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1. Introduction

Recently, a new hybrid finite element method for second-order elliptic partial differential equations (PDEs) is devel-
oped [1] for accurate and efficient approximations of the flux variables. It is a two-step procedure. On coarse meshes of
mesh size H, the primary variable is approximated by a standard method such as the standard Galerkin method. With
this crude approximation as a problem data, a H(div) projection of dual variables is sought as an approximation solution
on a finer meshes of mesh size h. This new method can be considered as a reduced version of the mixed finite element
method.

Typically, there is a restriction for the choice of fine meshsize h to achieve the optimal rate of convergence. For example,
h should be taken as H?, see [2]. The hybrid method circumvents this restriction by introducing a parameter ¢, which can
be chosen arbitrary small. To achieve optimal convergence rate in L, norm on the finer meshes, € needs to satisfy

JeH? = o(h*thy, (1.1)

where h**1 is the optimal convergence rate for the approximation space on the finer meshes. The above equality can be
interpreted as one can choose fine mesh size as small as one wishes by choosing the problem parameter ¢ to satisfy (1.1).
In other words, choosing small € enables one to use arbitrary small meshsize h independent of the coarse meshsize H.
This freedom of choice for the approximation spaces makes the new method efficient and accurate. A possible problem
of choosing small ¢ is that the resulting algebraic equation becomes nearly singular as ¢ — 0. This problem is resolved
using the iterative solver developed in [3].

While optimal error estimates in L,-norm are provided for the hybrid method in [1], there is no pointwise error
estimates. In order to obtain accurate and reliable determination concerning the behavior of the approximation solutions,
one needs to use pointwise error. In this paper, we provide the highly localized pointwise error estimates showing that
the solutions of the hybrid method are higher order perturbation of the standard mixed finite element methods with the
assumption (1.1). Demlow [4] obtained localized pointwise error estimates for the mixed finite element methods, that
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is an extension of the Schatz’s results for the standard Galerkin method [5]. Similar arguments are used in [6] for the
pointwise error estimates for the least-squares formulation. We also refer to [7,8] for maximum norm error estimates for
the mixed finite element methods.

This paper is organized as follows. In Section 2, we present mathematical formulations. In Section 3, finite element
spaces are defined and numerical methods are defined. In Section 4, some preliminaries results are presented. Finally,
pointwise error estimate is presented in Section 5.

2. Problem formulation

Let £2 be a bounded domain in R", n = 2, 3, with smooth boundary 8£2. We use the Sobolev spaces W' and Hy' = W'
and the associated norms and seminorms. For m = 0, WZ)ﬂ coincides with L, and H&(D) denotes the functions in Hzl(D)
with zero trace on dD. Also, we use [Y]" for the set of all ordered n-tuples of Y. We define

X = H(div) = {v € [L(£2)]" : V -V € L,},
which is a Hilbert space under the norm |[Vluw) = ([IVIIf, + IV - V||7,)"/?. For brevity, the norm in W;" will be denoted
by || - lIm-

2.1. Mathematical equations

We consider a model second-order elliptic partial differential equations with homogeneous Dirichlet boundary
condition:
—V-(AVu)=f in £, u=0 on 05, (2.1)

where the matrix A4 is symmetric, uniformly positive definite, and bounded.
We assume that for u satisfying (2.1), there exists a positive constant C independent of f satisfying

lull2 < Clif llo- (2.2)
We transform the original model problem into a system of first-order by introducing a flux variable & = —AVu € H(div).
Then, we obtain

6+AVu=0 in2, V-o=f ing, (2.3)

with the boundary condition u = 0 on 952.

Here and hereafter, we use C with or without subscripts in this paper to denote a generic positive constant, possibly
different at different occurrences, that is independent of the mesh size h.

For localized estimates, the following weight-function and weighted norms are commonly used [4,5]. For each point
x of £2, a real number s and an arbitrary y € £2,

s

oen(y) = (ﬁ) . (2.4)
For 1 < p < oo and fixed x, we define weighted norms

lullzy2)xs = o) u()llL2) (2.5)
and

lullwi@)xs = Nully@)es + 1VUllL2)xs- (2.6)

3. Finite element approximation

Let 7, be a quasiuniform triangulation of £2 with triangular/tetrahedra elements with meshsize h. Boundary elements
are allowed to have one curved face, see [9]. In order to approximate functions in X = H(div), we use the Raviart-Thomas
elements (RT) or Brezzi-Douglas-Marini (BDM) space of index k, see [9-12]. We present our results based on RT elements
for simplicity of presentation. Similar results holds for BDM family of spaces with obvious modifications.

In order to place some assumptions on the approximation spaces, we first define

Q,f‘ ={qelyR2):qlr € P"(T), foreach T € 73}, (3.1)

where PX(T) is the space of polynomials of degree k on the triangle T.
Let P, : [,($2) — Q,f be the local L, projection satisfying

(v — Py, qy) = 0, for all g, € QF. (3.2)
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It is well known that the local L, projection Py satisfies the following approximation property: For D C £2,
lv = Pavlliy) < CH[olyspy, where D'= | ] T, (3.3)
{T:T M D0}
forall v e W;(D/), all 1 <s<kand 1 <p < oo. We also recall that P;, is stable in Wz? norm for any 1 < p < oo, that is,
”th”Wg(Q) = CHUHWIQ(_Q)’ (34)

for1 <p < 0.
Let X, C X be the RT spaces of order k. Let IT, : X — X}, be the Fortin projection satisfying the following commuting
diagram property:

V- =PV-: X — QfF. (3.5)
It satisfies the following approximation property:
llo = Mo lliw,op < C°lo|wsoyn (3.6)

for1<s<kand1<p<oo.
For the approximation spaces for the primary variable on a coarse mesh 7, we use the standard continuous piecewise
linear polynomial space Sy, i.e.

Sy = {v € Hy(£2) : v, € P(T), for each T € Tg}.
Remark 3.1. For the remaining of this paper, k is the index of the RT space.
3.1. Discrete §-function

For any given xq € £2, let 6? € Xj be a function such that
(A 'py. &) = [pn(x0)l;  for all py € Xp, (3.7)

where [pr(xo)]; is the ith component of the vector py(xo). The following inequalities concerning 6? is obtained in [4]: For
any y € £2,

182y + h|V - 8(y)| < Ch™"e~cW—%ol/h, (3.8)
and

18Iy + hIY - 8 llizy2y < CH"/PD. (3.9)
3.2. Mixed finite element methods

The mixed finite element method corresponding to (2.3) is as follows: Find a pair (u}', o) € Qf x Xp, such that
(Af]aﬁ, ) — (V-1h,up) =0,
(V-op,vn) = (f, vn) (3.10)
for all (v, Th) € Q,.’f x Xp. Then, the pair (u — uy', 0 — o) satisfy the following error equations
(Ao —aM), ) — (V- u—ul") =0, (3.11)
(V-(6—0op),vp) =0, (3.12)
for all (vy, Th) € QF x X

Remark 3.2. Using the commuting diagram property and (3.2), we have
V. (IIyo —ap')=0. (3.13)
It is well-known that the mixed method has the basic L, norm error estimates, see [13]:
llo = anllo < CH* ol

The following lemma can be also obtained by taking advantage of the orthogonality property in (3.12).

Lemma 3.1. Letf € Q,f and let (uy, o}') satisfies (3.10). Then,
V-e=V.op =f.
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The following superconvergence results are obtained in [14, Theorem 4.2].

Lemma 3.2. Let P, be the local L, projection satisfying (3.11) and (3.12). Then,
1Pt = uitllo < Ch(llo = amllo + IV - (& = ofllo + 1u = u§ 1 ). (3.14)
In particular, if f € QF, then,
1Pyt — ullo < Ch?[lull,. (3.15)
The following weighted-norm error estimate for the mixed method is obtain in [4, Theorem 1.1]. We recall the

Kronecker delta §;;, where §; = 0if i #j and §; = 1if i =j.

Lemma 3.3. Let the assumptions concerning Iy, Py, and the mesh be satisfied. Then there exists a constant C independent of
u, o and h such that forany xo € 2,0 <s<k+1,and0 <t <k,

1
(6 — o} )(x0)| < C(In E)SM o — Mo | Loo(2) s

1
+ (1t = Prtliiae + (0 NV -0 = PV - 0lliia ).

3.3. Hybrid finite element methods

An efficient flux approximation scheme, hybrid finite element method, is developed in [ 1]. The methods can be consider
as a reduced mixed finite element method due to its close tie to the mixed finite element methods. It is imperative to
note that the new method reduces the degrees of freedom (DOFs) significantly compared to the mixed methods while
maintaining the accuracy of the approximations, see [1, Section 6]. The method is defined as follows:

Step 1 (Coarse-grid solution) On a coarse mesh 7y, obtain a crude approximation, e.g. standard Galerkin method
dgﬁned: Let Sy be the continuous piecewise linear polynomial spaces on 75. Define the Galerkin approximation solution
uy € Sy as

(AVUS, V) = (f, Vuy), for all v, € Sy.
Step 2 (Fine-grid solution) On a finer mesh 73, find the H(div) projection o, € X}, for the given data f + euf,, ie.

(V-on, V1) +e(A lon, ) = (f + eu,(_;,, V-t) V1, € X (3.16)

Remark 3.3. By taking v, = V - t;; and multiplying ¢ to the first equation in the mixed formulation (3.10), we have
(V-ol, V-t +e(A o, tn) = (f+eul, V1) Y, € Xp. (3.17)
This is similar to (3.16) except the problem data f + euj' replacing f + eug. Note that the hybrid method first obtains a

crude approximation ug and obtain o}, separately. Thus, the problem size is smaller.

Remark 3.4. Generally, there is a restriction concerning the meshsize h and H. The reduced mixed method overcomes this
restriction by introducing parameter €. With a proper choice of €, one can choose arbitrary small meshsize h regardless
of coarse meshsize H. For optimal convergence rate, € needs to be chosen to satisfy

«/EHZ — O(hk+1 )

Remark 3.5. The Galerkin solution satisfies the following orthogonality property:
(AV(u—1uf), Vuy) =0, forall vy € Sy, (3.18)
and it has the following approximation property, [5]:
lu = Ul o) < CHlllyz - (3.19)
Note that the true solution (u, o) satisfies
(V-o,V-t)+ed o, t)=F +eu, V-1;) Vi € Xp.
Subtracting (3.16) from the above, we obtain the following quasi-orthogonality property:
(V-(6—0p), V-t)+e(A o —0p), ) = €e(u— uf,, V. 1) (3.20)
The following basic error estimate is obtained in [1, Theorem 4.4]:

4
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Theorem 3.4. Assume that ¢ € H*t'(£2)". Then, and X, is the RT space of order k. Then,

llo — onllo < CH* Mo llit1 + Cv/eH?[[ull2, (3.21)
and

IV - (on — a)llo < CellPu(uy — ufp)llo < CeH>(ully + IIfll). (3.22)

4. Some preliminaries

We shall use the Green’s function for our problem (2.1), i.e. let G(x, y) be a function satisfying

) = [ Avu)Gix vty = [ 6.
2 2
and G(x,y) = 0 for y € 3£2. Then, we have the following estimates, see [15]

Lemma 4.1. There exists a constant C such that for x and y in £2,

ID{DJG(x, y)| < Clx —y> "~ “*# for |a + | > 0 (4.1)
and

G, )l < Clx —y|'™", (4.2)
where Dy is a differential operator with respect to x defined in [16, Chapter 1.2].

The above lemma is used to obtain an a priori estimate for the following auxiliary problem (4.3). The estimate plays
an crucial role in terms of obtaining pointwise estimate for the hybrid finite element methods.
We shall employ the following problem involving the discrete 6? function defined in [4].

—divavz = V.8& in £,
z = 0 on 0%2. (43)
By a priori estimates, we have
lzlls < CIIV - 811 = ClI&] - (44)

For the remainder of the paper, z will denote the solution of the above problem. Our main concern is obtaining W} error
estimate for z. In order to present our result, we first define the following: For d > 0 and any fixed x € 2 C R", B4(x) is
defined as follows;

By(x) ={y € £2;ly — x| < d}. (4.5)
Without loss of generality we assume that diam(£2) < 1. Let
=27 forj=0,1,2,...,

and for fixed x, set

2 = {yef:dij<|y—xl <dj,
2] = {yeR:dipo<ly—xl <dji1},
2 = {ye:dys<ly—xl<dis)

Let M > 2 be a constant which will be chosen later on to be sufficiently large. For convenience we shall choose M to
begin with so that for some integer J

Mh =27,
Notice that since M > 2

11 1 1
— — (n—+1In-)<Cln-. 46
J=qpngy ting)=Clng (4.6)

Lemma 4.2. Let z satisfy (4.3). Then,

1
23y < Cln . (4.7)

Proof. Let w be a smooth cutoff function which is 1 on £2/, 0 on £ \ £/, satisfies 0 < w < 1, and has a bounded first
derivative, i.e. | Vol 2) < d£ We let z; and z; satisfy

—divaVz; = V-(w8) in £,

1 = 0 on 0S52. (4.8)
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and
—divaVz; = V-(1-w)) in £, (4.9)
Z = 0 on 0£2.

Note that

zZ=2z1+ 2. (4.10)
Also, using the a priori estimate in (3.9) and (4.4), we have

Izillwy(2) < Cllwdlllo < ClI&llo < Ch™™2, (4.11)
and similarly

IZ2llw3 ) = ClI(T = @) llo < Cl1&llo < Ch™™2. (4.12)

Using the a priori estimate in (4.4), (3.8), Holder’s inequality, and ||6?||L2(Qg/) < Cdj'?/2||5?||Lw(Qg/), we have the following
. J J
local estimates:

—n ,—cd; 2
121wy < 08 lliyap) < Ch-"e™5/d]". (4.13)
First, we obtain the estimate for ||z ||w11(9)- Using the measure of the subdomain, (4.11), and (4.13), we have

J

lzilwicay < 121w gmen + D 121 Iwicey)
j=0

J
n/2 n/2
< 22y gynon + € D 4 121 gy
i=0

J
2
< ANzl + € Y 4 121 llwyqy
j=0

J
<C+C Z d;‘/zh—ne—cdj/hd}l/z

j=0
<C+C i(ﬁ)"e—cdf/h. (4.14)
< Z n
Note that for any [ > 0,
I din o
Z(ﬁ) e~ U/Mm < C/ xle~*dx < C. (4.15)
j=0 0
Thus, using (4.15) into (4.14), we have
Izillw(o) = C. (4.16)

In order to obtain the estimate for ”ZZHW}(Q)' using the measure of the subdomain, (4.12), we have

J
l22llwiey < 122wl ooy + 2 1221wy
j=0
J
n/2 n
< O™ 122 g3 0 + € D G 122w - (4.17)
j=0

where we used ||22||w11(gj) < Cd}l”Zz”W:}o(Qj).

We observe that z, is smooth on £/ since V - (1 — w)S?) = 0 on £/. Thus, for x € £ and |«| < 1, using the cutoff
function w and (4.1),

Do 2a() = D / Glx, YV - (1 — w)6)dy
Q]

D¢ / V,G(x, y)(1 — w)8dy
o\ef
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- / D2V,G(x, y)(1 — w)8dy
o\

IA

&8Ny ) < Cd;" (4.18)
Thus, using (4.12) and (4.18) into (4.17), and using (4.6), we have
1
||22||w11(9) <C+C-J=Cln h (4.19)
Finally, using the equalities z = z; + z, combining the inequalities (4.16) and (4.19), we have
1
”Z”Wll(g) = ||zl||W11(Q) + ||22||W11(Q) <Cln E

This completes the proof.

As a consequence of Lemma 4.2, we have the following a priori estimate using Sobolev embedding Theorem.
)
||Z“W2°(9) < CllZ”W]](.Q) < ClnE in R°, and
1 . .
||Z”W§’/2(9) < C||z||W11(m <Cln h inR (4.20)
We shall use the following auxiliary problem involving z. Consider

— V- -AVv =Pyzin 2, and v = 0 on 952. (4.21)

Then, we have the following a priori estimates.

Corollary 4.3. Let v satisfy (4.21). Then,

1 1
lvll> < Ch'™?1n e and |Jv]; <Cln o forn=2,3, (4.22)
and for n = 3, we have
1
||v||W3z/2 <Cln o (4.23)

Proof. Using the a priori estimate, (3.4) and (4.20),
1
Ivllwz < ClIPazllyo < Clizllye < Cln e forn=2.

and using the a priori estimate, inverse inequality, (3.4) and (4.20),
~1/2
lollwg < ClIPhzllyp < Ch™V21Pazlyg
1
~1/2 —1/2 11 © _
< Ch ||Z||w§’/2 < Ch In W for n = 3.
This proves the first inequality in (4.22). For the second inequality, first note that

1
Il < flvllz < Cln 4, forn =2.

—

For n = 3, using a priori estimate, Sobolev embedding Theorem, (3.4), and (4.20), we have

1
Iollwy = CllPhzlly -1 < CIIPhZIIWg/2 < IIZIIWg/2 = lzlly; = Cln . (4.24)
This completes the proof for (4.22).
For (4.23), using the similar argument for (4.24)
1
lvllwz, < ClIPizllyg, < lizllyg, < Cln . (425)

This completes the proof.

We need the following bound for |jv — v,||W11, where v; is an interpolation [17].

Lemma 4.4. Let v be the solution of (4.21) and v; € Sy be the interpolation. Then,

1
lv — v,||W11 < CHlnE.
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Proof. We present the proof for n = 2 and n = 3 separately.

Case 1,n = 2.

Using the measure of the subdomain, Cauchy-Schwarz inequality, approximation property of the interpolation and
(4.22), we have

J
o = villwiiey = 10 = vllwi ooy T 2 10 = villwicay
j=1
J
CHIv = villw 3 gy + € D il = villwyi
j=1

IA

J
CH? ”v”Wz (BmH(x0)) Z H”v”W2

, f 112 J , 12
g+ (3] [ ]

j=1 j=1

IA

| /\

IA

C(H2||U||W22(_Q) + H”U”WZZ(Q))

1
CHIn . (4.26)

IA

Case 2, n = 3.
Using the measure of the subdomain, Holder’s inequality with p = 3 and q = 3/2, approximation property of the
interpolation and (4.23), we have

J
o = vrllwiey = 10 = vlwioen T 2 10 = villwicay
j=1
J
< CHIv = villwg i + € > dillv—v w2
j=1
J
= CH Iz aion € D i H IV Iz s
j=1
I /3
2 3 3/2
< (W 1vlyg o+ H[ Y ] [Z 012 o] )
j=1
2
<
< C(H ||U||W32/2(g) + H||”||w32/2(9))
1
< CHIn = (4.27)

This completes the proof.

Lemma 4.5. Let oy, be the solution of (3.16). Let P, be the L, projection in (3.2) and a be the solution of —V - AVa = Pyb
for some b € L,(£2). Let n = —AVa. Then,

(A (o —0on). n—ny)
< 02 (Nullsz + I s ) lalla + C/eH2R2 (Jlulls + 11 ) lall.
Proof. Note that
—V-AVa=V .y ="Pb, and ||Pibllo < llall>.
Now using the estimate (3.15) and Pyb € Q,f, we have

IPha — aj'llo < Ch?|lall,. (4.28)
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Using = —AVa, integration by parts, (3.11), Lemma 3.1, (3.2), Cauchy-Schwarz inequality, approximation property

(3.3), and (3.22), we have
(Ao —an), n—up) = (A" (o —ap), n — 1) + (A" (o] — on), n — 1)
=(A (o —a), n)— (A7 (0 — o), nf) + (A7 (o} — on), n — )
=(A" (o —a}), —AVa) — (A (o —a}), m)) + (A~ (o) —an), n —njy)
=(V-(o—ay),a)—(u—uy, V-q)+ (V- (o} —on),a—ay)
=0 —Pf,a)—(u—uy, V-n)+ (V- (o} —on),a—ay)
= (f — Puf, a — Pha) — (Pyu — uyy, Pyb) + (V - (o} — o4), Pra — ay)
< IIf = Pufllolla — Pnallo + IIPhu — uy'llolPrbllo + IV - (o} — on)llolIPha — ay'llo
< CH*2|If llega llallz + Chk+2(||u||k+2 + ||f||k+l) lall2
+ VeHR(Jull> + If I1)lallz
< G2 (ullesz + W llevn ) lala + VeH2R (Jlulla + 111 )z
This completes the proof.

Using the above estimates, we obtain the following result.
Lemma 4.6. Let o}, be the solution of (3.16). Let P, be the L, projection and z be the solution of (4.3). Then,
1
(V- (0= 0n). Pi2) = Cel"2In (ullsa + I )

1 1
+Ce 20 In = (Iulla + I 1) + Ce 20 In - ullyz oy

Proof. Let v be the solution of (4.21). By defining y = —AVwv, we obtain the following system of equations:

7+ AVv =0, andV .5 =Pz

Let (v;', ') be the mixed finite approximation solution for (v, 7).
Note that using (3.12), we have

V. =V.q =Pz,
Using (4.31), (3.20) and (4.31)
(V-(0—0n), Piz)=(V-(0—0n), V-ny)
=—€e(A7 (0 —on), M)+ €(u—ug, V)
= —e(A (@ —on), ny —n) — (A" (0 —an), n)+e(u—uf, V-n)
=hL+hL+1.
Using Lemma 4.5 with a = v, (1.1), and (4.22), we have

I < Cel*2(Jullsa + I s ) vl + €2H2Hulls + I D]l
1 1
< Celt 2 (lullera + e ) + CeR“*(ully + W 0B 20

1 1
< Ce*21n = (ullera + I e ) + Cel "2 In < (ulz + 1)

Using the first equality in (4.30), integration by parts, (3.2), V - 0 = f, and (4.22), we have
I, = €(o6 — o, Vv) = —€(V - (6 — op, v))
= —¢(V (06 —op),v—"Pyw) —€(V-(0 —ayp), Prv)
—€(f — Ppf, v — Pyv) — €(V - (6 — oy), Ppv)
€llf — Pufllollv — Pavllo — €(V - (00 — o), Ppv)
CeN“2(f e llvlly — €(V - (@ — on), Pyv)

1
Ceh 2 In 3 I lis1 = €V - (0 = 00), Pho)

INIA

IA

In order to obtain an upper bound for the second term in the above, let a be the solution of

—V-AVb=Pyvin 2, and b=0o0n 952.

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)



J. Ku Journal of Computational and Applied Mathematics 436 (2024) 115385
Using the a priori estimate, (3.4) and (4.22),
1

[Ibll2 < Cl[Ppvllo < Cllvllo < Cln B (4.36)
Defining # = —.AVb, we obtain the following system of equations:

6+ AVb=0, andV -6 =Pyv. (4.37)
Note that using Lemma 3.1, we have

V-0=V-0="Pyw. (4.38)

Now, using (3.20), (4.38)

—€(V - (0 — o), Pyv) = —€(V - (0 —04), V- 6})
=eX(A o —on), O) — *(u—uf, V-0
= XA (o —ap), 0y —0)+ (A o —0on), 0) — X (u— u,G,, V.60)
=h+h+. (4.39)
Using Lemma 4.5 and (4.36)

Ji = €& (42 ullsz + I s )lIbl + +3/EH2Hulla + I 11)1b112)

1
= €M n 4 (ullsa + Wl )- (4:40)
Using the first equality in (4.37), integration by parts, (3.12), (3.3), (3.22), (3.4), (4.36), and (1.1), we have

o = €%(6 — 0oy, Vb) = —€X(V (6 —0y), b)

—eZ(V -(0 —op), b—Ppb) — 62(V -(0 — op), Pyb)
—62(f — Ppf, b— Ppb) — €X(V - (6 — oy), Pub)
—€*(f — Puf , b — Pyb) — €X(V - (0! — o), Pub)
€*|If — Pufllollb — Publlo + €*(|V - (o} — &a)llolIPabllo
CEH 2 f lliallblls + CE2H>(flullz + I 114) 1bllo

1 1
Ce’h* 2 1n 2 F s + Ce2p 1 In Ul + 1 11)- (4.41)

IAIA

IA

For J3, using integration by parts, the first equality in (4.37), the orthogonality of the Galerkin solution uf,, Cauchy-
Schwarz inequality, (4.36), and (1.1), we have

J3 = €(AV(u—uf), Vb) = €*(AV(u—uf), V(b — b))

IA

1
CEH2 [lull21bll> < Ce*/*H* In jull>, (442)
Plugging (4.40), (4.41) and (4.42) into (4.39) and then (4.34), we have
1 1
I = €N n - (ullsa + Wl ) + €20 In - (Julz + 1711)- (443)

Using the orthogonality, and L, error estimate for the Galerkin solution and Lemma 4.4, we have

I3 = (AU —uf), Vo) = e(Au — u$), V(v — vy))

IA

1
G 2
€llu — uH”WolO(Q)”v - UI”w]l(g) < CeH"In E”unwgo(g)

IA

1
Cell2pkt1 h ”u”W§o(9)' (4.44)
Plugging (4.33), (4.43) and (4.44) into (4.32), we have
1
(V- (o = on). Paz) = Ceh*In - (lullsz + I s )
1 1
+Ce2H M n — (Jula + ) + Ce 20 In = ullyg o)

This completes the proof.
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5. Pointwise error estimates

In this section, we present localized error estimates for o — o, for all the possible choices of 0 < ¢ < 1 for our reduced
mixed methods. The main result in this section implies that the solution of the hybrid finite element method is higher
order perturbation of the standard mixed finite element methods for all € < 1 satisfying (1.1), i.e. \/eH? = O(h**1).

Theorem 5.1. Let o} be the solution of (3.16). Let the assumptions concerning IT,, Py, and the mesh be satisfied. Then there
exists a constant C independent of u, o and h such that for any xo € 2,0 <s<k+ 1, and0 <t <k,

(6 — op)(Xo0)]

1 1
< C(ll'l H)as(’“rl) ||0’ — Hha||Loo(Q),x,s —+ Ch(||u — Phu”]_oo(g)_x_t —+ (ln E)S[I‘HV 0 — th . 0||Loo(9),x,t)

1 1 1
+ ek In — (Jullesa + I et ) + CV/ER ™ in (Il + 11 ) + CV/el ™ In 2 ullyz

Remark 5.1. Note that we have
Je H? < chftt,

This indicates that the last three global terms in the above estimate are higher order. For example, if ¢ = h? (and
k = 0,H = 1), then the dependence of the pointwise estimate on the global terms is 1- order higher modulo logarithm.

Proof.
By the triangle inequality, we have

(6 — an)X0)| < |(o — o' )(%0)| + (o}’ — on)(X0)I- (5.1)

For the first term in the above, i.e. |(6 — o}')(Xo)|, we use Lemma 3.3. For the second term in (5.1), using the discrete
§ function in (3.7), we have

(6] — an)(X0)l = (A" (]! — o), &)
= (A71(o'hm - G) s 6?) + (Ai](a - Gh), 8?)
=hL+h. (5.2)

Note that I; contains only mixed finite element solutions o' and discrete delta function. An upper bound for I; is
obtained in [4, Lemma 4.1 and Lemma 4.4].

1
Iy < C(In ﬁ)‘s“””llo — Ih0 |10 (2) x5

1
+ (1t = Prtliia + (0 IV -0 = PV - 0llca ) (53)
In order to obtain an upper bound for I,, consider the following is the first-order system corresponding to (4.3):
r+ AvVz = 0 in £,
{ Vir = V-§ in & 54)
with boundary conditions
z=0 onof (5.5)

Let (z;', rj!) be the approximation solution of the mixed finite element method. Then, the following estimates are
obtained in [4, (4.50a), (4,21)].

1
e =1l < CCln 2 )%, for0 <s <k+1, (5.6)
and

1
Iz = PhzllL;.x0,~¢ < Ch(In H)‘S‘“, for0<t <k (5.7)

Using Lemma 3.1 with f =V - 5? € Q,f we have

Vir=v.r'=v.8§. (5.8)

11



J. Ku Journal of Computational and Applied Mathematics 436 (2024) 115385

Using the quasi-orthogonality property (3.20), we have
1

b= (A0 —0n),8)=——(V:-(0—0n), V- &)+ (u—u, V&)
= —E(V-(a—ah), Veor)+u—u§,V-r)
1
= ——((V-(0—0on. V-r =)+ (A0 —on). 1) — elw—uf, V1))

+u—uf, v-r)
= (A" (6 —0n)., 1)
= (A6 —op), 1 — 1)+ (A (0 —04), 1)
=AU o—oM, ' =)+ (A (o] —on), T — 1)+ (0 — o1, V2)
=h+h+]. (5.9)

For J;, using the error Egs. (3.11), (3.12) and (3.13), we have

Ji = (A Yo — Myo), ) — 1)+ (A '(ITho — o), 1} — 1)
= (A Yo —Mo), t — 1)+ (V- (Tho — a}"), Z" — 2)
= (A (o — o), ry —r)

< Cllo — nho'”Loo,xo,s”r - rhm”h,xo,fs

A

1
C(In 5)‘”«5 6 — ITho [l xg.55 (5.10)

for0<s<k+1.
For J,, using (3.2) and (3.11), we have

o= (V- (o} —on), z' —=2)=(V - (o} —on), z — Puz)

< IV (o —an)llo - llz' — Pnzllo- (5.11)
Using (3.14), (5.8), and (3.9) with p = 2, we have

lzf = Puzllo < Ch(Ir =t llo + IV -t = V- r'llo + llz — 2§ [I1)
< Ch*(Irlly + lizll2)
< Ch*||V - 8|0 < C. (5.12)

Plugging (3.22) and (5.12) into (5.11) and using (1.1), we have
Ja < CeH*(Jlullz + If 1) < C/e R (Jlullz + [If 114)- (5.13)
Using integration by parts, we have

.]3 = —(V'(O'—O'h), Z)
= —(V-(0—o0on), z—Ppz) — (V-(0 —0p), Pp2)
=K + K. (5.14)

Using (3.2), (3.5), and (5.7)

Ki=—V-0,z—Pz)=—(V-(6 — o), z— Pyz)
IV - (0 — ITho) | xg.t 12 — Phz Ly xg,—t

IA

IA

1
Ch(In %[V - (0 = 1130 1,30, (5.15)
From Lemma 4.6, we have

Ky < |[(V-(0 —0on), Puz)|
1
< Celt 2 in (lullerz + If o)
1 1

+C€1/2hk+] In E<”u”2 + ”f”l) + Cel/th+1 In E”u”W&;(Q)’ (516)

12
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Plugging (5.15) and (5.16) into (5.14), we obtain

1
Js = CHIY (0 = M40l s + Ceh 2 In— ([l + 1 s )

1 1
+C/e i (lulla + 11 ) + CVER ™ In 2 lullyz o (5.17)
Collecting (5.10), (5.13) and (5.17) into (5.9), we obtain

1 1
I, < (In E)“k»sna — M0 |1 xy.5 + Ch(In H)‘Sk’f IV - (0 — M40 )| x.¢

1 1 1
+ Cel 2 (ullesz + I et ) + CV/al ™ I (ulla + 1711 ) + CVah ™ In = ullyz o

Finally, combining (5.3) and the above inequality into (5.2) then (5.1) with Lemma 3.3, we obtain the desired result. This
completes the proof.

Remark 5.2. Using the above pointwise error estimate and standard argument, one can obtain so-called asymptotic error
expansion inequality, [4,5].
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