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We present localized pointwise error estimates for a numerical method designed
for accurate and efficient approximations for the flux variables. The method can be
considered as a reduced version of the mixed finite element method. The method uses
much less degrees of freedom compared to the mixed finite element methods while
produces approximation solutions for the flux variable of the same accuracy. In this
paper, we present optimal pointwise error estimates for the method, and they show
local dependence of the error at a point and weaker dependence on global norms.
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1. Introduction

Recently, a new hybrid finite element method for second-order elliptic partial differential equations (PDEs) is devel-
ped [1] for accurate and efficient approximations of the flux variables. It is a two-step procedure. On coarse meshes of
esh size H , the primary variable is approximated by a standard method such as the standard Galerkin method. With

this crude approximation as a problem data, a H(div) projection of dual variables is sought as an approximation solution
on a finer meshes of mesh size h. This new method can be considered as a reduced version of the mixed finite element
method.

Typically, there is a restriction for the choice of fine meshsize h to achieve the optimal rate of convergence. For example,
h should be taken as H2, see [2]. The hybrid method circumvents this restriction by introducing a parameter ϵ, which can
be chosen arbitrary small. To achieve optimal convergence rate in L2 norm on the finer meshes, ϵ needs to satisfy

√
ϵH2

= O(hk+1), (1.1)

here hk+1 is the optimal convergence rate for the approximation space on the finer meshes. The above equality can be
interpreted as one can choose fine mesh size as small as one wishes by choosing the problem parameter ϵ to satisfy (1.1).
n other words, choosing small ϵ enables one to use arbitrary small meshsize h independent of the coarse meshsize H .
his freedom of choice for the approximation spaces makes the new method efficient and accurate. A possible problem
f choosing small ϵ is that the resulting algebraic equation becomes nearly singular as ϵ → 0. This problem is resolved
sing the iterative solver developed in [3].
While optimal error estimates in L2-norm are provided for the hybrid method in [1], there is no pointwise error

stimates. In order to obtain accurate and reliable determination concerning the behavior of the approximation solutions,
ne needs to use pointwise error. In this paper, we provide the highly localized pointwise error estimates showing that
he solutions of the hybrid method are higher order perturbation of the standard mixed finite element methods with the
ssumption (1.1). Demlow [4] obtained localized pointwise error estimates for the mixed finite element methods, that
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s an extension of the Schatz’s results for the standard Galerkin method [5]. Similar arguments are used in [6] for the
ointwise error estimates for the least-squares formulation. We also refer to [7,8] for maximum norm error estimates for
he mixed finite element methods.

This paper is organized as follows. In Section 2, we present mathematical formulations. In Section 3, finite element
paces are defined and numerical methods are defined. In Section 4, some preliminaries results are presented. Finally,
ointwise error estimate is presented in Section 5.

. Problem formulation

Let Ω be a bounded domain in Rn, n = 2, 3, with smooth boundary ∂Ω . We use the Sobolev spaces Wm
p and Hm

2 = Wm
2

nd the associated norms and seminorms. For m = 0, Wm
p coincides with Lp, and H1

0 (D) denotes the functions in H1
2 (D)

with zero trace on ∂D. Also, we use [Y ]n for the set of all ordered n-tuples of Y . We define

X = H(div) = {v ∈ [L2(Ω)]n : ∇ · v ∈ L2},

which is a Hilbert space under the norm ∥v∥H(div) = (∥v∥2L2 + ∥∇ · v∥2L2 )
1/2. For brevity, the norm in Wm

2 will be denoted
y ∥ · ∥m.

.1. Mathematical equations

We consider a model second-order elliptic partial differential equations with homogeneous Dirichlet boundary
ondition:

−∇ · (A∇u) = f in Ω, u = 0 on ∂Ω, (2.1)

here the matrix A is symmetric, uniformly positive definite, and bounded.
We assume that for u satisfying (2.1), there exists a positive constant C independent of f satisfying

∥u∥2 ≤ C∥f ∥0. (2.2)

e transform the original model problem into a system of first-order by introducing a flux variable σ = −A∇u ∈ H(div).
hen, we obtain

σ + A∇u = 0 in Ω, ∇ · σ = f in Ω, (2.3)

ith the boundary condition u = 0 on ∂Ω .
Here and hereafter, we use C with or without subscripts in this paper to denote a generic positive constant, possibly

ifferent at different occurrences, that is independent of the mesh size h.
For localized estimates, the following weight-function and weighted norms are commonly used [4,5]. For each point

of Ω , a real number s and an arbitrary y ∈ Ω ,

σ s
x,h(y) =

(
h

|x− y| + h

)s

. (2.4)

or 1 ≤ p ≤ ∞ and fixed x, we define weighted norms

∥u∥Lp(Ω),x,s = ∥σ s
x (·) u(·)∥Lp(Ω) (2.5)

nd

∥u∥W1
p (Ω),x,s = ∥u∥Lp(Ω),x,s + ∥∇u∥Lp(Ω),x,s. (2.6)

. Finite element approximation

Let Th be a quasiuniform triangulation of Ω with triangular/tetrahedra elements with meshsize h. Boundary elements
re allowed to have one curved face, see [9]. In order to approximate functions in X = H(div), we use the Raviart–Thomas
lements (RT) or Brezzi–Douglas–Marini (BDM) space of index k, see [9–12]. We present our results based on RT elements
or simplicity of presentation. Similar results holds for BDM family of spaces with obvious modifications.

In order to place some assumptions on the approximation spaces, we first define

Q k
h = {q ∈ L2(Ω) : q|T ∈ Pk(T ), for each T ∈ Th}, (3.1)

here Pk(T ) is the space of polynomials of degree k on the triangle T .
Let Ph : L2(Ω) → Q k

h be the local L2 projection satisfying

(v − P v, q ) = 0, for all q ∈ Q k. (3.2)
h h h h

2
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t is well known that the local L2 projection Ph satisfies the following approximation property: For D ⊂ Ω ,

∥v − Phv∥Lp(D) ≤ Chs
|v|W s

p(D′), where D′
=

⋃
{T :T

⋂
D̸=∅}

T , (3.3)

for all v ∈ W s
p(D

′), all 1 ≤ s ≤ k and 1 ≤ p ≤ ∞. We also recall that Ph is stable in W 0
p norm for any 1 ≤ p ≤ ∞, that is,

∥Phv∥W0
p (Ω) ≤ C∥v∥W0

p (Ω), (3.4)

for 1 ≤ p ≤ ∞.
Let Xh ⊂ X be the RT spaces of order k. Let Πh : X → Xh be the Fortin projection satisfying the following commuting

diagram property:

∇ · Πh = Ph∇· : X → Q k
h . (3.5)

t satisfies the following approximation property:

∥σ − Πhσ∥[Lp(D)]n ≤ Chs
|σ|[W s

p(D′)]n , (3.6)

or 1 ≤ s ≤ k and 1 ≤ p ≤ ∞.
For the approximation spaces for the primary variable on a coarse mesh TH , we use the standard continuous piecewise

linear polynomial space SH , i.e.

SH = {v ∈ H1
0 (Ω) : v|T ∈ P1(T ), for each T ∈ TH}.

Remark 3.1. For the remaining of this paper, k is the index of the RT space.

3.1. Discrete δ-function

For any given x0 ∈ Ω , let δ0i ∈ Xh be a function such that

(A−1ph, δ
0
i ) = [ph(x0)]i for all ph ∈ Xh, (3.7)

where [ph(x0)]i is the ith component of the vector ph(x0). The following inequalities concerning δ0i is obtained in [4]: For
ny y ∈ Ω ,

|δ0i (y)| + h|∇ · δ0i (y)| ≤ Ch−ne−c|y−x0|/h, (3.8)

nd

∥δ0i ∥[Lp(Ω)]n + h∥∇ · δ0i ∥[Lp(Ω)] ≤ Chn(1/p−1). (3.9)

.2. Mixed finite element methods

The mixed finite element method corresponding to (2.3) is as follows: Find a pair (um
h , σm

h ) ∈ Q k
h × Xh such that

(A−1σm
h , τh)− (∇ · τh, um

h ) = 0,

(∇ · σm
h , vh) = (f , vh) (3.10)

or all (vh, τh) ∈ Q k
h × Xh. Then, the pair (u− um

h , σ − σm
h ) satisfy the following error equations

(A−1(σ − σm
h ), τh)− (∇ · τh, u− um

h ) = 0, (3.11)

(∇ · (σ − σm
h ), vh) = 0, (3.12)

or all (vh, τh) ∈ Q k
h × Xh.

emark 3.2. Using the commuting diagram property and (3.2), we have

∇ · (Πhσ − σm
h ) = 0. (3.13)

It is well-known that the mixed method has the basic L2 norm error estimates, see [13]:

∥σ − σh∥0 ≤ Chk+1
∥σ∥k+1.

The following lemma can be also obtained by taking advantage of the orthogonality property in (3.12).

emma 3.1. Let f ∈ Q k
h and let (um

h , σm
h ) satisfies (3.10). Then,

∇ · σ = ∇ · σm
= f .
h

3
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The following superconvergence results are obtained in [14, Theorem 4.2].

emma 3.2. Let Ph be the local L2 projection satisfying (3.11) and (3.12). Then,

∥Phu− um
h ∥0 ≤ Ch

(
∥σ − σm∥0 + ∥∇ · (σ − σm

h )∥0 + ∥u− uG
h∥1

)
. (3.14)

In particular, if f ∈ Q k
h , then,

∥Phu− um
h ∥0 ≤ Ch2

∥u∥2. (3.15)

The following weighted-norm error estimate for the mixed method is obtain in [4, Theorem 1.1]. We recall the
ronecker delta δij, where δij = 0 if i ̸= j and δij = 1 if i = j.

emma 3.3. Let the assumptions concerning Πh, Ph, and the mesh be satisfied. Then there exists a constant C independent of
, σ and h such that for any x0 ∈ Ω , 0 ≤ s ≤ k+ 1, and 0 ≤ t ≤ k,

|(σ − σm
h )(x0)| ≤ C(ln

1
h
)δs(k+1)∥σ − Πhσ∥L∞(Ω),x,s

+ Ch
(
∥u− Phu∥L∞(Ω),x,t + (ln

1
h
)δtk∥∇ · σ − Ph∇ · σ∥L∞(Ω),x,t

)
.

.3. Hybrid finite element methods

An efficient flux approximation scheme, hybrid finite element method, is developed in [1]. The methods can be consider
s a reduced mixed finite element method due to its close tie to the mixed finite element methods. It is imperative to
ote that the new method reduces the degrees of freedom (DOFs) significantly compared to the mixed methods while
aintaining the accuracy of the approximations, see [1, Section 6]. The method is defined as follows:
Step 1 (Coarse-grid solution) On a coarse mesh TH , obtain a crude approximation, e.g. standard Galerkin method

defined: Let SH be the continuous piecewise linear polynomial spaces on TH . Define the Galerkin approximation solution
uG
H ∈ SH as

(A∇uG
H , ∇vh) = (f ,∇vh), for all vh ∈ SH .

Step 2 (Fine-grid solution) On a finer mesh Th, find the H(div) projection σh ∈ Xh for the given data f + ϵuG
H , i.e.

(∇ · σh,∇ · τh)+ ϵ(A−1σh, τh) = (f + ϵuG
H ,∇ · τh) ∀ τh ∈ Xh. (3.16)

emark 3.3. By taking vh = ∇ · τh and multiplying ϵ to the first equation in the mixed formulation (3.10), we have

(∇ · σm
h ,∇ · τh)+ ϵ(A−1σm

h , τh) = (f + ϵum
h ,∇ · τh) ∀ τh ∈ Xh. (3.17)

his is similar to (3.16) except the problem data f + ϵum
h replacing f + ϵuG

H . Note that the hybrid method first obtains a
crude approximation uG

H and obtain σh separately. Thus, the problem size is smaller.

Remark 3.4. Generally, there is a restriction concerning the meshsize h and H . The reduced mixed method overcomes this
restriction by introducing parameter ϵ. With a proper choice of ϵ, one can choose arbitrary small meshsize h regardless
of coarse meshsize H . For optimal convergence rate, ϵ needs to be chosen to satisfy

√
ϵH2

= O(hk+1).

emark 3.5. The Galerkin solution satisfies the following orthogonality property:

(A∇(u− uG
H ) , ∇vH ) = 0, for all vH ∈ SH , (3.18)

nd it has the following approximation property, [5]:

∥u− uG
H∥W1

∞(Ω) ≤ CH∥u∥W2
∞(Ω). (3.19)

Note that the true solution (u, σ) satisfies

(∇ · σ,∇ · τh)+ ϵ(A−1σ, τh) = (f + ϵu,∇ · τh) ∀ τh ∈ Xh.

Subtracting (3.16) from the above, we obtain the following quasi-orthogonality property:

(∇ · (σ − σh) , ∇ · τh)+ ϵ(A−1(σ − σh) , τh) = ϵ(u− uG
H ,∇ · τh) (3.20)

The following basic error estimate is obtained in [1, Theorem 4.4]:
4
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heorem 3.4. Assume that σ ∈ Hk+1(Ω)n. Then, and Xh is the RT space of order k. Then,

∥σ − σh∥0 ≤ Chk+1
∥σ∥k+1 + C

√
ϵH2

∥u∥2, (3.21)

and

∥∇ · (σh − σm
h )∥0 ≤ C ϵ∥Ph(um

h − uG
H )∥0 ≤ CϵH2(∥u∥2 + ∥f ∥1). (3.22)

. Some preliminaries

We shall use the Green’s function for our problem (2.1), i.e. let G(x, y) be a function satisfying

u(x) =
∫

Ω

A∇u(y)∇G(x, y)dy =

∫
Ω

f (y)G(x, y)dy,

nd G(x, y) = 0 for y ∈ ∂Ω . Then, we have the following estimates, see [15]

emma 4.1. There exists a constant C such that for x and y in Ω ,

|Dα
xD

β
yG(x, y)| ≤ C |x− y|2−n−|α+β| for |α + β| > 0 (4.1)

nd

|G(x, y)| ≤ C |x− y|1−n, (4.2)

here Dα
x is a differential operator with respect to x defined in [16, Chapter 1.2].

The above lemma is used to obtain an a priori estimate for the following auxiliary problem (4.3). The estimate plays
n crucial role in terms of obtaining pointwise estimate for the hybrid finite element methods.
We shall employ the following problem involving the discrete δ0i function defined in [4].

−divA∇z = ∇ · δ0i in Ω,

z = 0 on ∂Ω.
(4.3)

y a priori estimates, we have

∥z∥1 ≤ C∥∇ · δ0i ∥−1 ≤ C∥δ0i ∥0. (4.4)

or the remainder of the paper, z will denote the solution of the above problem. Our main concern is obtaining W 1
1 error

stimate for z. In order to present our result, we first define the following: For d > 0 and any fixed x ∈ Ω ⊂ Rn, Bd(x) is
defined as follows;

Bd(x) = {y ∈ Ω; |y− x| < d}. (4.5)

ithout loss of generality we assume that diam(Ω) ≤ 1. Let

dj = 2−j for j = 0, 1, 2, . . . ,

and for fixed x, set
Ωj = {y ∈ Ω : dj+1 < |y− x0| < dj},
Ω ′

j = {y ∈ Ω : dj+2 < |y− x0| < dj−1},

Ω ′′

j = {y ∈ Ω : dj+3 < |y− x0| < dj−2}.

Let M ≫ 2 be a constant which will be chosen later on to be sufficiently large. For convenience we shall choose M to
begin with so that for some integer J

Mh = 2−J .

Notice that since M > 2

J =
1

ln 2
(ln

1
M

+ ln
1
h
) ≤ C ln

1
h
. (4.6)

emma 4.2. Let z satisfy (4.3). Then,

∥z∥W1
1 (Ω) ≤ C ln

1
h
. (4.7)

roof. Let ω be a smooth cutoff function which is 1 on Ω ′′

i , 0 on Ω \ Ω ′′′

i , satisfies 0 ≤ ω ≤ 1, and has a bounded first
erivative, i.e. ∥∇ω∥L∞(Ω) ≤

C
di
. We let z1 and z2 satisfy

−divA∇z1 = ∇ · (ωδ0i ) in Ω, (4.8)
z1 = 0 on ∂Ω.

5
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nd
−divA∇z2 = ∇ · ((1− ω)δ0i ) in Ω,

z2 = 0 on ∂Ω.
(4.9)

ote that

z = z1 + z2. (4.10)

lso, using the a priori estimate in (3.9) and (4.4), we have

∥z1∥W1
2 (Ω) ≤ C∥ωδ0i ∥0 ≤ C∥δ0i ∥0 ≤ Ch−n/2, (4.11)

nd similarly

∥z2∥W1
2 (Ω) ≤ C∥(1− ω)δ0i ∥0 ≤ C∥δ0i ∥0 ≤ Ch−n/2. (4.12)

sing the a priori estimate in (4.4), (3.8), Hölder’s inequality, and ∥δ0i ∥L2(Ω ′′
j )

≤ Cdn/2j ∥δ0i ∥L∞(Ω ′′
j )
, we have the following

ocal estimates:

∥z1∥W1
2 (Ωj)

≤ ∥ωδ0i ∥L2(Ω ′′
j )
≤ Ch−ne−cdj/hdn/2j . (4.13)

First, we obtain the estimate for ∥z1∥W1
1 (Ω). Using the measure of the subdomain, (4.11), and (4.13), we have

∥z1∥W1
1 (Ω) ≤ ∥z1∥W1

1 (BMh(x))
+

J∑
j=0

∥z1∥W1
1 (Ωj)

≤ Chn/2
∥z1∥W1

2 (BMh(x0))
+ C

J∑
i=0

dn/2j ∥z1∥W1
2 (Ωj)

≤ Chn/2
∥z1∥W1

2 (Ω) + C
J∑

j=0

dn/2j ∥z1∥W1
2 (Ωj)

≤ C + C
J∑

j=0

dn/2j h−ne−cdj/hdn/2j

≤ C + C
J∑

j=0

(
dj
h
)ne−cdj/h. (4.14)

Note that for any l ≥ 0,
J∑

j=0

(dj
h

)l
e−cdj/h ≤ C

∫
∞

0
xle−cxdx ≤ C . (4.15)

hus, using (4.15) into (4.14), we have

∥z1∥W1
1 (Ω) ≤ C . (4.16)

In order to obtain the estimate for ∥z2∥W1
1 (Ω), using the measure of the subdomain, (4.12), we have

∥z2∥W1
1 (Ω) ≤ ∥z2∥W1

1 (BMh(x0))
+

J∑
j=0

∥z2∥W1
1 (Ωj)

≤ Chn/2
∥z2∥W1

2 (BMh(x0))
+ C

J∑
j=0

dnj ∥z2∥W1
∞(Ωj)

, (4.17)

here we used ∥z2∥W1
1 (Ωj)

≤ Cdnj ∥z2∥W1
∞(Ωj)

.
We observe that z2 is smooth on Ω ′′

i since ∇ · ((1− ω)δ0i ) = 0 on Ω ′′

i . Thus, for x ∈ Ω ′′

i and |α| ≤ 1, using the cutoff
unction ω and (4.1),

Dα
x z2(x) = Dα

x

∫
Ω\Ω ′′

i

G(x, y)(∇ · (1− ω)δ0i )dy

= −Dα
x

∫
′′

∇yG(x, y)(1− ω)δ0i dy

Ω\Ωi

6
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∫
Ω\Ω ′′

i

Dα
x∇yG(x, y)(1− ω)δ0i dy

≤ d2−n−2
j ∥δ0i ∥L1(Ω) ≤ Cd−n

j . (4.18)

hus, using (4.12) and (4.18) into (4.17), and using (4.6), we have

∥z2∥W1
1 (Ω) ≤ C + C · J ≤ C ln

1
h
. (4.19)

Finally, using the equalities z = z1 + z2 combining the inequalities (4.16) and (4.19), we have

∥z∥W1
1 (Ω) ≤ ∥z1∥W1

1 (Ω) + ∥z2∥W1
1 (Ω) ≤ C ln

1
h
.

This completes the proof.

As a consequence of Lemma 4.2, we have the following a priori estimate using Sobolev embedding Theorem.

∥z∥W0
2 (Ω) ≤ C∥z∥W1

1 (Ω) ≤ C ln
1
h

in R2, and

∥z∥W0
3/2(Ω) ≤ C∥z∥W1

1 (Ω) ≤ C ln
1
h

in R3 (4.20)

We shall use the following auxiliary problem involving z. Consider

−∇ · A∇v = Phz in Ω, and v = 0 on ∂Ω. (4.21)

Then, we have the following a priori estimates.

orollary 4.3. Let v satisfy (4.21). Then,

∥v∥2 ≤ Ch1−n/2 ln
1
h

, and ∥v∥1 ≤ C ln
1
h
, for n = 2, 3, (4.22)

and for n = 3, we have

∥v∥W2
3/2

≤ C ln
1
h
. (4.23)

roof. Using the a priori estimate, (3.4) and (4.20),

∥v∥W2
2
≤ C∥Phz∥W0

2
≤ C∥z∥W0

2
≤ C ln

1
h
, for n = 2.

and using the a priori estimate, inverse inequality, (3.4) and (4.20),

∥v∥W2
2
≤ C∥Phz∥W0

2
≤ Ch−1/2

∥Phz∥W0
3/2

≤ Ch−1/2
∥z∥W0

3/2
≤ Ch−1/2 ln

1
h
, for n = 3.

This proves the first inequality in (4.22). For the second inequality, first note that

∥v∥1 ≤ ∥v∥2 ≤ C ln
1
h
, for n = 2.

For n = 3, using a priori estimate, Sobolev embedding Theorem, (3.4), and (4.20), we have

∥v∥W1
2
≤ C∥Phz∥W−1

2
≤ C∥Phz∥W0

3/2
≤ ∥z∥W0

3/2
≤ ∥z∥W1

1
≤ C ln

1
h
. (4.24)

This completes the proof for (4.22).
For (4.23), using the similar argument for (4.24)

∥v∥W2
3/2

≤ C∥Phz∥W0
3/2

≤ ∥z∥W0
3/2

≤ C ln
1
h
. (4.25)

This completes the proof.

We need the following bound for ∥v − vI∥W1
1
, where vI is an interpolation [17].

emma 4.4. Let v be the solution of (4.21) and vI ∈ SH be the interpolation. Then,

∥v − vI∥ 1 ≤ C H ln
1
.
W1 h

7
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roof. We present the proof for n = 2 and n = 3 separately.
Case 1, n = 2.
Using the measure of the subdomain, Cauchy–Schwarz inequality, approximation property of the interpolation and

4.22), we have

∥v − vI∥W1
1 (Ω) = ∥v − vI∥W1

1 (BMH (x0))
+

J∑
j=1

∥v − vI∥W1
1 (Ωj)

≤ CH∥v − vI∥W1
2 (BMH (x0))

+ C
J∑

j=1

dj∥v − vI∥W1
2 (Ωj)

≤ CH2
∥v∥W2

2 (BMH (x0))
+ C

J∑
j=1

dj H∥v∥W2
2 (Ωj)

≤ C
(
H2

∥v∥W2
2 (Ω) + CH

[ J∑
j=1

d2j
]1/2[ J∑

j=1

∥v∥2
W2

2 (Ωj)

]1/2)
≤ C(H2

∥v∥W2
2 (Ω) + H∥v∥W2

2 (Ω))

≤ CH ln
1
h
. (4.26)

Case 2, n = 3.
Using the measure of the subdomain, Hölder’s inequality with p = 3 and q = 3/2, approximation property of the

nterpolation and (4.23), we have

∥v − vI∥W1
1 (Ω) = ∥v − vI∥W1

1 (BMH (x0))
+

J∑
j=1

∥v − vI∥W1
1 (Ωj)

≤ CH∥v − vI∥W1
3/2(BMH (x0))

+ C
J∑

j=1

dj∥v − vI∥W1
3/2(Ωj)

≤ CH2
∥v∥W2

3/2(BMH (x0))
+ C

J∑
j=1

dj H∥v∥W2
3/2(Ωj)

≤ C
(
H2

∥v∥W2
3/2(Ω) + CH

[ J∑
j=1

d3j
]1/3[ J∑

j=1

∥v∥
3/2
W2

3/2(Ωj)

]2/3)
≤ C(H2

∥v∥W2
3/2(Ω) + H∥v∥W2

3/2(Ω))

≤ CH ln
1
h
. (4.27)

his completes the proof.

emma 4.5. Let σh be the solution of (3.16). Let Ph be the L2 projection in (3.2) and a be the solution of −∇ · A∇a = Phb
for some b ∈ L2(Ω). Let η = −A∇a. Then,

(A−1(σ − σh), η − ηm
h )

≤ Chk+2
(
∥u∥k+2 + ∥f ∥k+1

)
∥a∥2 + C

√
ϵH2h2

(
∥u∥2 + ∥f ∥1

)
∥a∥2.

Proof. Note that

−∇ · A∇a = ∇ · η = Phb, and ∥Phb∥0 ≤ ∥a∥2.

Now using the estimate (3.15) and Phb ∈ Q k
h , we have

∥Pha− am∥0 ≤ Ch2
∥a∥2. (4.28)
h

8
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U

P

L

I

sing η = −A∇a, integration by parts, (3.11), Lemma 3.1, (3.2), Cauchy–Schwarz inequality, approximation property
(3.3), and (3.22), we have

(A−1(σ − σh), η − ηm
h ) = (A−1(σ − σm

h ), η − ηm
h )+ (A−1(σm

h − σh), η − ηm
h )

= (A−1(σ − σm
h ), η)− (A−1(σ − σm

h ), η
m
h )+ (A−1(σm

h − σh), η − ηm
h )

= (A−1(σ − σm
h ),−A∇a)− (A−1(σ − σm

h ), η
m
h )+ (A−1(σm

h − σh), η − ηm
h )

= (∇ · (σ − σm
h ), a)− (u− um

h ,∇ · ηm
h )+ (∇ · (σm

h − σh), a− amh )
= (f − Phf , a)− (u− um

h ,∇ · ηm
h )+ (∇ · (σm

h − σh), a− amh )
= (f − Phf , a− Pha)− (Phu− um

h , Phb)+ (∇ · (σm
h − σh), Pha− amh )

≤ ∥f − Phf ∥0∥a− Pha∥0 + ∥Phu− um
h ∥0∥Phb∥0 + ∥∇ · (σm

h − σh)∥0∥Pha− amh ∥0

≤ Chk+2
∥f ∥k+1∥a∥2 + Chk+2

(
∥u∥k+2 + ∥f ∥k+1

)
∥a∥2

+
√

ϵH2h2(∥u∥2 + ∥f ∥1)∥a∥2

≤ Chk+2
(
∥u∥k+2 + ∥f ∥k+1

)
∥a∥2 +

√
ϵH2h2

(
∥u∥2 + ∥f ∥1

)
∥a∥2. (4.29)

This completes the proof.

Using the above estimates, we obtain the following result.

Lemma 4.6. Let σh be the solution of (3.16). Let Ph be the L2 projection and z be the solution of (4.3). Then,

(∇ · (σ − σh), Phz) ≤ Cϵhk+3/2 ln
1
h

(
∥u∥k+2 + ∥f ∥k+1

)
+Cϵ1/2hk+1 ln

1
h

(
∥u∥2 + ∥f ∥1

)
+ Cϵ1/2hk+1 ln

1
h
∥u∥W2

∞(Ω).

roof. Let v be the solution of (4.21). By defining η = −A∇v, we obtain the following system of equations:

η + A∇v = 0, and ∇ · η = Phz. (4.30)

et (vm
h , ηm

h ) be the mixed finite approximation solution for (v, η).
Note that using (3.12), we have

∇ · η = ∇ · ηm
h = Phz, (4.31)

Using (4.31), (3.20) and (4.31)

(∇ · (σ − σh) , Phz) = (∇ · (σ − σh) , ∇ · ηm
h )

= −ϵ(A−1(σ − σh) , ηm
h )+ ϵ(u− uG

H ,∇ · ηm
h )

= −ϵ(A−1(σ − σh) , ηm
h − η)− ϵ(A−1(σ − σh) , η)+ ϵ(u− uG

H ,∇ · η)

= I1 + I2 + I3. (4.32)

Using Lemma 4.5 with a = v, (1.1), and (4.22), we have

I1 ≤ Cϵhk+2
(
∥u∥k+2 + ∥f ∥k+1

)
∥v∥2 + ϵ3/2H2h2(∥u∥2 + ∥f ∥1)∥v∥2

≤ Cϵhk+3/2 ln
1
h

(
∥u∥k+2 + ∥f ∥k+1

)
+ Cϵhk+3(∥u∥2 + ∥f ∥1)h−1/2 ln

1
h

≤ Cϵhk+3/2 ln
1
h

(
∥u∥k+2 + ∥f ∥k+1

)
+ Cϵhk+5/2 ln

1
h
(∥u∥2 + ∥f ∥1). (4.33)

Using the first equality in (4.30), integration by parts, (3.2), ∇ · σ = f , and (4.22), we have

I2 = ϵ(σ − σh,∇v) = −ϵ(∇ · (σ − σh, v))
= −ϵ(∇ · (σ − σh), v − Phv)− ϵ(∇ · (σ − σh), Phv)
= −ϵ(f − Phf , v − Phv)− ϵ(∇ · (σ − σh), Phv)
≤ ϵ∥f − Phf ∥0∥v − Phv∥0 − ϵ(∇ · (σ − σh), Phv)
≤ Cϵhk+2

∥f ∥k+1∥v∥1 − ϵ(∇ · (σ − σh), Phv)

≤ Cϵhk+2 ln
1
h
∥f ∥k+1 − ϵ(∇ · (σ − σh), Phv). (4.34)

n order to obtain an upper bound for the second term in the above, let a be the solution of

−∇ · A∇b = P v in Ω, and b = 0 on ∂Ω. (4.35)
h

9
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U

D

N

U

S

T

sing the a priori estimate, (3.4) and (4.22),

∥b∥2 ≤ C∥Phv∥0 ≤ C∥v∥0 ≤ C ln
1
h
. (4.36)

efining θ = −A∇b, we obtain the following system of equations:

θ + A∇b = 0, and ∇ · θ = Phv. (4.37)

ote that using Lemma 3.1, we have

∇ · θ = ∇ · θm
h = Phv. (4.38)

Now, using (3.20), (4.38)

−ϵ(∇ · (σ − σh), Phv) = −ϵ(∇ · (σ − σh),∇ · θm
h )

= ϵ2(A−1(σ − σh) , θm
h )− ϵ2(u− uG

H ,∇ · θm
h )

= ϵ2(A−1(σ − σh) , θm
h − θ)+ ϵ2(A−1(σ − σh) , θ)− ϵ2(u− uG

H ,∇ · θ)

= J1 + J2 + J3. (4.39)

sing Lemma 4.5 and (4.36)

J1 ≤ Cϵ2
(
hk+2(∥u∥k+2 + ∥f ∥k+1)∥b∥2 ++

√
ϵH2h2(∥u∥2 + ∥f ∥1)∥b∥2

)
≤ Cϵ2hk+2 ln

1
h

(
∥u∥k+2 + ∥f ∥k+1

)
. (4.40)

Using the first equality in (4.37), integration by parts, (3.12), (3.3), (3.22), (3.4), (4.36), and (1.1), we have

J2 = ϵ2(σ − σh , ∇b) = −ϵ2(∇ · (σ − σh) , b)
= −ϵ2(∇ · (σ − σh) , b− Phb)− ϵ2(∇ · (σ − σh) , Phb)
= −ϵ2(f − Phf , b− Phb)− ϵ2(∇ · (σ − σh) , Phb)
= −ϵ2(f − Phf , b− Phb)− ϵ2(∇ · (σm

h − σh) , Phb)
≤ ϵ2

∥f − Phf ∥0∥b− Phb∥0 + ϵ2
∥∇ · (σm

h − σn)∥0∥Phb∥0
≤ Cϵ2hk+2

∥f ∥k+1∥b∥1 + Cϵ3H2(∥u∥2 + ∥f ∥1) ∥b∥0

≤ Cϵ2hk+2 ln
1
h
∥f ∥k+1 + Cϵ5/2hk+1 ln

1
h
(∥u∥2 + ∥f ∥1). (4.41)

For J3, using integration by parts, the first equality in (4.37), the orthogonality of the Galerkin solution uG
H , Cauchy–

chwarz inequality, (4.36), and (1.1), we have

J3 = ϵ2(A∇(u− uG
H ) , ∇b) = ϵ2(A∇(u− uG

H ) , ∇(b− bI ))

≤ Cϵ2H2
∥u∥2∥b∥2 ≤ Cϵ3/2hk+1 ln

1
h
∥u∥2. (4.42)

Plugging (4.40), (4.41) and (4.42) into (4.39) and then (4.34), we have

I2 ≤ Cϵ2hk+2 ln
1
h

(
∥u∥k+2 + ∥f ∥k+1

)
+ Cϵ3/2hk+1 ln

1
h

(
∥u∥2 + ∥f ∥1

)
. (4.43)

Using the orthogonality, and L∞ error estimate for the Galerkin solution and Lemma 4.4, we have

I3 = ϵ(A(u− uG
H ),∇v) = ϵ(A(u− uG

H ),∇(v − vI ))

≤ ϵ∥u− uG
H∥W1

∞(Ω)∥v − vI∥W1
1 (Ω) ≤ CϵH2 ln

1
h
∥u∥W2

∞(Ω)

≤ Cϵ1/2hk+1 ln
1
h
∥u∥W2

∞(Ω). (4.44)

Plugging (4.33), (4.43) and (4.44) into (4.32), we have

(∇ · (σ − σh), Phz) ≤ Cϵhk+3/2 ln
1
h

(
∥u∥k+2 + ∥f ∥k+1

)
+Cϵ1/2hk+1 ln

1
h

(
∥u∥2 + ∥f ∥1

)
+ Cϵ1/2hk+1 ln

1
h
∥u∥W2

∞(Ω).

his completes the proof.
10



J. Ku Journal of Computational and Applied Mathematics 436 (2024) 115385

5

m
o

k

P

δ

o

w

o

a

. Pointwise error estimates

In this section, we present localized error estimates for σ−σh for all the possible choices of 0 < ϵ ≤ 1 for our reduced
ixed methods. The main result in this section implies that the solution of the hybrid finite element method is higher
rder perturbation of the standard mixed finite element methods for all ϵ ≤ 1 satisfying (1.1), i.e.

√
ϵH2

= O(hk+1).

Theorem 5.1. Let σh be the solution of (3.16). Let the assumptions concerning Πh, Ph, and the mesh be satisfied. Then there
exists a constant C independent of u, σ and h such that for any x0 ∈ Ω , 0 ≤ s ≤ k+ 1, and 0 ≤ t ≤ k,

|(σ − σh)(x0)|

≤ C(ln
1
h
)δs(k+1)∥σ − Πhσ∥L∞(Ω),x,s + Ch

(
∥u− Phu∥L∞(Ω),x,t + (ln

1
h
)δtk∥∇ · σ − Ph∇ · σ∥L∞(Ω),x,t

)
+ Cϵhk+3/2 ln

1
h

(
∥u∥k+2 + ∥f ∥k+1

)
+ C

√
ϵhk+1 ln

1
h

(
∥u∥2 + ∥f ∥1

)
+ C

√
ϵhk+1 ln

1
h
∥u∥W2

∞(Ω).

Remark 5.1. Note that we have
√

ϵ H2
≤ Chk+1.

This indicates that the last three global terms in the above estimate are higher order. For example, if ϵ = h2 (and
= 0,H = 1), then the dependence of the pointwise estimate on the global terms is 1- order higher modulo logarithm.

roof.
By the triangle inequality, we have

|(σ − σh)(x0)| ≤ |(σ − σm
h )(x0)| + |(σm

h − σh)(x0)|. (5.1)

For the first term in the above, i.e. |(σ − σm
h )(x0)|, we use Lemma 3.3. For the second term in (5.1), using the discrete

function in (3.7), we have

|(σm
h − σh)(x0)| = (A−1(σm

h − σh) , δ0i )
= (A−1(σm

h − σ) , δ0i )+ (A−1(σ − σh), δ0i )

= I1 + I2. (5.2)

Note that I1 contains only mixed finite element solutions σm
h and discrete delta function. An upper bound for I1 is

btained in [4, Lemma 4.1 and Lemma 4.4].

I1 ≤ C(ln
1
h
)δs(k+1)∥σ − Πhσ∥L∞(Ω),x,s

+ Ch
(
∥u− Phu∥L∞(Ω),x,t + (ln

1
h
)δtk∥∇ · σ − Ph∇ · σ∥L∞(Ω),x,t

)
(5.3)

In order to obtain an upper bound for I2, consider the following is the first-order system corresponding to (4.3):{
r+ A∇z = 0 in Ω,

∇ · r = ∇ · δ0i in Ω
(5.4)

ith boundary conditions

z = 0 on ∂Ω (5.5)

Let (zmh , rmh ) be the approximation solution of the mixed finite element method. Then, the following estimates are
btained in [4, (4.50a), (4,21)].

∥r− rmh ∥L1,x0,−s ≤ C(ln
1
h
)δk,s , for 0 ≤ s ≤ k+ 1, (5.6)

nd

∥z − Phz∥L1,x0,−t ≤ Ch(ln
1
h
)δk,t , for 0 ≤ t ≤ k. (5.7)

Using Lemma 3.1 with f = ∇ · δ0i ∈ Q k
h , we have

m 0

∇ · r = ∇ · rh = ∇ · δi . (5.8)

11
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U
sing the quasi-orthogonality property (3.20), we have

I2 = (A−1(σ − σh), δ0i ) = −
1
ϵ
(∇ · (σ − σh) , ∇ · δ0i )+ (u− uG

H ,∇ · δ0i )

= −
1
ϵ
(∇ · (σ − σh) , ∇ · r)+ (u− uG

H ,∇ · r)

= −
1
ϵ

(
(∇ · (σ − σh) , ∇ · (r− rmh ))+ (A−1(σ − σh) , rmh ) − ϵ(u− uG

H ,∇ · rmh )
)

+(u− uH
G ,∇ · r)

= (A−1(σ − σh) , rmh )
= (A−1(σ − σh) , rmh − r)+ (A−1(σ − σh) , r)
= (A−1(σ − σm

h ) , rmh − r)+ (A−1(σm
h − σh) , rmh − r)+ (σ − σh , ∇z)

= J1 + J2 + J3. (5.9)

For J1, using the error Eqs. (3.11), (3.12) and (3.13), we have

J1 = (A−1(σ − Πhσ) , rmh − r)+ (A−1(Πhσ − σm
h ) , rmh − r)

= (A−1(σ − Πhσ) , rmh − r)+ (∇ · (Πhσ − σm
h ) , zmh − z)

= (A−1(σ − Πhσ) , rmh − r)
≤ C∥σ − Πhσ∥L∞,x0,s∥r− rmh ∥L1,x0,−s

≤ C(ln
1
h
)δk,s∥σ − Πhσ∥L∞,x0,s, (5.10)

for 0 ≤ s ≤ k+ 1.
For J2, using (3.2) and (3.11), we have

J2 = (∇ · (σm
h − σh) , zmh − z) = (∇ · (σm

h − σh) , zmh − Phz)

≤ ∥∇ · (σm
h − σh)∥0 · ∥zmh − Phz∥0. (5.11)

Using (3.14), (5.8), and (3.9) with p = 2, we have

∥zmh − Phz∥0 ≤ Ch(∥r− rmh ∥0 + ∥∇ · r−∇ · rmh ∥0 + ∥z − zGh ∥1)
≤ Ch2(∥r∥1 + ∥z∥2)
≤ Ch2

∥∇ · δ0i ∥0 ≤ C . (5.12)

Plugging (3.22) and (5.12) into (5.11) and using (1.1), we have

J2 ≤ CϵH2(∥u∥2 + ∥f ∥1) ≤ C
√

ϵ hk+1(∥u∥2 + ∥f ∥1). (5.13)

Using integration by parts, we have

J3 = −(∇ · (σ − σh) , z)
= −(∇ · (σ − σh) , z − Phz) − (∇ · (σ − σh) , Phz)
= K1 + K2. (5.14)

Using (3.2), (3.5), and (5.7)

K1 = −(∇ · σ , z − Phz) = −(∇ · (σ − Πhσ) , z − Phz)
≤ ∥∇ · (σ − Πhσ)∥L∞,x0,t∥z − Phz∥L1,x0,−t

≤ Ch(ln
1
h
)δk,t ∥∇ · (σ − Πhσ)∥L∞,x0,t . (5.15)

From Lemma 4.6, we have

K2 ≤ |(∇ · (σ − σh) , Phz)|

≤ Cϵhk+3/2 ln
1
h

(
∥u∥k+2 + ∥f ∥k+1

)
+Cϵ1/2hk+1 ln

1(
∥u∥2 + ∥f ∥1

)
+ Cϵ1/2hk+1 ln

1
∥u∥W2

∞(Ω). (5.16)

h h
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P
lugging (5.15) and (5.16) into (5.14), we obtain

J3 ≤ Ch∥∇ · (σ − Πhσ)∥L∞,x0,t + Cϵhk+3/2 ln
1
h

(
∥u∥k+2 + ∥f ∥k+1

)
+C

√
ϵhk+1 ln

1
h

(
∥u∥2 + ∥f ∥1

)
+ C

√
ϵhk+1 ln

1
h
∥u∥W2

∞(Ω). (5.17)

Collecting (5.10), (5.13) and (5.17) into (5.9), we obtain

I2 ≤ (ln
1
h
)δk,s∥σ − Πhσ∥L∞,x0,s + Ch(ln

1
h
)δk,t ∥∇ · (σ − Πhσ)∥L∞,x0,t

+ Cϵhk+3/2 ln
1
h

(
∥u∥k+2 + ∥f ∥k+1

)
+ C

√
ϵhk+1 ln

1
h

(
∥u∥2 + ∥f ∥1

)
+ C

√
ϵhk+1 ln

1
h
∥u∥W2

∞(Ω).

Finally, combining (5.3) and the above inequality into (5.2) then (5.1) with Lemma 3.3, we obtain the desired result. This
completes the proof.

Remark 5.2. Using the above pointwise error estimate and standard argument, one can obtain so-called asymptotic error
expansion inequality, [4,5].
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