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ABSTRACT

Given raster imagery features and imperfect vector training labels
with registration uncertainty, this paper studies a deep learning
framework that can quantify and reduce the registration uncer-
tainty of training labels as well as train neural network parameters
simultaneously. The problem is important in broad applications
such as streamline classification on Earth imagery or tissue seg-
mentation on medical imagery, whereby annotating precise vector
labels is expensive and time-consuming. However, the problem is
challenging due to the gap between the vector representation of
class labels and the raster representation of image features and the
need for training neural networks with uncertain label locations.
Existing research on uncertain training labels often focuses on un-
certainty in label class semantics or characterizes label registration
uncertainty at the pixel level (not contiguous vectors). To fill the
gap, this paper proposes a novel learning framework that explic-
itly quantifies vector labels’ registration uncertainty. We propose a
registration-uncertainty-aware loss function and design an iterative
uncertainty reduction algorithm by re-estimating the posterior of
true vector label locations distribution based on a Gaussian pro-
cess. Evaluations on real-world datasets in National Hydrography
Dataset refinement show that the proposed approach significantly
outperforms several baselines in the registration uncertainty esti-
mations performance and classification performance.
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1 INTRODUCTION

Over the last decade, deep learning technologies have achieved
tremendous success in computer vision and natural language pro-
cessing applications. Unfortunately, the broader success of deep
learning in geoscience (e.g., Earth image classification ) has been
hindered by the lack of high-quality training labels. In these appli-
cations, collecting high-quality vector labels is slow, tedious, and
expensive due to sending a field crew on the ground or visually
interpreting high-resolution imagery pixels. On the other hand, it is
often much easier to annotate coarse vector labels with registration
errors (i.e., vector labels that may not align well with image pixels).

Given raster imagery features and imperfect vector training la-
bels with registration uncertainty, this paper studies a weakly super-
vised spatial deep learning framework that can quantify and reduce
vector label registration uncertainty as well as train neural network
parameters simultaneously. For example in the application of Na-
tional Hydrography Dataset refinement, the input raster features
include spectral bands of Earth observation imagery, the digital
elevation model, lidar point intensity, and topographic indices. The
input vector labels of river streams are polylines misaligned with
the actual stream pixels on the Earth imagery (i.e., with registration
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errors). Given such inputs, the goal is to design a learning frame-
work that can quantify and reduce the registration uncertain of
the imperfect label (i.e., refine the polyline labels) and train a deep
neural network model that can accurately classify feature imagery
pixels into binary classes (stream and non-stream).

However, the problem poses several unique challenges. First,
there exists registration uncertainty in vector label registration
errors due to unknown true vector label locations. Second, modeling
such uncertainty is non-trivial given that the vector labels are often
continuous polylines on a 2D plane while input features are discrete
pixels in a 2D grid. Such a gap poses additional challenges when
designing a pixel-wise loss function of a neural network based on
uncertain vector-level training labels and in exploring uncertainty
reduction (vector refinement) based on pixel-level class predictions.
Third, the problem requires learning neural network parameters
and inferring true vector label locations simultaneously.

Existing research on weakly-supervised learning with label un-
certainty often focuses on addressing uncertainty in label class
semantics, assuming label locations to be correct or irrelevant
(e.g., samples are independent and identically distributed) [2, 20,
27]. Techniques include simple data cleaning to filter noise [6],
choosing relatively noise-tolerant models [5], designing robust loss
function [18, 19] and learning noise distribution [14, 24]. Thus,
these techniques cannot address the registration uncertainty in
the ground truth labels. Some works focus on label location errors
and uncertainty [1, 3, 8, 15, 17, 18, 25, 28] but only infer true label
locations at the raster pixel level (e.g., small square patches, object
boundary, edge pixels, or medical pixel alignment). These methods
do not fully address the label registration uncertainty in the vector
representation and cannot guarantee line contiguity during label
refinement. One recent work [9] focuses on registration errors of
vector labels, but the method is ad-hoc and cannot quantify the
registration uncertainty, causing over-confident label refinement.
Note that the word "uncertainty” in our work should not be con-
fused with other relevant works [10-12] focusing on "ambiguity" or
"uncertainty”, which refers to nonunanimous training labels due to
different opinions of several experts, even though all of the different
opinions are considered correct. In contrast, we assume there exists
a single unknown true vector label location that perfectly aligns
with corresponding imagery features. In summary, none of existing
works can quantify and reduce the uncertainty of vector labels.

To fill the gap, we propose a novel learning framework that can
quantify and reduce registration uncertainty of the vector labels.
Specifically, we make the following contributions:

o First, we propose a registration-uncertainty-aware loss func-
tion to train neural network, which calculates the loss between the
probability of each pixel contained in the buffered area of the uncer-
tain vector label and the neural network prediction probabilities.

e Second, we propose to reduce the vector label uncertainty by
re-estimating the posterior of true vector locations as a Gaussian
process based on the prior vector label distribution (from the pre-
vious iteration) and the likelihood (from the predicted pixel class
probabilities).

o Third, evaluations on real-world high-resolution remote sens-
ing datasets in National Hydrography Dataset (NHD) refinement
show that the proposed framework outperforms baseline meth-
ods in both uncertainty estimation performance and classification
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accuracy. Case studies also confirm the quality of refined vector
labels and uncertainty estimations. (e.g., improve Accuracy-versus-
Uncertainty from 0.25 to 0.54) (e.g., reducing the false positives and
false negatives by 67% and 55%, respectively)

2 PROBLEM STATEMENT

2.1 Preliminaries

Spatial raster framework: A spatial raster framework is a tes-
sellation of a 2D plane into a regular grid. Each grid cell is a pixel.
We denote the features of all raster pixels as X € R"X"Xk, and the
corresponding pixel class labels as Y € {0, 1}"*", where n is the
raster length, and k is the input feature channel number. An Exam-
ple of feature layers are spectral bands of Earth imagery. The class
layer can be whether pixels are stream or non-stream. Figure 1(a)
provides an example of a spatial raster with 20 by 20 pixels.

Spatial vector: A spatial vector is a geometric representation
of a spatial object such as a point, polyline, and polygon on a 2D
plane. It is an alternative way of representing spatial data. This
paper focuses on polyline vectors (i.e., one or more consecutive
line segments joined end to end), such as river streams or road
segments. Mathematically, a polyline can be expressed by a curve
function L(s) = (u(s),v(s)),s € [sqg sp], where u and v are 2D
coordinates and s is a variable to reflect the one degree of freedom.
Note that for simplicity, we may omit the variable s and use L to
denote a polyline in this paper. In reality, a stream has a non-zero
width, which can be captured by a buffer on top of a polyline,
denoted as B(L). Figure 1(b) provides an example.

A spatial vector can be co-registered into a raster-based on their
common spatial reference system. After registration, a (buffered)
vector shape can be converted into a class layer Y in the raster
format (also called rasterization), i.e., pixels overlapping with the
vector are assigned with corresponding thematic class labels. After
rasterization of vector training labels, we can train neural network
parameters based on the feature layers X and the class layer Y.

L(s)

@ (b)
Figure 1: Examples of a spatial raster (a), a vector label and
rasterization (b), and registration errors (c)

Registration errors: Registration errors refer to the misalign-
ment between different spatial layers when they are co-registered
together. This paper focuses on registration errors between a vector
class label layer (e.g., polylines of river streams) and raster image
feature layers (e.g., Earth imagery). Such registration errors exist
due to manual annotation mistakes at a coarse resolution [7, 23].

Mathematically, we express registration errors between uncer-
tain vector labels L(§) and raster image features by assuming an un-
known true vector label locations L(s) (perfectly align with image
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Figure 2: Illustration of the Registration-uncertainty-aware Deep Learning (RuaDL) framework

features). Specifically, the registration error at a particular point
L(5p) on the polyline L(3) is the vector difference between that
point to a corresponding point L(sp) along perpendicular direc-
tion on the true polyline L(s) as illustrated in Figure 1(c). That
is, AL(s0) = L(so) — L(50). Since the direction of the registration
error is fixed (perpendicular) at every point on the polyline, we
only need to express it as a scalar Ay (sg), whose magnitude reflects
the distance and whose sign reflects the direction. Then, we can
express the registration errors along a polyline as a scalar function
AL(s),s € [sq spl-

Registration uncertainty (uncertainty of registration er-
rors): In the above expression of registration errors, the imperfect
vector L(5) is often given, but the true vector label location L(s)
is unknown (uncertain). Thus, the registration errors Ay (s) has
uncertainty. One of the major goals of this work is to model this
uncertainty and even reduce it through weakly supervised learning
based on image features. Note that reducing the uncertainty of
registration errors also means refining the vector training labels, as
we can easily calculate the true vector L(s) from imperfect vector
L(3) if Ay (s) is known (certain).

Uncertainty of pixel labels: As for the spatial raster frame-
work, the pixel labels Y are obtained by rasterization around the
spatial vector label locations L. Since the observed spatial vector
labels are uncertain, the raster class layer Y are also uncertain.
Note that our notion of rasterized pixel class uncertainty Y is dif-
ferent from existing works which assume independence between
pixel labels [20, 27]. In our problem, the pixel label uncertainty are
generated from spatial vector registration errors, and there exists
auto-correlation between nearby locations.

2.2 Problem definition

Based on the above definitions, we formally define our problem.
Input:

o A spatial raster framework with explanatory feature layers X

o Uncertain training labels as a set of polylines [: = {I~,1, f,g, f,n}
o A base deep neural network type (e.g., U-Net, DeepLab)
Output:

® Refined vector labels £ = {Lj, Ly, ...,L,} and the uncertainty

e Deep neural network parameters © that can predict the class
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layer Y from features X.

Objective:

e Maximize the quality of the refined vector labels

e Maximize the uncertainty estimation performance

Constraint:

® Registration errors of a polyline is assumed to be point shift along
perpendicular directions and within a maximum distance range
Amax, which is a hyper-parameter

e The class is binary (one type of vector label)

3 THE PROPOSED APPROACH

This section introduces the proposed approach that performs model
training and vector label refinement in a unified framework. The
problem is technically challenging in several aspects. First, we need
to model the geometric registration errors in vector shape to capture
the uncertainty and auto-correlation of the polyline registration
error between nearby spatial locations. Second, to learn the neural
network parameters we need to incorporate the uncertainty of the
vector labels into the uncertainty of pixel-wise labels. Thirdly, we
need to reduce the uncertainty of registration errors based on the
pixel-wise prediction of the neural network. To address these chal-
lenges, we propose a generic spatial deep learning framework that
iteratively updates deep learning model parameters while inferring
hidden true vector label distributions. The framework is illustrated
in Figure 2. Given an imperfect polyline label L, we model the un-
derlying ground truth L based on a Gaussian process that explicitly
captures the uncertainty of vector label registration errors along
a continuous polyline. Based on the uncertainty model, we pro-
pose a registration-uncertainty-aware loss function that can learn
neural network parameters. The main intuition is to translate the
uncertain vector line into soft weights of image pixels in the loss
function. Then we propose to reduce the uncertainty of registration
errors by re-estimating the posterior distribution of true vector
label locations based on predicted pixel class probabilities from
neural network model. We now introduce each component.



KDD ’22, August 14-18, 2022, Washington, DC, USA

3.1 Probabilistic model of the registration
uncertainty of polylines

Design a probabilistic model for registration uncertainty of polyline
is non-trivial for three reasons. First, the registration error at any
point on the polyline is a 2D vector with both a distance and a
direction. Second, the distance of registration error is a continuous
variable. Third, a continuous polyline concerns an infinite number
of points, whose registration errors are mutually dependent due to
spatial auto-correlation.

To address the above challenges, we propose to use a Gaussian
process to model the uncertainty of polyline registration errors. Re-
call that in the previous section, we express the registration errors
along a polyline as a scalar function A (s),s € [sq, sp]. Thus, we
assume Ay (s) to follow a Gaussian process [16], as expressed in
Equation 1 with the prior mean y(s) = 0 and the covariance function
based on a kernel k(s, s’) = ag exp(—|s — s’|?/21?), where ag is the
variance and [ is the length scale (kernel bandwidth). These hyper-
parameters can be determined based on prior knowledge about the
quality of the observed polyline label or through cross-validation.
Intuitively, we should select a relatively large variance at the begin-
ning to reflect the high uncertainty of true polyline locations. Note
that our work is different from existing Gaussian process models for
registration uncertainty in medical images [15], which focuses on
registration errors between pixels from two corresponding images.

AL(S) ~ GP(,U(S),k(S,S’)),S,S/ € [s(ls Sb] (1)
[ 7
] /
gl e [y /|
N ulsq) o) 7
W\ T
NREREZARE
T, @~ b)
3 muE
. D, (T + b)
( “j' () SN \.‘\’
HolS1)" - RN
P(ALIL)™ V (1o, % o) § mis Simm

(a) Gaussian process model (b) The probability of a pixel falling into

the buffer of true polyline given reg-

istration error distribution P(Ar|L) ~
N (po, Zo)

Figure 3: Gaussian process model for registration uncertainty

In order to allow re-estimation (refine) the Gaussian process
model (reduce its uncertainty through learning iterations), we sam-
ple a finite number of equal-interval points along the imperfect
polyline L(5), denoted as L = {L(51), L(32), ..., I:(§nL)}, where np, is
the number of sample points. We denote the corresponding sample
points along the true polyline L(s) as L = {L(s1),L(s2), ..., L(sn. ) }.
Thus, given the imperfect polyline location L, the true vector la-
bel locations L can be uniquely determined by Ay, which follows
a multi-variate Gaussian distribution, as expressed in Equation 2.
The mean vector yo and covariance matrix X are determined by
the mean function u(s) and kernel function k(s,s”) of the Gaussian
process in Equation 1. As shown in Figure 3(a), the red bracket
shows the registration errors Ar, = {Ar(s1), AL(Si), ..., AL(sn ) } at
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each point. The green line illustrates the registration errors distri-
bution, which follow a multi-variate Gaussian distribution, with
mean vector of pro = {po(s1), Ho(si), ..., Ho(sn, )} and covariance
Y. The non-zero covariance between sampled points can capture
the spatial auto-correlation of registration errors.

P(ALIL) ~ N (po,%0) (2)

3.2 Training neural network parameters with
uncertain polyline label

This part aims to learn neural network parameters with uncertain
vector labels. Instead of training a neural network with the ob-
served imperfect vector label L directly, we employ a probabilistic
distribution of the unknown true vector label P(L|L), which can be
determined from P(Ar|L). Then we designed an uncertainty-aware
loss function. This is challenging because we need to incorporate
the pixel-level class probability predictions from the network and
vector-level uncertainty of training labels.

Let us first review the common binary cross-entropy loss func-
tion based on a fixed (certain) polyline training label L in Equation 3,
where p; represents a pixel, Ip;eB) is an indicator function to
check if pixel p; is within the polyline buffer B(L), Y and j are
the predicted class probabilities on all pixels and on pixel pj, re-
spectively. The indicator function e isa hard label (0 or 1)
for pixels acquired from the certain polyline label and p(7;|X, ©)
is the neural network prediction probability.

L(Y.L) = ) {Iy e, log p(9;1X, ©)
7 ®)
+(1 =T eBw)) (1 -logp(9;1X,0))}

When the vector training labels are uncertain, i.e., the vector
label L follows a probabilistic distribution P(LIL), we generalize
the above loss function into its expectation on L. This is expressed
in Equation 4, where the distribution of unknown true vector label
location L can be calculated from a Gaussian prior (Equation 1) or
from a posterior estimation given image features (Equation 8). For
now, we assume that P(L|L) is already calculated.

LLL) =By pi) D A en) log p(§;1X.©)
7 @
+(1-Tp eBw)) (1-logp(9;1X,0))}

We can simplify the above uncertainty-aware loss function by
taking the expectation operation onto the indicator function inside
the sum. As shown in Equation 5, where the expectation of the
indicator function becomes the probability of a pixel falling into the
buffer of the true polyline B(L). The probability P(p; € B(L)) can
be considered as a soft weight on each pixel in the loss function. The
soft weight can capture the uncertainty of pixel labels (in contrast
to the hard weight in the indicator function based on a certain
polyline label in Equation 3).

LLL) = D By iy Tpyen log p(#1X. ©)
J

+ ELWP(L“'_) (1- ]ijeB(L))(l —logp(9;1X,©))

©)
= > P(p; € B(L) logp(§;1X. ©)
J

+(1-P(p; € B(L)))(1-logp(4;1X,0))
However, it is still non-trivial to compute the probability of a
pixel falling into the buffer of the true polyline label, i.e., P(p; € B(L)),
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given the probabilistic distribution of the polyline. We present a
theorem to compute this probability.

THEOREM 3.1. Given an imperfect polyline L(5), whose registration
errors follow a Gaussian process Ay (s) ~ GP(u(s), k(s,s’)), and an
image pixel p j. Assume that the projection of p; to the polyline is point
so, whose corresponding registration error along the perpendicular
direction is Ap(so) ~ N(u(so), 5%(s0)). B(L) is the polygon that buffer
on top of the polyline L. Then P(p; € B(L)) can be computed by
Equation 6, where ® is the cumulative distribution function of a
standard normal distribution, r; is the scalar distance to pixel p; to

the imperfect polyline, and b is the buffer width.
j —p(so) +b rj—p(so) —b

_o( _
P(p; € B(L)) = &( (o) ) —@( (o)

) (©)

Proor. Asillustrated in Figure 3(b), the main intuition is that the
probability of a pixel falling into the true polyline buffer P(p; € B(L))
equals the probability of the true polyline location Sy being located
within the buffer distance of the pixel r; — b and r; + b, which is
equal to s, (r; +b) — D5, (rj — b). The detailed proof is provided in
the supplementary materials. O

3.3 Reducing uncertainty of polyline labels
through posterior estimation

The previous two subsections introduce a probabilistic model of the
uncertainty of polyline label registration errors and an uncertainty-
aware loss function to train deep neural network parameters. This
subsection proposes a method to re-estimate the uncertainty distri-
bution (i.e., to reduce the uncertainty) of polyline labels based on
the neural network pixel class predictions.

The main idea is expressed in Figure 4. The posterior is re-
estimated from the prior distribution and likelihood function based
on neural network predictions. First, the prior distribution of poly-
line registration errors is modeled with Gaussian process in subsec-
tion 3.1 P(AL|L) ~ N (po, Xo) as shown in the Figure 4(a). Second,
we denote streamline class (positive) from the neural netowork
prediction as Y (black and red pixels in Figure 4(b)). Then we
model the the likelihood function F(AL|Y, X, ©) as a multi-variate
Gaussian distribution N (1,%1), whose mean and variance are
determined by the prediction positive class along the perpendic-
ular line of the imperfect polyline location (as illustrated by the
red pixels in Figure 4(b)). Specifically, we compute the location
mean and variance (g1 (s;), 01(s;)) independently at different sam-
ple points. Then p1 = {p1(s1), p1(s2), ..., p1(sn, )} and covariance
X1 =diag{o1(s1), 01(s2), ..., 1(sn. ) }. Then the posterior of regis-
tration error follows a Gaussian distribution as Theorem 3.2 shown.
The posterior estimation of Gaussian process can take advantage
of the covariance between samples to interpolate its mean estimate
and variance. As an example in Figure 4(c), there is no positive
class prediction along the perpendicular direction of point §1, and
the variance o (s1) is relative larger than other points. For next
iteration the registration errors prior distribution can be updated
by the estimated posterior.

THEOREM 3.2. Given the registration error prior distribution P(Ay,) ~
N (po,X0) and likelihood estimation ¥ (AL|Y, X, ©) ~ N(p1,%1)
from neural netowrk prediction Y. The posterior true polyline location
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distribution follows a Gaussian distribution
P(ALIY. X, ©) ~ N(p.%) (7)

where
2=+ ) =2 o + 27 ) (3)

Proor. The intuition is to compute the posterior by Bayes’ the-
orem with the prior and likelihood function. We omit the details
due to limited space. O

3.4 Overall algorithm

Algorithm 1 provides an overview of the proposed weakly super-
vised learning framework. The framework first initializes a Gauss-
ian process prior of the uncertain polyline registration errors. Based
on the uncertainty-aware loss function, it trains a neural network
and predicts pixel classes. Then the framework conducts iterations.
Each iteration first estimates the independent Gaussian distribution
of true polyline locations at sample points based on predicted pixel
classes. Based on the prior (or posterior) distribution of true poly-
line locations from the previous iteration, the algorithm updates
the new posterior distribution. After that, it re-trains the neural
network based on the new posterior distribution and makes class
predictions. The iterations continue until the model converges (e.g.,
no improvement in converged validation loss).

Algorithm 1 The overview of RuaDL framework

Input:
e X: Explanatory feature layers
e £ = {L}: Imperfect polyline labels
Output:
e O: Neural network parameters
o L ={L: p,X}: Refined polyline labels and uncertainty
1: Create equal interval sample points along each polyline
2: Initialize a Gaussian process prior of registration errors
P(ALIL) ~ N (po, %) // Equation 2
3: Train neural network © based on X and Ay, distribution, then
predict pixel class probabilities P(Y|X, ©) // Equation 4
4: while model not converged do
5. Estimate (1, %1) oflikelihood function  (Ar|Y, X, ©) based
on class predictions Y/ Figure 4 (b)
6. Update (p1,%) of posterior P(AL|Y, X, ©) // Equation 8
7. Re-train neural network © based on posterior P(Ar, Y, X, ©)
and predict pixel class probabilities P(¥|X, ©)// Equation 4
8: return O, {L} = {p, X} //The estimated mean and uncertainty
of true polyline distribution is returned

Time complexity of Algorithm 1: The cost includes neural net-
work training, estimate (p1,21) based on the model predictions,
and update (p, X) based on equation 8. Estimating (p1,X1) costs
O(N), where N is the total number of sampled points along the
imperfect polyline. The time complexity is linear because we as-
sume independence between different points in this step. Updating
(11, %) based on equation 8 costs O(N?), because we need to take
inversion of the covariance matrix. To reduce the time complexity,
we divide the polyline into multiple segments (blocks) and each
segment contains k points. Then the time complexity is reduced to
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Figure 4: Illustration of reducing uncertainty for polyline labels through posterior estimation

O(Nk?). In practice, we can choose a reasonable value of k based
on domain knowledge (e.g., to what extent the registration errors
between nearby points along a polyline resemble each other).

4 EVALUATION

The goal is to compare the proposed model with the baselines in un-
certainty quantification and model classification performance. We
will also analyze the training iterations and parameter sensitivity
of the proposed model. All experiments were conducted on a deep
learning workstation with 4 NVIDIA RTX 6000 GPUs connected by
NV-Link (each with 24GB GPU memory) and 128 GB RAM. For the
deep learning base methods, We used U-Net [22] and DeepLab [4].
We also implemented three weakly supervised learning baselines.
For baselines, we obtain the model uncertainty based on the output
probability after softmax layer (confidence).

e Base model (BaseDL): We used the U-Net model with a 224
by 224 input shape implemented in Keras [22](source codes [21, 26])
and the DeepLabv3+ model [4].

¢ Base model with self-training (SelfDL): We selected those
patches with high confidence predictions and add those into the
training set for the next iteration.

¢ Base model with patch-based translation (PatchDL): We
implemented patch-based translation[18] by computing the class
posterior probability to train the base model iteratively.

o Weakly-supervised spatial deep learning (WssDL): We im-
plemented framework for vector labels with registration errors[9]
that iteratively updates neural networks parameters and infers true
vector label locations with dynamic programming.

o Registration-uncertainty-aware deep learning frame-
work (RuaDL): We used the base deep learning models imple-
mented in Python and Keras with our framework.

Dataset description: We evaluated our proposed method in
two real-world high-resolution remote sensing datasets of the Na-
tional Hydrography Dataset (NHD) refinement application. The two
datasets were collected from two watersheds at the Rowan Creek
and Panther Creek, USA. The input features include earth imagery
from the National Agriculture Imagery Program (NAIP) with red,
green, blue, and near-infrared channels, digital elevation model,
Lidar point cloud intensity, and slope derived from elevation. The
input imperfect streamline location shapefile was collected from an
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earlier coarse version of NHD and non-expert volunteers by visually
interpreting the imagery. The truth streamline locations for testing
were manually refined by hydrologists for the evaluation purpose
and were hidden from model training and validation. All imagery
was resampled into a 1-meter resolution. We used a 4-meter buffer
to rasterize polylines in the first dataset and a 16-meter buffer in
the second dataset (due to different river stream widths).

The number of sample windows (224 by 224 pixels) in the train-
ing, validation, and test sets were 2792, 200, and 160 in the first
dataset and 1008, 60, and 300 in the second dataset.

Model hyper-parameters: For the base model, the dropout
rate is 0.2. We used the negative of dice co-efficient as the loss
function, a decaying rate that reduced the learning rate by half if
the validation loss did not improve over five epochs (with an initial
learning rate of 0.01 and a minimum of 10~°). We also used early
stopping with a patience of 20 epochs and a maximum of 50 epochs.

Classification evaluation metrics: We used precision, recall,
and F1 score on the streamline class to evaluate classification perfor-
mance and use IoU (intersection over union with manually refined
lines) to measure the quality of refined training lines.

Uncertainty quantification evaluation metrics: The quanti-
tative evaluation metrics for uncertainty estimations performance
is Accuracy versus Uncertainty (AvU)[13]. We set an uncertainty
threshold T;, to group uncertainty estimation into certain and uncer-
tain. Then the sample predictions are grouped into four catetgories
as Table 1 shows. nac, nau, nic, niy represent the number of sam-
ples in the categories AC, AU, IC, IU, respectively. As Equation 9
shows, AvU measures the percentage of two categories AC and IU .
A reliable model should provide higher AvU measure (AoU € [0, 1]).

Table 1: Accuracy versus Uncertainty (AvU)

Uncertainty
Certain Uncertain
Accurac Accurate Accurate Certain (AC) Accurate Uncertain (AU)
Y [T Tnaccurate | Inaccurate Certain (IC) | Inaccurate Uncertain (IU)
nac+n
AoU = AC T "[U ©)

nAC + AU *RIC + MU
However, AoU is usually biased by the accuracy of the model.
Since model tend to have high confidence for accurate prediction.
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Imperfect Line
I Ground-truth
I Inferred Line
I Uncertainty

(b) Iteration 1
(IoU: 0.26)

(c) Iteration 2
(IoU: 0.30)

(a) Initialization
(IoU: 0.18)

(d) Iteration 3
(IoU: 0.32)

(e) Iteration 4
(IoU: 0.36)

Figure 5: Refined polyline labels and its uncertainty: the uncertainty of the inferred line is reduced during iterations.

We propose an evaluation metric that evaluate uncertainty perfor-
mance for accurate and inaccurate prediction separately. Specif-
ically, we compute AvUy for accurate predictions and AoUr for
inaccurate predictio with the following equations:

nuy
nic +ny

nac
AUUA = ,AUU] =
nac +nau

(10)

In our evaluation, we compute the harmonic average of AvUy

3 _ 2xAoUx*AoUr
and AZ}U]. AoU = W

stead of the arithmetic average .

to penalize the extreme cases in-

4.1 Comparison on Classification Performance

We first compared the overall classification performance between
the base model, weakly supervised learning based on self-training,
patch-based translation and spatial deep learning. The setup was
the same as described at the beginning of this section. The results
on two datasets were summarized in the left column of Table 2
and Table 3 (Appendix). The first column in the confusion matrices
was the number of pixels predicted into the non-stream class. The
second column in the confusion matrices was the number of pixels
predicted into the stream class. We can see that the pre-trained
U-Net model from the imperfect ground truth label had very poor
precision and recall in the streamline class (the overall F1 score
was 0.42). Adding self-training strategy slightly improved the test
F1 from 0.42 to 0.47 (largely due to a better recall). Patch-based
translation improved the recall from 0.44 to 0.69 but the precision
dropped to 0.31. The reason for the worse precision is that patch-
based translation cannot reduce the uncertainty of the polyline label.
The weakly-supervised spatial deep learning model perform well,
because the method explicitly captures the spatial registration error.
However, the limitation of spatial deep learning is that it cannot
estimate the refined label uncertainty, which will be discussed in
subsection 4.2. Our proposed RuaDL framework based on iterative
training improved the precision from 0.39 to 0.65 and improved the
recall from 0.44 to 0.70. The overall F1-score in our method is 0.67.
The confusion matrix shows that our method reduces the number
of false positives from 79801 to 51599 (by 61%) and reduces the
number of false negatives from 79672 to 40303 (by 56%). The metrics
confirmed that our method significantly enhanced the baseline
model when the training labels were imperfect. We see similar
results on the second dataset (see Table 3). The results with DeepLab
are provided in supplementary materials

The polyline quality and uncertainty value during differ-
ent iterations: To understand the polyline refinement process and
uncertainty reduction over iterations, we selected a smaller patch
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of the training area and plotted the inferred polyline (red) and its
uncertainty ( black) after each iteration in Figure 5. In each iteration,
we train a new U-Net from scratch based on the current refined
polyline labels and their uncertainty. We initialized the Gaussian
Process kernel with a large variance value. We can see that in the
following iteration, the polyline label IoU is improved and its un-
certainty value is reduced. After convergence, the polyline IoU was
improved from 0.18 to 0.36 in the whole training area.

4.2 Comparison on Uncertainty Quantification
Performance

We aim to evaluate the performance of uncertainty quantification
for our proposed RuaDL framework. We expect the model to be
certain about the refined label prediction when it is accurate and
provides higher uncertainty estimates when making inaccurate
label refinement. We choose two cases to visualize the uncertainty
estimation performance as Figure 6 shows. We can see Figure 6
(b) show higher uncertainty on the inferred polyline label and the
label quality is worse than 6 (a). The uncertainty estimations can
reflect their label refinement quality.

We also evaluate the uncertainty estimation performance quan-
titatively of our model versus baseline methods: deep learning
base model, weakly-supervised learning based on self-training,
patch-based translation, and spatial deep learning. The quantitative
evaluation metric is AoU in Equation 10 and the results were sum-
merized in the right column of Table 2 and Table 3. The numbers
in the table correspond the number of samples in four categories:
NAC, AU NI, tu- We can see the base U-Net has good uncertainty
estimation for accurate predictions (97% are certain) but for the
inaccurate predictions, the uncertainty estimation tend to be over-
confident, 14% are uncertain. U-Net with self-training and patch-
based model show worse AvU because the iterative training strategy
make the model more certain about its prediction during iteration,
especially for the inaccurate predictions. Weakly-supervised spatial
deep learning model improve the overall classification accuracy
dramatically. However, for the inaccurate prediction, the model
only give high uncertainty to 14% samples. The overall AoU is 0.25.
In contrast, our model improve the overall AvU to 0.54, significantly
higher than the baselines, because it improves the uncertainty esti-
mations for inaccurate prediction to 38%. We can observe similar
results in the second dataset. The baselines give worse uncertainty
estimations for inaccurate predictions (around 5% ~ 8% are un-
certain). In contrast, our model has 58% uncertain samples for the
inaccurate prediction, dramatically improves the overall uncertainty
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Table 2: Comparison on classification and uncertainty estimation performance on dataset 1

Classification Performance Uncertainty Estimation Performance
Method Class Confusion Matrix | Precision | Recall | F1 score | Accuracy Uncertainty AvUy/AvUr | AVU
Negative | Positive Certain | Uncertain
BaseDL | Non-stream | 9818176 79801 0.99 0.99 0.99 Accurate 248182 18295 0.93
Stream 79672 57551 0.39 0.44 0.42 Inaccurate | 460083 90005 0.14 0.24
Negative | Positive Certain | Uncertain
SelfDL | Non-stream | 9747792 150185 1.00 0.98 0.99 Accurate 275847 16439 0.94
Stream 48750 88473 0.37 0.64 0.47 Inaccurate | 505295 53411 0.10 0.18
Negative | Positive Certain | Uncertain
PatchDL | Non-stream | 9686619 | 211358 1.00 0.98 0.99 Accurate | 293279 20592 0.93
Stream 41302 95921 0.31 0.69 0.43 Inaccurate | 577582 73527 0.11 0.19
Negative | Positive Certain | Uncertain
WssDL | Non-stream | 9867813 30164 0.99 0.99 0.99 Accurate 785916 44648 0.95
Stream 57614 79609 0.71 0.58 0.64 Inaccurate | 420379 61823 0.14 0.25
Negative | Positive Certain | Uncertain
RuaDL | Non-stream | 9846378 51599 1.00 0.99 0.99 Accurate 742436 53236 0.93
Stream 40552 96671 0.65 0.70 0.67 Inaccurate | 397575 237981 0.38 0.54

estimations performance. The results with DeepLab base model are
provided in supplementary materials.

mmmm Ground-truth
mmmm Inferred line
w1 Uncertainty

(a) Low uncertainty case

(b) High uncertainty case

Figure 6: Uncertainty visualization

4.3 Sensitivity analysis

We also conducted a sensitivity analysis of our model to differ-
ent hyper-parameters, including both the Gaussian Process kernel
function parameters and sample point distances. Gaussian process
kernel includes initial standard deviation oy, kernel length scale
I, and the number of sample points k in one segment (the size of
the covariance matrix). The results are summarized in Figure 7.
First, we change the kernel initial standard deviation oy from 2 to
8 and used the default setting in all other hyper-parameters. The
corresponding test F1 scores are in the Figure 7(a). We can see that
when the prior uncertainty (standard deviation) increases, the test
F1 score first increases and then become stable. The reason is that
if the initial uncertainty is too small, it cannot cover the feature
around the true polyline, which will mislead the following iteration.
Second, we change the kernel length scale from 10 to 70. The results
in Figure 7(b) show that the performance is best when the kernel
length scale is larger than 30. This is because when the length scale
is larger, Gaussian Process can capture more correlation between
neighbors. In the dataset, the registration error in one point loca-
tion is highly correlated with near neighbors. Figure 7(c) shows

that when we increase the block size k of each segment, the test F1
score first increases and then drops. This is because we assume in-
dependence between different segments, and small block sizes will
ignore the correlation between points in different blocks. On the
other hand, too large block size is computationally inefficient and
can cause round-off errors. We also conducted a sensitivity analysis
of our model to the distance between the sample points along the
imperfect polyline A as summarized in Figure 7(d). We changed A
from 5, 10, 15 to 20. The best performance was achieved when the
candidate point interval size was small (10 meters). The reason is
that a small sample point interval provided a high spatial precision
in line refinement. The sensitivity analysis of the perpendicular
candidates distance are provided in the supplementary material.

0.7 0.7
© 0.65 © 0.65
3 3
» 06 »n 06
o o
0.55 0.55
0.5 0.5
2 4 6 8 10 20 40 60
(a) Prior uncertainty (b) Kernel length scale

07 07
2 0.65 2 0.65 /\\
[} [}
O O
n n
T 06 T 06

055 055
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(c) Block size (d) Distance along a polyline

Figure 7: Parameters sensitivity analysis.
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4.4 Analysis of computational costs

We evaluated the computational efficiency of our framework. The
time costs between iterations were summarized in Figure 8. The
blue and orange bars showed the time costs of polyline refinement
in the CPU and model re-training in the GPUs, respectively. We can
see that the posterior estimation (polyline refinement) part took far
less time than the model training. The time cost of model training
varied across iterations due to early stopping. The longest training
time was around 10 minutes in one iteration. The numbers were
highly dependent on the hardware platform.

800

lPosterior Estimation
Model Re-training

[e2]
o
o

Times Cost (seconds)
N
o
o

1 2 3 4 5 6 7 8 9
EM lteration

Figure 8: Time cost analysis of training process.

5 CONCLUSION AND FUTURE WORKS

This paper investigates a novel weakly supervised learning frame-
work that explicitly models the uncertainty of vector label registra-
tion errors based on a Gaussian process. We propose an uncertainty-
aware loss function and design an iterative uncertainty reduction
method. Evaluations show that the proposed framework outper-
forms several baseline methods.

One limitation is we only evaluated the idea for only Earth
image segmentation application. We plan to evaluate the proposed
approach on other applications such as medical image analysis. We
will also generalize the approach from polyline vector labels to
polygon vector labels, from binary classes to multiple classes.
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6 SUPPLEMENTARY MATERIAL
6.1 Model and Dataset

Model Architecture: The U-Net model consists of an encoder-
decoder structure. The encoder has six double-convolution layers
and five max-pooling layers. The number of output filters in each
convolution layer is 32, 64, 128, 256, 512, 1024. There is a batch
normalization operation within each convolutional layer before
non-linear activation based on ReLU (rectified linear unit). The
decoder of the model upsamples the encoded feature map to higher
resolution with transposed convolution and concatenates upsam-
pled features with corresponding feature maps from the encoder.

We used the DeepLabv3+ model [4] with an input shape of 224
by 224. It was implemented in Keras'. The DeepLabv3+ model has
an encoder-decoder structure. The encoder applies Atrous Spatial
Pyramid Pooling (ASPP) with 4 different rates to detect multiple-
scale features. The encoder uses an output stride of 16. Then the
encoder features are first bilinearly upsampled by a factor of 4 and
then concatenated with the corresponding low-level features from
the network backbone that have the same spatial resolution. Then
another bilinear upsampling by a factor of 4 is applied to obtain the
original resolution. Note that the network backbone ResNet-101 in
the original paper cannot be utilized for our tasks, because there
is no available pre-trained model for the earth image with seven
input spectral bands. The network backbone we used is 4 double-
convolution layers and 4 max-pooling layers. We initialized the
backbone model randomly and trained it with the DeepLab model
together.

Model Hyper-paramterers: For deep learning base model: The
distance interval between two sample points along an imperfect
polyline is 10 meters. This value is determined to both maintain a
decent sample rate and avoid interference between two consecutive
sample points. We set the maximum registration error distance as 25
meters for the Rowan Creek dataset and 75 meters for the Panther
Creek dataset. For self-training: The confidence threshold ¢ = 0.95.
The convergence threshold is 0.001. For patch-based translation:
patch size is 16 by 16 and translation distance is 5. The convergence
threshold is 0.001. For RuaDL: The convergence threshold is 0.001.

Dataset Description: Training and validation windows were
sampled from the same region but were carefully selected to avoid
overlapping. Test windows were sampled from a different scene to
have independent testing. We used stratified sampling to balance
the number of windows that contain the stream class with those
that do not. The numbers of training and validation windows are
after data augmentation (horizontal and vertical flipping, rotation).

6.2 Comparison on Classification Performance

We also compared the overall classification performance between
the DeepLabv3+ model, weakly supervised learning based on self-
training, patch-based translation, and our proposed model on the
two dataset. The setup was the same as described. The results on
second datasets were summarized in Table 4 and Table 5. We can
observe that our model significantly improve both the uncertainty
estimation performance and classification performance than base-
lines.

!https://github.com/rishizek/tensorflow-deeplab-v3-plus
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Figure 9: Distance in perpendicular to a polyline sensitivity
analysis.

6.3 Theorem proof

In this section, we provide proof for the Theorem 1.

THEOREM 6.1. Assume that the point shift direction is perpendicu-
lar to the segment between two points, denote Np(y+y as the total pixel
number after rasterizing polyline L', r; is the shift distance of pixel i
along the perpendicular direction of two consecutive points on L', the
projection of pixel i to the polyline L’ is p;, the variance of point p;
is O'JZ., and denote the cumulative density function of N (0, a}z) as®;,
then the expected likelihood of polyline P(L|X, ©®) over the polyline
prior distribution By _p(rj17) log P(L|X,©) = 3;[®; (ri +b) =@ (ri —
b)] IOgPA(]yi 1X.0) ]

B(L)

ProoOF.
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6.4 Sensitivity analysis

We also conducted a sensitivity analysis of our model to the distance
between two candidate true point locations along the perpendicular
direction to a polyline A;. The results are summarized in Figure 9.
We changed the spatial precision of discretized error distance from
1, 2, 3 to 4 while keeping the same maximum range of shifting
(25 meters). We can see that when the distance A2 increases (the
sample points precision decrease), the test F1 first increases and
then drops lower. This is because a small shifting interval provided a
high spatial precision in line refinement. But the too small distance
between candidate points can be sensitive to the noise of the model
prediction.
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Table 3: Comparison on classification and uncertainty estimation performance on dataset 2

Classification Performance

Uncertainty Estimation Performance

Method Class Confusion Matrix | Precision | Recall | F1 score | Accuracy Uncertainty AvUx/AoUr | AvU
Negative | Positive Certain | Uncertain
BaseDL | Non-stream | 13482315 | 236571 0.97 0.99 0.98 Accurate 2417699 78322 0.97
Stream 507022 | 826892 0.77 0.61 0.68 Inaccurate | 1297638 49638 0.04 0.08
Negative | Positive Certain | Uncertain
SelfDL | Non-stream | 13575265 | 143621 0.98 0.99 0.98 Accurate | 2050127 41337 0.98
Stream 383744 950170 0.86 0.71 0.78 Inaccurate | 1297638 49638 0.04 0.08
Negative | Positive Certain | Uncertain
PatchDL | Non-stream | 13479015 | 239871 0.97 0.98 0.98 Accurate | 2249534 52361 0.98
Stream 407656 926258 0.80 0.70 0.75 Inaccurate | 1583466 75639 0.05 0.09
Negative | Positive Certain | Uncertain
WssDL | Non-stream | 13519788 | 199098 0.99 0.99 0.99 Accurate 2220900 33411 0.99
Stream 137803 | 1196111 0.86 0.89 0.87 Inaccurate | 953853 83013 0.08 0.15
Negative | Positive Certain | Uncertain
RuaDL | Non-stream | 13544126 | 174760 0.99 0.99 0.99 Accurate | 2569523 152704 0.94
Stream 160705 | 1173209 0.87 0.88 0.87 Inaccurate | 576503 799703 0.58 0.71

Table 4: Comparison on classification and uncertainty estimation performance on dataset 1 with DeepLabv3+ base model

Classification Performance Uncertainty Estimation Performance
Method Class Confusion Matrix | Precision | Recall | F1 score | Accuracy Uncertainty AvUyu/AvUp | AVU
Negative | Positive Certain | Uncertain
BaseDL | Non-stream | 9827625 70352 0.99 0.99 0.99 Accurate 319911 17474 0.95
Stream 89703 47520 0.40 0.35 0.38 Inaccurate | 456510 50822 0.10 0.18
Negative | Positive Certain | Uncertain
SelfDL | Non-stream | 9795675 102302 1.00 0.98 0.99 Accurate 239415 15056 0.94
Stream 65988 71235 0.41 0.52 0.46 Inaccurate | 460747 33442 0.07 0.13
Negative | Positive Certain | Uncertain
PatchDL | Non-stream | 9784982 | 112995 1.00 0.98 0.99 Accurate | 265472 41645 0.86
Stream 66010 71213 0.39 0.51 0.44 Inaccurate | 552875 84551 0.13 0.22
Negative | Positive Certain | Uncertain
RuaDL | Non-stream | 9844549 53428 1.00 0.99 0.99 Accurate 892608 70084 0.93
Stream 47234 89989 0.63 0.64 0.64 Inaccurate | 417870 222527 0.26 0.40

Table 5: Comparison on classification and uncertainty estimation performance on dataset 2 with DeepLabv3+ base model

Classification Performance Uncertainty Estimation Performance
Method Class Confusion Matrix | Precision | Recall | F1 score | Accuracy Uncertainty AvUx/AvUr | AVU
Negative | Positive Certain | Uncertain
BaseDL | Non-stream | 13585949 | 132937 0.98 0.99 0.98 Accurate | 2023551 69454 0.97
Stream 831849 502065 0.79 0.38 0.51 Inaccurate | 1678632 134386 0.07 0.13
Negative | Positive Certain | Uncertain
SelfDL | Non-stream | 17586361 | 192079 0.98 0.99 0.98 Accurate 1955324 52139 0.98
Stream 877258 1414702 0.86 0.61 0.71 Inaccurate | 1438856 64533 0.04 0.08
Negative | Positive Certain | Uncertain
PatchDL | Non-stream | 13536240 | 182646 0.97 0.98 0.98 Accurate 2142776 44561 0.98
Stream 637782 696132 0.80 0.52 0.63 Inaccurate | 1765745 95442 0.05 0.09
Negative | Positive Certain | Uncertain
RuaDL | Non-stream | 17428621 | 349819 0.99 0.99 0.99 Accurate 2166744 177856 0.92
Stream 515688 1776272 0.84 0.77 0.80 Inaccurate 632465 694478 0.52 0.70
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