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Abstract

Both the core collapse of rotating massive stars, and the coalescence of neutron star (NS) binaries result in the
formation of a hot, differentially rotating NS remnant. The timescales over which differential rotation is removed
by internal angular-momentum transport processes (viscosity) have key implications for the remnant’s long-term
stability and the NS equation of state (EOS). Guided by a nonrotating model of a cooling proto-NS, we estimate the
dominant sources of viscosity using an externally imposed angular-velocity profile {2(r). Although the magneto-
rotational instability provides the dominant source of effective viscosity at large radii, convection and/or the
Tayler-Spruit dynamo dominate in the core of merger remnants where d)/dr > 0. Furthermore, the viscous
timescale in the remnant core is sufficiently short that solid-body rotation will be enforced faster than matter is
accreted from rotationally supported outer layers. Guided by these results, we develop a toy model for how the
merger remnant core grows in mass and angular momentum due to accretion. We find that merger remnants with
sufficiently massive and slowly rotating initial cores may collapse to black holes via envelope accretion, even when
the total remnant mass is less than the usually considered threshold ~<1.2 Mtqoy for forming a stable solid-body
rotating NS remnant (where Mgy is the maximum nonrotating NS mass supported by the EOS). This qualitatively
new picture of the post-merger remnant evolution and stability criterion has important implications for the expected
electromagnetic counterparts from binary NS mergers and for multimessenger constraints on the NS EOS.
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1. Introduction

All neutron stars are born as hot, differentially rotating proto-
neutron stars (PNS), which radiate their gravitational binding
energy via thermal neutrino emission over a timescale of
seconds (e.g., Burrows & Lattimer 1986; Pons et al. 1999;
Roberts 2012; see Roberts & Reddy 2017 for a recent review).
Most PNS are formed following the core collapse and
supernova explosion of a massive star, as evidenced in one
important case by the ~13s neutrino burst observed from
supernova 1987a (Hirata et al. 1987; Bionta et al. 1987).
However, a similarly hot and massive PNS-like remnant can
form from the merger of a binary neutron star (BNS) system
(e.g., Dessart et al. 2009; Ciolfi et al. 2017; Fujibayashi et al.
2020; Sumiyoshi et al. 2021), in those cases when the remnant
does not promptly collapse into a black hole (e.g., Shibata &
Taniguchi 2006).

Rapid rotation, if present, can play a key role in the evolution
and fate of PNS. For example, rotation affects the oscillation
frequencies of the remnant (e.g., Ferrari et al. 2004) and may be
responsible for generating a strong magnetic field through
linear winding of the initial field (e.g., Shibata et al. 2021;
Palenzuela et al. 2022); turbulence generated by the Kelvin—
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Helmholtz (e.g., Zrake & MacFadyen 2013; Kiuchi et al.
2015), Rayleigh-Taylor (e.g., Skoutnev et al. 2021), or
magneto-rotational (e.g., Akiyama et al. 2003; Mosta et al.
2015) instabilities; or via an o — {2 dynamo (Thompson &
Duncan 1993; Raynaud et al. 2020; White et al. 2022). Rapid
and differential rotation also provides a source of free energy,
which—if efficiently tapped—could help power the supernova
explosion (e.g., Thompson et al. 2005) or outflows from the
BNS merger remnant (e.g., Fujibayashi et al. 2020).

In BNS mergers, the centrifugal support provided by rotation
is crucial to the stability of the remnant against gravitational
collapse and hence its expected lifetime following the merger
(see Bernuzzi 2020; Sarin & Lasky 2021 for recent reviews).
The maximum stable mass of a cold nonrotating neutron star
is given by the Tolman—Oppenheimer—Volkoff (TOV) limit,
Mrov, its value being a defined property of the neutron star
equation of state (EOS). Solid-body rotation can act to increase
the effective value of Mrov by up to ~20% for the maximum-
allowed angular momentum corresponding to the mass-shedding
limit (e.g., Baumgarte et al. 2000). This opens the possibility that
mergers involving low-mass neutron star binaries may leave
supramassive neutron star (SMNS) remnants (e.g., Paschalidis
et al. 2012; Kaplan et al. 2014), which could survive for minutes
to hours or longer after the merger, before losing sufficient
angular momentum (e.g., as a result of magnetic-dipole braking)
to collapse into a black hole. Due to their powerful neutrino
luminosity, expected strong (~magnetar-like) magnetic fields,
and prodigious reservoirs of rotational energy E,o ~ 10°*-10°°
erg, such merger remnants could strongly impact the post-merger
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electromagnetic counterparts (e.g., Metzger et al. 2008; Bucciantini
et al. 2012; Giacomazzo & Perna 2013; Gao et al. 2013; Gompertz
et al. 2014; Metzger & Piro 2014; Sarin et al. 2022).

Although BNS merger remnants are typically formed with
enough total angular momentum to generate an SMNS rotating
near breakup (e.g., Radice et al. 2018), the remnant is not
rotating as a solid body. Numerical relativity simulations show
that the merger process generates a slowly rotating core
surrounded by a hot quasi-Keplerian envelope (e.g., Kastaun
et al. 2016, 2017; Ciolfi et al. 2017, 2019; Kastaun & Ohme
2021). Depending on how mass and angular momentum are
transported radially within the star over longer, secular time-
scales (ranging from tens of milliseconds to as long as seconds),
a remnant may remain stable as it evolves into a solid-body
SMNS state (e.g., Fujibayashi et al. 2020), or it may become
unstable and undergo dynamical collapse. For example, if the
remnant core were to remain slowly rotating while most of the
angular momentum were removed from the outer layers (e.g., by
a viscously expanding disk and associated outflows), the remnant
could in principle be driven to collapse, even if its mass permits
an SMNS solution (e.g., Beniamini & Lu 2021). In part as a
result of this uncertainty, the BNS properties (total mass, mass
ratio), which result in black hole versus SMNS formation for a
given EOS, remain poorly understood. Nevertheless, the stakes
are high: the ability to delineate this boundary can be used to
place an upper bound on Mgy in events where the binary mass
is measured through gravitational wave observations, but SMNS
formation is excluded by electromagnetic observations (e.g.,
Margalit & Metzger 2017; Shibata et al. 2017; Rezzolla et al.
2018; see also Lawrence et al. 2015; Fryer et al. 2015).

The secular timescale internal angular-momentum evolution
of a differentially rotating PNS remnant depends on the
mechanisms of angular-momentum transport throughout the star
at different times in its evolution. In the outer regions of the star,
where angular velocity €2(r) typically decreases with radius, the
magneto-rotational instability (MRI) can grow on the dynamical
timescale (e.g., Balbus & Hawley 1991; Akiyama et al. 2003;
Wheeler et al. 2015). Magnetohydrodynamical (MHD) simula-
tions of BNS merger remnants find that the MRI transports
angular momentum efficiently through Reynolds and Maxwell
stresses, corresponding to an effective dimensionless viscosity
parameter o 2 102 (e.g., Kiuchi et al. 2018). Viscous neutrino-
radiation hydrodynamics simulations demonstrate how the
differentially rotating remnant transforms into SMNS for an
a-viscosity with a globally constant value of « (Fujibayashi et al.
2020).

On the other hand, near the center of the star d€2/dr > 0, and
hence the MRI will not operate. Thus, an alternative source of
angular-momentum transport is needed to bring the core into
solid-body rotation. One such possible source of transport is
neutrino viscosity, which operates while the PNS is opaque to
neutrinos (e.g., Guilet et al. 2015). Other sources of “magnetic”
viscosity can operate in addition to the MRI. In the immediate
aftermath of the merger, the turbulence generated by the
Kelvin—Helmholtz (e.g., Zrake & MacFadyen 2013; Kiuchi
et al. 2018) or Rayleigh-Taylor instabilities (e.g., Skoutnev
et al. 2021) acts initially to amplify the small-scale magnetic
field to large values >10'® G. Magnetic winding will also
amplify the toroidal magnetic field in the PNS core (e.g.,
Palenzuela et al. 2022; Shibata et al. 2021; Aguilera-Miret et al.
2022); however, without a physical mechanism to regenerate
a poloidal magnetic field from the amplified toroidal field, no
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radial Maxwell stress can result. A promising candidate for
such a coupling mechanism is the Tayler—Spruit (TS) dynamo
(Spruit 2002; Fuller et al. 2019).

Here we present a preliminary exploration of the various
angular-momentum processes that can operate in a differen-
tially rotating millisecond PNS, considering the application to
both core-collapse supernovae and BNS mergers. In Section 2,
we estimate, as a function of radius and time after PNS birth, the
effective strength of the viscosity arising from different physical
processes. We do this by means of analytic estimates, employing a
one-dimensional time-dependent PNS cooling model to motivate
the time-evolving background state. Although the MRI can
transport angular momentum efficiently in the outer layers of the
star, even in the core, we find that the combination of convection
and the TS dynamo operate efficiently on the cooling age. Thus,
we predict that the cores of rapidly rotating PNS will quickly enter
a state of solid-body rotation, faster than angular momentum can
be added or removed from the quasi-Keplerian outer envel-
ope—disk.

Thus motivated, in Section 3, we explore further the implied
fate of BNS merger remnants by developing a two-zone (solid-
body rotating core + quasi-Keplerian envelope—disk) toy
model for the long-term evolution and stability of the merger
remnant as the core accretes mass and angular momentum from
the envelope. We use this model to delineate the initial core
properties that result in an accretion-induced collapse versus
survival as a long-lived SMNS remnant. Our results illustrate
that the SMNS boundary may not be defined exclusively in
terms of the remnant mass, thus complicating the use of
electromagnetic observations, which rule out SMNS formation
to place an upper limit on the TOV mass. We summarize and
discuss our conclusions in Section 4.

2. Angular-momentum Transport in Rotating PNS
2.1. Models for Cooling PNS in Supernovae and BNS Mergers

We employ a 1.6 M, PNS stellar evolution model similar to
the ones described in Roberts & Reddy (2017). This cooling
model is produced by following the collapse and bounce of the
15 M., progenitor of Woosley et al. (2002) in spherical
symmetry until the shock reaches a baryonic mass coordinate
of 1.6M,. At this point, the material from the shock outward is
excised from the grid and replaced by an outer boundary
condition. The cooling of the remnant PNS is then followed
for ~100s. Neutrino transport in the star is followed using
a multigroup, two-moment scheme that is closed via an
approximate solution to the static Boltzmann equation using
characteristics (Roberts 2012). Three flavors of neutrinos are
followed, v,, &, and vy = {v,, I, V4, 74} each using twenty
logarithmically spaced energy groups. We employ the
Lattimer—Swesty EOS with an incompressiblity parameter
K=220MeV (Lattimer & Swesty 1991) using the tables
described in Schneider et al. (2017). The neutrino opacities are
taken from Burrows et al. (2006). The effects of convection are
not included in the models.

The models provide the radial profiles of the following
quantities as a function of time since core bounce: mass density
p, enclosed mass M., energy flux carried by neutrinos F,
temperature 7, pressure P, electron fraction Y,, entropy s,
lepton fraction Y;, and adiabatic index ~,. The models also
provide the energy densities, ¢,, and local mean free paths, A,
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as a function of neutrino energy e for each of the three neutrino

species.
Our estimates of the TS dynamo require the Brunt—Viisila
frequency N,
szi(dlnP B 1)(dlnn)’ 0
Y% \dInn dr

where g:GMenC/r2 is the gravitational acceleration in the
Newtonian approximation, n is the baryon number density, and
v, 1s the adiabatic index.

Although our goal is to study mechanisms of angular-
momentum transport in PNS, we do not include rotation effects
in the stellar evolution models. This is primarily due to the
lack of a self-consistent way to include rotation and its
time-evolution in a one-dimensional model without significant
modifications to the available infrastructure (Roberts & Reddy
2017) as well as the explorative (~order of magnitude) nature
of our estimates. Including rotation would have a number of
quantitative effects on the stellar evolution, such as reducing
the effective gravity, particularly in the outer layers of the
star; affecting the criterion for convection (e.g., Tassoul
1978); providing an additional source of heating from viscous
dissipation (e.g., Thompson et al. 2005); and the potential for
additional mixing processes driven by rotation (e.g., Heger
et al. 2000; Aerts 2019 and references therein).

We begin our calculations following core bounce, after the
outer mass of the star has been removed from the grid to
approximate the effects of a successful supernova explosion
(see Roberts & Reddy 2017). Although our calculation is
specific to the core-collapse case, apart from the somewhat
different mass scale and initial lepton number distribution, we
expect the thermal evolution of a BNS merger remnant to
qualitatively match that of a PNS formed from a core-collapse
supernova. For example, regarding the initial entropy distribu-
tion, while the outer mantle of a PNS formed during core
collapse is heated by the outwards-propagating shock generated
at core bounce (e.g., Janka et al. 2007), the outer layers of a
BNS merger remnant are also preferentially heated during the
merger process (e.g., Raithel et al. 2021). Supporting a similar
evolution, the neutrino luminosities of neutron star merger
remnants, as calculated using axisymmetric, two-dimensional,
multigroup, flux-limited-diffusion radiation-hydrodynamics
simulations (Dessart et al. 2009) are similar, at least up to
timescales of a few hundred milliseconds after the merger, with
those of PNS formed in core-collapse supernovae at the same
epoch after core bounce (e.g., Pons et al. 1999; Roberts et al.
2012). In the merger case, we define the # = 0 point as when the
PNS has contracted to a radius ~20 km, motivated by the
approximate size of the remnant predicted by numerical
relativity merger simulations (e.g., Ciolfi et al. 2017).

Although our PNS models do not include rotational effects,
the angular-momentum transport processes do depend on the
angular-velocity profile €(r) of the star. We consider two
scenarios for €)(r), representative of core-collapse supernovae
and BNS mergers, respectively. For the supernova case,
we follow the prescription of Thompson et al. (2005, their
Equation (4)) and assume that the iron core is rotating as
Q@) = Qo/[1 + (r/Rq)?] prior to collapse. We then conserve
the specific angular momentum j=r*Q) within mass shells
during the collapse. This rotation profile implies an iron core
that is roughly solid-body rotating out to r = R. We choose
Rqa=1000km and €y=27/(2s) as these reasonably
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Figure 1. Schematic of BNS merger remnants as considered in this work. The
rotational profile of post-merger remnants has been found by numerical
relativity simulations to be qualitatively similar to that shown above. Black
dashed curves show the profile reported by Kastaun & Ohme (2021; after
removing the frame-dragging effect), and the solid-red curve shows the analytic
approximation employed in generating Figure 3 (Equation (2)). The system can
be thought of as composed of an initially slowly rotating core at small radii that
is surrounded by a ~centrifugally supported envelope—disk at larger distances.
The mass contained within the core, Mo, is typically a large fraction of the
total merger remnant mass M, (with current numerical relativity merger
simulations suggesting Mcore /Mior ~ 0.8).

approximate a rotating stellar progenitor model from Heger
et al. (2000; see Figure 1 in Thompson et al. 2005). This choice
also ensures that Q(r) < Qg at all times of interest, where
Qx = (GM_y./r?)'/? is the Keplerian angular velocity.

For the BNS merger case, we instead adopt a rotational
profile motivated by the findings of numerical relativity
simulations (e.g., Uryt et al. 2017; Kiuchi et al. 2018; Kastaun
& Ohme 2021). In particular, we take

-\ .
Q) = Ql+Qo(—) [1—6(’0)], r>ri‘ )

ro
€, r<r

We define ) such that Q ~ Qg for r > ry and take r; = 3 km,
ro=38 km, and ; =0.03(2y, as we find these reasonably
reproduce the 2(r) profile found by Kastaun & Ohme (2021),
once the frame-dragging contribution has been removed
(Figure 1).

2.2. Sources of Viscosity

We consider four mechanisms of angular-momentum
transport:

1. neutrino viscosity,
2. MRI,

3. convection,

4. TS dynamo.

We model each of these as a viscous process with an associated
kinematic viscosity v and viscous timescale

2

Lyise = —. 3)
124

In optically thick regions of the star (valid throughout most
of the remnant mass on timescales of interest), the neutrino
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viscosity can be written as (van den Horn & van Weert 1984;
Thompson et al. 2005; Guilet et al. 2015)

2 euiy )

i

v, =
vief

Vp e} 15 pc

where ¢, is the energy density of neutrino species v;, and (A:’j}
is an appropriately averaged neutrino mean free path defined in
Equation (A4). Note that (A:'f) is not an energy-weighted mean
free path, and instead involves a more-complicated weighting
scheme. This has led to some confusion in the published
literature, and we discuss this point further in Appendix.

We approximate the effective viscosity due to MRI
turbulence as (e.g., Akiyama et al. 2003)

vmrr = ah2Qq, dQ/dr <0 6)

where ) is the angular velocity, ¢ = dIn2/dInr is the
dimensionless shear, o is a dimensionless parameter that
accounts for the strength of the Maxwell and shear stresses
relative to the pressure. We take o =0.1 in our calculations,
although its true value could be an order of magnitude smaller
(e.g., Kiuchi et al. 2018). We evaluate the stability criterion for
the MRI following Menou et al. (2004); Balbus & Hawley
(1991), where a necessary condition for stability is

dQ?
dinr

and we deem the MRI to be active whenever this condition is
not satisfied. Note that we do not include any buoyancy terms
in this criterion because in regions of the star where rotation is
most significant (near-Keplerian) the PNS is heavily deformed,
and the Brunt—Viisild frequency is reduced relative to that in a
nonrotating star (our assumed background state).

The length-scale ki, entering Equation (5) is the characteristic
coherence length of the turbulence. For a slowly rotating star with
a sharp outer boundary, Thompson et al. (2005) suggest to take /4,
equal to the radial pressure scale-height & = (d InP/dr)™" (e.g.,
Thompson et al. 2005). However, again, in our models for PNS
rotating near breakup (€2~ ()x), with surface layers akin to a
vertically thick accretion disk (or decretion disk), we instead take
the turbulent length-scale to be the disk vertical scale-height,
he~r/3.

Regions of the PNS become unstable to convection, due to
entropy and/or leptonic composition gradients (e.g., Burrows
& Lattimer 1988; Mezzacappa et al. 1998; Roberts et al. 2012;
Nagakura et al. 2020). Convection can transport angular
momentum via mixing following fluid advection. We approx-
imate the effective viscosity due to convection as

>0, (6)

Veonv 2 Veh, @)

where v, ~ (Fony/ p)l/S is the convection speed expressed in
terms of the convective flux Fq,,. For simplicity we assume
that the convective flux everywhere equals the neutrino flux at
the surface of the model. Although this prescription is crude, it
captures the relevant scaling in the efficient convection regime.

Even in the stably stratified regions of the star, magnetic field
amplification arises due to winding by differential rotation.
This growth saturates in an instability, which results in the
generation of a poloidal magnetic field component that couples
with the azimuthal field to generate a radial Maxwell stress via
the “Tayler—Spruit” (TS) dynamo (e.g., Spruit 2002). The
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strength of the effective viscosity arising from this coupling
depends on the saturation amplitude of the instability. Here we
employ the saturation prescription of Fuller et al. (2019), which
gives a viscosity
3

Vs = r 2%. (8)
This choice is motivated by its success in matching observa-
tions of red-giant core rotation (e.g., Fuller et al. 2019),
although we note that other prescriptions yield a substantially
weaker dynamo and hence lower viscosity, typically by factors
of (2/|N])* ~ 10~'-10"2 (Spruit 2002).

We turn off the TS viscosity in convectively unstable regions
because we are not sure how this dynamo process interacts with
convective instabilities, and in any case, convection is always
fast enough to ensure near-uniform rotation where it acts.
Similar uncertainties apply to the interaction of other angular-
momentum transport processes. For instance, a region that is
MRI turbulent would presumably also suppress the TS
instability (and vice versa). Likewise, neutrino viscosity can
suppress the MRI in the core of the PNS depending on the
magnetic field strength (e.g., Guilet et al. 2015). Nevertheless,
these uncertainties are mostly irrelevant as long as we focus our
consideration on the dominant source of viscosity (shortest
viscous timescale) on any radial scale.

Finally, note that there exist other potential sources of
angular-momentum transport that we neglect, for instance, by
waves excited in the PNS interior (e.g., Fuller et al. 2014;
Gossan et al. 2020), pumping due to convective overshoot
between adjacent radiative and convective layers (Kissin &
Thompson 2018), hydrodynamic instabilities within radiative
regions (e.g., Zahn 1974; Prat et al. 2016) or boundary layers
(Belyaev & Rafikov 2012; Belyaev & Quataert 2018), or spiral
density waves induced by nonaxisymmetric deformations of
the merger remnant (Goodman & Rafikov 2001; Rafikov 2016;
Nedora et al. 2019, 2021). These processes could also be
important but are more difficult to quantify in comparison to
those sources we have focused on.

2.3. Analytic Estimates

Before proceeding to our numerical results, we provide
analytic estimates for the effective viscous timescales asso-
ciated with different processes. When necessary to specify, we
consider a typical location at the radius r~ R/2 within the
remnant of radius R ~ 20 km and mass M, =~ 2.6M,, where
the angular rotational velocity Q < Qg = (GMien /R?)'/2.

In Appendix, we derive an approximate analytic expression
for the neutrino viscosity (Equation (4)) as a function of
density, temperature, and neutrino degeneracy 7, = w,, /kT
(where ,, is the chemical potential of neutrino species v;),
by considering six species of neutrinos in local thermo-
dynamic equilibrium and assuming that the opacity is
dominated by scattering onto nondegenerate neutrons and
protons (Equation (AS)),

2 -2
u, ~1.66 x 1010 cm? sfl( T ) p
10MeV ) \ 103 gcm 3

M+,

xf(Ye) 1+ > . C))

0.7 T
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Here f(Y,) is a weak function of the electron fraction Y,, which
spans the limited range f(Y,) € [0.68, 0.74] for Y, € [0, 0.5]
(see Equation (A6)). The expression above is analogous to the
Keil et al. (1996) result that is often used in the literature (e.g.,
Guilet et al. 2015; White et al. 2022), but generalized to
arbitrary neutrino degeneracy and with an updated numerical
value. Although mu and tau neutrinos remain nondegenerate
in our context, electron neutrino degeneracy can become
appreciable within the PNS or merger remnant core (7, ~ 10;
Equation (A9)). A convenient analytic expression applicable in
the nondegenerate and highly degenerate regimes of interest is
therefore

v, ~ 100 cm?s~!

2 -2
1.7( T ) P .1, ~0
10MeV /) 1083 gcm3 ¢

—4/3 2/3
P Y;/g
71| —PL L0, > 1
(1013gcm3) (0.1) "l

where Y, is the electron neutrino number fraction. Since
neutrino degeneracy can only increase the viscosity, one can
effectively take the relevant viscosity as the maximum of the
two cases above. Scaling the density to the mean value
P~ 3Mem/47R? ~ 1.5 x 10" g cm™ and adopting the
nondegenerate case, the neutrino viscosity timescale can thus

be written
2 -2 2
1, ~ = ~ 600 S(L) £y, (11
v, 50 MeV p

where we have scaled the temperature 7 to a typical peak value
~50MeV in the post-merger remnant (e.g., Perego et al. 2019).
A similar estimate is obtained if one instead assumes that
electron neutrinos are degenerate. This timescale is much
longer than the cooling evolution time, suggesting neutrino
viscosity is irrelevant throughout the bulk of the star.

The timescale for angular-momentum transport due to MRI
turbulence is approximately given by

(10)

2

—1 —1 -2
5100 s(i) (ﬂ) M) a2
ah{ ) 0.1 Qk r/3

IMRL ~ ——

where we have used Equation (5) with g =1.

In regions where convection carries the outwards luminosity
of the PNS, the convective luminosity L. ~ 47rr2pvc3 must
approximately equal the surface neutrino luminosity L,, where
p is the stellar density, and v, is the convective velocity. This
gives, for the latter,

L, \”
Ve ~
4mr?p

L 1/3/ \-1/3
~4 x 108cms™ | ——X— L , (13)
103 erg s7! D

where we have normalized L, to a characteristic value
~10> erg s~' for a PNS or merger remnant on timescales of
hundreds of milliseconds after birth (e.g., Pons et al. 1999;
Dessart et al. 2009). This gives a characteristic viscous
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timescale due to convection,

2 2

r r

~ —

Veonv hve

-1 ~1/3
~3x 10 25| Ly . (14
r/10 103 erg s~!

where we have used Equation (13) with p = p.
Finally, using Equation (8), the TS timescale is given by

~

tconv

N Q@(h)—‘

r

-1 -3
5 1O4s(—h ) (3) , (15)
I"/IO QK

where in the third equality we have approximated the Brunt—
Viisdld frequency (Equation (1)) as N~ (g/h)]/ 2 with g=
GMrem/rz. If one were to adopt the Spruit (2002) saturation
criterion instead of Fuller et al. (2019), then #1s would be larger by
a factor (|N|/2)? = (/Q)~2(r/h) ~ 10(Q2/Qx)~2 ~ 10-100.

In summary, in outer regions of the star rotating at or near
breakup (2 ~ k) where the MRI operates, we have frg <
tvr1 S feony K Tku, Where

GM? L o
Ty o rem._, gg v 16
TR, ( 10%3 erg s~! ) (16)

is the Kelvin—Helmholtz timescale (roughly equal to the
thermal timescale over which the PNS properties change at a
characteristic interior point). In the more slowly rotating core
(2 < Qx), even if the MRI is inactive, we can have f.opny,
trs < Txu- As we now discuss, these estimates are confirmed by
our more-detailed numerical models.

2.4. Numerical Results

Figures 2 and 3 present the radial profiles from our numerical
PNS cooling calculations (Section 3) of the angular-momentum
redistribution timescale t,;,. (Equation (3)) associated with each
source of viscosity (Section 2.2) in the case of supernovae and
BNS mergers, respectively. The different panels in each figure
show different snapshots in the cooling evolution of the PNS.
Solid gray curves show the total viscous time, calculated using
the sum of all sources of viscosity. Black solid and black dotted
curves at the top of each panel show the assumed profiles of 2
and (, respectively, as described in Section 2.1.

Two main questions we want to address are as follows:

1. Will the supernova or merger remnant enter approximate
solid-body rotation over timescales shorter than the
remnant’s thermal properties (and hence all of the non-
MRI viscosity sources) are evolving?

2. Can angular momentum be transported into the core as
fast as mass is being supplied from the outer rapidly
rotating layers or quasi-Keplerian disk?

Question (1) is addressed by comparing t,;. to the age
~cooling time of the PNS, ¢ (shown as dashed gray horizontal
curves for each snapshot in Figures 2, 3). In both the supernova
and BNS merger cases, neutrino viscosity is generally the least
effective, insofar that 7, >t. However, the combination of
convection and/or the TS dynamo are efficient throughout all
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Figure 2. Timescale for angular-momentum transport z,;s. (Equation (3)) within a PNS remnant formed from the core collapse of a rotating massive star as a function
of radius at several snapshots in time measured from core bounce, as marked above each plot. The imposed angular-velocity profile €2(r) is shown as a solid black
curve in the top panel of each snapshot, and can be compared to the Keplerian angular velocity x (dotted black). We assume that
Q(r) = 27/2s)/[1 + (r/1000 km)] in the iron core prior to collapse and that specific angular momentum is conserved on mass shells during collapse. We
show viscous times separately for each of the angular-momentum transport processes we consider in Section 2.2: neutrino viscosity (blue; limited to optically thick
regions), MRI (yellow), convection (red), and the TS dynamo (green; solid—nominal case adopting the Fuller et al. 2019 saturation condition; dotted—using the
Spruit 2002 saturation prescription instead). The total viscous time arising from the sum of the viscosities is shown with the solid gray curve. The total viscous time is

shorter than the PNS’s thermal timescale 2 its age ~¢ (horizontal dashed gray curve), suggesting that the object quickly comes into solid-body rotation.

epochs we consider (Z.ony, trs < 1), even in regions of the star
where d$2/dr > 0, and the MRI is inactive. For example, in the
first tens of milliseconds of the merger case, we have frg,
teony ~ 1 — 100 ms across radii » < 10 km. We therefore expect
that regions with < Qg will be brought into solid-body
rotation on a similar timescale.

The insensitivity of our conclusion to whether TS or
convection transport operates at any point or epoch is
potentially important, because the size and locations of the
convective zones are sensitive to details that are either not
captured by our simulation (e.g., the effects of rotation or
differences in the lepton gradient from the one we have
assumed) or otherwise hard to quantify (e.g., uncertainties in
the nuclear symmetry energy; Roberts et al. 2012). On the other

hand, there remain uncertainties about whether convection will
truly enforce solid-body rotation (see Section 4 for discussion).

Even in regions of the star where the MRI operates, the TS
dynamo is seen to compete (frs~ fvri), although which of
these wins will be sensitive to their relative saturation strengths.
For the MRI, we have assumed an effective viscosity o =0.1,
an order of magnitude higher than that found by Kiuchi et al.
(2018), and hence our estimate of fry could be seen as a lower
limit. On the other hand, adopting the Spruit (2002)
prescription for the TS saturation could increase trg by a
factor of (|N|/2)* ~ 10-100. For comparison purposes, the TS
timescale adopting this Spruit (2002) prescription is shown as
dotted green curves in Figures 2, 3. Even for this conservative
case, the TS timescale is < throughout most of the neutron
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Figure 3. Same as Figure 3, but calculated for an imposed angular-velocity profile appropriate to a BNS merger remnant (Equation (2)).

star core, lending further strength to the finding that the object
comes into solid-body rotation over short timescales.

The answer to question (2) above depends on what mechanisms
are responsible for adding mass to the core. Fujibayashi et al.
(2020) find that neutrino cooling of the outer layers of the remnant
allows growth of mass and angular momentum of the central PNS
core. Furthermore, Figures 2, 3 show that the TS—convective
timescale in the stellar interior (where d2/dr <0) is typically
comparable or shorter than the MRI timescale in the outer regions
(dQ/dr > 0); this suggests that the disk will be fed from the
outside at a rate slower than required for the core to enter solid-
body rotation. This conclusion would be further strengthened by
the presence of a Keplerian-disk extending to large radii (e.g.,
from supernova fall-back material or tidal ejecta in the BNS
merger case) for which #yg; is even longer than those shown in
Figures 2, 3 (comparable to the duration of short gamma-ray
bursts ~0.1-1's, under the usual assumption that the latter are
powered by disk accretion).

3. Model for Post-merger Remnant Evolution

Motivated by the results of Section 2, we now present a toy
model for the long-term viscous evolution of post-merger
remnants. Though simplified and imprecise in several details,
this model paints a new qualitative picture with implications
for connecting the lifetime and long-term stability of such
remnants to the initial radial distribution of mass and angular
momentum established during the dynamical phase of the
merger.

Our model is based on treating the post-merger remnant as a
two-zone system comprised of a solid-body rotating neutron
star core and a surrounding rotationally supported Keplerian
envelope or disk (see Figure 1 for a schematic illustration).
This approach is motivated by results of numerical relativity
simulations, which generically find the post-merger remnant
structure (assuming that a prompt collapse to a black hole has
not taken place) to be well characterized by a slowly rotating
cold “TOV-equivalent” core neutron star solution that transi-
tions to a rotationally supported envelope at large radii (e.g.,
Kastaun et al. 2016; Ciolfi et al. 2017, 2019; Kastaun & Ohme
2021). Within this two-zone framework, the system’s secular
evolution is governed by mass and angular-momentum transfer

due to accretion of material from the disk onto the neutron star
core. As we have shown in Section 2, angular-momentum
transport within the core is very rapid. This motivates us to
consider the limiting case where accreted angular momentum
is instantaneously redistributed within the core, effectively
maintaining the core at solid-body rotation. This limit is
reasonable so long as the viscous time throughout the core is
shorter than the lifetime of the disk, as we have shown is likely
the case.

Under the simplifying conditions above, we can gain new
insight into the long-term viscous evolution of BNS merger
remnants. If angular-momentum transport in the core is fast, the
core will be well described by a solid-body rotating equilibrium
neutron star solution at any point throughout its secular
evolution. This evolution slowly increases the core mass and
angular momentum due to accretion, driving the core into a
new equilibrium solution, or toward instability and collapse. If
we assume a Keplerian rotationally supported disk that extends
down close to the core surface, then the amount of angular
momentum gained by the core of mass M and angular
momentum J per accreted unit mass is simply

dJ .
W ~ JKep (Racc) = Y GMR. , 17

the specific angular momentum of accreted material, normal-
ized to that of a Keplerian disk of radius R,..; we shall typically
set R,.c = (R, where R(M, J) is the equatorial radius of the
neutron star equilibrium solution, and (~ 1-2 is an uncertain
parameter that depends on the details of the boundary layer
separating the core and disk. If the angular velocity of the core
approaches the mass-shedding limit (2 = Qg(R); M = Mgep(J)),
the sign of the torque on the core must change, preventing it from
gaining additional angular momentum. We assume in this case that
the core continues to accrete mass while remaining near the mass-
shedding limit (Popham & Narayan 1991; Bisnovatyi-Kogan
1993).

The core’s secular evolutionary track in J— M space can
then be simply integrated. Figure 4 shows three examples of
such tracks for different initial core masses and angular
momenta M ore, Joore (different colored solid curves, labeled
(A)-(C)). We model the core as a uniformly rotating cold
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Figure 4. Evolution in the space of mass and angular momentum of the (assumed solid-body rotating) core of a BNS merger remnant under the action of accretion
from a surrounding Keplerian envelope—disk. Solid black curves bound the parameter space in which solid-body rotating equilibrium neutron star solutions are viable,
as set by the maximum mass supported against gravitational collapse Mp.x (J) (top curve) and the mass-shedding limit M.,(J/) (right curve), for an SLy EOS (where
Mroy = 2.04M.). A black triangle denotes the total remnant mass M., and angular momentum J,, in an illustrative case residing in the traditionally considered
SMNS regime (Mtoy < Moy S 1.2M10ov). Stars show three examples of the initial post-merger core properties that exhibit qualitatively distinct evolution. Over disk
viscous timescales, mass and angular momentum are accreted onto the core, causing it to move up the trajectory illustrated by the appropriately colored solid curves.
Case (B) accretes until reaching M = M,,,, while case (A) first hits the mass-shedding curve and hence is rotating near breakup when reaching M = M. In both cases
(A) and (B), the remnant will only collapse to a black hole once disk accretion has ceased and angular momentum is lost at roughly fixed mass over longer timescales,
e.g., via magnetic spindown (left along the dotted lines). By contrast, in case (C), collapse occurs during the core accretion process itself, bypassing the spindown
process and resulting in very little rotational energy deposited into the remnant environment. Such an accretion-induced collapse outcome occurs for initial core
properties { Mcore, Jeore} above the critical curve Majc(J) (dotted—dashed black curve; approximately given by Equation (21)). A similar curve, My eax(J/) (dashed-black
curve) separates between cores that are spinning at breakup at the end of viscous evolution and those whose rotation rates are lower (as in cases (A), (B), respectively).
See text for further details.

neutron star equilibrium solution obtained with the RNS code nonrotating J =0 solutions). Above this curve, there is no
(Stergioulas & Friedman 1995) for a representative SLy EOS equilibrium solution, and the core undergoes gravitational
(Douchin & Haensel 2001). By creating a grid of solutions in collapse over dynamical timescales. The right boundary limits
the {M, J} solution space, we interpolate jk., within this the core’s rotation to below the mass-shedding limit, along
parameter space (taking (= 1) and numerically integrate M(J) which the equatorial angular velocity is equal to the Keplerian
tracks, as shown. limit. The two curves meet at a point that defines the maximum
Given that the equilibrium neutron star radius does not attainable mass for any solid-body rotating neutron star (see
change too significantly as a function of M and J, a useful Margalit et al. 2015 for further discussion of this point). This
analytic approximation can be obtained by assuming a constant mass is typically a factor ¢ larger than the TOV mass, where
Race = (R in Equation (17). This implies that accretion tracks &~ 1.2 is insensitive to the EOS (e.g., Baumgarte et al. 2000).
follow An SMNS remnant is then typically defined as one where
2/3 the total remnant mass is Mtoy < Mo < Moy, while an
M) = M030462 4 3 (J = Joore), , (18) indefinitely stable remnant requires M, < Mtov.

As a consequence of the large orbital angular momentum of
the original binary, BNS merger remnants are almost always

2 JGCR

in good agreement with the numerically calculated curves in born with total angular momenta exceeding the mass-shedding
Figure 4. limit (to the right of the black curves in Figure 4; e.g., Radice

The fate of the merger remnant is then directly determined et al. 2018). Although a fraction of this initial angular
by the core’s evolutionary accretion track. The region where momentum can be lost through various channels (e.g., GWs,
stable uniformly rotating neutron star equilibrium solutions neutrinos, post-merger outflows; see, e.g., Shibata et al. 2019)
are permitted is bound between the two solid black curves on timescales comparable to the secular accretion timescale, Ji;
in Figure 4. The top curve shows the maximal mass of a is usually sufficiently large that it would be above (or near) the
uniformly rotating neutron star M,,.x(J) (equal to Mroy for mass-shedding limit even accounting for such losses. This has



THE ASTROPHYSICAL JOURNAL, 939:51 (16pp), 2022 November 1

motivated the prevailing schematic view of post-merger
remnants: consideration of the fotal post-merger remnant mass
and angular-momentum budget suggests that any SMNS or
indefinitely stable remnant (M, < 1.2Mr1oy) will redistribute
its angular momentum over viscous timescales to become a
dynamically stable, rapidly rotating (at near breakup), equili-
brium neutron star. The long-term evolution of this object is
then governed by net angular-momentum losses through, e.g.,
magnetic-dipole spindown, at fixed baryonic mass. Such a
trajectory is shown by the dotted portion of the yellow curve
(case (A)). However, as we now describe, our two-zone
treatment of the post-merger remnant opens up the possibility
for different outcomes, potentially challenging the traditional
view discussed above.

3.1. Evolutionary Tracks and Remnant Stability

In the two-zone core+disk decomposition of the merger
remnant, most of the total remnant mass M, is confined to a
relatively slowly rotating core, while a small amount of
centrifugally supported mass (the disk) carries most of the total
angular momentum J,,. The remnant’s evolution and stability
should therefore be assessed based on properties of the core,
which differ substantially from the total remnant properties
(compare the stars to the triangle in Figure 4). The evolution of
the core over accretion timescales depends sensitively on its
initial properties. Figure 4 shows three illustrative cases with
different initial values of {J.ore, Mcore}. In case (A), with a
relatively low initial mass Mo ~ 0.78 My, (yellow), the core
accretes mass, roughly following Equation (18), until it hits the
mass-shedding curve. Subsequently, the core accretes by rising
up this mass-shedding curve until the disk mass has been
depleted and M ~ M, (for simplicity, we neglect mass loss due
to disk winds). This marks the end of the remnant’s viscous
evolution phase (yellow circle). Over longer timescales
1> tyisc, disk- the remnant then spins down through nonaccre-
tion processes (e.g., via magnetic-dipole spindown), along a
track of constant baryonic mass and decreasing J (dotted
yellow curve). In effect, case (A) behaves like the typically
envisioned SMNS-remnant evolution described in the previous
paragraph. The outcome would be a remnant that survives over
long timescales and that loses a large amount rotational energy
21052—1053 erg into the merger environment. This likely has
an observable impact on the electromagnetic counterparts of
such mergers (e.g., Metzger & Piro 2014).

If by contrast the initial core mass is larger and/or the initial
core angular momentum is smaller, then the outcome can
change qualitatively. The red star (case (C)) in Figure 4
illustrates an example of this kind. In this case, the secular
accretion track increases the core mass such that it first hits the
M.« (J) limit instead of the mass-shedding curve. This implies
that the remnant will undergo an accretion-induced collapse
(AIC) and hence never pass through a spindown phase, thereby
substantially reducing the impact of the remnant on the
electromagnetic emission from the merger. This is in stark
contrast to the traditional view of BNS merger remnants with
masses within the (traditionally defined) SMNS window.
Finally, case (B) (blue curve) shows an intermediate case
where the core does spin-up through accretion and then
undergoes a long-term spindown phase (dotted-blue portion of
the curve); however, because the core does not accrete to reach
breakup rotation, it loses less angular momentum and rotational
energy than in case (A).

Margalit et al.

Within our idealized two-zone formalism, there exists a
critical curve Ma;c(J) that delineates between the accretion-
induced and spindown-induced collapse regimes (dotted—
dashed black curve in Figure 4). Scenarios similar to case
(C) where the remnant collapses without going through a
spindown phase have core masses that fall above this critical
curve, whereas case (A)—(B)-like evolutionary tracks occur if
the core mass is Mcore < Marc(Jeore)- An analytic estimate of
this condition can be obtained from the intersection of
Equation (18) with the maximal-mass curve M., (J). The
latter can be roughly approximated with the following implicit

relation for My,
0\
I+ ¢ - Dl —
€3 )( QK) }

— 1)J?
1+ rstMiQJR] (19)

Mmax (J) ~ MTOV

= Mrov

This functional form is motivated by the oJ* scaling of
rotational support in the Newtonian limit, and it ensures that
Mpax (Umax) = EMroy, per our definition of & In the second
equality in Equation (19), we defined the dimensionless moment
of inertia

n = I/MR? (20)

where I ~ 10 g cm? is the NS moment of inertia. For the SLy
EOS used in the example calculations above, 7 spans a narrow
range 7~ 0.3-0.4 throughout the surveyed M-J parameter
space. More accurate quasi-universal relations have been found
for M.« (J) and n as a function of neutron star compactness
(e.g., Breu & Rezzolla 2016) and could be employed here
instead; however our above assumptions (Equation (19) and
constant 7)) are sufficient given other uncertainties associated
with our toy model.

The critical curve Majc(J) is defined such that a core whose
initial mass and angular-momentum fall on this curve would
reach the maximal-mass curve exactly at the termination of the
accretion phase, i.e., such that M (J) = Mp.x(J) = M. Using
Equations (18, 19) and the above condition, we find that

Maic(J; Mior)

2/3
3 My /Moy — 1 3J

sz 1— 2 tt/ TOV =+ (21)
2y -1 2,/GM (R

where we recall that £ ~ 1.2 and 7~ 0.4. The condition for a
remnant to undergo accretion-induced collapse during its
viscous evolution is therefore

AIC: Mcore 2 MAIC (-]core)- (22)

If the core does not accrete the total remnant mass M,y (e.g.,
if some mass is lost over viscous timescales due to disk winds),
then M, in Equation (21) should be replaced by the
appropriate final mass.’

" In deriving Equation (21), we have implicitly assumed that the gravitational

mass of the core in its final state is equal to the total remnant’s initial
gravitational mass. It would be more appropriate to apply this condition to the
baryonic mass of the core and remnant; however the error introduced by our
simplifying approach is much smaller than other sources of uncertainty in this
derivation (note that contours of constant baryonic mass [dotted curves] in
Figure 4 are nearly horizontal).
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A similar estimate can be made for the curve My, .. (/) that
distinguishes between the cores that hit the mass-shedding
curve and are rotating at breakup following their viscous
evolution (similar to case (A)) versus the cores whose maximal
rotation rate is lower (case (B)). This curve is shown as the
dashed-black line in Figure 4. An analytic estimate of it can be
obtained by equating Equation (18) to the mass-shedding limit,
Myep(J). The latter is roughly given by setting the star’s
rotation rate 2 =J/I to the Keplerian limit, which yields

Myep(J) = (J2/1*GR)'/°. (23)
Combined with Equation (18), we find that merger remnants
will be spinning at breakup at the end of the accretion phase if
the initial core mass is below

2/3
3n 3J
Myreax (J; Mioy) = Mo | 1 — + . (24)
26077 2 JGM3 R

A special use case of Equation (21) occurs if the total remnant
mass falls within the hypermassive region, i.e., My > {Mroy. In
this case, the two curves Majc(J) and Myeai(J) merge into one,
stemming from the fip of the SMINS-solution triangle where the
maximal-mass Mp,x and mass-shedding M., curves meet. This is
equivalent to the substitution M, =E&Mroy in Equation (21),
which simplifies the expression. In particular, for the limiting case
where the initial core angular momentum is J.ore 2 0, the condition
for the hypermassive remnant to collapse before the core reaches
the breakup rotation is that Mo > (1 — 31/2)%/3 ~ 0.7Mroy.
By contrast, if Mcoe < 0.7Mroy, then a hypermassive remnant
will collapse by ascending the mass-shedding line to the tip of
the SMNS-solution triangle. These different outcomes would
have implications for the quantity of mass remaining in an accretion
disk surrounding the newly formed black hole, being (perhaps
counterintuitively) larger in cases when the initial disk mass
Mgy = Moy — Mo is smaller for systems of the same total mass
Mior.

Finally, we estimate the amount of rotational energy 7., that
is extractable via spindown (see Metzger et al. 2015 for the
introduction of this concept). Given our assumption of solid-
body rotation, the rotational energy in the Newtonian limit is
simply T:Jz/ 2nMR?*. The maximum rotational energy is
determined by the angular momentum at the mass-shedding
limit, where Mgcp(J)) =M, (Equation (23)). This gives
T = nGMZ2,/2R. A merger remnant whose core mass is
M ore > Myreax (above the dashed curve in Figure 4) will begin
the spindown phase with rotational energy that is a fraction f
smaller than this maximal value. Furthermore, the extractable
rotational energy can be lower than the initial energy if the
remnant undergoes a spindown-induced collapse. In this case,
a fraction f; of the maximal rotational energy is lost when
the remnant collapses. The extractable rotational energy can
therefore be estimated as

0, Mcore = Maic or My = EMrov

7)( ;Mét
——(frx — frin), €lse
2R (. max f;nm)

’szt ~

(25)
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where
_ % Meore \>/2 3eore
fmax - WI:I - (m) + 2 FM&CR]
Meore > Myreak;
fmax = 1; Meore < Mpreaks (26)
and
Mo /M- -1
Moi/Mrov — 1 0y
Jmin = £—1 ) (27)

0, M < Mrov

3.2. Parameter Space of Merger Outcomes

With the analytic estimates above, we can now survey the
parameter space of merger outcomes implied by our two-zone
toy model. As discussed in the previous subsections and
illustrated in Figure 4, the merger outcome depends on
properties of the binary and merger—specifically the total
binary mass M, and post-merger core mass and angular
momentum Mcqre, Joore—as well as properties of the EOS and
accretion physics (in our simple model encapsulated via Mgy,
R, &, and ().

Figure 5 shows this phase space in terms of the TOV-
normalized binary mass M,,/Mrov and the post-merger core
mass-fraction Mcqre /M. The red shaded area shows regions
where the remnant undergoes accretion-induced collapse,
similar to the red track (case (C)) illustrated in Figure 4. The blue
and yellow regions instead delineate the parameter space where the
remnant goes through a spindown phase prior to reaching its final
state: collapse (if M, > Mov) or an indefinitely stable neutron star
(Mo < M1ov). Within the yellow region, the core starts this
spindown phase maximally rotating (at the mass-shedding limit),
similar to track (A) in Figure 4. This implies f, . =1 and a large
amount of extractable rotational energy (black contours in Figure 5;
Equation (25)). Case (B)-like tracks where the core never achieves
maximal rotation (f,,,, <1) are enclosed within the blue region.
The boundary between the yellow and blue regions is set by the
condition M.ore = Mpreak (Jeore» Mior) (dashed curves in Figures 4,
5; Equation (24)). Similarly, the boundary between the spindown-
and accretion-induced collapse (blue and red regions) is determined
by the condition M ore = Marc (Jeores Mior) (dotted—dashed curves
in Figures 4, 5; Equation (21)). Our toy model breaks down in the
black shaded region where M e > Mpax (Jeore), and no stable
solid-body equilibrium core solution is possible. Naively, mergers
within this parameter space may be thought to undergo prompt
collapse. However this naive condition need not correspond to
more-detailed estimates of the prompt-collapse threshold (e.g.,
Bauswein et al. 2013; Bauswein & Stergioulas 2017) given that
prompt collapse occurs within dynamical timescales after a merger,
when an equilibrium core is not well defined.

Figure 5 illustrates that mergers with larger M, and/or Mg
generally result in less stable remnants that can collapse more
rapidly. Within the standard view, remnants with 1 <M,/
Mroy < 1.2 are classified as SMNSs and are assumed to be near
maximally rotating and undergo spindown-induced collapse.
Under this paradigm, the entire region between M,y/Mroy = 1
and Mo/Mroy = £~ 1.2 (vertical-dotted curves in Figure 5)
should be painted yellow. Here, we have argued that the core
mass plays a critical role in altering this picture. In particular,



THE ASTROPHYSICAL JOURNAL, 939:51 (16pp), 2022 November 1

Jeore =50% breakup; (=1

Margalit et al.

Jeore=0; (=2

1.0 1.0
\ MCOTE > Mmax(]core) - 1051.5 erg MCOFE > MlﬂaXUCOFe)
| 10°%erg
0.9 - 0.9- »
1052 erg
/
B
0.8 1 * 2 0.8 * %
% B 8 /\1053
g EU (I8
2 0.7 1 3 0.7
8 g
= =
0.6 0.6
0.5 - 0.5 1
0.4 : ; _ : 0.4 _ ; _ .
0.8 0.9 1.0 1.1 1.2 1.3 1.4 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Miot/Mrov Miot/Mrov
Jeore=0; ¢=1
1.0
1051.5 erg Mcore > Mmax(jcore)
094 _10%7er9
105245 erg
0.8 -/1
S
=
@ 0.7 1
(o]
s
B JO@\;
0.6 1 %
Mecore = Mpreak
« %
4 &
0.5 % .
o N
NG
P
.(‘
0-4 T T T I‘
0.8 0.9 1.0 1.1 1.2 1.3 1.4
Miot/Mov

Figure 5. Merger remnant outcomes as a function of the total remnant mass M,,, normalized to the TOV mass and the fractional initial mass M. in the comparatively
slowly rotating core. Each panel corresponds to different assumptions about the initial core angular momentum (e.g., Jeore = 0 and Jore = 50% breakup) and the
effective lever arm for adding specific angular momentum to the core (¢ = R,../R = {1, 2}; Equation (17)) as marked. The three qualitatively different outcomes
illustrated by the tracks (A), (B), (C) in Figure 4 are denoted by yellow, blue, and red regions. Remnants formed from massive mergers (large M.,/ Mtoy) with a large
fraction of their mass in a slowly rotating core (large Mcore /Mior) collapse as a result of accretion from the envelope—disk (region (C); accretion-induced collapse). By
contrast, lower-mass remnants and/or those with smaller cores remain as stable neutron stars even after the entire envelope has been accreted (spindown), whether the
core is at that point rotating at breakup (region (A)) or subcritically (region (B)). Solid black contours indicate the extractable rotational energy that can be removed
from the remnant into the environment, T,y (e.g., via magnetic spindown; Equation (25)). The black region in the upper right corner is forbidden because cores of
mass >Mpax (Jeore) are dynamically unstable. Black stars denote estimates of { More, Mot} based on individual numerical relativity BNS merger simulations for several
different EOS (SHT, APR4, MS1, and SFHo; from Kastaun et al. 2016; Ciolfi et al. 2017; Kastaun & Ohme 2021, respectively). The calculations in this figure assume

¢£=12,n1=04, Mroy =2.1M,, and R = 12 km.

Figure 5 shows that a diverse set of outcomes are possible within
the traditionally classified SMNS regime, dependent on the initial
core mass.

The importance of the core mass within this new paradigm
motivates more-detailed investigation of this property. Black
stars in Figure 5 show the core mass-fraction estimated from a
handful of numerical-relativity simulations (Kastaun et al.
2016; Ciolfi et al. 2017; Kastaun & Ohme 2021). Specifically,

11

these points show the results (reported in baryonic masses) of equal
mass-ratio BNS merger simulations with similar binary masses
and different EOS: SHT (M2, = 3.03M,, MYy, = 3.38M,, and
“bulk mass” M2, = 2.405M,; Kastaun et al. 2016); APR4
(MY, = 2.98M,, Mfoy = 2.65M., and bulk mass M_ . =

2.47M,; Ciolfi et al. 2017); MS1 (MY, = 2.91M,, My =
3.35M,,, and bulk mass M . = 2.35M_; Ciolfi et al. 2017);



THE ASTROPHYSICAL JOURNAL, 939:51 (16pp), 2022 November 1

and SFHo (MY, = 3M., M{yy = 2.47M,, and “core-equiva-
lent” mass MY . = 2.35M, estimated from Figure 8 of
Kastaun & Ohme 2021).® These results suggest that the core
mass-fraction is Mg /Mo ~ 0.8 for a range of Mrtgy. A
roughly constant core mass-fraction Mg /Mo ~ 0.8 is also
consistent with the results of Newtonian smoothed-particle
hydrodynamic NS merger simulations reported in Fryer et al.
(2015). Further exploration is however needed to verify the
robustness of these results and identify potential trends with
binary parameters or EOS properties. Furthermore, the initial
core angular momentum is typically not reported in published
simulations. The angular-velocity profile of BNS merger
remnants (e.g., Figure 1) suggests that J.ore is low; however
more quantitative estimates would be useful in the context of
the two-zone model presented in this paper. As a rough
approximation, we use the central rotation rates quoted in Ciolfi
et al. (2017) to estimate that Jore ~ 30% (15%) of breakup for
the equal-mass APR4 (MS1) simulations. This falls within the
range shown in Figure 5.°

3.3. Implications on the NS EOS

We conclude with a brief discussion of the implications of
our model for the ability to constrain the EOS-dependent TOV
mass Moy from BNS merger events. Such constraints have
been derived using combined information on the total mass of
the binary (and hence—once accounting for various sources of
ejecta—of the remnant, M,,) based on the gravitational wave
inspiral signal with electromagnetic observations, which
constrain the nature of the final merger product (see, e.g.,
Margalit & Metzger 2019). As a proxy for the latter, we focus
on the extractable rotational energy, T, Which grows rapidly
entering the SMNS regime. In the traditional view (e.g.,
Lawrence et al. 2015), if an SMNS can be excluded
observationally (e.g., by detection of a jpamma-ray burst or
by placing an upper limit on T,y < 10°* erg), then one can
place an upper limit Moy < Mo /&, or slightly more precisely
—by accounting for conversion between baryonic and gravita-
tional mass—the limit is roughly

Mrgy < J1+03M2 /¢ — 1

~ 0.15

where M_, is the total baryonic mass of the remnant (Margalit
& Metzger 2017). For GW170817 (M2, < 3.06M.), this
resulted in Moy <2.2M, (e.g., Margalit & Metzger 2017,
Shibata et al. 2017; Rezzolla et al. 2018; see also Lawrence
et al. 2015). By contrast, applying the same criterion using the
new T, contours in Figure 5 for values of M g /Moy ~ 0.8
estimated from BNS merger simulations (stars in Figure 5; e.g.,
Kastaun et al. 2016; Ciolfi et al. 2017; Kastaun & Ohme 2021),
we find Mtoy < 2.5M, and <2.3 M, in the cases of J.ore = 0
and Jore = 50% breakup, respectively. This can be estimated
directly from Equation (21) by defining

§=1+ (€~ Dfpux

; (28)

(29)

8 We omit results reported in Ciolfi et al. (2017) for the H4 EOS because the
bulk mass in this case is more ambiguous, showing substantial evolution during
the ~20 ms following merger and until collapse (see Figure 14 of that work).
o Fryer et al. (2015) quote Jore values that imply a broad range extending to
large angular momenta, Jore > 50% breakup. We note however that: (a) the
definition of “core” in that work may not perfectly coincide with our current
definition; (b) these early simulations employed only Newtonian gravity.
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such that mergers with M > &Mroy result in accretion-
induced collapse and do not pass through a spindown phase
(Equation (22)). Here f; ,, is a function of Mcgre, Jeore defined in
Equation (26). Within our new picture, a revised TOV
constraint can be obtained by using Equation (28) with
& — & Tt is always the case that ¢’ < &, and therefore the
TOV constraint is weakened.

Finally, we mention several deficiencies of our model, which
are likely to change the quantitative conclusions and should
be explored in future work. Although we include general
relativistic effects in calculating the stability of the core, we
have used Newtonian gravity or neglected strong-field effects
in several places throughout the analysis (e.g., not carefully
distinguishing between gravitational and baryonic mass). Our
analysis also neglects the effects of thermal pressure on the
stability of the SMNS (Kaplan et al. 2014), which can be
important on timescales of hundreds of milliseconds to seconds
post merger. Thermal pressure in the outer layers of the star
generally acts to reduce the maximum mass of the SMNS
remnant by up to 8% (mainly by reducing the angular velocity
at the mass-shedding limit). We also do not consider the effects
of phase transitions on the NS stability (e.g., Keil &
Janka 1995). Finally, we have not accounted for nonaxisym-
metric instabilities that can take place in rapidly rotating stars
prior to reaching the mass-shedding limit and that can cause an
outward angular-momentum flux (Takiwaki et al. 2021; Pan
et al. 2021).

4. Discussion and Conclusions

We have explored the efficacy of angular-momentum
transport inside very rapidly rotating (~millisecond spin-
period) PNS formed in core-collapse supernovae and BNS
mergers by means of analytic estimates, evaluated by imposing
an angular-velocity profile by hand on top of a one-dimensional
PNS cooling evolution model. A drawback of our work is that
the PNS model we employ as the background state does not
self-consistently include the (likely substantial) effects of
rotation. Nevertheless, it is still sufficient to yield new
qualitative insights, given the order-of-magnitude aspiration
of our estimates and the many open theoretical questions in the
efficiency of angular momentum transport (e.g., effective a-
viscosity parameter arising from MRI, or the saturation strength
of the TS dynamo). Some of these processes, while extensively
considered in the stellar evolution literature, have to our
knowledge not been explored in the context of BNS merger
remnants.

At essentially all radii and times of interest in both core-
collapse and BNS merger cases, the timescale for angular-
momentum transport is short compared to the cooling time
(time since core bounce or merger) over which the PNS thermal
properties are evolving or over which mass is accreted from an
external Keplerian disk (Figures 2, 3). In regions where d€2(r)/
dr >0, the combination of the TS dynamo and convection
operates efficiently (in stably and unstable—stably stratified
regions, respectively). At the largest radii where dQ2(r)/dr < 0, the
MRI typically dominates. We have also derived a revised analytic
estimate of neutrino viscosity that is applicable to arbitrary
neutrino degeneracy (Equations (9), (10); see Appendix). Even
though neutrino viscosity is significantly enhanced due to v,
degeneracy in central regions of the star, we find that the neutrino
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viscosity is unimportant in the configurations we have investigated
(in the sense that 7, > other timescales of interest).

One uncertainty in our analysis is that it is not clear whether
convection efficiently enforces solid-body rotation. This is not
the case, e.g., in simulations of slowly rotating red-giant
convection (e.g., Brun & Palacios 2009; see also Kissin &
Thompson 2015 for a theoretical analysis of this problem). The
numerical evidence does suggest, however, that an approach to
solid-body rotation is more likely in the rapidly rotating limit
considered here (e.g., Gastine & Wicht 2012; Yadav et al.
2013; Mabuchi et al. 2015). In addition, the limited radial
extent of PNS convection zones likely mitigates the effects of
moderate residual differential rotation on the PNS stability.

A goal of future numerical work should be to include the
physical sources of viscosity introduced in this work into self-
consistent numerical relativity simulations of the post-merger
remnant evolution. Our analysis suggests that angular-momen-
tum transport due to a combination of mechanisms is rapid
throughout most of the neutron star. This suggests that a fruitful
first path is to explore the long-term secular evolution of
rotating PNSs and merger remnants using subgrid viscous
models motivated by our analytic considerations. Such subgrid
models can be refined using local simulations of PNS
convection and magnetic instabilities. A more ambitious goal
is to include physical sources of viscosity directly in global
magneto-neutrino-hydrodynamical simulations. Neutrino visc-
osity should in principle be straightforward to include given the
neutrino properties already available in simulations that include
neutrino transport (in a manner similar to the implementation of
an a-viscosity in Fujibayashi et al. 2020). The growth and
saturation of the MRI can likewise potentially be directly
resolved inside the remnant (e.g., Kiuchi et al. 2018) as can
convective instabilities (which are significantly more vigorous
in PNSs than in stellar interiors). Resolving the dynamo
processes responsible for setting the saturation strength of the
TS or other small-scale magnetic dynamos is likely to be the
most challenging numerically (e.g., Skoutnev et al. 2021).

Our results could have implications for both core-collapse
supernovae and BNS mergers. Insofar that the dissipation from
various forms of effective viscosity transforms the energy in
differential rotation into heat, and that the free energy available
in a PNS rotating near breakup is nonnegligible compared to its
internal thermal energy during the Kelvin—Helmholtz phase,
our finding of rapid angular-momentum transport throughout
optically thick regions of the star could have a quantitative
impact on the cooling evolution, and hence neutrino emission
properties, of rapidly spinning PNS (e.g., with implications for
the supernova explosion process; Thompson et al. 2005).

Our finding that angular-momentum transport should be
rapid in the core of BNS merger remnants, implies that the core
will quickly evolve to a rigidly rotating state, consistent with
the evolution found in numerical relativity simulations, which
impose an a-viscosity everywhere by hand (e.g., Fujibayashi
et al. 2020). Motivated by this structure, we develop a model
that follows the growth and evolution of the core via accretion
of mass and angular momentum from the surrounding quasi-
Keplerian envelope—disk. We use this model to elucidate the
remnant’s stability and ultimate fate in terms of its initial
properties and unknown features of the neutron star EOS,
particularly the TOV mass.

Depending on the initial mass and angular momentum of the
remnant core { Mo, Jore}, We identify three qualitatively
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distinct evolutionary paths (Figures 4, 5). For low Mo /high
Jeore (region (A)), the core reaches the mass-shedding limit and
accretes along this line. For remnants with a total masses
obeying the nominal SMNS limit My < EMroy = 1.2M1ov,
the end product is a nearly maximally spinning SMNS; such an
object can only collapse to a black hole via subsequent
spindown (e.g., due to magnetic-dipole braking), accompanied
by the transfer of significant rotational energy into the
surroundings (Equation (25)). For mergers generating cores
with somewhat higher Mo /lower Jeore (region (B)), the star
will not reach maximal rotation but nevertheless will still
survive as an SMNS (which however requires less rotational
energy loss to collapse).

By contrast, in the case of highest Mo /lowest Jore (region
(C); as may be suggested by numerical relativity BNS merger
simulations), the core will reach the collapse line (Mx(J) in
Figure 4) before accreting the entire envelope. In this case, a
black hole will form relatively promptly (likely within the first
seconds or less after the merger), and the rotational energy
available to be injected into the environment by the remnant
will be drastically reduced. The potential for an evolutionary
path that results in accretion-induced black hole formation,
even for a total system mass and angular momentum that
permits SMINS formation, runs counter to the basic assumption
of previous work (e.g., Margalit & Metzger 2017; Shibata et al.
2017; Rezzolla et al. 2018; Shibata et al. 2019). A reduced
fraction of BNS mergers that generate long-lived stable
magnetar remnants is consistent with the lack of evidence for
such large energy injection based on observations of short
gamma-ray bursts (e.g., Metzger & Bower 2014; Horesh et al.
2016; Schroeder & Margalit 2020; Beniamini & Lu 2021).

If confirmed by future work, our finding that the fate of
the merger remnant depends on the initial core properties
{Mcore, Jeore} in addition to the total binary mass M./ Mrov
would also have key implications for predicting the range of
diversity in the electromagnetic counterparts of BNS mergers
and the ability of using an observationally inferred merger
outcomes to constrain the neutron star EOS (e.g., Margalit &
Metzger 2019). In particular, even if a robust constraint can be
placed on the merger lifetime or the remnant rotational energy
from a merger event with M,, measured from gravitational
wave observations, the upper limit one can place on Mgy will
be weakened for region (C)-like evolution (Equation (29)), e.g.,
by up to a few tenths of a solar mass in the case of GW170817.
While a limited set of numerical relativity simulations seems to
tentatively support merger remnants undergoing (C)-type
evolution (stars in Figure 5), the qualitatively new picture
outlined in this work motivates further numerical simulation
work to systematically quantify the post-merger core properties
{Mcore, Jeore} for different EOS and initial binary masses and
mass-ratios.
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Appendix
Neutrino Viscosity with Degenerate Neutrinos

Neutrino viscosity in PNS and BNS merger remnants is
dominated by scattering of electron neutrinos. Previous
approximate analytic formulae for v, assume that neutrinos
are nondegenerate (e.g., Keil et al. 1996; Thompson & Duncan
1993). However, deep within the neutron star core, the electron
neutrino chemical potential 4, can be significant, and the
neutrino degeneracy parameter 7, = u,/kT can be large.
Neutrino degeneracy affects the scattering cross sections, the
neutrino energy density, and Pauli-blocking factors, resulting in
an enhanced viscosity (van den Horn & van Weert 1981,
1984). In the limit 7, > 1 and at fixed temperature, degeneracy
increases the viscosity as 1, 77,2, (van den Horn & van
Weert 1981). In the following, we give a brief summary of this
result and provide an analytic estimate of the viscosity in the
degenerate regime.

Following the semi-classical extension of the Chapman—
Enskog procedure to Fermions by Uehling & Uhlenbeck
(1933); van den Horn & van Weert (1984) derive the neutrino
viscosity—including the effects of degeneracy—in the diffu-
sive regime, where the optical depth is large. This viscosity
depends on the effective neutrino mean free path

Ni(e) = [KE(e) + ra()]!
k

as a function of neutrino energy e. Here ; is the absorption
opacity'® corrected for stimulated absorption, and k, is the
appropriately angle-averaged scattering opacity defined via

drg(€, cosb) n= 0
rn(€) = fdQ a0 {1 — P(cos®), n>1

(Al)

(A2)

where P,(x) is the Legendre polynomial of order n. Note that
the corresponding transport (momentum transfer) opacity & is
in general not equal to x,. To a good approximation, neutrino—
nucleon scattering obeys dks/dQ) = (ko/4m)(1 + 6 cos )
(Burrows et al. 2006), so the relevant scattering opacity is
KRy = K.

The kinematic shear viscosity of neutrinos is then given by
van den Horn & van Weert (1984)

dpx=11,,
VV = 471— (]§T4) f >\* X 7 2 ’
Ve{ | 15 ke m+1)
de= Y ii@;‘;), (A3)
Vi€{Vp,on} 15 pc

where p is the fluid density, T is the neutrino temperature, 7, is
the neutrino degeneracy parameter, and the sum runs over the
six neutrino species v; = v, I, I ,.... The integrand is
proportional to foq(1 —f.q) and therefore accounts for final-
state (Pauli) blocking, where f,, = (e~ 4 1)! is the
equilibrium Fermi—Dirac neutrino distribution function. In the
final line, the neutrino viscosity has been rewritten in a more

19 n this context, opacity is defined as an inverse mean free path.
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familiar form—as a function of the neutrino energy density e,
and an appropriately averaged mean free path,

f de Xi(e) ey (1 = i)
fdf 64feq(1 —fog)

f dx N¥okT)xe* = (eX " + 1)72
_Jo

(AT, n,) =

5 (A4)
f dx x*e* (e + 1)72
0

Note that the denominator above may be integrated by parts to
obtain [x*foq(1 — fag)dx = 4/xfoqdx o e, Although the van den
Horn & van Weert (1984) result (A3, A4) is frequently quoted
in the literature—we find that there are prevailing misinterpre-
tations of the appropriately averaged mean free path (including
those in a previous version of this manuscript). We comment
on these below.

A.l1. Comparison with Other Work

As discussed in van den Horn & van Weert (1983),
Equation (A4) can be viewed as a Rosseland mean if one
identifies an effective neutrino analog to the Planck function as
B, x e3feq. Because (\') is often referred to as the “energy-
averaged” mean free path (a term first used in the original work
of van den Horn & van Weert 1984), it may be confused and
incorrectly calculated as (\%) oc [AS(e)e, de. This mis-
taken interpretation is off by one factor of € and neglects the
Pauli blocking term (1 — f.,) that is important when neutrinos
are degenerate. In general, neutrino degeneracy—one of the
main points in the work of van den Horn & van Weert
(1981, 1984)—has often been neglected in more recent
calculations of neutrino viscosities.

For the purpose of facilitating a more direct comparison
with previous work, we consider an effective mean free path
of the form )\;f = X(T)(E/kT)‘z, as relevant for neutrino—
nucleon scattering. In the limit of a vanishing chemical
potential, one obtains from Equation (A4) an average mean
free path (\*)(T, n, = 0) = (5/77)X(T) =~ 0.072X(T). The
modified expression given by Guilet et al. (2015) for the
neutrino viscosity (their Equations (8), (9)) is consistent with
this result. However the expression in Guilet et al. (2015)
is not correct for a more general energy dependence of
\*(e) or when the neutrino chemical potential is nonzero
because their (A\¥)Guiler1s o f )\?,‘f3feq de. The expressions in
Thompson et al. (2005, their Equations (5)—(7)) imply
<)\;k>Thompso,,05 o f Nee 2feq de, nominally off by a factor of ¢
and seemingly missing the Pauli blocking term (1 — feq).
However, Pauli blocking is in fact implicitly included in the
calculations of Thompson et al. (2005) because their energy-
dependent neutrino mean free paths already account for final-
state blocking corrections (T. Thompson 2022, private com-
munication). Furthermore, in their numerical calculations,
Thompson et al. (2005) calculate J, as the zeroth angular
moment of the neutrino specific intensity rather than the
distribution function (T.Thompson 2022, private commu-
nication). This implies that J, o 63jf3q, rather than J,  f,, as
suggested by Equation (5) of Thompson et al. (2005).
Therefore, </\j>Th0mpsonO5 X f)\?jf'?féq(l _feq) de and is Only

off by one factor of e. For the \* oc ¢~2 case considered above
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and at zero chemical potential, this implies </\1>x/<>Thompson05 =

(147 /3107 X(T) ~ 0.048X(T'), a modest ~30% smaller than
the van den Horn & van Weert (1984) result (Equation (A4)).

A.2. Analytic Estimate of Viscosity at Arbitrary Neutrino
Degeneracy

Using analytic approximations to the neutrino opacity, we
now obtain a numerical estimate of v, defined in
Equation (A3). Adopting cross sections from Burrows et al.
(2006), ignoring absorption, and assuming that v —n and v — p
scattering dominate the scattering opacity (with an €
dependence of the cross sections), we find that

2
2m; m,

2
” kT
= | — |

(AS5)

where 0~ 1.705 x 10~** cm? (Burrows et al. 2006), and

1+ 3g;

-1
f(X) _l + (4sin* Oy — 2sin? GW)Ye]

~ (1471 — 0.248Y,)"! (A6)

is a (weak) function of the electron fraction Y, that encapsulates
the relative contribution of ¥ —n and v — p scattering to the
total cross section. Here 6y is the Weinberg angle,
sin? Oy ~ 0.231, and g4 ~ —1.276 is the axial-vector coupling
constant (Mirkisch et al. 2019; Particle Data Group et al.
2020). Assuming all neutrinos have the same temperature and
that beta equilibrium enforces 7, = —7,, we can write a
closed-form analytic solution to the integral

e~y e* My 2

f x2 + dx = T
0 (e ™ + 1)2 (e 4 1)2 3

o . . . (AT
Using this result, we obtain a final expression for the kinematic
shear viscosity of neutrinos in the diffusive regime,

2 2 2

2m mp kT 771/6 + m, + M,

v, = w1+ —"
15730 ( ) ) w2

+ ni.

)

(A8)

~1.66 x 109 cm? s~ ( ) P
10MeV ) \ 10" gcm™

2

m,

A :
0.7

77% + 77% +
2

When neutrinos are nondegenerate (7, ~0), this result is in
broad agreement with the Keil et al. (1996) estimate that is
commonly used in the literature, albeit ~40% larger (Keil et al.
1996 find v, ~ 1.2 x 10'®cm? s~! for the same temperature and
density). The importance of Equation (AS8) is its applicability to
regions with arbitrary neutrino degeneracy. As shown by van
den Horn & van Weert (1981), van den Horn & van Weert
(1984), neutrino degeneracy increases the viscosity ocni.
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In the core of BNS merger remnants or PNS, electron neutrino
degeneracy can become appreciable. A rough estimate of the v,
degeneracy parameter can be obtained by equating the neutrino
energy density e, = 4m(hc) *(kT)*F3(n,) to the trapped
= fO“ x"(e*" + 1)~ldx is the
Fermi integral, which satisfies F,(n, > 1) ~n" * '/(n + 1).
In the limit 7, > 1, this gives 7, ~ 18(T /10 MeV)~!
(E/10% erg)'/4(R/20 km)~3/*. A more accurate estimate may
be given in terms of local variables. Using the electron neutrino
number density n,, = 47 (hc)‘3(kT)3F2(n,,e) in the limit 7, > 1,
we find that

- (3;%)1/3th14( T )—‘
1\ 4r ) kr 10 MeV
Y,

ok

where ¥, is the electron neutrino number fraction. This expression
is in good agreement with the neutrino degeneracy parameter that is
found in the PNS evolution models we have studied. Equation (A9)
implies a factor ~O(10) — O(100) enhancement to the neutrino
viscosity deep within the neutron star core. Specifically, using
Equations (A8, A9), we find in the deeply degenerate regime

thermal energy E. Here F,(n)

)
F A9
(1014 gcm™3 (&)

—4/3
v o~ 328 x 100em?s | — 2
no> 10 g cm 3

2/3
% (i) & (A10)
0.1 0.7
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