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Balancing

Centrifuges with
Number Theory

MATTHEW H. BAKER

ack in 2011-2012, I spent a
year as a faculty member at
UC Berkeley and I became
friends with some biologists
there. At a barbecue one
weekend, I was chatting with Iswar Hariharan,
a cancer researcher. When he learned that

I was a number theorist, he told me about a
problem he had been thinking about on and off
for more than 15 years. The problem concerns
balancing centrifuges.

O

Figure 1. A 20-hole balanced centrifuge with
8 test tubes.

Photo from Joseph Elsbernd, used according to CC BY 2.0, https://bit.ly/SbGaufz

A Crash Course on Centrifuges

A centrifuge is a laboratory device that separates
fluids based on density. The separation is achieved
through centrifugal force by spinning a collection
of test tubes at high speeds. As Iswar explained

to me, it’s very important to balance a centrifuge
before operating it; running a centrifuge with an
unbalanced load can cause permanent damage.

A centrifuge is called balanced if the center of
mass of the collection of test tubes coincides with

the center of mass of
the centrifuge itself. For
example, figure 1 shows
a balanced configuration
of 8 test tubes in a 20-
hole centrifuge. Some
configurations are not as
obviously balanced, such
as the one with 13 test
tubes in figure 2.

If you spend a lot
of time balancing
centrifuges and have a
mathematically curious
mind, the following
question might naturally arise: For which pairs
of n and k with 1 < k <n can you find a way
to balance k identical test tubes in an n-hole
centrifuge?

This is precisely the question that [swar
started to think about, and in 1998 he arrived
at a conjectural answer. Before I tell you
Iswar’s conjecture (which he described to me at
the barbecue), let’s gather some data in a few
special cases to get a feeling for the problem.

Figure 2. A 24-hole
balanced centrifuge
with 13 test tubes.

Some Special Cases
In the case that n = 3, you can balance the
centrifuge only when k£ = 3. When n = 4, you can
balance with k£ = 2 or k = 4 test tubes.

Figure 3 shows balanced centrifuges with
k=2, 3,4, and 6 test tubes when n = 6. You

Figure 3. Balanced configurations for a
6-hole centrifuge when k is 2, 3, 4, and 6.

Title and figure 2 photos courtesy of Rishav Ray (Reddit; https://bit.ly/3zI5vvN)



Figure 4. A balanced 10-hole centrifuge with
5 test tubes cannot accommodate 2 more
(left), and a balanced 21-hole centrifuge with
7 test tubes cannot accommodate 3 more
(right).

should be able to convince yourself that k£ = 1
and k = 5 test tubes won’t balance when n = 6.
When n = 5 or n = 7, it turns out you can only
balance the centrifuge when k = n.

From these first few cases, we should guess
that the answer might have something to do
with whether n is prime... let’s look at a few
more examples. When n = 8, you can balance
the centrifuge if and only if k is even, and when
n =9, you can balance the centrifuge when &
is a multiple of 3. When n = 11, you can only
balance if k£ = 11.

But something interesting happens when
n = 10. In this case, you can find balanced
centrifuges for k = 2, 4, 5, 6, 8, or 10. Notice,
for example, that if you wanted to balance
the centrifuge with k£ = 7, you could try to
start with a balanced set of five test tubes
(occupying every other slot as in figure 4)
and then add two more in opposite holes, but
there’s a problem: one out of each pair of
opposite holes is already occupied! We will
call this the overlap problem. In some sense,
the overlap problem is the key subtlety in the
balanced centrifuge problem.

Let’s look at one more example. When
n = 21, you can balance if and only if &k is in
the set {3,6,7,9,12,14,15,18,21}. We can see
yet another illustration of the overlap problem
by considering the case k = 10. You could try
to take a balanced configuration of seven test
tubes (evenly spaced every three spots as in
figure 4) and then add three more in the shape
of an equilateral triangle, but you will find that
it doesn’t work.

If you stare long enough at this data, and at
similar data for other values of n, you might
come up with the same guess as Iswar.

Iswar’s Conjecture. You can balance k identical
test tubes, where 1 < k <n, in an n-hole
centrifuge if and only if both k and n — k£ can be
expressed as a sum of prime divisors of n.

For example, when n = 21 and k = 6, we
have 6=3+3 and21-6=15=3+3+3+3+3;
moreover, the pair (21, 6) can be balanced. But
when k = 10, although 10 = 3 + 7, there is no
way to express n — k = 11 as a sum of 3s and
7s. It turns out that the pair (21,10) cannot be
balanced.

The conjecture predicts, for example, that if 6
divides n then every pair (n, k) with 2 <k <n-—2
can be balanced (and when n > 5 this happens
only if 6 divides n). This fact is presumably why
the number of chambers in most commercial
centrifuges is a multiple of 6.

A Solution to the Problem

After I left the barbecue, I started thinking
about Iswar’s conjecture. It occurred to me
that a natural way to phrase the question
mathematically is in terms of nth roots

of unity.

By the fundamental theorem of algebra,
for each positive integer n, there are precisely
n solutions in the complex numbers, denoted
by C, to the equation z* =1. The roots of
z" —1 are called the nth roots of unity, and
they are equally spaced along the complex
unit circle {z € C:| z|=1}). For example,
figure 5 depicts the 8th roots of unity, which
are the eight solutions to the equation
z8—-1=0.

Figure 5. The 8th roots of unity equally
spread around the unit circle at the angle
multiples of 27/8.
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By formulas attributed to Euler and de Moivre,
the set of nth roots of unity can be described by

{¢k =cos(2nk /n)+isin(2nk /n):0<k<n-1},

where (, = e?™/".

Using the language of complex numbers
and roots of unity, Iswar’s conjecture can be
restated as follows.

Iswar’s Conjecture (alternate form). For any
integers n > 2 and 1 < k <n, one may find k
distinct nth roots of unity whose sum is 0 if
and only if both k and n — k are expressible as
linear combinations of prime factors of n with
nonnegative integer coefficients.

I worked out some special cases of the conjecture
from this perspective. For example, as previously
noted, when n = p is prime, the conjecture says
that only £ = n should be balanced, and this follows
from the fact that the pth cyclotomic polynomial
is irreducible. But I couldn’t see how to deal with
the general case. However, | knew there were
some papers in the literature about linear relations
between roots of unity, such as Mann’s theorem
(“On linear relations between roots of unity,” H.

B. Mann, Mathematika 12:2 [1965]), so I turned

to Google. Lo and behold, I found that Iswar’s
conjecture had been proved by Gary Sivek in a
2010 paper (“On Vanishing Sums of Distinct Roots
of Unity,” Integers 10:A31). I don’t think I would
have found the Sivek reference if [ hadn’t first
translated the question into a problem about linear
relations between roots of unity.

Half the Proof

The proof of the “only if’” direction of the
theorem uses a result from Lam and Leung
(“On Vanishing Sums of Roots of Unity,”

J. Algebra, 224 [2000]); that proof utilizes
techniques that are beyond the scope of this
article. We can, however, outline a proof of the
“if” direction, formally stated as follows.

Theorem. If both k£ and n — k are expressible
as linear combinations of prime factors of n
with nonnegative integer coefficients, then n
is k-balancing, that is, there are k distinct nth
roots of unity whose sum is 0.

To begin with, we will make use of a well-
known theorem due to J.J. Sylvester: If the
greatest common divisor of x and y is 1
(denoted by ged(x,y) = 1) and m > (x — 1)(y — 1),
then m can be written as a linear combination
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of x and y with
nonnegative integer
coefficients.

Next, we note
that multiplying
a set of roots of
unity by ¢! rotates
the set by 27b/n
radians. If p is a
prime dividing both
k and n, then the pth
roots of unity form
a subset of the nth
roots of unity, and
we can obtain k/ p
pairwise disjoint
rotations of this set
by multiplying by ¢?
for each0<b<k/p.
Each rotated set
sums to zero, and so
we conclude that

S oS g =o.

Figure 6. The 5th
roots of unity (yellow)
sitting inside the 35th
roots of unity can be
rotated up to 7 times
without overlapping.
Three rotations give

a balanced 35-hole
centrifuge with 15 test
tubes.

S =

0<c<p 0<b<k/p 0<c<p
0<b<k/p

Figure 6 illustrates this for n = 35 and k = 3-5.
We restate this result as a lemma.

Lemma 1. If gcd(k,n) > 1, then n is
k-balancing.

As is common with number-theoretic proofs,
we have several cases depending on the prime
factorization of n. If n = p¢, then the theorem
holds because k = ap for some integer a > 1 and
thus ged(k,n) > p.

Suppose n = pq is a product of two distinct
primes. If k = ap+ bg and n— k = cp + dq, then
pg=n=(a+c)p+(b+d)g. Therefore, p must
divide b + d and ¢ must divide a + ¢. If both a + ¢
and b + d are positive, we get a contradiction
by observing that pg = xqgp + ypq > 2pq.
Consequently either a + ¢ or b +d is zero, and
because all of these are nonnegative integers,
we conclude that k is either a multiple of p or a
multiple of g, forcing ged(n, k) > 1.

For our third case, assume that n = pgm where
p and g are the smallest distinct primes dividing
np<q,andm>p.lf k =n/2, then ged(n,.k) =
k > 1. Otherwise, either k >n/2orn—k>n/2.
Because n /2 > (p—1)(g — 1), we know that either
k or n - k is a nonnegative linear combination of
p and g by Sylvester’s theorem. So, without loss of
generality, we can focus on values of k that are a
sum of the prime factors of n satisfying k < n /2.



We can further investigate two subcases: either

k<(p-D@-Dor(p-Ng-D<k<n/2.
Consider the case when k < (p—1)(g —1).

Let {p, = p,p. = q,ps,...,p,} be the set of prime

divisors of n. Now, suppose that n is k-balanced

where k = Za,pl with k <(p—1D(g—1) and

suppose that there is a prime p; that divides
n satisfying k + p; < (p—1)(g —1). Because n
is k-balanced, there is a set of nth roots of
unity B with | B|= k such that ) ¢? = 0. From
beB
p; <m, we know that kp; < (p—1)(g —Dp; <n.
If we consider all n possible rotations of
the p;jth roots of unity, each such root will
overlap each of the &k roots in B once. Thus,
by the pigeonhole principle, the total number
of overlaps upon n rotations would be p; -k,
which is less than n. It follows that some
rotation must have no overlaps. This implies
that there is an nth root of unity ¢} such that

ZC’I{ E Cn Ca =0.

beB 0<a<p;j—1

This technique allows us to prove, by induction
on the sum a; + a, +---+ a,, that n is k-balancing
for each k < (p—1)(g —1) that is a nonnegative
linear combination of the primes dividing n; the
base case follows from Lemma 1.

Still in the case with n = pgm, suppose that
(p—1D(g—1 <k<n/2. By Sylvester’s theorem,
we know that k = ap + bg where both a and
b are nonnegative integers. We can assume
b < p, and it is straightforward to prove that
a < gm —q. Define

={Cl, ¢,:0<j<b-1,0<i(<qg-1}.

In other words, S is a collection of b rotations
of the gth roots of unity by a pgth root of
unity. We again use the pigeonhole principle to
deduce that there are at least gm - ¢ distinct
rotations of the pth roots of unity of the form

—(C-Ck:0<k<p-1),

where ¢ is an nth root of unity, such that
SNT = @. Choosing a different sets of this
form, 7;,...,T,, allows us to build the set
TU...uT, US consisting of k distinct nth roots
of unity whose sum is 0. Figure 7 depicts an
example of this process forn=3-5-7 and
k=28=6-3+2-5.

Figure 7. The set S on the left consists of
two copies of the 5th roots of unity; one

is rotated by a 15th root of unity. The sets
T, T,,...,Tgare pictured in color on the right;
they are all rotations of the set of 3rd roots
of unity by a 105th root of unity. The right
image shows a 28-balanced 105-centrifuge.

Denoument

I emailed Iswar telling him that the conjecture
he had made back in 1998 was in fact correct.
He replied:

“I am both happy and sad to get this email.
On the one hand I am happy that I ‘guessed’
the solution correctly (15 years ago). I am sad
that I never acquired the mathematical skills to
prove it myself! It is funny how our minds get
stuck on some problems over multiple decades.
Thanks for taking our conversation seriously.”

Although the problem is ultimately just a
stimulating curiosity, and nothing that is going
to cure cancer, I still think of this episode as
a nice illustration of the intellectual cross-
fertilization that can take place when scientists
from different disciplines get together, whether
at a research conference or a barbecue. @

Matthew H. Baker is a professor of
mathematics and the Associate Dean for
Faculty Development in the Georgia Tech
College of Sciences. He does research in number
theory, algebraic geometry, and combinatorics
and is a Fellow of the American Mathematical
Society. He also performs and creates original
magic tricks. This article was adapted from
an essay that appeared on his blog (https:/
bit.ly/3QtrD32). You can learn more from the
Numberphile video based on the blog post
(youtu.be/7DHE8RnsCQ8).

10.1080/10724117.2022.2092372

www.maa.org/mathhorizons (QEIEOININSIEWE R @



	_GoBack

