory feature layers

• L̃ = {L̃}: Imperfect polyline labels

Output:

• Θ: Neural network parameters

• L = {L : 𝝁, 𝚺}: Refined polyline labels and uncertainty

1: Create equal interval sample points along each polyline

2: Initialize a Gaussian process prior of registration errors

𝑃 (ΔL |L̃) ∼ N (𝝁0, 𝚺0) // Equation 2

3: Train neural network 𝚯 based on X and ΔL distribution, then

predict pixel class probabilities 𝑃 (Ŷ|X,Θ) // Equation 4

4: while model not converged do

5: Estimate (𝝁1,Σ1) of likelihood function F (ΔL |Ŷ,X,Θ) based

on class predictions Ŷ // Figure 4 (b)

6: Update (𝝁,Σ) of posterior 𝑃 (ΔL |Ŷ,X,Θ) // Equation 8

7: Re-train neural network 𝚯 based on posterior 𝑃 (ΔL |Ŷ,X,Θ)

and predict pixel class probabilities 𝑃 (Ŷ|X,Θ)// Equation 4

8: return 𝚯, {L} = {𝝁, 𝚺} //The estimated mean and uncertainty

of true polyline distribution is returned

Time complexity of Algorithm 1: The cost includes neural net-

work training, estimate (𝝁1,Σ1) based on the model predictions,

and update (𝝁,Σ) based on equation 8. Estimating (𝝁1,Σ1) costs

𝑂 (𝑁 ), where 𝑁 is the total number of sampled points along the

imperfect polyline. The time complexity is linear because we as-

sume independence between different points in this step. Updating

(𝝁,Σ) based on equation 8 costs 𝑂 (𝑁 3), because we need to take

inversion of the covariance matrix. To reduce the time complexity,

we divide the polyline into multiple segments (blocks) and each

segment contains 𝑘 points. Then the time complexity is reduced to
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Figure 4: Illustration of reducing uncertainty for polyline labels through posterior estimation

𝑂 (𝑁𝑘2). In practice, we can choose a reasonable value of 𝑘 based

on domain knowledge (e.g., to what extent the registration errors

between nearby points along a polyline resemble each other).

4 EVALUATION

The goal is to compare the proposed model with the baselines in un-

certainty quantification and model classification performance. We

will also analyze the training iterations and parameter sensitivity

of the proposed model. All experiments were conducted on a deep

learning workstation with 4 NVIDIA RTX 6000 GPUs connected by

NV-Link (each with 24GB GPU memory) and 128 GB RAM. For the

deep learning base methods, We used U-Net [22] and DeepLab [4].

We also implemented three weakly supervised learning baselines.

For baselines, we obtain the model uncertainty based on the output

probability after softmax layer (confidence).

• Base model (BaseDL):We used the U-Net model with a 224

by 224 input shape implemented in Keras [22](source codes [21, 26])

and the DeepLabv3+ model [4].

• Base model with self-training (SelfDL): We selected those

patches with high confidence predictions and add those into the

training set for the next iteration.

• Base model with patch-based translation (PatchDL): We

implemented patch-based translation[18] by computing the class

posterior probability to train the base model iteratively.

•Weakly-supervised spatial deep learning (WssDL): We im-

plemented framework for vector labels with registration errors[9]

that iteratively updates neural networks parameters and infers true

vector label locations with dynamic programming.

• Registration-uncertainty-aware deep learning frame-

work (RuaDL): We used the base deep learning models imple-

mented in Python and Keras with our framework.

Dataset description: We evaluated our proposed method in

two real-world high-resolution remote sensing datasets of the Na-

tional Hydrography Dataset (NHD) refinement application. The two

datasets were collected from two watersheds at the Rowan Creek

and Panther Creek, USA. The input features include earth imagery

from the National Agriculture Imagery Program (NAIP) with red,

green, blue, and near-infrared channels, digital elevation model,

Lidar point cloud intensity, and slope derived from elevation. The

input imperfect streamline location shapefile was collected from an

earlier coarse version of NHD and non-expert volunteers by visually

interpreting the imagery. The truth streamline locations for testing

were manually refined by hydrologists for the evaluation purpose

and were hidden from model training and validation. All imagery

was resampled into a 1-meter resolution. We used a 4-meter buffer

to rasterize polylines in the first dataset and a 16-meter buffer in

the second dataset (due to different river stream widths).

The number of sample windows (224 by 224 pixels) in the train-

ing, validation, and test sets were 2792, 200, and 160 in the first

dataset and 1008, 60, and 300 in the second dataset.

Model hyper-parameters: For the base model, the dropout

rate is 0.2. We used the negative of dice co-efficient as the loss

function, a decaying rate that reduced the learning rate by half if

the validation loss did not improve over five epochs (with an initial

learning rate of 0.01 and a minimum of 10−5). We also used early

stopping with a patience of 20 epochs and a maximum of 50 epochs.

Classification evaluation metrics: We used precision, recall,

and F1 score on the streamline class to evaluate classification perfor-

mance and use IoU (intersection over union with manually refined

lines) to measure the quality of refined training lines.

Uncertainty quantification evaluation metrics: The quanti-

tative evaluation metrics for uncertainty estimations performance

is Accuracy versus Uncertainty (𝐴𝑣𝑈 )[13]. We set an uncertainty

threshold𝑇𝑢 to group uncertainty estimation into certain and uncer-

tain. Then the sample predictions are grouped into four catetgories

as Table 1 shows. 𝑛AC, 𝑛AU, 𝑛IC, 𝑛IU represent the number of sam-

ples in the categories AC,AU, IC, IU, respectively. As Equation 9

shows, 𝐴𝑣𝑈 measures the percentage of two categories AC and IU .

A reliable model should provide higher𝐴𝑣𝑈 measure (𝐴𝑣𝑈 ∈ [0, 1]).

Table 1: Accuracy versus Uncertainty (AvU)

Uncertainty

Certain Uncertain

Accuracy
Accurate Accurate Certain (AC) Accurate Uncertain (AU)
Inaccurate Inaccurate Certain (IC) Inaccurate Uncertain (IU)

𝐴𝑣𝑈 =

𝑛AC + 𝑛IU
𝑛AC + 𝑛AU + 𝑛IC + 𝑛IU

(9)

However, 𝐴𝑣𝑈 is usually biased by the accuracy of the model.

Since model tend to have high confidence for accurate prediction.
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(a) Initialization

(IoU: 0.18)

(b) Iteration 1

(IoU: 0.26)

(c) Iteration 2

(IoU: 0.30)

(d) Iteration 3

(IoU: 0.32)

(e) Iteration 4

(IoU: 0.36)

Imperfect Line

Ground-truth

Inferred Line

Uncertainty

Figure 5: Refined polyline labels and its uncertainty: the uncertainty of the inferred line is reduced during iterations.

We propose an evaluation metric that evaluate uncertainty perfor-

mance for accurate and inaccurate prediction separately. Specif-

ically, we compute 𝐴𝑣𝑈𝐴 for accurate predictions and 𝐴𝑣𝑈𝐼 for

inaccurate predictio with the following equations:

𝐴𝑣𝑈𝐴 =

𝑛AC

𝑛AC + 𝑛AU
, 𝐴𝑣𝑈𝐼 =

𝑛IU

𝑛IC + 𝑛IU
(10)

In our evaluation, we compute the harmonic average of 𝐴𝑣𝑈𝐴

and 𝐴𝑣𝑈𝐼 : 𝐴𝑣𝑈 =
2∗𝐴𝑣𝑈𝐴∗𝐴𝑣𝑈𝐼

𝐴𝑣𝑈𝐴+𝐴𝑣𝑈𝐼
to penalize the extreme cases in-

stead of the arithmetic average .

4.1 Comparison on Classification Performance

We first compared the overall classification performance between

the base model, weakly supervised learning based on self-training,

patch-based translation and spatial deep learning. The setup was

the same as described at the beginning of this section. The results

on two datasets were summarized in the left column of Table 2

and Table 3 (Appendix). The first column in the confusion matrices

was the number of pixels predicted into the non-stream class. The

second column in the confusion matrices was the number of pixels

predicted into the stream class. We can see that the pre-trained

U-Net model from the imperfect ground truth label had very poor

precision and recall in the streamline class (the overall F1 score

was 0.42). Adding self-training strategy slightly improved the test

F1 from 0.42 to 0.47 (largely due to a better recall). Patch-based

translation improved the recall from 0.44 to 0.69 but the precision

dropped to 0.31. The reason for the worse precision is that patch-

based translation cannot reduce the uncertainty of the polyline label.

The weakly-supervised spatial deep learning model perform well,

because the method explicitly captures the spatial registration error.

However, the limitation of spatial deep learning is that it cannot

estimate the refined label uncertainty, which will be discussed in

subsection 4.2. Our proposed RuaDL framework based on iterative

training improved the precision from 0.39 to 0.65 and improved the

recall from 0.44 to 0.70. The overall F1-score in our method is 0.67.

The confusion matrix shows that our method reduces the number

of false positives from 79801 to 51599 (by 61%) and reduces the

number of false negatives from 79672 to 40303 (by 56%). The metrics

confirmed that our method significantly enhanced the baseline

model when the training labels were imperfect. We see similar

results on the second dataset (see Table 3). The results with DeepLab

are provided in supplementary materials

The polyline quality and uncertainty value during differ-

ent iterations: To understand the polyline refinement process and

uncertainty reduction over iterations, we selected a smaller patch

of the training area and plotted the inferred polyline (red) and its

uncertainty ( black) after each iteration in Figure 5. In each iteration,

we train a new U-Net from scratch based on the current refined

polyline labels and their uncertainty. We initialized the Gaussian

Process kernel with a large variance value. We can see that in the

following iteration, the polyline label IoU is improved and its un-

certainty value is reduced. After convergence, the polyline IoU was

improved from 0.18 to 0.36 in the whole training area.

4.2 Comparison on Uncertainty Quantification
Performance

We aim to evaluate the performance of uncertainty quantification

for our proposed RuaDL framework. We expect the model to be

certain about the refined label prediction when it is accurate and

provides higher uncertainty estimates when making inaccurate

label refinement. We choose two cases to visualize the uncertainty

estimation performance as Figure 6 shows. We can see Figure 6

(b) show higher uncertainty on the inferred polyline label and the

label quality is worse than 6 (a). The uncertainty estimations can

reflect their label refinement quality.

We also evaluate the uncertainty estimation performance quan-

titatively of our model versus baseline methods: deep learning

base model, weakly-supervised learning based on self-training,

patch-based translation, and spatial deep learning. The quantitative

evaluation metric is 𝐴𝑣𝑈 in Equation 10 and the results were sum-

merized in the right column of Table 2 and Table 3. The numbers

in the table correspond the number of samples in four categories:

𝑛AC, 𝑛AU, 𝑛IC, 𝑛IU. We can see the base U-Net has good uncertainty

estimation for accurate predictions (97% are certain) but for the

inaccurate predictions, the uncertainty estimation tend to be over-

confident, 14% are uncertain. U-Net with self-training and patch-

basedmodel showworse𝐴𝑣𝑈 because the iterative training strategy

make the model more certain about its prediction during iteration,

especially for the inaccurate predictions. Weakly-supervised spatial

deep learning model improve the overall classification accuracy

dramatically. However, for the inaccurate prediction, the model

only give high uncertainty to 14% samples. The overall 𝐴𝑣𝑈 is 0.25.

In contrast, our model improve the overall𝐴𝑣𝑈 to 0.54, significantly

higher than the baselines, because it improves the uncertainty esti-

mations for inaccurate prediction to 38%. We can observe similar

results in the second dataset. The baselines give worse uncertainty

estimations for inaccurate predictions (around 5% ∼ 8% are un-

certain). In contrast, our model has 58% uncertain samples for the

inaccurate prediction, dramatically improves the overall uncertainty
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Table 2: Comparison on classification and uncertainty estimation performance on dataset 1

Classification Performance Uncertainty Estimation Performance

Method Class Confusion Matrix Precision Recall F1 score Accuracy Uncertainty 𝐴𝑣𝑈𝐴/𝐴𝑣𝑈𝐼 AvU

BaseDL

Negative Positive Certain Uncertain

Non-stream 9818176 79801 0.99 0.99 0.99 Accurate 248182 18295 0.93

Stream 79672 57551 0.39 0.44 0.42 Inaccurate 460083 90005 0.14 0.24

SelfDL

Negative Positive Certain Uncertain

Non-stream 9747792 150185 1.00 0.98 0.99 Accurate 275847 16439 0.94

Stream 48750 88473 0.37 0.64 0.47 Inaccurate 505295 53411 0.10 0.18

PatchDL

Negative Positive Certain Uncertain

Non-stream 9686619 211358 1.00 0.98 0.99 Accurate 293279 20592 0.93

Stream 41302 95921 0.31 0.69 0.43 Inaccurate 577582 73527 0.11 0.19

WssDL

Negative Positive Certain Uncertain

Non-stream 9867813 30164 0.99 0.99 0.99 Accurate 785916 44648 0.95

Stream 57614 79609 0.71 0.58 0.64 Inaccurate 420379 61823 0.14 0.25

RuaDL

Negative Positive Certain Uncertain

Non-stream 9846378 51599 1.00 0.99 0.99 Accurate 742436 53236 0.93

Stream 40552 96671 0.65 0.70 0.67 Inaccurate 397575 237981 0.38 0.54

estimations performance. The results with DeepLab base model are

provided in supplementary materials.

Ground-truth

Inferred line

(a) Low uncertainty case (b) High uncertainty case

Uncertainty

Figure 6: Uncertainty visualization

4.3 Sensitivity analysis

We also conducted a sensitivity analysis of our model to differ-

ent hyper-parameters, including both the Gaussian Process kernel

function parameters and sample point distances. Gaussian process

kernel includes initial standard deviation 𝜎0, kernel length scale

𝑙 , and the number of sample points 𝑘 in one segment (the size of

the covariance matrix). The results are summarized in Figure 7.

First, we change the kernel initial standard deviation 𝜎0 from 2 to

8 and used the default setting in all other hyper-parameters. The

corresponding test F1 scores are in the Figure 7(a). We can see that

when the prior uncertainty (standard deviation) increases, the test

F1 score first increases and then become stable. The reason is that

if the initial uncertainty is too small, it cannot cover the feature

around the true polyline, which will mislead the following iteration.

Second, we change the kernel length scale from 10 to 70. The results

in Figure 7(b) show that the performance is best when the kernel

length scale is larger than 30. This is because when the length scale

is larger, Gaussian Process can capture more correlation between

neighbors. In the dataset, the registration error in one point loca-

tion is highly correlated with near neighbors. Figure 7(c) shows

that when we increase the block size 𝑘 of each segment, the test F1

score first increases and then drops. This is because we assume in-

dependence between different segments, and small block sizes will

ignore the correlation between points in different blocks. On the

other hand, too large block size is computationally inefficient and

can cause round-off errors. We also conducted a sensitivity analysis

of our model to the distance between the sample points along the

imperfect polyline 𝜆 as summarized in Figure 7(d). We changed 𝜆

from 5, 10, 15 to 20. The best performance was achieved when the

candidate point interval size was small (10 meters). The reason is

that a small sample point interval provided a high spatial precision

in line refinement. The sensitivity analysis of the perpendicular

candidates distance are provided in the supplementary material.

2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

F
1
 S

c
o
re

(a) Prior uncertainty

20 40 60
0.5

0.55

0.6

0.65

0.7

F
1
 S

c
o
re

(b) Kernel length scale

20 40 60
0.55

0.6

0.65

0.7

F
1
 S

c
o
re

(c) Block size

5 10 15 20
0.55

0.6

0.65

0.7

F
1
 S

c
o
re

(d) Distance along a polyline

Figure 7: Parameters sensitivity analysis.
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4.4 Analysis of computational costs

We evaluated the computational efficiency of our framework. The

time costs between iterations were summarized in Figure 8. The

blue and orange bars showed the time costs of polyline refinement

in the CPU and model re-training in the GPUs, respectively. We can

see that the posterior estimation (polyline refinement) part took far

less time than the model training. The time cost of model training

varied across iterations due to early stopping. The longest training

time was around 10 minutes in one iteration. The numbers were

highly dependent on the hardware platform.
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Figure 8: Time cost analysis of training process.

5 CONCLUSION AND FUTURE WORKS

This paper investigates a novel weakly supervised learning frame-

work that explicitly models the uncertainty of vector label registra-

tion errors based on a Gaussian process. We propose an uncertainty-

aware loss function and design an iterative uncertainty reduction

method. Evaluations show that the proposed framework outper-

forms several baseline methods.

One limitation is we only evaluated the idea for only Earth

image segmentation application. We plan to evaluate the proposed

approach on other applications such as medical image analysis. We

will also generalize the approach from polyline vector labels to

polygon vector labels, from binary classes to multiple classes.
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6 SUPPLEMENTARY MATERIAL

6.1 Model and Dataset

Model Architecture: The U-Net model consists of an encoder-

decoder structure. The encoder has six double-convolution layers

and five max-pooling layers. The number of output filters in each

convolution layer is 32, 64, 128, 256, 512, 1024. There is a batch

normalization operation within each convolutional layer before

non-linear activation based on ReLU (rectified linear unit). The

decoder of the model upsamples the encoded feature map to higher

resolution with transposed convolution and concatenates upsam-

pled features with corresponding feature maps from the encoder.

We used the DeepLabv3+ model [4] with an input shape of 224

by 224. It was implemented in Keras1. The DeepLabv3+ model has

an encoder-decoder structure. The encoder applies Atrous Spatial

Pyramid Pooling (ASPP) with 4 different rates to detect multiple-

scale features. The encoder uses an output stride of 16. Then the

encoder features are first bilinearly upsampled by a factor of 4 and

then concatenated with the corresponding low-level features from

the network backbone that have the same spatial resolution. Then

another bilinear upsampling by a factor of 4 is applied to obtain the

original resolution. Note that the network backbone ResNet-101 in

the original paper cannot be utilized for our tasks, because there

is no available pre-trained model for the earth image with seven

input spectral bands. The network backbone we used is 4 double-

convolution layers and 4 max-pooling layers. We initialized the

backbone model randomly and trained it with the DeepLab model

together.

Model Hyper-paramterers: For deep learning base model:The

distance interval between two sample points along an imperfect

polyline is 10 meters. This value is determined to both maintain a

decent sample rate and avoid interference between two consecutive

sample points.We set the maximum registration error distance as 25

meters for the Rowan Creek dataset and 75 meters for the Panther

Creek dataset. For self-training: The confidence threshold 𝑡 = 0.95.

The convergence threshold is 0.001. For patch-based translation:

patch size is 16 by 16 and translation distance is 5. The convergence

threshold is 0.001. For RuaDL: The convergence threshold is 0.001.

Dataset Description: Training and validation windows were

sampled from the same region but were carefully selected to avoid

overlapping. Test windows were sampled from a different scene to

have independent testing. We used stratified sampling to balance

the number of windows that contain the stream class with those

that do not. The numbers of training and validation windows are

after data augmentation (horizontal and vertical flipping, rotation).

6.2 Comparison on Classification Performance

We also compared the overall classification performance between

the DeepLabv3+ model, weakly supervised learning based on self-

training, patch-based translation, and our proposed model on the

two dataset. The setup was the same as described. The results on

second datasets were summarized in Table 4 and Table 5. We can

observe that our model significantly improve both the uncertainty

estimation performance and classification performance than base-

lines.

1https://github.com/rishizek/tensorflow-deeplab-v3-plus
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Figure 9: Distance in perpendicular to a polyline sensitivity

analysis.

6.3 Theorem proof

In this section, we provide proof for the Theorem 1.

Theorem 6.1. Assume that the point shift direction is perpendicu-

lar to the segment between two points, denote 𝑁𝐵 (𝐿′) as the total pixel

number after rasterizing polyline L′, 𝑟𝑖 is the shift distance of pixel 𝑖

along the perpendicular direction of two consecutive points on L′, the

projection of pixel 𝑖 to the polyline L′ is p𝑗 , the variance of point p𝑗
is 𝜎2𝑗 , and denote the cumulative density function of N(0, 𝜎2𝑗 ) as Φ𝑗 ,

then the expected likelihood of polyline 𝑃 (L|X,Θ) over the polyline

prior distribution EL∼𝑃 (L |L′) log 𝑃 (L|X,Θ) =
∑
𝑖 [Φ𝑗 (𝑟𝑖 +𝑏) −Φ𝑗 (𝑟𝑖 −

𝑏)]
log𝑝 (𝑦𝑖 |X,Θ)

𝑁𝐵 (L)
.

Proof.

EL∼𝑃 (L|L′)𝑃 (L |X,Θ)

=

∫
L

𝑃 (L |L′)

∑
(𝑢𝑖 ,𝑣𝑖 )∈𝐵 (L) 𝑝 (𝑦𝑖 |X,Θ)

𝑁𝐵 (L)
𝑑L

=

∫
L

𝑃 (L |L′)

∑
𝑖 𝐼 (𝑢𝑖 ∈ 𝐵 (L))𝑝 (𝑦𝑖 |X,Θ)

𝑁𝐵 (L)
𝑑L

=

∑︁
𝑖

∫
L

𝑃 (L |L′)
𝐼 (𝑢𝑖 ∈ 𝐵 (L))𝑝 (𝑦𝑖 |X,Θ)

𝑁𝐵 (L)
𝑑L

=

∑︁
𝑖

∫
L

𝑃 (L |L′)𝐼 (𝑢𝑖 ∈ 𝐵 (L))𝑑L
𝑝 (𝑦𝑖 |X,Θ)

𝑁𝐵 (L)

=

∑︁
𝑖

∫ 𝑏+𝑟𝑖

𝑏−𝑟𝑖

𝑁 (𝛿 𝑗 ; 0, 𝜎 𝑗 )𝑑𝛿 𝑗
𝑝 (𝑦𝑖 |X,Θ)

𝑁𝐵 (L)

=

∑︁
𝑖

[Φ𝑗 (𝑟𝑖 + 𝑏) − Φ𝑗 (𝑟𝑖 − 𝑏) ]
𝑝 (𝑦𝑖 |X,Θ)

𝑁𝐵 (L)

= Φ(
𝑟 𝑗 − 𝜇 (𝑠0) + 𝑏

𝜎 (𝑠0)
) − Φ(

𝑟 𝑗 − 𝜇 (𝑠0) − 𝑏

𝜎 (𝑠0)
)
𝑝 (𝑦𝑖 |X,Θ)

𝑁𝐵 (L)

(11)

□

6.4 Sensitivity analysis

We also conducted a sensitivity analysis of our model to the distance

between two candidate true point locations along the perpendicular

direction to a polyline 𝜆2. The results are summarized in Figure 9.

We changed the spatial precision of discretized error distance from

1, 2, 3 to 4 while keeping the same maximum range of shifting

(25 meters). We can see that when the distance 𝜆2 increases (the

sample points precision decrease), the test F1 first increases and

then drops lower. This is because a small shifting interval provided a

high spatial precision in line refinement. But the too small distance

between candidate points can be sensitive to the noise of the model

prediction.
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Table 3: Comparison on classification and uncertainty estimation performance on dataset 2

Classification Performance Uncertainty Estimation Performance

Method Class Confusion Matrix Precision Recall F1 score Accuracy Uncertainty 𝐴𝑣𝑈𝐴/𝐴𝑣𝑈𝐼 AvU

BaseDL

Negative Positive Certain Uncertain

Non-stream 13482315 236571 0.97 0.99 0.98 Accurate 2417699 78322 0.97

Stream 507022 826892 0.77 0.61 0.68 Inaccurate 1297638 49638 0.04 0.08

SelfDL

Negative Positive Certain Uncertain

Non-stream 13575265 143621 0.98 0.99 0.98 Accurate 2050127 41337 0.98

Stream 383744 950170 0.86 0.71 0.78 Inaccurate 1297638 49638 0.04 0.08

PatchDL

Negative Positive Certain Uncertain

Non-stream 13479015 239871 0.97 0.98 0.98 Accurate 2249534 52361 0.98

Stream 407656 926258 0.80 0.70 0.75 Inaccurate 1583466 75639 0.05 0.09

WssDL

Negative Positive Certain Uncertain

Non-stream 13519788 199098 0.99 0.99 0.99 Accurate 2220900 33411 0.99

Stream 137803 1196111 0.86 0.89 0.87 Inaccurate 953853 83013 0.08 0.15

RuaDL

Negative Positive Certain Uncertain

Non-stream 13544126 174760 0.99 0.99 0.99 Accurate 2569523 152704 0.94

Stream 160705 1173209 0.87 0.88 0.87 Inaccurate 576503 799703 0.58 0.71

Table 4: Comparison on classification and uncertainty estimation performance on dataset 1 with DeepLabv3+ base model

Classification Performance Uncertainty Estimation Performance

Method Class Confusion Matrix Precision Recall F1 score Accuracy Uncertainty 𝐴𝑣𝑈𝐴/𝐴𝑣𝑈𝐼 AvU

BaseDL

Negative Positive Certain Uncertain

Non-stream 9827625 70352 0.99 0.99 0.99 Accurate 319911 17474 0.95

Stream 89703 47520 0.40 0.35 0.38 Inaccurate 456510 50822 0.10 0.18

SelfDL

Negative Positive Certain Uncertain

Non-stream 9795675 102302 1.00 0.98 0.99 Accurate 239415 15056 0.94

Stream 65988 71235 0.41 0.52 0.46 Inaccurate 460747 33442 0.07 0.13

PatchDL

Negative Positive Certain Uncertain

Non-stream 9784982 112995 1.00 0.98 0.99 Accurate 265472 41645 0.86

Stream 66010 71213 0.39 0.51 0.44 Inaccurate 552875 84551 0.13 0.22

RuaDL

Negative Positive Certain Uncertain

Non-stream 9844549 53428 1.00 0.99 0.99 Accurate 892608 70084 0.93

Stream 47234 89989 0.63 0.64 0.64 Inaccurate 417870 222527 0.26 0.40

Table 5: Comparison on classification and uncertainty estimation performance on dataset 2 with DeepLabv3+ base model

Classification Performance Uncertainty Estimation Performance

Method Class Confusion Matrix Precision Recall F1 score Accuracy Uncertainty 𝐴𝑣𝑈𝐴/𝐴𝑣𝑈𝐼 AvU

BaseDL

Negative Positive Certain Uncertain

Non-stream 13585949 132937 0.98 0.99 0.98 Accurate 2023551 69454 0.97

Stream 831849 502065 0.79 0.38 0.51 Inaccurate 1678632 134386 0.07 0.13

SelfDL

Negative Positive Certain Uncertain

Non-stream 17586361 192079 0.98 0.99 0.98 Accurate 1955324 52139 0.98

Stream 877258 1414702 0.86 0.61 0.71 Inaccurate 1438856 64533 0.04 0.08

PatchDL

Negative Positive Certain Uncertain

Non-stream 13536240 182646 0.97 0.98 0.98 Accurate 2142776 44561 0.98

Stream 637782 696132 0.80 0.52 0.63 Inaccurate 1765745 95442 0.05 0.09

RuaDL

Negative Positive Certain Uncertain

Non-stream 17428621 349819 0.99 0.99 0.99 Accurate 2166744 177856 0.92

Stream 515688 1776272 0.84 0.77 0.80 Inaccurate 632465 694478 0.52 0.70
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