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ABSTRACT

A star destroyed by a supermassive black hole (SMBH) in a tidal disruption event (TDE) is transformed into a filamentary structure
known as a tidally disrupted stellar debris stream. We show that when ideal gas pressure dominates the thermodynamics of
the stream, there is an exact solution to the hydrodynamics equations that describes the stream evolution and accounts for
self-gravity, pressure, the dynamical expansion of the gas, and the transverse structure of the stream. We analyse the stability of
this solution to cylindrically symmetric perturbations, and show that there is a critical stream density below which the stream is
unstable and is not self-gravitating; this critical density is a factor of at least 40-50 smaller than the stream density in a TDE.
Above this critical density the stream is overstable, self-gravity confines the stream, the oscillation period is exponentially long,
and the growth rate of the overstability scales as /0. The power-law growth and small power-law index of the overstability
implies that the stream is effectively stable to cylindrically symmetric perturbations. We also use this solution to analyse the
effects of hydrogen recombination, and suggest that even though recombination substantially increases the gas entropy, it is likely
incapable of completely destroying the influence of self-gravity. We also show that the transient produced by recombination is
far less luminous than previous estimates.

Key words: black hole physics —hydrodynamics —radiation mechanisms: general — methods: analytical —transients: tidal dis-

ruption events.

1 INTRODUCTION

The destruction of a star by the tides of a supermassive black hole
(SMBH), known as a tidal disruption event (TDE; e.g. Rees 1988;
Gezari 2021), has garnered significant attention over the last decade
with the advent of survey science. Specifically, astronomical surveys
such as the All-Sky Automated Search for SuperNovae (ASAS-SN;
Shappee et al. 2014), the Palomar Transient Factory (PTF; Law
et al. 2009), the Panoramic Survey Telescope and Rapid Response
System (Pan-STARRs; Kaiser et al. 2010), the Asteroid Terrestrial
Last Alert Survey (ATLAS; Tonry et al. 2018), and the Zwicky
Transient Facility (ZTF; Bellm et al. 2019) have been discovering
TDE:s at an extremely elevated rate, with 2100 plausible events now
detected (see Gezari 2021 for a review of the observational status). In
the forthcoming years, the Legacy Survey of Space and Time/Rubin
Observatory (LSST; Ivezi¢ et al. 2019) is expected to increase the
number of observed TDEs by at least a factor of ~few — 10, and
potentially larger still (Bricman & Gomboc 2020).

From a theoretical standpoint, the initial phases of what one might
call the ‘canonical TDE’ —a 5/3 polytrope with aradius R, = 1 R, and
mass M, = 1M, destroyed by an SMBH of mass M, = 10° M, as it
passes through the tidal radius r, = R, (M,/M,)'” —is well understood.
In particular, the specific energy spread imparted to the tidal debris
as the star is destroyed, as described by Lacy, Townes & Hollenbach
(1982) (and ~100 times larger than the binding energy of the original
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star), was recovered numerically as early as Evans & Kochanek
(1989); these authors also reproduced the oc =3 “fallback rate,” or
the rate at which tidally destroyed material returns to the SMBH,
predicted by Rees (1988) and Phinney (1989). The destruction
of the polytrope itself was modelled even earlier with smoothed-
particle hydrodynamics (SPH) by Nolthenius & Katz (1982) using
40 particles, showing the formation of an elongated tendril of gas —
hereafter referred to as a tidally disrupted stellar debris stream. Since
then, the initial destruction of the star during the canonical TDE,
i.e. for the first ~100 dynamical times of the initial star after its
pericenter passage, has been modelled with both increasing levels of
accuracy in SPH (both in terms of numerical technique, i.e. variable
smoothing lengths and artificial viscosity, and particle number) and
finite volume methods (e.g. Laguna et al. 1993; Ayal, Livio & Piran
2000; Lodato, King & Pringle 2009; Guillochon & Ramirez-Ruiz
2013; Mainetti et al. 2017).

The earliest work (of which we are aware) on the long-term
evolution of the tidally disrupted debris stream produced from a TDE,
which amounts to discerning the ultimate fate of the debris stream
>1000s of dynamical times after the initial encounter (and longer),
was performed by Kochanek (1994). Kochanek (1994) developed a
‘one-zone’ model, in which the stream is modelled in a Lagrangian
sense and broken into a number of segments, each of which has a
length and cross-sectional width H, across which the density does
not vary within the model. The length of each segment is established
by assuming ballistic motion in the gravitational field of the SMBH,
with leading-order general relativistic effects included, while the
transverse dynamics are constrained by self-gravity, pressure, and
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the tidal force of the SMBH. Kochanek (1994) also included the
effects of viscosity, both shear and bulk, and analysed the effects of
recombination and the AGN luminosity of the SMBH (should the
SMBH be in an actively accreting state) on the stream structure.
He then investigated the nature of the caustics by following the
evolution of the stream back to pericenter and — since he accounted
for general relativistic apsidal precession — self-intersection, and
also concluded that Lense-Thirring (i.e. nodal) precession could
delay the self-intersections that are otherwise induced by apsidal
precession. Kochanek (1994) concluded that the evolution of the
debris stream is ‘complicated and involves self-gravity, tidal gravity,
recombination,...”

Only relatively recently has the problem of the long-term debris
stream evolution been revisited. Specifically, Kasen & Ramirez-Ruiz
(2010) investigated the possibility of a ‘recombination transient’ that
could occur once the stream started to recombine. Unlike Kochanek
(1994), they let the debris stream expand ballistically in all directions
and did not account for the self-gravitating nature of the stream in
the transverse directions. Guillochon, Manukian & Ramirez-Ruiz
(2014a) numerically studied the debris stream produced from a TDE
with the finite-volume code FLASH (Fryxell et al. 2000) and found
good agreement with the predictions of Kochanek (1994). Coughlin
et al. (2016b) developed a semi-analytical model for the evolution
of the debris stream, which differed from the work of Kochanek
(1994) in that it was Eulerian and used a self-similar solution for
the expansion of the gas in the radial direction. Guillochon et al.
(2016) used a Lagrangian approach to understand the effects of
drag from the circumnuclear medium on the propagation of the
unbound debris from a TDE, and Bonnerot, Rossi & Lodato (2016)
used a Lagrangian method to understand the effects of the ambient
medium on the stream (and in particular the Kelvin—Helmholtz
instability). Most recently Bonnerot, Pessah & Lu (2022) used a
Lagrangian technique to model the evolution of the debris stream
from the initial destruction of the star to the return of the most bound
debris, using the frozen-in approximation for the initial conditions
(Kochanek 1994 used the affine-star model of Carter & Luminet
1983 to establish the initial conditions to solve his equations of
motion).

Coughlin & Nixon (2015), who numerically simulated the debris
stream evolution from the canonical TDE with the SPH code PHAN-
TOM (Price et al. 2018), found that the stream would fragment under
its own self-gravity into localized knots (see also Hayasaki, Bate &
Loeb 2020; Sacchi et al. 2020), which was not predicted by earlier
models (Guillochon et al. 2014b argued that the combination of
radiative cooling and Kelvin—Helmholtz instability could result in the
formation of a clump, and did not account for the stream self-gravity
in their simulations). Using their Eulerian and semi-analytical model
described above, Coughlin et al. (2016b) argued that the ability of
the stream to fragment under its own self-gravity is critically related
to its equation of state. Specifically, they showed that equations of
state stiffer (softer) than a y = 5/3 adiabatic equation of state are
unstable (stable) to fragmentation near the marginally bound radius
of the stream (as further supported by the numerical investigations
in Coughlin et al. 2016a). They also found that different parts of the
stream in terms of their Keplerian binding energy to the SMBH were
more or less susceptible to fragmentation, with unbound portions of
the stream (which eventually transition to homologous expansion)
being gravitationally unstable with an equation of state as soft as
y = 4/3. Despite their arguments and numerical investigations, a
number of questions regarding the stability of the stream and its self-
gravitating nature remain, such as the necessary conditions for it to
be self-gravitating in the first place.
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It is the purpose of the present investigation to analytically
(although we also make use of numerical simulations to substantiate
our conclusions; see Figs 8, 9, and 13 below) and quantitatively
understand the stability and the self-gravitating nature of the debris
streams produced from TDEs, and in particular the role played
by the transverse structure of the stream. After discussing some
basic considerations of the problem in Section 2 and the coordinate
system we adopt in Section 3, in Section 4 we show that there
is an exact solution to the fluid equations that describes a self-
gravitating, pressurized fluid that is expanding both along the axis
of the filament and perpendicularly to it (and at different rates),
the transverse structure of which is determined by the equation of
hydrostatic balance (despite the fact that the system is not actually
hydrostatic) and the Poisson equation. This solution is always valid
near the marginally bound Keplerian radius, and holds over the entire
stream until the most-bound material (to the SMBH) reaches its
apocenter, which is ~1000’s of dynamical times of the star for typical
SMBH masses. We identify this solution as the background state of
the stream.

In Section 5, we analyse cylindrically symmetric perturbations
on top of this background solution, and show that there is a critical
value of the stream density that divides purely unstable and overstable
oscillations of the stream. We identify this critical density as the one
necessary for the stream to remain self-gravitating, and it is ~1-2
orders of magnitude below what is achieved in a TDE (see Section 2),
suggesting that effectively all TDE streams are confined by self-
gravity. We also show that the growth of the overstability is oc £'/6,
which is extremely weakly growing, and the oscillation period of
the overstability is exponentially long. We investigate the effects of
recombination in Section 6, and suggest that while it substantially
modifies the stream thermodynamics and sets in after ~80 dynamical
times of the original star (corresponding to ~1.5 d for a star of
one solar mass and radius), it likely cannot completely destroy the
influence of self-gravity because of the large difference between the
critical density needed to be self-gravitating and the (much larger)
density of the stream. We summarize and conclude in Section 7. In
Appendix A, we also show that a close analogue of the one-zone
model of Kochanek (1994) can be rigorously derived from the fluid
equations, and is the leading-order term in a series expansion of the
Lagrangian position of a fluid element in terms of its initial position.

2 BASIC CONSIDERATIONS

As the star passes through the tidal disruption radius, the usual
assumption that the fluid moves predominantly with the centre of
mass and thereafter evolves quasi-ballistically in the gravitational
field of the black hole (Lacy et al. 1982) implies that the Keplerian
energies of fluid elements are — to leading order in the ratio of the
stellar radius to the tidal radius — functions only of the cylindrical
distance from the black hole (Lodato et al. 2009). Therefore, even if
the tidally disrupted materials were assumed to continue evolving
purely ballistically, it would do so in the form of a filamentary
structure, the cross-sectional radius of which is much less than its
radial extent (e.g. fig. 1 of Kasen & Ramirez-Ruiz 2010, or fig. 2
of Coughlin et al. 2016a). The question then becomes — is it valid
to ignore self-gravity completely as concerns the evolution of the
stream?

The relevance of self-gravity can be understood by considering
the ratio of the stream density p; to the ‘black hole density,” where
the latter is defined as p, = M./(4mr3/3) with M, the mass of the
SMBH and r is the Lagrangian position of a fluid element within the
stream; if this ratio is comparable to one, self-gravity is important
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for the dynamics of the gas (e.g. Pringle 1981 and references therein
in the context of accretion discs). This condition arises from the fact
that the vertical component of the gravitational field of the SMBH is
~GMH/r? ~ GpH if the cross-sectional radius of the stream is H
(see equation 16 below), while the self-gravitational field is ~GpiH
(equations 16 and 17 below). Coughlin & Nixon (2022a) pointed
out that an accurate estimate of the tidal disruption radius of the
star can be determined by equating the maximum self-gravitational
field within the star to the tidal force of the SMBH (note that this
differs from the usual definition, which equates the stellar surface
gravity to the tidal acceleration), from which it follows that the
distance from the SMBH at which the star is completely destroyed
is approximately’

o\
Iie =1t (4'0' ) : M

Here r, = R,(M,/M,)'? is the usual tidal radius, with R, and M, the
stellar radius and mass, and p; (p,) is the initial central (average)
density. Using this as the distance within which the star comes to
be destroyed, it follows that the ratio of the central density of the
expanding stream to the SMBH density at 7, is

pi
Pe
Thus, even though the star is destroyed at the distance given by
equation (1), the stream is still self-gravitating. The reason for this
seemingly contradictory conclusion is that the self-gravitational field
of the star is maximized off-centre, and hence the black hole density
does not need to exceed the central density of the star to successfully
destroy it.

Equation (2) therefore shows that the stream is initially self-
gravitating. To determine if it remains so, note that if the stream is in
approximate hydrostatic balance, then from the Poisson equation the
stream pressure, p, cross-sectional radius, H, and stream density are
related via

p
pH?

=4. @

~47Gp. 3

If the stream is adiabatic with adiabatic index y, then p o p”. It
also follows that p o< H™2L™!, where L is the length of the stream.
If ballistic motion is approximately upheld along the length of the
stream, then from the radial momentum equation it follows that L o< 7>
near the marginally bound radius (Coughlin et al. 2016b), which is
just the growing term in the homologous solution to equation (15)
when the pressure and self-gravity terms are neglected. There is
also a branch that scales as oc »~2 that is important when the
initial encounter of the star is very deep, as this sets the length
of the stream at the time the star reaches pericentre (Stone, Sari &
Loeb 2013; Darbha et al. 2019). For the outgoing evolution, initial
conditions determine the relative contribution of each branch, but
the solution that scales as o 7> quickly dominates and the decaying
solution is irrelevant (see also the discussion in Bonnerot et al. 2022).

'In particular, equation (1) approximates the functional form of the grav-
itational field within the star to analytically derive the radius where the
self-gravitational field is maximized. Correspondingly, equation (1) slightly
underpredicts the value of r that is obtained by numerically determining the
radius at which the self-gravitational field is maximized within the star (see
fig. 2 of Coughlin & Nixon 2022a), and hence the ratio of the stream density
to the SMBH density is somewhat larger than what is predicted using this
approximation. For example, using the precise values in table 2 of Coughlin &
Nixon (2022a) shows that pi/pe =~ 5.5 for a 5/3 polytrope.
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Combining these results with equation (3), it follows that the density
along the axis of the stream and the stream cross-sectional radius
scale with distance from the SMBH as

pocrfﬁ, Har%. “4)
See also equation (62) of Coughlin et al. (2016b).

From equation (4), the ratio of the stream density to the SMBH
density scales as
L 5)
Pe
From this expression we see that y = 5/3 demarcates the critical
adiabatic index that allows the stream to remain self-gravitating as
it recedes from the SMBH: for equations of state that satisfy y
> 5/3, the stream density will asymptotically outweigh the black
hole density, and the latter is effectively ignorable as concerns the
effects of self-gravity across the stream. For y < 5/3, the stream
density declines more rapidly than that of the SMBH, and eventually
the stream will enter into a shear-dominated phase that yields ~
homologous expansion (i.e. ballistic motion of the gas).

A gas pressure-dominated stream with y =~ 5/3 is therefore
interesting from a gravitational stability standpoint, as in this case the
stream is just able to maintain quasi-hydrostatic balance. By quasi-
hydrostatic we mean that the assumption of hydrostatic balance and
the Poisson equation both being satisfied is consistent, even though
the stream width expands with time and the background density
declines with time (as p o< £~2). Of course, a y = 5/3 equation of
state is also quite relevant from a physical standpoint, as low-mass
stars are overwhelmingly dominated by gas pressure (compared to
radiation pressure, which would soften the equation of state). We
would expect the y = 5/3, adiabatic assumption to hold until the gas
begins to recombine, which we discuss further in Section 6 below.

Therefore, the specific case of a y = 5/3, cylindrical stream war-
rants further consideration and analysis, as concerns both the quasi-
hydrostatic solution itself and its stability. In the next section, we
briefly justify the use of the coordinate system that we use throughout
the remainder of the paper before continuing with this analysis.

3 COORDINATES AND EQUATIONS

At a given time ¢ there is a set of points along which the density of
the stream material is maximized. Define this curve as {X, Y} in the
x—y plane, where the x-axis points in the direction of pericentre of the
disrupted star and y is defined in a right-handed sense with respect
to the angular momentum vector £ of the original stellar orbit, i.e.
x X y o £. We assume there is no torque out of the orbital plane.”
The X-Y curve constitutes one curvilinear axis, and we define the
y -axis to be orthogonal to and within the plane of the X-Y curve at
any given point along that curve. Then the x—y coordinates of any
fluid element are related to X, Y, and y' via

x=X-—y'sinyy, y=Y+ycosy, (6)

where

tany/ o @)
ny = —.

Y= X

%It is possible to include out-of-plane motion, which would be relevant if (e.g.)
the black hole has spin and the spin direction is misaligned with respect to the
orbital plane of the star. In this case, the coordinate system is composed of
the unit tangent vector, the unit signed curvature vector, and the unit binormal
vector (in our simplified case the binormal is in the fixed direction of the
angular momentum vector of the star).
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Figure 1. The maximum-density (X-Y) curve from the frozen-in approxi-
mation for the times shown in the legend, where = 0 corresponds to the
time at which the star is at the tidal radius and times are measured in units
of r? 2 /~/GM,, which is also the dynamical time of the original star. The
points show the location of the marginally bound radius, and the inset gives
an example of the coordinate system adapted to the stream. The dashed lines
give the y’—direction at each point along the X-Y curve, and  is the angle
between the x-axis and the direction along the curve (the red arrow at the
point in the inset).

The angle i gives the direction tangent to the maximum-density
curve relative to the fixed x—y coordinate system, and thus defines
‘along the stream,” while y points ‘transverse’ to the stream.
Fig. 1 shows the relevant quantities calculated with the frozen-in
approximation (see below for more details).

The equations of motion within the orbital plane of the original star
are straightforwardly derivable from the fluid equations by making
this coordinate transformation, the result being

waZY , I//32)(+32y' ey, 2+18p P
COSY —— —sinYy — + — — o —— 4+ — =0,
or2 oz e Y o 0oy | By
(®
92X %Y oy oy 9y
i QP L L
cosy or? +Smw8t2 ot ot Y or?
cos 10 0P
L T E
L—ycosyss \pdX 09X

The gravitational potential ® has contributions from self-gravity and
from the black hole; the latter is

GM,
VX2 +Y24+ () +2y (Ycosy — Xsiny)
At early times (which we quantify below) y' < +/X? + Y2, and we
Taylor expand the gravitational potential in powers of y'/+/X? + Y?

to second order, take the derivative, and maintain terms up to first
order (the tidal approximation). Doing so gives

P, =

10)

90, GM, { Xsiny + ¥ cos ¢
=——— ¢ — Xsin cos
ay’ (x2+ Y2)3/~
(Xsiny —Ycosy)?\
+<1—3 X172 y (11)
00, GM. [ L
ax (X2+Y3)3/2{ an ¥

y (3(Yc051//—Xsin1//)(X+Ytan1//) +(Vsing + X cosy)

X2 +v?

) )

12)
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Figure 2. The ratio of the centrifugal term to the tidal force as a function
of time for three different initial positions within the star, which correspond
to the most-bound fluid element (Xp = 11 — R,, the marginally bound fluid
element (X = r¢), and the most-unbound fluid element (Xy = r; + R,).

Inserting these expressions into equations (8) and (9) gives the
general equations of motion for fluid elements within the stream and
within the orbital plane of the original star, which contain Coriolis
and centrifugal terms that depend on temporal derivatives of ¥, and
also curvature terms that are proportional to dy/dX. The magnitude
of each of these terms is related to the angular momentum of the
fluid, for if the angular momentum were precisely zero, we could set
Y = 0 (¢ = 0) without loss of generality. To gain an understanding
of the importance of these non-inertial and curvilinear terms, we
can assume that the maximum-density curve solves the dynamical
equations of motion, i.e. X and Y satisfy
92X GM.X 9%y GM.Y
T =TT g Ao s T an (13)
or? (X2 + Yz)3/~ ar? (X2 + Y2)3/2

Note that these follow directly from equations (8) and (9) wheny =
0 if we ignore pressure and self-gravity, meaning that they should be
approximately upheld in general while the stream is thin. If we make
the frozen-in approximation (Lacy et al. 1982) with the pericentre
distance of the original star equal to the tidal radius r,, where r, =
R.(M,M,)'? with R, and M, the stellar radius and mass, then the
initial conditions are X(Xo, r=0) = X, X(t =0) =0, Y(t=0)=0,
and Y (¢t = 0) = \/2GM Jr, with r, — R, < Xy < r, + R, (dots denote
temporal derivatives). The initial position of a fluid element is also
proportional to its specific energy, with X, < r; being bound, X, >
r unbound, and X, = r; marginally bound (i.e. on a parabolic orbit).
We can then integrate the equations of motion and directly assess the
magnitude of the non-inertial terms.

Fig. 1 shows the {X, Y} curve calculated with this approach at the
times in the legend, where ¢ = 0 corresponds to when the star is at 7,
and times are in units of r?/2/«/GM. = R3?)/GM,, which is the
dynamical time of the original star. Here, we let M,/M, = 10°. The
inset gives an example of the y coordinate system at t = 500, and
the points show the location of the zero-energy orbit for which Xy =
It

The non-inertial term on the left-hand side of equation (8) that
modifies the y equation of motion relative to the tidal term is
Y2 R3/(GM,), where R = /X% + Y2. Fig. 2 shows this ratio as
a function of time for three different initial positions along the
maximum-density curve: r, — R, being the most-bound fluid element,
r; being marginally bound, and r, + R, being the most unbound. All
three curves are nearly indistinguishable until # >~ 2000, at which time
the most-bound fluid element returns to the SMBH and the centrifugal

MNRAS 522, 5500-5516 (2023)
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cylindrical coordinates and also ignore angular variations around the
stream (generalizing the solutions to include these perturbations is
straightforward), then the change to cylindrical coordinates amounts
to letting y — s with s the cylindrical radius. The dynamical
equations are therefore

|y' cosyr My /aX]
I
=
=

10—4,

0.1 1 10 100 1000 10°

t[R/\GM, ]

Figure 3. The curvature term in the equations of motion under the frozen-in
approximation, where here M, = 10 Mg and R, = Rg. Here, we let y/ =
R.(RIr)Y2, which is the expected scaling for the width of the stream, and X is
measured in units of r¢. At all times this quantity is small and decays with time
for the unbound segment of the stream, and only increases in importance when
the stream material returns to pericenter (for the most-bound fluid element
this occurs around ~2000 d post-disruption).

terms are important (this also violates the tidal approximation, as by
this time the length of the stream is comparable to +/X? + Y?).
At sufficiently late times the marginally bound solution decays
approximately as o r~>3, which is shown by the black, dashed line.

The curvature term that modifies the spatial derivatives (the left-
hand side of equation 9) and that contributes a correction to the tidal
term (the right-hand side of equation 9) is y cos ¥ d1/dX. This term
represents the fact that the distance between adjacent y -axes will
change along the {X, Y} curve if dy/0X # 0. From the discussion
in Section 2 and as we show more rigorously in the next section,
the transverse extent of the stream is much less than the distance
to any given fluid element, and from equation (4) we expect fluid
elements to approximately satisfy y ~ R, (R/r)"? for a gas-pressure
dominated equation of state. Fig. 3 shows |y cos ¥ dv/0X| with y =
R.(R/r)"? as a function of time for the same three initial positions
and the same frozen-in approximation as used in Fig. 2, and X is
measured in units of 7. We see that this term is always smaller than
one, and decays with time for the marginally bound and unbound
segments of the stream, the former scaling as oc =23 at late times.
The curvature increases in importance once the most-bound segment
of the stream returns to pericentre, around ~2000 d post-disruption.

Figs 2 and 3 show that the non-inertial terms increase in importance
for <2-3 dynamical times and thereafter decay, and although
the frozen-in approximation does not yield the correct dynamical
evolution of the stream in detail (Steinberg et al. 2019), this suggests
that they are relevant for only a few dynamical times post-disruption.
For <1000 dynamical times the entire stream behaves effectively
as if it is marginally bound and the non-inertial terms (relative to
the tidal terms) decay with time, and we can always find a region
nearer the marginally bound radius where the non-inertial terms are
ignorable to yet-later times.

For the remainder of the paper we focus on this region of parameter
space, and we approximate ¥ >~ 0 (¢ =~ 0). We also define X = R.(?)
+ z(zo, 1) with R, the zero-energy Keplerian orbit that satisfies

2/3
dR. 2GM, 3V2GM,

= RC 1) = Ri 1 o t ) 14
- . © RO <+2 e ) (14)

where R; is an arbitrary scale radius. The out-of-plane equation of
motion is the same as that for the y'—direction; if we change to
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92z 1ap oD 2GM,

R A ko (15)
or  podz 0z R}
92 10 0o GM,
P Lop 00 GM. a6
a2 pds  Os R}

These are what we would have postulated immediately given the
discussion and motivation presented in the previous section, but it is
useful to have this more general definition when making comparisons
to simulations where the coordinates of the maximum-—density curve
are more complex. We also need the Poisson equation for the self-
gravitational field, which is
2

li [s%—c:} +87‘b =4nGp. (17)

s s 072

The conservation of mass in Lagrangian form is
s

pl = £i80(so, 20), (18)
0

where J = |0x'/ 8xé | is the Jacobian that transforms between the
current {s, z} and initial {sy, zo} Lagrangian positions, p; is a scale
density, and go(so, Zo) is the dimensionless initial density profile.
Since we are ignoring angular variations the Jacobian is
ds 0z ds 0z
J=r-—+F———. (19)
dsp dzo  0zo 0So
We also assume for now that the fluid is adiabatic; in this case the
entropy is a conserved Lagrangian quantity, and hence

o\’
P = piKo(so, z0) <*> ; (20)
Pi
where p; is a scale pressure, Ko(so, zo) is the dimensionless entropy
function of the gas, and y is the adiabatic index of the gas.

In the next section, we show that there is an exact solution
(which accounts for the transverse structure of the debris stream)
to equations (15)—(20) when the stream is cylindrically symmetric
and the fluid is gas-pressure dominated with y = 5/3.

4 EXACT SOLUTIONS

We expect solutions to equations (15)—(18) to be approximately
cylindrically symmetric with /07 ~ 0. From the discussion in
Section 2, the cross-sectional radius of the stream should also
expand roughly as o« R!/2, which results from the confinement by
self-gravity coupled to the declining stream density. By inspection,
we see that the following has these properties and exactly solves
equations (15)—(18) when y = 5/3 and the density, pressure, and
self-gravitational potential are cylindrically symmetric:

2 2 —
7= Hizoe™, s = Hie’sg, p=pie”>"go(s0),

_ Pi 5.
p = piKo(so)e " go(so)’, @ = ;le % jo(s0)-

1

@

Here, s¢ and z are measured relative to the initial cylindrical radius
of the stream H;, p;, and p; are the density and pressure along the
stream axis at the time when R (f) = R;, and

f=m(fg». 22)
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The dynamics of tidally disrupted debris streams

The dimensionless density gy, dimensionless entropy Ky, and di-
mensionless gravitational potential j, are related by the equation of
hydrostatic equilibrium and the Poisson equation, which are, respec-
tively,

1 d dji
——— ko) = =32 23)
80 dSO dSO
p 1 d [ djo
—— |so=— | =47 G pigo, 24
P H? 50 dsp |:SO dso 7 G pigo (24)
and can be combined to give
i—— |so—— | K ] = —go, 25
% s {So 2 a5 [ 0(50)80 8o (25)
where
; 1
w = Lo . (26)
piHE 4 Gp;i

Equation (26) cannot be solved without an additional prescription
for the entropy profile. There are two cases that are (especially)
relevant to TDEs, the first of which is for low-mass stars that are
fully convective and that therefore have effectively constant entropy;
in this case Ky(so) = 1. The other case is for higher-mass and radiative
stars, which — at least for stars near the zero-age main sequence
and that are not highly evolved — can be accurately modelled by
the Eddington standard model. In this case, the entropy profile as
a function of spherical radius of the initial star is Ky = g, 13 (the
Eddington standard model has a pressure profile p o« p*3, and from
equation (20) the entropy therefore scales as Ky o p~'"3). Clearly after
the star is tidally destroyed, the entropy profile will exhibit variation
both with cylindrical radius and along the stream. However, the
shear along the stream axis is much greater than that perpendicular
to it, and hence variations of the entropy profile with z, should be
much smaller than those in sy near the marginally bound radius.
Furthermore, since the pressure is maximized at the centre of the
original star, the entropy profile must satisfy dKo/dzo(zo = 0) = 0.
Thus, within the set of approximations we have already made, the
relation Ky = g, '3 Should also hold for the disruption of a radiative
star, where gy is a function of cylindrical radius (and for any arbitrary
initial entropy profile this approximation should be upheld to a good
degree of accuracy). We therefore have
1 d S0 d r

L,O o [go]} = —g. (27)

% So dSO
where I" = 5/3 for a low-mass (convective) star and I" = 4/3 for a
high-mass (radiative) star. Equation (27) is just the cylindrical Lane—
Emden equation (e.g. Ostriker 1964), and the solution to it must
satisfy go(0) = 1 and dg/dsy(0) = 0. Since the surface at which gy =
0 coincides with sy = 1 by definition, there is a value of «; that
will simultaneously satisfy all three of these boundary conditions;
numerically we find

ai(I' =5/3) = 0.0571, oi(I" =4/3) >~ 0.0196. (28)

Fig. 4 shows the numerical solution to equation (27) for I' = 5/3
(blue) and T' = 4/3 (red). Analogously to spherical polytropes,
the more compressible solution with I' = 4/3 has a more rarefied
envelope compared to the solution with I' = 5/3.

The solution given by equation (21) possesses homologous
expansion in both the cylindrical-radial direction and along the axis
of the filament, but at different rates. Notice that these solutions
show that, consistent with equation (4) above, the radius of the
stream expands as

R V2
H=H (== ot/ (29)
R

i
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Figure 4. The dimensionless density profile that satisfies the cylindrical
Lane-Emden equation, i.e. a polytropic density profile in cylindrical coordi-
nates, with a polytropic index of 5/3 (blue) and 4/3 (red).

The solution (21) represents the quasi-hydrostatic ‘background,’
or ‘equilibrium’ solution, where the dynamical expansion of the
stream is consistent with both the tidal force of the SMBH and the
confinement by self-gravity. The fact that such a solution exists is,
in essence, a more direct and rigorous demonstration of the validity
of the more heuristic arguments in Section 2, where it was shown
that the stream density and SMBH ‘density’ scale identically when
y = 5/3 and the stream is also self-gravitating. This equilibrium
will only be established for a very specific set of initial conditions,
in particular those that have the initial pressure, density, and stream
width related by equation (26). In the next section, we analyse
perturbations on top of this background state to understand its
stability in the presence of more general initial conditions.

5 CYLINDRICALLY SYMMETRIC
PERTURBATIONS AND CRITICAL STREAM
DENSITY

We treat the previously derived solution as the equilibrium state that
we perturb. Here, we focus only on the case where the perturbations
are cylindrically symmetric and do not possess variation along the
axis of the stream; as we now demonstrate, cylindrically symmetric
perturbations alone yield a fundamental stability criterion as concerns
the ability of the stream to remain self-gravitating.

To account for cylindrically symmetric perturbations we decom-
pose the Lagrangian positions of fluid elements as

s = Hie"? {so + 51(50, 1)} » (30)

where s, is an assumed-small correction to the initial Lagrangian po-
sition. Since we are restricting our analysis to cylindrically symmetric
perturbations for which ds/dzy = 0, we have (note that the factors of
H; do not appear here because the Jacobian is dimensionless)

as 0 a
Ji:iizi:eh 1+ﬁ 1_{_‘2
S0 3S0 320 S0 Bso A}

e <1 + 19 [5051]> , 31

S0 3S0

where the last equality is correct to first order. The density is then,
from equation (18),

19 !
p = pie” go(so) (1 + - [S031]>
] 350
3 _ 19
= pie” " golso) | 1 [sos1] |, (32)
A 8s0
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and the final equality results from a first-order series expansion in
subscript-1 quantities. We also perturb the self-gravitational potential
by writing

1

@ = %fﬁ {Jjo(so) + ji(so, )} @3

From the entropy equation (20), the pressure to first order is

o\ o L9 5/3
p = piKo(so) <*> = pie " Ko(s0)g;/ <1 - — [5051]>
i 50 S0

= pie” Kos0)g; <1 - gi 2 [sosll) : (34)
S0 BS()

We can now insert these definitions and change of variables into

equations (16) and (17) (note that equation 15 is trivially satisfied by

the background solution with no perturbations along the stream axis)

and keep only leading-order terms. In equation (16), the dynamical

and tidal terms combine to yield the following first-order correction:

02 2G M, GM, He™* (32 d

® 4 s = € (28 B (35)
ar? R} R} at? ot
In the same equation the pressure gradient term is given by
1ap 5 p; d 23
S0P 2 P esepgeys O s (P (36)
pads  2pH 450 pi

and combining this with the gradient of the gravitational potential
and using the equation of hydrostatic balance (23) to cancel the
zeroth-order terms yields

loap 00
p 0s as

; i, 5 ) 234
= Dgmse2 O 2 pds O G gasgoe T gl
pifli 850 3 350 S0 350

Adding equations (35) and (37) and setting the result to zero yields
the first-order momentum equation:

(37

28251 _ @
012 ot
Ay 5 a5 0 | asge” 9
2D Tk K — =0 38
+H‘ {BSO 3 0 850 0 A aSO [SOSI] ’ ( )
where
R3 . 30
/1'2 i pi plai' (39)

~ GM.HZp  p.

In the final equality in equation (39) we used equation (28) and
defined the ‘black hole density’ by p, = 3M, /(47 R?). Note that this
is the same black hole density that was defined in Section 2, but here
we are evaluating it at the scale radius R;.

To linearize the Poisson equation (17), note from equation (30)
that

o 1 1 dsi\ 0 40)
ds  He/? dsg / 05
to first order, and hence — for cylindrically symmetric perturbations

— the Poisson equation becomes, after using equations (32) and (33)
for the density and the gravitational potential,

piHE 50 350 ds0 Lsol) dso

(41
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Di 1 0o 0 S1 0 . N
|:so (1 — So— [ D — [jo +11]} = 47 G pigo(so).

Using equation (24) to eliminate the zeroth-order terms, this becomes
(to first order)

d 91 d [s1] djo
— L —s— |2 =] =0. 42
3S0 |:SO ( 3S0 %0 3S0 |:S0:| 3S0 >:| ( )

Maintaining the regularity of the gravitational potential along the
axis, we can integrate this equation to yield
b, 0 [4]

_ _ 43
S0 aSO ( )

S0 —
35‘0 0 3S0
‘We can now insert this result into equation (38) and take the Laplace

transform, where the Laplace transform of s; is

5i(o, s0) = / si(z, so)e °'dr, (44)
0

If we let the initial velocity profile of the fluid be ds,/d7(r = 0) =
Vo(so) (note that §;(r = 0) = 0 by definition), then doing so yields
the following equation for §:

o (20 — )5 — p2L 5] = 2Vo(so), (45)
where
5.3 9 20273 % a0 [51] djo
e =2k 2 k38 sl — sl [ 20 46
[SI] 3 0 8SO|: 0 A 350 [SOSI] so850 |:So:| 3S0 ( )

We can solve equation (45) with standard methods employed
in stellar oscillation theory (or quantum mechanics; e.g. Hansen,
Kawaler & Trimble 2004) and expand §, in terms of the eigenfunc-
tions of £, where the eigenfunctions E; satisfy

LI[E;] = —A%E,. 47)

The eigenvalues A” are constrained by requiring that E), satisfy the
boundary conditions E; (s = 0) = 0 (which it must by symmetry, i.e.
the axis of the stream cannot be displaced for purely cylindrically
symmetric perturbations) and gyE; (so = 1) = 0; the latter boundary
condition enforces zero mass flux at the surface. The normalization
of the eigenfunctions is arbitrary, and hence we can always let
E;(sp = 1) = 1, meaning the system in general is overconstrained.
The eigenfunctions satisfy all three boundary conditions, and since
the operator given in equation (46) can be put into Sturm-Liouville
form and the eigenvalue equation is Hermitian, the eigenfunctions
constitute a complete orthogonal basis (orthogonal with respect to
the weight spgo) that can be orthonormalized and the eigenvalues
(strictly speaking A?) are purely real (see e.g. Riley, Hobson & Bence
2006). A simple, brute-force method for computing the eigenvalues
is to integrate equation (47) from sy = 0 outward? for an arbitrarily
chosen value of A. We then iterate on A until the boundary condition at
the surface is satisfied to a high level of tolerance. Here, we required
the mass flux at the surface to be <107'%, and changing this criterion
by an order of magnitude (in either direction) has no bearing on the
eigenvalue to at least the fifth decimal place.

Fig. 5 shows the first five eigenfunctions for a polytropic index of
I' =5/3 (left) and I = 4/3 (right), and the eigenvalues are shown in the
legend. The eigenfunctions exhibit the expected properties (see any
book on quantum mechanics or the discussion of stellar pulsations
in Hansen et al. 2004): there is a lowest-order mode that has no zero

3Note that the series expansion of equation (47) about the origin yields §; o so
to leading order in sp, and the arbitrariness of the normalization implies that
we can set dEj;/dso(so = 0) = 1 and renormalize the value at the surface to
one after the eigenvalue is determined; in practice this is how we determine
the eigenvalues and then normalize the eigenfunctions.
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Figure 5. The first five eigenmodes of a cylinder with polytropic index I" = 5/3 (left) and I' = 4/3 (right). The eigenvalues are shown in the legend. The
lowest-order mode is the analogue of the ‘breathing mode’ exhibited by stars undergoing spherically symmetric oscillations, such that the motion is purely
inward or outward as a function of time, while the higher-order modes are ‘overtones’ that have both inward and outward motion at a single time.

crossings (aside from the one at the origin), and each higher-order
mode has one more zero crossing than the previous one. The lowest-
order mode corresponds to purely outward or inward motion, and
is the cylindrical analogue of the ‘breathing mode’ of (spherical)
stellar oscillations. Higher-order modes, or ‘overtones,” have both
inward and outward motion as a function of cylindrical radius at a
given time, and are similar to p modes in that most of the power is
concentrated near the surface of the stream.
Writing §) as a sum over the eigenfunctions

5= c(0)E(s), (48)
s

inserting this expansion into equation (45), multiplying by goso,

integrating from sy = 0 to so = 1 and using the orthogonality of

the eigenfunctions, we find

2F,

fol VQEAg0S0dS0
202 — o0 + ua?’

fol E2gosodsy

The time-dependent solution is recovered by taking the inverse-
Laplace transform, which from the residue theorem can be written
as a sum over the poles of c; in the complex plane; the result is

C, = F)L = (49)

F;
5150, T) = Y Ex(s0) ——— (7" — "7, (50)
T oL —0o_
where
1
— _ 292
ai_4(1:|: 1 SMA). (51)

To understand what this result implies about the stability of the
stream, it is useful to first analyse the limiting case of . = 0: recall
from equation (39) that u? o pi/p,, so when u = 0, self-gravity and
pressure are ignorable, and we expect the solution to be described by
homologous expansion. With u = 0, o4 = 1/2, and o _ = 0, which
shows that the stream width (from equation 30) satisfies

H(t) = Hie"? (1+ Cie™?), (52)

where C; is an arbitrary constant. This is just the exact solution
to the equation of motion when only the tidal force acts to modify
the stream width, as can be verified from equation (16), which is
precisely what we expect. We therefore conclude that when the ratio
of the stream density to the black hole density is small, the stream

is unstable from the standpoint that it will transition to homologous
expansion.

As pincreases, o+ remains purely real and decreases in magnitude
until u reaches a critical value given by

1
82’

where Xy ~ 2.669 (3.879) is the smallest eigenvalue for I' = 5/3
(I' = 4/3), and thus e >~ 0.13 (e 2 0.091). For this value of u
the A term in the sum in equation (50) is a repeated root at o = 1/4
(it was assumed in deriving this equation that o # o _), and the
application of the residue theorem (or taking the limit that o_ —
o+ in equation 50) for the repeated root shows that the Ao solution
is oc Te™; recalling that T oc In R, we see that for i = ji.; the width

of the stream expands as

ul = (53)

H({t) « te* o t/%1nt, (54)

where we used the fact that R, o #*>. From equation (39), this value
of  corresponds to a ratio of stream to black hole density of

Por =5/3)~0.102, 2=
Pe

(I' =4/3) ~ 0.148. (55)

Here, we used the value of «; appropriate to each polytropic index,
as given by equation (28). For this critical value of p, the stream is
therefore unstable and grows as o ¢ with an added, logarithmic
boost to the growth rate.

For > e, 04, and o _ are complex with a real part of 1/4 (see
equation 51), and the temporal evolution of each term in the series
expansion is, from equation (50),

Int
e™4sin (E\/S,uz)\z - 1) o 1178 sin <% 822 — 1) )

In the last expression time is measured relative to the dynamical
time at the scale distance R;, which should be comparable to the
dynamical time at the tidal radius and is, by construction, also equal
to the dynamical time of the star. Because the oscillatory nature of
the solutions proceeds logarithmically with time, it follows that the
oscillation period is exponentially long.

We interpret p., as the minimum density necessary for the steam to
retain approximate hydrostatic balance, while those with pi/pe < per
expand ~ ballistically in the tidal field of the black hole. In support of
this interpretation, note from equation (56) that in the limit of & > 1

(56)
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the oscillation frequencies scale as ~Au and the dominant behavior
of the stream is to oscillate on the dynamical timescale of the stream.
The growth rate of the amplitude of the oscillations is very small
relative to the dynamical time of the stream in this limit, because
the growth rate depends only on t while the oscillation frequency is
increased by w. On the other hand, since the lowest-order mode is
monotonically increasing with cylindrical radius and approximately
homologous (see Fig. 5), if o is purely real the stream will simply
continue to expand forever until ~ homologous expansion (with
H  ¢") is reached; this is the dominant solution to the purely
dynamical equation — equation (16) without the pressure or self-
gravity terms.

We note that equation (51) is similar to what was proposed by
Coughlin et al. (2016b; see their section 6.3) to characterize the
oscillations of the fluid. In particular, by reasoning analogously to
galaxy formation in the early (expanding) Universe, they argued
that the modes would be power laws in time, and that the growth
time-scale would be proportional to /p;/p,. We see that the first
of these predictions is correct (recall that e ~ R? ~ t2/3), while
the second actually only applies to the oscillation frequency of the
stream when > 1. On the other hand, when u is sufficiently
small the frequency no longer scales in this way. The growth rate
of the overstability is also o £/, and is independent of the mass
ratio pi/p,.

In the next section, we consider a specific example of how this
instability (and overstability) operates in TDEs.

5.1 An example

As an example, both numerical simulations (Guillochon & Ramirez-
Ruiz 2013; Mainetti et al. 2017; Miles, Coughlin & Nixon 2020) and
analytical analyses (Coughlin & Nixon 2022a and the discussion
in Section 2) have found that the tidal disruption radius of a 5/3,
polytropic star occurs at R, ~ R.(MIM,)' = R;, and hence p, >~
P+, Where p, is the average stellar density. A 5/3 polytrope also has
pil p. = 6, and hence (from equation 39)

3pi
=) Pas; ~1.01. (57)
Px

This is a factor of ~10 greater than the critical p that delimits
pure instability from overstability, and hence the stream radius as a
function of time that includes perturbations from the lowest-order
mode — which are most likely to be largest in terms of the initial
perturbations present on the stream, e.g. the ensuing example in
which we consider a homologous initial velocity perturbation—scales
as

_ B RN (&
H(t) = Hie {1+8H<Rl sin | 1.91n R, . (58)

This expression comes from combining equation (30) with the
solution for the perturbation to the lowest-order mode (equation 56),
noting that the surface coincides with sy = 1, and 6H is the
magnitude of initial perturbation to the stream that arises from
the fundamental mode. The numerical factor of 1.9 is equal to
1/6 x 1/8u2r3 — 1 with 4 = 1.01 and Ay = 2.669. We see that the
oscillations occur on exponentially long time-scales, such that the
nth oscillation occurs when

R,
R,

2.
— p2mn/19

; (59)
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or using the expression for the marginally bound Keplerian orbit as
a function of time, on time-scales
R
Tn — t e}rm/l.9 ~ t*eSn, (60)
2G M.,
where t, = R%/?//2G M, is roughly the dynamical time of the star.
For a solar-like polytrope, the first complete oscillation (n = 1)
occurs after ~1.9 d, the second oscillation after ~287 d, and the
third on a time-scale of ~117 yr.

As a second example, the zero-age main sequence Sun is well-
approximated by the Eddington standard model, and simulations
and analytical estimates have found that this type of star is tidally
destroyed when the pericentre distance of the centre of mass comes
within R, >~ R,/1.8. For a 4/3 polytrope, pi/p, ~ 54, and hence we
have

_ 3p;
=\ sy

which is a factor of ~5 times the critical density for overstability.
Following the same steps as we did for the 5/3 polytrope, the
oscillation periods for this type of star are

T, ~ t,e*™, (62)

Q43 = 0740, (61)

and thus the first oscillation occurs on ~1.4 d, the second on ~152 d,
and the third on ~45 yr.

Tidally disrupted debris streams that satisfy p; > p, are therefore
appropriate for most stars (both radiative and convective) that are
destroyed by SMBHs, and are therefore quasi-stable from the
standpoint that self-gravity is able to confine the stream, but the
time-dependence of the background (expanding) gas results in the
system overshooting its equilibrium and oscillating with a growing
amplitude. Therefore, it seems likely that once the amplitude of
the perturbation grows to become of the order unity, then the next
oscillation that results in a relative maximum of the perturbation
will cause the stream to ‘bounce’ out of equilibrium and approach
homologous expansion (see Appendix A and Fig. Al). Because the
amplitude grows as a power law in time and with a small power-law
index, the time taken for this condition to be reached can be extremely
long. Setting SH(R./R,)"* = 1 in equation (58), the position of the
marginally bound radius at which the magnitude of the perturbation
is comparable to 1 and hence at which this is expected to occur,
which we define as R.p,, and the time at which this should occur,
which we denote 1, are

4 6
Rey = R, (%) = Xt (%) , (63)
where H is the unperturbed stream width.

The time-scale taken for the stream to bounce out of equilibrium
clearly depends sensitively on the magnitude of §H. One mechanism
that is responsible for inducing perturbations on the stream is the
in-plane pancake discussed in Coughlin et al. (2016a). In particular,
the orbital motion of the fluid as the stellar center of mass passes
through pericentre results in the dynamical focusing of the stream
within the orbital plane of the star and a convergence of the fluid. If
the convergence of the fluid is approximately homologous in terms of
the velocity, such that the initial (dimensionless, i.e. in units of H/t,)
velocity of the fluid elements is vo = Viso with V; a constant, then
the coefficients of the eigenmode expansion, F,, can be computed
from equation (49) with this specific velocity profile and inserted
into equation (50) to determine the time-dependent solution.

Fig. 6 shows the evolution of the stream width for the = shown
in the legend when V; = 0.1 (the dashed line gives the temporal
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Figure 6. The evolution of the cylindrical radius of the stream, H/H; with H;
the radius at r = 0, as a function of time in units of the dynamical time of the
star; here an initial, homologous velocity profile with a magnitude of V; =
0.1 provides the initial perturbation. The value of 1 is shown in the legend;
n =0.11is unstable, and = 1 and 5 are both overstable, with an oscillation
frequency that scales approximately with p. The black, dashed line shows
the unperturbed solution for reference.

scaling of the unperturbed solution). The gas is polytropic (K, = 1)
in this case, and we used the first 10 eigenmodes. When & = 0.1, the
solution is just below the critical value necessary to be overstable,
and the stream radius monotonically diverges from the background
solution. When ¢ = 1, which is representative of the value likely to be
realized in most tidal disruption events, the stream radius oscillates
increasingly violently and over/undershoots the equilibrium by a
factor of the order of unity by ~10° dynamical times. For i = 5, the
solution oscillates many times (as all of the frequencies are increased
by a factor of ~5 relative to u = 1) and still represents a relatively
small perturbation by 10° dynamical times.

The left-hand panel of Fig. 7 shows the difference between
the perturbed velocity (where the velocity is v = ds/df) and the
unperturbed velocity, normalized by the unperturbed velocity, as a
function of the initial Lagrangian position and for the times shown
in the legend. The right-hand panel of this figure shows the density,
normalized by the temporal scaling of the background solution, as a
function of the current Lagrangian position (i.e. this is the Eulerian
density profile) relative to the background scaling of the stream width.
Here, we set £ = 1 and V; = 0.1. Since the initial perturbation is
a homologous velocity profile and the unperturbed velocity is also
homologous, at t = O the solution for the velocity is a constant
and equal to V; (the fact that the solution recovers this is actually a
check on the accuracy of our eigenmode decomposition). As time
advances, the velocity and the density oscillate about their initial
values and increasingly violently, and by ~4.4 x 10* dynamical
times, the relative difference in the velocity approaches ~1, signaling
the breakdown of the perturbation method.

In a tidally disrupted debris stream from a TDE, there is a gradient
in the density along the axis that results from the fact that the core
of the star had the highest density. Therefore, we would expect the
location along the stream where the density satisfies p/p, =~ 0.1 to
coincide with where self-gravity no longer confines the material.
Fig. 8 shows the density along the debris stream produced from the
‘canonical TDE’ — a solar-like, 5/3 polytrope destroyed by a 10° Mg
SMBH with a pericentre distance of . = 100Ry — simulated with
the SPH code PHANTOM (Price et al. 2018). We used ~10° particles
and the equation of state is adiabatic with y = 5/3, and the reader
is referred to Coughlin & Nixon (2015) and Price et al. (2018) for

5509

additional details of the setup and the self-gravity solver. The black,
dashed curve shows p = 0.1p,, and thus the regions of the stream
that are below this density should not be self-gravitating. Fig. 9
shows a subset of the SPH particles, where the colours scale with
the base-10 logarithm of the density (red is highest density, blue is
lowest density). The black lines are where the density falls below the
critical density to be self-gravitating, and we see that this location
coincides closely with where the stream ‘fans out,” and becomes
noticeably thicker relative to the geometric center (the marginally
bound radius in this figure occurs at ~45.2r,). The critical density
thus characterizes the location along the stream where the stream
goes from narrow and gravitationally confined to wider and non-
self-gravitating.

In the next section, we investigate an additional perturbation that
modifies the stream, which is the recombination of hydrogen. For
concreteness we assume that the background state is polytropic for
the remainder of the paper.

6 HYDROGEN RECOMBINATION

A thermodynamic effect that has relevance for the evolution of the
debris stream is when the gas cools to the point that it starts to
recombine, and we can use the analytic solutions so-far obtained to
understand the impact of recombination on the stream (see Steinberg
& Stone 2022 for a recent, numerical investigation that accounted
for the effects of recombination on the stream structure). From the
exact solution above the temperature* of the gas within the expanding
debris stream is

-2

Toxl=tTe=1 (&> o 73, (64)
P R

If we focus on the material near the Keplerian marginally bound

radius and that contains most of the mass, then the initial temperature

(for a Sun-like star) is 7; ~ 107 K, and the temperature of the gas

will fall to ~10* K when the centre of mass reaches

Riee @ 30R; = tree = 841, (65)

where t, = R3?//GM, is the dynamical time of the star (as also
introduced in the previous section) and we assumed the initial
position of the centre of mass was equal to the tidal radius. For a
sun-like star with R, = 1 Ry and M, = 1 Mg, the recombination
timescale is f.. ~ 1.5 d.

Once the gas falls below ~10* K we expect hydrogen recom-
bination to occur and modify the thermodynamics of the stream.
We can assess recombination quantitatively by noting that, assuming
thermodynamic equilibrium and (hence) that the recombination time-
scale is short enough that dynamical expansion on that time-scale is
ignorable, the Saha equation,

2 32
lx _mu <27tr;lzzekT> s 66)
X 0

can be used to determine the hydrogen ionization fraction. Here,
€y = 13.6 eV is the ionization energy of hydrogen, m, and my are
the electron and hydrogen mass, p = my(n, + ny) = myn with n, and
ng the number density of ionized and neutral hydrogen, respectively,
and x = np/n is the hydrogen ionization fraction. In this equation, we

4Radiation pressure is ignorable because the ratio 73/p declines with time, and
for all stars that are of relatively low-mass, radiation pressure is insignificant
in the stellar interior.
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Figure 7. Left: The ratio of the velocity difference (including the perturbations) to the unperturbed velocity within the stream as a function of the initial
Lagrangian radius, so. The perturbation in this case is a homologous initial velocity with magnitude Vy = 0.1 (see equation 49) and . = 1. The legend gives the
time (in units of 7, = Rf/ 2 /+/2G M,) at which the velocity profile is measured. Note that since the unperturbed velocity is o sp, the solution at 7 = 0 is just a
horizontal line at the magnitude of the perturbation, which in this case is 0.1. Right: The density of the stream normalized by p;e =37, which is the background,

overall temporal scaling of the unperturbed solution, as a function of Eulerian cylindrical radius s normalized by the scaling of the background solution H;e
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Figure 8. The density of the debris stream produced from the tidal disruption
of a solar-like, 5/3 polytrope by a 10° My, SMBH, as a function of distance
from the SMBH in units of r, = 100 Rg. The black, dashed line shows the
critical stream density, below which we do not expect the stream to be self-
gravitating. The density is averaged over the small solid angle subtended by
the stream (see Fig. 9).

can use the ideal gas law,

kT
p=+x22
my

(67)

to relate the temperature to the pressure and density, both of which
can be approximated from the exact solution in the adiabatic limit
(while this is only an approximation, it gives a useful estimate for
understanding how recombination proceeds in the stream given this
background state), and the ionization fraction x, and inserting the
result into equation (66) allows us to solve (numerically) for the
ionization fraction as both a function of time and initial cylindrical
radius within the stream (note that the temperature 7 is also solved
for alongside the ionization fraction).

The left-hand panel of Fig. 10 shows the hydrogen ionization
fraction as a function of R./R; that results from solving the Saha
equation for the cylindrical radii shown in the legend. Here, we chose
an initial gas temperature of 7; 2~ 107 K and an initial density of p; =
10 g cm™3. This figure demonstrates that, consistent with the estimate
above, hydrogen recombination starts to occur vigorously along the
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Figure 9. A subset of the particles within the debris stream at the same time
as Fig. 8 from the same hydrodynamical simulation, where the colours scale
with the log of the density (red is densest, blue is least dense). Particles to
the left of the top-left, black line or to the right of the bottom-right, black
line fall below the critical density to be self-gravitating. These radii coincide
closely with where the debris stream ‘fans out” and is geometrically noticeably
thicker. The SMBH is to the right in this figure.

axis of the stream after the zero-energy Keplerian orbit expands to
~20-30 times its initial position. However, this figure also shows that
hydrogen recombination occurs from the outside in — fluid elements
at larger initial radii (with lower initial temperatures) fall below
~10* K sooner, and thus recombine sooner as well. This figure also
shows that, while the majority of the stream has recombined by
R./R; >~ 30, in agreement with the estimate above, the process starts
somewhat sooner and finishes completely by R./R; ~ 50. The right-
hand panel of this figure shows the ionization fraction as a function of
cylindrical radius for the R./R; in the legend. Again, this demonstrates
that recombination occurs from the outside-in, and is effectively
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Figure 10. Left: The hydrogen ionization fraction (i.e. the ratio of the number of free electrons to the number of ionized and neutral hydrogen atoms) as a
function of the position of the Keplerian zero-energy orbit. The different curves are for the different initial cylindrical radii within the stream; because the
initial temperature is lower near the surface of the stream, these regions recombine earlier. Right: The hydrogen ionization fraction as a function of the initial
cylindrical radius within the stream for the times positions of the Keplerian zero-energy orbit within the legend (for reference, R./R; >~ 1.5 d after disruption for
a sun-like star). This figure demonstrates, analogously to the left-hand panel, that recombination happens predominantly from the outside-in, and by R./R; =~

50, the entire stream has recombined (consistent with the left-hand panel).
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Figure 11. The luminosity of the recombination transient as a function of
time in days, calculated under the very optimistic assumption that the energy
from recombination could be radiated promptly. The disrupted star in this
case was assumed to have a solar mass and radius.

complete by a time of R./R; ~ 50, which corresponds to ~2.5 d for
the disruption of a solar-like star.

6.1 Recombination transient

As the stream recombines, a fraction of the energy may be radiated
from the system and reach the observer, resulting in a ‘recombination
transient’ that has been analysed by Kasen & Ramirez-Ruiz (2010).
The maximum possible energy able to be radiated per unit time
is equal to the ionization potential multiplied by the total number
of recombinations that occur during that time, i.e. if none of the
recombination energy is trapped within the flow, which is given by

d d
Ly = A [EH/(l —x)ndV} = —eHa/nxs ds dz d¢. (68)

The number density is given by p/my, from mass conservation
psdsdzdg = po(so)sodsodzodgo, and changing variables from ¢ to

T yields
€H vV d

chc = T 5

my R dt
eqy M,\2GM, d [!
Y T ng(SO)SO dSO
0

m R dt
enM,J2GM. (1 3«/2GM.t -
_ o

muR;"

X p0(80)So dso dzo deo

! dx
/ 8o(50)s0 d*dso-
0 T
(69)

In the last equality we used equation (14) to write R as a function of
time, and the factor of M, results from requiring that the total mass
be equal to the mass of the star (i.e. if x = 1, then the integral over
the ionization fraction must equal the mass of the star).

Fig. 11 shows the recombination luminosity as a function of time
in days that results from equation (69). Here, we assumed that R; =
R.(M,/M,)'" and that the star had a solar mass and radius. In this
extremely optimistic case, the recombination transient reaches a peak
magnitude of ~4 x 10* erg s~ This value for the peak luminosity
is, if the disrupting SMBH has a mass of 10° M, approximately 5
orders of magnitude below the accretion luminosity from the fallback
of the debris, being Lg, = 5 x 10 erg s~! if the radiative efficiency
associated with accretion is 0.1 (see e.g. fig. 3 of Coughlin & Nixon
2015).

The peak magnitude obtained in Fig. 11 is comparable to or
somewhat larger than the peak luminosity deduced by Kasen &
Ramirez-Ruiz (2010) (see specifically their fig. 4). The fact that our
value is somewhat larger is almost certainly related to the efficiency
with which we assumed the recombination energy could be lost
from the system — we assumed that the energy could be radiated
immediately, whereas Kasen & Ramirez-Ruiz (2010) argued that
the debris would have to cool to the point that the opacity was low
enough that the material would be optically thin. This condition, they
argued, would be when the gas fell to a temperature of ~5000 K, at
which the opacity of the gas reached a relative minimum. Kasen &
Ramirez-Ruiz (2010) also included more realistic radiative transfer
calculations. Additionally accounting for the fact that the temperature
will decline much more slowly during the recombination phase (see
the next subsection), this will significantly lengthen the amount of

MNRAS 522, 5500-5516 (2023)

€20z 1snBny |0 uo Jasn Aseiqr Ausiaaiun asnoeiAg AQ 60925 L 2/00SS/v/2ZS/2191e/Seluw /w02 dno olwapeoe//:sdiy Woll papeojumMo(]



5512 E. R. Coughlin

time over which the energy is radiated and correspondingly reduce
the luminosity in Fig. 11.

On the other hand, Kasen & Ramirez-Ruiz (2010) made a number
of assumptions about the nature of the debris stream to calculate
their light curves that are likely not realistic for the vast majority of
TDEs (or even any). For one, they assumed that the debris stream
properties were largely homogenized due to the passage of a strong
shockwave through the gas near the pericentre of the stellar orbit,
which was motivated by the work of Carter & Luminet (1983) for
deep TDEs (those in which the center of mass of the star reaches
B 2 3, where B = r/r, and r, is the pericentre distance of the
star). It has since been demonstrated that such strong shocks do not
exist, even for extremely deep (and rare) encounters with g 2 10
(Norman, Nixon & Coughlin 2021; Coughlin & Nixon 2022b). They
also assumed that the debris expands homologously, again motivated
by the passage of a strong shock that would eject the material, while
our work here (and that of Kochanek 1994) demonstrates that this is
not the case — the stream can maintain rough hydrostatic balance in
its transverse directions. For this reason, the density and the optical
depth remain much higher than what was predicted by Kasen &
Ramirez-Ruiz (2010); specifically, we find that at R./R; = 30 (where
the temperature drops to 10* K), the density has fallen by a factor
of ~3073 ~ 3.7 x 107>, while the stream radius has expanded by a
factor of ~30'3 ~ 5.5, and hence the optical depth across the stream
is approximately

R\
kpH = kp;H; R

1

5% 107 ‘ a
0.34 cm? g—! 10 gcm™3

H; R./R\ ™"
< (2) (50) 0

This is ~ four orders of magnitude larger than the value quoted in
Kasen & Ramirez-Ruiz (2010; see their equation 18). In the most
optimistic setting where the opacity drops to ¥ ~ 0.0005 cm? g~!
after recombination and reaching temperatures ~5 x 10% K (see
fig. 3 of Kasen & Ramirez-Ruiz 2010) at a time of R./R; ~ 50, as
estimated from equation (64), the optical depth is still T ~ 2 x 10*
and thus the stream is still very optically thick.

Because of the extremely high optical depth of the stream, Fig. 11
represents an optimistic upper limit of the luminosity from hydrogen
recombination, and a better estimate can be obtained by calculating
the energy that the stream radiates from a thin layer near its surface.
Kasen & Ramirez-Ruiz (2010) used this approach to estimate the
luminosity, but the assumption they made of homologous expansion
Kasen & Ramirez-Ruiz (2010) results in a large overestimate of the
emitting area of the stream at the time it reaches a temperature of
5000 K and a corresponding overestimate of the radiative luminosity;
if we assume that the gas radiates from near its surface when it drops
to this temperature, then we find a luminosity of

,.
[

[

R;

R, 2 R./R; 5/2 T 4
~ 10¥ / ergs!. (71)
Ro 50 5x 103K

Here, we used the fact that the length of the stream Lis L = R, (R./R;)*
and the width H is H = R,(R./R;)"?, both of which follow from the
exact solution in Section 4. This is roughly three orders of magnitude
below the estimate given in Kasen & Ramirez-Ruiz (2010; see their
equation 22).

R 5/2
L=0onHLT* =noR? <—> T
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We thus conclude that the transient associated with hydrogen
recombination is substantially reduced from the estimate given in
equation (69) and shown in Fig. 11, likely by at least 2-3 orders of
magnitude. Therefore, the detectability of such a feature from a TDE
is, unfortunately, highly unlikely.

6.2 Effect on stream structure

Maintaining the assumption that the stream is composed purely of
hydrogen and neglecting the occupation of higher electronic states
within the atom, the gas-energy equation in the limit that all of the
recombination energy is transferred efficiently to the thermal energy
of the gas is

dE + pdV 4+ ey Ndx =0, (72)

which states that, in addition to adiabatic expansion, thermal energy
E can be lost from the gas through ionization or, as in this case, gained
through recombination. If one instead allows for the possibility that
a fraction of the gas is composed of helium and/or metals, then the
left-hand side includes a sum over the various ionization potentials
of the species and the corresponding ionization fractions. In general,
we expect the largest contribution to come from hydrogen, and that
while adding in helium and metal fractions will change the result
in detail but not at the order of magnitude level (as including, e.g.
helium, with a mass fraction of 30 per cent, allows for the presence
of the larger recombination energy associated with doubly ionized
helium, but reduces the total recombination energy from hydrogen
by 70 per cent), but see Kasen & Ramirez-Ruiz (2010) for the more
general case that accounts for the ionization states of Helium. In
equation (72), E, V, and N are the total thermal energy, volume, and
conserved baryon number of a fluid element. For a pure hydrogen
gas, we have
3 2E
E=—-(+x)NkT, P=(+x)nkT = -—. (73)
2 3v

Using these relations in equation (72) and making a few algebraic
rearrangements then gives

9 p

This last equation demonstrates that the energy due to recombination
increases the entropy of the gas, i.e. if dx/0¢ < 0 and the number of
free electrons decreases, the entropy of the gas increases.

‘We can use our background solution and perform a rigorous pertur-
bation analysis with the effects of the entropy due to recombination
driving the perturbations. However, it is more illuminating to use
the following, approximate method to estimate the effects of recom-
bination on the stream structure: if we assume that the adiabatic,
background state (the exact solution derived in Section 4, which
balances both the tidal term from the SMBH and the equation of
hydrostatic balance) is approximately upheld, then the second term
in equation (74) is ‘known’; we therefore have

2 eyp 0x

3myp 0T 74

5/3

P = po(se) <ﬁ> AS(2), (75)
Lo

where
2 eupi [T 5.0

AS = exp | — = 1P / g (76)
3mupi Jo it

Here, we are calculating the entropy change near the stream axis —
where the density is highest and where most of the mass is — and
hence we set so = 0. If we now write p = p;H 2e >"go(so) and
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Figure 12. The value of i o« 4/p/pe (orange), the ratio of the stream density
to the black hole density p/p, (yellow), and the temperature relative to the
background temperature T/(Tie%7) (blue) as a function of time in days for the
disruption of a solar-like star. The time dependence of each of these curves is
a consequence of recombination within the stream and the entropy deposition
therefrom. The horizontal, dashed lines show the critical values of  and p/p,
where the stream drops below the self-gravitating limit.

insert this into equation (75) and use the Poisson equation and the
equation of hydrostatic balance, then we find

H = Hie?ASY*. (77)

If AS = 1, then we recover the marginally self-gravitating solution
with H o< e”’2. From equation (39), which shows that u? oc H=2, we
therefore have

w(t) = wiAS™3/4, (78)

Fig. 12 shows u(t), p/p., and T/(T;e*) as a function of time in
days with AS calculated from equation (76), and we assumed the
same set of initial conditions as in the previous section (i.e. p; =10 g
cm™3, T; ~ 107 K). This figure demonstrates that the entropy added to
the system as a consequence of recombination substantially lowers
the value of p and thus the importance of self-gravity. However,
the stream asymptotes to a value of p that is slightly larger than
the minimum value of u., =~ 0.13, and similarly for the ratio of the
stream density to the black hole density, meaning that self-gravity is
just barely able to confine the stream after all of the recombination
energy is transferred to the gas. We also see that the temperature
is larger by a factor of ~2 relative to the background density, and
thus the temperature declines less slowly during recombination, as
expected.

Equation (78) effectively assumes that the stream starts out in a
self-gravitating state (which, as we have argued, should be the case),
and as the stream moves from one adiabat (pre-recombination) to
another (post-recombination), it remains self-gravitating to the point
that the stream width follows from the combination of the Poisson
equation and the equation of hydrostatic balance. Fig. 12 shows that
this is at least marginally self-consistent. It also assumes that the
fluid velocity imparted by recombination is sufficiently small that
the primary contribution to the reduction in the gas density arises
from the change in the entropy, and that the temporal derivative
of u(t) can be neglected when computing the eigenvalues of the
stream. While the temporal derivative of u is exactly zero before
and after recombination is complete, as in these two limits the gas is
adiabatic (see also Fig. 12), the non-zero derivative will complicate
the dispersion relation during recombination. Nonetheless, Fig. 12
shows that du/dt is smooth and occurs over = few days, which is
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Figure 13. The ratio of the density at the marginally bound Keplerian radius
(R;) to the SMBH density as a function of R, that results from a PHANTOM
simulation of the canonical TDE (a solar-like polytrope disrupted by a 10°
M SMBH). The right axis gives the parameter 1, and the vertical lines gives
R./R; = 30, at which we expect recombination to heat the gas.

many dynamical times of the initial star, and we expect the critical
value of p derived in the previous section to give a good estimate of
when the self-gravitating nature of the stream is destroyed.

In addition to reducing the stream density, recombination must
impart a non-zero velocity in the cylindrical-radial direction that
would additionally drive the stream away from its self-gravitating
state. If p =~ 1 initially, then this would lead to the tentative
conclusion that hydrogen recombination destroys the stream. We
note, however, that our analysis here has ignored the variation in the
stream properties along its axis, which should be substantial owing
to the increased density in the core relative to the outer extremities
of the star. It is likely that self-gravity along the stream increases
the density near the marginally bound Keplerian radius, bringing the
value of u substantially above 1 by the time recombination occurs.

In support of this suggestion, Fig. 13 shows the ratio of the density
at the marginally bound Keplerian radius R. to the SMBH density
(so the vertical axis is o pRg) as a function of the location of the
marginally bound radius for the same simulation as in Figs 8§ and
9. The right-hand axis shows the corresponding value of 1. We see
that initially the stream density is comparable to the value we expect
from the arguments in Section 2, but by the time recombination starts
to occur vigorously within the stream (shown by the vertical, black
dashed line at R./R; = 30), the density (relative to the SMBH density)
has increased by an order of magnitude. After this time the ratio p/p,
levels off, but oscillations in the stream are apparent. Fig. 14 shows
the magnitude of the Fourier coefficients calculated from the Fourier
transform of p/p, in 7, i.e.

(o) o / & pﬁdr. (79)

‘We normalized the Fourier coefficients by ¢(0), i.e. the integral under
the curve in Fig. 13. The vertical, dashed line shows the frequency
associated with the ‘breathing mode’ of the stream, and that has a
value of ~~ 5.66 when u = 3. We see that this frequency coincides
almost exactly with the frequency that has noticeably increased
power relative to the other frequencies, which strongly suggests that
the SPH simulation is capable of resolving the oscillation frequencies
of the stream. Nevertheless, we do not see an increase in the amplitude
of the perturbation, as would be expected from the fact that the stream
is overstable. This is likely due to numerical dissipation, but we leave
a detailed investigation of this to future work.
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Figure 14. The temporal power spectrum of p/p, shown in Fig. 13; here the
coefficients are normalized by the integral under the curve in Fig. 13, i.e. the
temporal average of the density. The vertical, dashed line gives the frequency
of the lowest-order oscillatory mode (the ‘breathing mode’ of a cylinder)
when p = 3, given by o =~ 5.66, which coincides with the peak exhibited by
the power spectrum.

7 SUMMARY AND CONCLUSIONS

The streams of debris produced from tidal disruption events expand
and continue to evolve over many dynamical times of the original,
tidally disrupted star, and the question arises as to their stability and
self-gravitating nature. We showed that there is an exact solution
to the fluid equations (Section 4) that describes a self-gravitating,
gas-pressure dominated, adiabatic cylinder in the gravitational field
of a supermassive black hole, which expands differentially in the
cylindrical-radial direction and longitudinally (and at different rates).
We identify this solution as the ‘background state’ of the gas, and
we performed a perturbation analysis of this solution — considering
only cylindrically symmetric perturbations — in Section 5. We
demonstrated that there is a critical stream density, p, =~ 0.1p.,
below which the stream is unstable, and above which the stream
is overstable. We identify this density — which is over an order of
magnitude smaller than what is realized in TDEs that is p/p, 2 4
(see the discussion in Section 2 and Figs 8 and 13) — as the one that
divides stable and unstable streams or, more appropriate to the debris
streams that are generated from TDEs, regions of a stream that are
self-gravitating and those that are not (see Figs 8 and 9). The growth
rate of the overstability is oc 6, which is both extremely weakly
growing and independent of the stream density.

We analysed the effects of hydrogen recombination in Section 6,
finding that the stream starts to recombine vigorously by ~80
dynamical times of the star (or ~1.5 d for a solar-like star). Because
the stream stays very geometrically thin prior to recombination, the
density is large and the optical depth across the stream is ~107 by the
time the stream drops in temperature to ~10* K. Consequently, the
luminosity of the ‘recombination transient’ generated as a fraction
of the recombination energy is lost from very near the surface of
the stream, is of the order of ~10% erg s~! (at most), which is
substantially dimmer than what was recovered in previous estimates.
‘We also found that the energy imparted to the gas as a byproduct of
recombination was substantial, and caused the density to decline
dramatically (see Fig. 12). However, because the critical stream
density is so far below the density that is typical of TDEs, especially
given the tendency of self-gravity to draw material into the denser
regions of the stream near the marginally bound Keplerian radius
(see Fig. 13), we find it unlikely that radiative recombination is able
to completely destroy the influence of self-gravity.
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It would be interesting to analyse other, physical effects on
the debris stream evolution by using the exact solution for the
background state. For example, our treatment of the recombination
within the stream was highly simplistic, but it would be tenable to use
this solution as the hydrodynamic state for a more detailed, radiative
transfer calculation. Similarly, it should be possible to analyse the
behavior of the magnetic field within the stream, and perhaps even
the magnetohydrodynamics, with the exact solution outlined here.

We did not analyse the response of the fluid to perturbations that
are along the axis of the stream. These are likely to be important,
as not only is the perturbation along the axis of the stream large
initially (owing to the density gradient within the star), but these
modes — specifically those that have approximately uniform motion
along the stream (i.e. nearly independent of cylindrical radius) — are
gravitationally unstable in the hydrostatic limit (see the analysis and
discussion in Coughlin & Nixon (2020) for the case of a polytropic
cylinder). We did not analyse these modes here because the exact
solution, the cylindrically symmetric perturbations, and the effects
of recombination are sufficiently non-trivial and important for the
structure of the stream that they deserve discussion in their own
right. We will present the analysis of non-cylindrically symmetric
perturbations in a future paper.
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APPENDIX A: HOMOLOGOUS SOLUTIONS

The analysis in Section 5 perturbed an exact solution to the fluid
equations, which describes a cylindrical and self-gravitating stream
expanding in the tidal field of an SMBH (as derived in Section 4),
to determine the oscillation frequencies and growth rates of small
perturbations on top of that exact solution. The oscillation frequen-
cies, commonly referred to as eigenvalues, are dependent on the
precise density (and pressure) profile of the unperturbed state, and
the eigenfunctions that describe the spatial variation of the fluid as
a function of cylindrical radius are similarly functions of that state.
The analysis is linear and ignores products of perturbed quantities,
and thus breaks down once the unstable modes grow to a level that
is comparable to the background solution.

Here, we show that an alternative method can be used to analyse
the non-linear response of the stream to perturbations, but at the
expense of using only the leading-order solution for the density of
the background state. In particular, we demonstrate that a simplified
variant of the one-zone model of Kochanek (1994) can be rigorously
obtained from the leading-order of an expansion of the current
Lagrangian cylindrical radius, s, about the original Lagrangian
radius, sg, in the fluid equations (this was also recently implemented
in Coughlin & Nixon 2022b to study deep TDEs in which the stellar
center of mass comes well within the tidal radius of the SMBH).
We assume that the density profile of the stream depends only on
cylindrical radius, and that to leading order in cylindrical distance
from the stream axis, the initial density profile satisfies

Po(s0, 20) = o {1 = (so/)’} . (A1)

where « is a scale length and p; is the density at s = 0. This
expression must generally hold to leading order in s if the density

5515

is both well-behaved along the filament axis and cylindrically
symmetric. We also assume that there is no dependence of the fluid
variables on the distance along the stream axis, z; then the solution
to equation (15) is’

27 Rc
z=¢€"z), T=1In %) (A2)

where R; is an arbitrary scale length along the axis of the stream and
R. is the marginally bound Keplerian radius that satisfies

R, 2GM,
= . (A3)
ot R,
We let the leading-order (in sy) solution for the cylindrical displace-

ment be homologous, i.e. we let

s = H(t)so, (A4)

where H(0) = 1 by construction. Then from the Lagrangian solution
to the continuity equation (18), the time-dependent density is

s\ t/as\7! 0z -t
(5) (370) (370) polso)
= pie H 2 {1 = (so/a)’}, (AS)

while the pressure follows (to leading order in s¢) from the entropy
equation (20):

5/3
_ 14
pP=rpri|—
Pi

.
= piH e {1 - (so/a>~} , (A6)

>
Il

where p; is the pressure along the filament axis. We assumed that the

fluid is isentropic (specific and dimensionless entropy function K =

1) for concreteness. The solution to the Poisson equation (3) is

Ay -2t 71

35 =2nGoapie " H™ "sp. (A7)
s

We can now insert equations (AS5)—(A7) into the s-momentum

equation (16), Taylor expand to first order in s, and change variables

from ¢ to 7; note that the latter is

o ot J2GM, 3

V2GM, efzz/zi

or — ardt R ot R It
D _2GM. sp® [ e D
= e e
ar? R} at at
GM, 02 bl
= 2— —3— . (A8)
R} at? at

Inserting this into the s-momentum equation and performing a few
lines of algebra, we find that the dynamical equation for H is

2H _0H 1, e
2—— —3—— 4+ H+-—pu>— (H—=NH373) =, A9
g0 e THA g ( ") (A9)
where
2y pi 47 i R? -
VP NG, pt= T 3P (A10)
P M, Pe

Here p, = M, /(47 R} /3) and u are the same quantities as defined
in Section 4.

50ne can generalize this solution to include the decaying branch, o ¢~ 7/2,

but it has no relevance on the long-term evolution of the stream and so we
ignore it here.
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When N = 1, it can be verified that an exact, ‘equilibrium’ solution
to equation (A9) is

Heq = e (A11)

With this solution, the dynamical terms cancel, and the self-gravity
and pressure terms balance exactly (i.e. are in equilibrium). We now
perturb the solution about this equilibrium by letting

H=e"*{1 +8H(1)}, (A12)

inserting this expression into equation (A9) and keeping first-order
terms in §H. Setting N = 1 and linearising gives

.. .2u?
26H —8H + =-8H =0, (A13)

where dots denote differentiation with respect to t. The solutions to
this are §H o €’ with

1+ /1= 1612/3
a:%. (A14)

This demonstrates that when p? < p? =3/16 ~0.188, or u <
Her = ~/3/4 =~ 0.433, the eigenvalues are purely real, one of which
is positive and leads to the growth of the perturbations. In the limit
that © — 0, the unstable mode has o = 1/2, which corresponds to
the free expansion of the stream (there is also the solution o = 0,
which in the perturbative limit represents the freedom to rescale H,
i.e. in the non-self-gravitating limit it is only the velocity of the fluid
that enters into the linearized equation). When u? = 3/16, o = 1/4
is a repeated root, and the instability grows as o Te™*. These are the
same results that we found in Section 5, but the value of ©? at which
the solution goes from purely unstable to overstable is larger by a
factor of ~2, and u., is larger than the exact value by a factor of ~4.
Correspondingly, there is a critical ratio of the stream density to the
SMBH density,

Per 1 2 1 ~

P =16 =~ 0.063, (A15)
that separates overstable and unstable expansion in the gravitational
field of the SMBH. This is a factor of ~2 smaller than we found in
Section 5.

Fig. Al illustrates the absolute value of §H that results from
equation (A9), i.e. we solved equation (A9) for H(t) and §H =
(H — Hq)/Heq, with Heq given in equation (A12), which is shown
in this figure for the p given in the legend. Here we seeded the
perturbations by letting § H(0) = 0.001, meaning that the stream is
only slightly perturbed from its equilibrium solution. We see that for
1 < e > 0.433, the solution asymptotically approaches §H o< '3,
which implies that the total solution scales as H o ¢**”* o R, which
is just the solution that one would obtain by neglecting self-gravity.

MNRAS 522, 5500-5516 (2023)

The curves with u = 1 and u = 3 oscillate a number of times before
they ‘bounce’ out of equilibrium and approach the o #'* scaling;
when = 1 (u = 3), the solution diverges from the overstable and
self-gravitating solution at #/T, >~ 10° (t/T, ~ 10'7), i.e. the solutions
are effectively stable. The purple, dashed curve in this figure gives
the expected variation from linear perturbation theory, which agrees
with the numerical solution extremely well until |§H| >~ 1, at which
point the numerical solution becomes more erratic and the oscillation
period less regular.

The solution here only accounts for the first-order terms in the
density and density profile about the stream axis. By including
higher-order terms, we would recover a limiting p., that is in closer
agreement with the solution found in Section 5, namely @, =~
0.13. Thus, the extent to which the solutions deviate from the self-

gravitating, overstable solutions in Fig. A1 is likely overestimated.
Including more terms in the series expansion of s(sg, 7) would also

permit the formation of shocks, which occur because the inversion
so(s, T) is no longer one-to-one, and particles can cross. Shocks likely
occur as the stream width rapidly compresses during the overstable
phase, as also argued in Kochanek (1994), and the large oscillations
that grow in amplitude that we recover here are similar to those in
Fig. 3 of their paper.

— u=0.1
— u=0433
1000F — 4= ]
— u=3
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0.1 1000.0 107 101! 10" 10"
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Figure Al. The absolute value of the correction to the stream width that
comes from the solution to equation (A9), where the i for each curve is shown
in the legend. Here, we set SH ) = 1073, which seeds the perturbations
initially. The black, dashed curve is o 13, which implies that the stream
enters a phase in which it is not bounded by self-gravity, while the dashed,
purple curve gives the approximate solution we would expect from linear
perturbation theory for pu = 3.
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