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1. Introduction

Our starting point is the following well-known theorem of Schoen–Yau and Gromov–
Lawson, which exhibits the richness of the class of manifolds that can carry Riemannian 
metrics with positive scalar curvature. For convenience and brevity, we will adopt the 
convention of writing “PSC” for “positive scalar curvature,” and will call a manifold 
“topologically PSC” if it can carry Riemannian metrics with positive scalar curvature.

Theorem 1.1 ([17,7]). Let M be a topologically PSC n-manifold with n ≥ 3. Any manifold 
obtained from M by performing a sequence of 0-, 1-, ..., and/or (n − 3)-surgeries is also 
topologically PSC.

Theorem 1.1 naturally leads one to ask:

Question 1.2. Can all topologically PSC n-manifolds be built out of “simple” topologi-
cally PSC n-manifolds by performing codimension ≥ 3 surgeries?

Our understanding of 3-manifold topology implies a positive answer when n = 3:

Theorem 1.3 (Schoen–Yau and Gromov–Lawson and Perelman). Every closed, oriented, 
topologically PSC 3-manifold can be obtained by performing 0-surgeries on a disjoint 
union of spherical space forms (i.e., S3/Γ’s, where the Γ’s are finite subgroups of SO(4)
acting freely on S3).

In this paper we prove:

Theorem 1.4. Every closed, oriented, topologically PSC 4-manifold M can be obtained 
from a possibly disconnected, closed, oriented, topologically PSC 4-orbifold M ′ with iso-
lated singularities such that b1(M ′) = 0 and b2(M ′) ≤ b2(M) by performing 0- and 
1-surgeries. All 1-surgeries are standard manifold ones, but 0-surgeries may occur at 
orbifold points.

Recall that the jth Betti number bj(M ′) of the orbifold M ′ is defined to be the jth 
Betti number of M ′ viewed as a topological space; in our case, this is equivalent to 
the jth Betti number of the regular part M ′

reg ⊂ M ′. In the connected case, b1(M ′) is 
the same as the rank of the abelianization of the orbifold fundamental group πorb

1 (M ′). 
Finally, a 0-surgery occurring at two orbifold points both modeled on R4/Γ means that 
the corresponding connected sum operation is performed with a S3/Γ neck.

Remark 1.5. Theorem 1.4 will continue to hold if M is itself a 4-orbifold rather than a 
4-manifold, but this is somewhat outside the scope of our current paper.

Note that orbifolds are indeed sometimes necessary for surgery decompositions such 
as that of Theorem 1.4 in dimension 4.
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Theorem 1.6. Let S3/Γ be a lens space with Γ a nontrivial finite cyclic subgroup of 
SO(4). The 4-manifold M = (S3/Γ) × S1 cannot be obtained by performing manifold 0
and 1-surgeries on a 4-manifold M ′ with b1(M ′) = 0.

Let us outline the proof of Theorem 1.4. Endow M with an arbitrary PSC metric. We 
“exhaust” the codimension-1 homology of M with a two-sided, stable minimal hypersur-
face Σ (Lemma 2.5). By a now-standard argument of Schoen–Yau, the metric induced 
on Σ is conformal to a PSC metric. Thus, Σ is topologically the result of 0-surgeries on 
spherical space forms (Theorem 1.3). We then show how to locally modify the metric on 
M to another PSC metric that is locally a product near Σ and induces a “model” PSC 
metric on Σ (Lemma 4.1, Definition 4.2). If Σ is merely the disjoint union of spherical 
space forms S3/Γ, with no 0-surgeries, then our model metrics are all round and simple 
3-surgeries on M along the components of Σ yield a 4-orbifold whose b2 is unchanged 
and b1 is trivial (because Σ suitably exhausted the codimension-1 homology of M). If Σ
does involve 0-surgeries, we first undo these using 2-surgeries on M near Σ’s 0-surgery 
neck regions; this may decrease b2. We have only performed 3- and 2-surgeries on M
to get to the orbifold, so M can be obtained from the orbifold via 0- and 1-surgeries, 
respectively. Note that our construction preserves the spin condition; see Remark 4.4.

We conclude our introduction by posing the following:

Question 1.7. Let M be a closed, oriented, topologically PSC 4-manifold. Can one obtain 
M from a closed, oriented, topologically PSC 4-orbifold M ′ with isolated singularities 
and the property that each component has finite orbifold fundamental group πorb

1 (M ′)
by performing 0- and 1-surgeries?

Organization of the paper. We first illustrate our homological decomposition argument 
for ambient 3-manifolds in Section 2, where the picture is much simpler. Section 3 is a 
brief digression offering a homotopical refinement of the 3-dimensional decomposition. 
In Section 4, we give the proof of our main theorem. In Section 5 we give the proof of 
Theorem 1.6. Finally, our appendix contains the proofs of some technical lemmas.

Acknowledgments. R.B. was partially supported by NSF grant DMS-1906500. C.L. was 
partially supported by NSF grant DMS-2202343. C.M. was partially supported by NSF 
Grant DMS-2147521. The authors would like to thank the anonymous referee for their 
suggestions and Otis Chodosh for some helpful conversations.

2. Warmup: homology decomposition in 3D

We first illustrate our homological decomposition argument on 3D manifolds, where 
it yields the following weaker analog of Theorem 1.3. (See, however, Theorem 3.1 and 
its subsequent discussion.)
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Theorem 2.1. Every closed, oriented, topologically PSC 3-manifold M can be obtained 
from a closed, oriented, topologically PSC 3-manifold M ′ with b1(M ′) = 0 by performing 
0-surgeries.

Remark 2.2 (The idea in 3D). We want to capture H2(M ; Z) by 2-spheres on which we 
can perform 2-surgeries within the PSC category. Of course, 2-surgeries in a 3-manifold 
do not a priori preserve the PSC condition (they are not of codimension ≥ 3), but 
we will see that 2-surgeries performed on stable minimal spheres do. Indeed, we show 
how to reduce a 2-surgery on any stable minimal sphere to the surgically trivial case 
of 2-surgery on a round, totally geodesic sphere. There, the PSC condition is obviously 
preserved under the surgery.

Lemma 2.3 is the preparation lemma underlying our PSC 2-surgeries. We defer its 
proof to Appendix A.

Lemma 2.3 (Metric preparation lemma). Let Σ be a closed, embedded, two-sided, stable 
minimal surface in an oriented, PSC 3-manifold (M, g). Then:

(a) Each component of Σ is an S2.
(b) Given any auxiliary PSC metric � on Σ, there exists a new PSC metric g̃ on M , 

which:

• is isometric to a product cylinder (Σ, �) ×(−2, 2) in the distance-2 tubular neigh-
borhood of Σ, and

• coincides with g outside a larger tubular neighborhood of Σ.

Remark 2.4. If Σ has one-sided components, then the same is true for them, except they 
are RP2’s rather than S2’s, and around them each product cylinder (S2, �) × (−2, 2) is 
to be taken modulo the Z2 action (x, t) �→ (−x, −t); here, the auxiliary metric � must 
be a lift from a metric on RP2 to a stable two-sided S2 covering.

The lemma below delivers the surface Σ on which Lemma 2.3 is applied. We state it 
in n-dimensional generality, because it is indeed very general, and we will it need again 
in Section 4. We defer its proof to Appendix A, and note that it can be viewed as a 
generalization of the “slicing” procedure in [3, Lemma 19].

Lemma 2.5 (Minimal (hyper)surface preparation lemma). Let (M, g) be a closed, con-
nected, oriented n-manifold, with n ≤ 7. There exists a closed, embedded, two-sided, 
stable minimal hypersurface Σ ⊂ M such that M̆ = M \ Σ is connected and the map 
Hn−1(∂M̆ ; Z) � Hn−1(M̆ ; Z) is surjective.

Proof of Theorem 2.1. Without loss of generality, M is connected. Endow M with a PSC 
metric g. Let Σ be as in Lemma 2.5, with components {Σi}ki=1. By Lemma 2.3 and the 
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two-sidedness of each component Σi, and we can modify the metric g near Σi and arrange 
for a new PSC metric g̃ on M inducing a product metric isometric to (S2, �S2) × (−2, 2)
on the distance-2 tubular neighborhood of Σi, where �S2 is the standard round metric.

Now excise the distance-1 tubular neighborhood Ui of each Σi and cap off the two 
newly formed boundary components with a pair of PSC 3-balls {(Bα

i , η
α
i )}2

α=1 whose 
metric has been suitably deformed near the boundary to match smoothly with a product 
cylinder over (S2, �S2). Then,

(M ′, g′) := (M \ ∪k
i=1Ui, g̃) ∪

(
∪k
i=1 ∪α=1,2(Bα

i , η
α
i )
)

with the obvious boundary identifications is a PSC 3-manifold obtained from M by 
performing a 2-surgery for each Σi. Thus, M can be obtained from M ′ by performing 
0-surgeries.

It remains to verify b1(M ′) = 0. Denote

M̆ = M \ ∪k
i=1Σi.

Tracking the homology exact sequence

H2(∂M̆ ;Z) i∗−→ H2(M̆ ;Z) j∗−→ H2(M̆, ∂M̆ ;Z) ∂−→ H1(∂M̆ ;Z),

we find ker j∗ = img i∗ = H2(M̆ ; Z) (due to Lemma 2.5), so j∗ = 0, so H2(M̆, ∂M̆ ; Z)
injects into H1(∂M̆ ; Z). By Lemma 2.3, ∂M̆ consists of 2-spheres, so H1(∂M̆ ; Z) = 0
and thus H2(M̆, ∂M̆ ; Z) = 0 by the exact sequence. By Lefschetz duality, H1(M̆ ; Z) = 0. 
The Mayer–Vietoris sequence then implies H1(M ′; Z) = 0, and thus b1(M ′) = 0 by the 
universal coefficient theorem. �
3. A digression: homotopy decomposition in 3D

This section can be skipped at first reading. We digress to present a homotopy-based 
refinement of Theorem 2.1, show how it can directly imply a certain homotopy version 
of Theorem 1.3, and discuss why we find this of interest.

Theorem 3.1. Every closed, oriented, topologically PSC 3-manifold can be obtained from 
a closed, oriented, topologically PSC 3-manifold with vanishing π2 (on each connected 
component) by performing 0-surgeries.

Instead of representing H2(M ; Z) by stable minimal 2-spheres as in Section 2, we seek 
to represent π2(M). The key ingredient is the Meeks–Yau proof of the embedded sphere 
theorem using minimal surfaces, which will be used in lieu of Lemma 2.5.

Lemma 3.2 ([15, Theorem 7] as Minimal sphere preparation lemma). Let (M, g) be a 
closed, connected 3-manifold. There exist conformal maps {fi : S2 → M}ki=1 with pair-
wise disjoint images that generate π2(M) as a π1(M)-module. Each fi has least area in 
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its homotopy class and is either a conformal embedding of an S2 or a 2 : 1 conformal 
covering of an embedded RP2.

Of course, the embeddings or immersions above are stable minimal spheres. (The 
statement of [15, Theorem 7] doesn’t explicitly mention the pairwise disjointness, but 
see the comment in the proof of [15, p. 480, Assertion 1].)

Proof of Theorem 3.1. Without loss of generality, our initial manifold M is connected. 
Endow M with a PSC metric g. Let {fi : S2 → M}ki=1 be the maps given by Lemma 3.2. 
The proof is the same as that of Theorem 2.1, except for the fact that some images 
Σi := fi(S2) might be doubly covered embedded one-sided RP2’s. We apply Lemma 2.3
(see Remark 2.4) and modify g locally near each Σi, arranging for a new PSC metric g̃
that, in the distance-2 tubular neighborhood of Σi induces product metrics isometric to 
(S2, �S2) × (−2, 2) near Σi, where �S2 is round, and all is taken modulo the Z2 action 
(x, t) �→ (−x, −t) when fi is a double covering of Σi.

We excise (M, ̃g) as before, except for all i corresponding with Σi ≈ RP2, we only 
use a single PSC 3-ball and include an RP3 in the new manifold M ′. This M ′ can be 
obtained from M by 2-surgeries, and thus M can be obtained from M ′ by 0-surgeries.

It remains to verify that π2(M ′) = 0. Without loss of generality, we may assume M to 
be connected. Denote by π : M̃ → M its universal covering and let Σ̃ := π−1(∪k

i=1Σi). 
The boundary components of M̃ \ Σ̃ are all 2-spheres.

Claim 1. All components of M̃ \ Σ̃ are simply connected.

Proof. Let E1 be the closure of any component of M̃ \ Σ̃. We inductively construct a 
monotone increasing exhaustion {Ek}k=1,2,... of M̃ by taking Ek+1 := Ek ∪ Ck where Ck
is the closure of any component of M̃ \ Σ̃ that shares a boundary component with Ek. 
At each step Ek is connected by construction. Moreover, ∂Ek ∩ ∂Ck has at most one 
component (otherwise one could construct a closed loop intersecting a component of 
∂Ek ∩ ∂Ck in exactly one point, in contradiction to π1(M̃) = 0). As a result, by the 
Seifert–Van Kampen theorem and the fact that all boundary components are 2-spheres, 
the map π1(Ei) → π1(Ei+1) induced by the inclusion is injective. But π1(M̃) = 0 is the 
direct limit of π1(Ei). Therefore, π1(E1) = 0. �

Denote by M̃ ′ the manifold obtained by gluing one 3-ball per boundary 2-sphere of 
M̃ \ Σ̃ and one 3-sphere per component of π−1(Σi) for any Σi ≈ RP2. By construction:

M̃ ′ covers M ′. (3.1)

By Seifert–Van Kampen and Claim 1:

π1(M̃ ′) = 0. (3.2)
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Meanwhile, the argument in the proof of Theorem 2.1 gives:

H2(M̃ ′;Z) = 0. (3.3)

At this point, it follows that

π2(M ′) ∼= π2(M̃ ′) = 0;

the isomorphism follows from (3.1), and the vanishing follows from (3.2), (3.3), and the 
Hurewicz theorem. This completes the proof. �

Theorem 3.1 implies a certain homotopy version of Theorem 1.3:

Corollary 3.3. Every closed, oriented, topologically PSC 3-manifold can be obtained from 
a closed, oriented, topologically PSC 3-manifold with components covered by homotopy 
3-spheres, by performing 0-surgeries.

Proof. Let M ′ be the manifold obtained from Theorem 3.1. Without loss of generality, 
M ′ is connected. It suffices to show that π1(M ′) is finite. Suppose that π1(M ′) were 
infinite. Then the universal covering M̃ ′ of M ′ would be noncompact, so H3(M̃ ′; Z) = 0. 
On the other hand, π2(M̃ ′) ∼= π2(M ′) = 0. Then, π3(M ′) ∼= π3(M̃ ′) ∼= H3(M̃ ′; Z) = 0, 
the second isomorphism being Hurewicz’s. This strategy iterates to give πk(M ′) = 0
for all k ≥ 2, and thus M ′ is aspherical. This violates the non-asphericity result for 3D 
PSC: by Schoen–Yau and Gromov–Lawson (see [8, Theorem E], [18]), closed aspherical 
3-manifolds are not topologically PSC. �

It is interesting to compare Corollary 3.3 with the Schoen–Yau and Gromov–Lawson 
approach to obtaining a homotopy version of Theorem 1.3:

(a) By the Kneser–Milnor prime decomposition of 3-manifolds [13], and further decom-
posing all prime S2 × S1’s as 0-surgeries on S3’s, we see that any closed, oriented 
3-manifold M can be obtained from:

• aspherical 3-manifolds, and/or
• manifolds covered by homotopy 3-spheres

by performing only 0-surgeries.
(b) One knows [8, Theorem E] (see also [18]) that aspherical 3-manifolds cannot occur 

as prime summands of PSC 3-manifolds. This rules out the first source of summands 
in (a). Thus, any closed oriented 3-manifold M can be obtained from a closed, 
oriented 3-manifold with components covered by homotopy 3-spheres, by performing 
0-surgeries.
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In this approach, the topological decomposition in step (a) prevents step (b) from 
deciding whether the decomposed pieces, which are all covered by homotopy 3-spheres, 
are themselves topologically PSC. (Of course, this follows from Perelman’s resolution of 
the elliptization conjecture.) In our approach, step (a) was Theorem 3.1, a geometric 
PSC surgery result that allows us to directly guarantee that the decomposed pieces are, 
too, topologically PSC. Step (b) is essentially unchanged for us.

A note about higher dimensions. Step (b) of the program above was recently carried 
out for 4-(and 5-)manifolds by the second author together with Otis Chodosh [3] (see also 
[9,4]). Step (a) remains a challenge. There are no suitable topological decompositions 
to perfectly replace step (a) in 4D, and we instead also proceed with a homological 
decomposition obtained via geometric measure theory.

4. Main theorem: homology decomposition in 4D

We now extend the strategy of Section 2 to 4D. We capture H3(M ; Z) by a stable 
minimal hypersurface Σ, using Lemma 2.5. In the current higher dimensional setting we 
need to use Lemma 4.1 (instead of the two-dimensional Lemma 2.3) to reduce to the 
product case. We state it below but defer its proof to Appendix A.

Lemma 4.1. Let Σ be a two-sided, closed, embedded, stable, minimal hypersurface inside 
an oriented PSC 4-manifold (M, g). Then:

(a) Σ must be topologically PSC and thus as in Theorem 1.3.
(b) Given any auxiliary PSC metric σ on Σ, there exists a new PSC metric g̃ on M , 

which:

• is isometric to a product cylinder (Σ, σ) × (−2, 2) in the distance-2 tubular 
neighborhood of Σ, and

• coincides with g outside a larger tubular neighborhood of Σ.

We will apply this lemma with various choices of σ, one being:

Definition 4.2 (Model metric). Let Σ be obtained by performing 0-surgeries on spherical 
space forms. A PSC metric on Σ is called a model metric if the neck corresponding to 
each 0-surgery contains an isometric copy of (S2, �) × (−2, 2) for some size round metric 
� on S2.

Proof of Theorem 1.4. Without loss of generality, M is connected. Fix a PSC metric 
g on M , let Σ be as in Lemma 2.5. We will stray slightly from the notation in the 
statement of Theorem 1.4 below: M ′ will not denote the ultimate decomposition, but 
only an intermediate one, and the ultimate decomposition will be denoted M ′′.
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Step I. In this step, we assume that Σ involves at least one 0-surgery, otherwise we 
proceed to Step II by setting (M ′, g′) := (M, g) and Σ′ := Σ.

By Lemma 4.1 we can modify the metric g of M locally near Σ and arrange for a 
new PSC metric g̃ on M that induces a product metric (Σ, σ) × (−2, 2) in the distance-2
tubular neighborhood of Σ, where σ is a model metric (Definition 4.2).

Now consider the neck regions {Ni}�i=1 of Σ where, due to the model metric structure, 
(Σ, σ) restricts on Ni to an isometric copy of (S2, �i), where �i is a round metric on S2

of radius εi. By construction of g̃, the distance-2 tubular neighborhood of Ni in (M, ̃g)
is isometric to (S2, �i) × (−2, 2) × (−2, 2). Let Ui be the interior of a smoothing of the 
domain S2 × [−1, 1] × [−1, 1] in these coordinates, where the smoothing only takes place 
outside S2 × [−1

2 , 
1
2 ] × [−1, 1] and S2 × [−1, 1] × [−1

2 , 
1
2 ]. Note that Ui ≈ S2 × B2. For 

small εi, we can construct a PSC metric ηi on Vi := B3 × S1 which matches smoothly 
with Ui on their respective boundaries (≈ S2 × S1). Then,

(M ′, g′) := (M \ ∪�
i=1Ui, g̃) ∪

(
∪�
i=1 (Vi, ηi)

)

with the obvious boundary identifications, is a PSC 4-manifold obtained from M by 2-
surgeries. Thus, M can be obtained from M ′ by 1-surgeries. The surgeries above can be 
performed so that Σ gets replaced by a hypersurface Σ′, whose components are spherical 
space forms. Moreover, by choosing (Vi, ηi) to be a local product on the S1 factor, we 
may assume that the metric g′ is locally a product near Σ′ and ensure that Σ′ is again 
stable.

Note that the components of M ′ \Σ′ arise from the components of M \Σ by attaching 
copies of B3× [−1, 1] along S2× [−1, 1] to its boundary components. This shows that the 
surjectivity of the natural map H3(∂(M ′ \Σ′); Z) � H3(M ′ \Σ′; Z), initially guaranteed 
in Lemma 2.5 for H3(∂(M \ Σ); Z) � H3(M \ Σ; Z), is maintained.

Finally, since we’re performing 2-surgeries, we have b2(M ′) ≤ b2(M). (See Lemma A.2, 
where the roles of M and M ′ are reversed.)

Step II. In this step we work with (M ′, g′) and the components {Σ′
i}k

′

i=1 of Σ′, each of 
which is, by construction, a spherical space form, i.e., Σ′

i ≈ S3/Γi, for finite subgroups 
Γi of SO(4) acting freely on S3.

We invoke Lemma 4.1 again, except we modify the metric g′ of M ′ locally near each 
Σ′

i and arrange for a new PSC metric g̃′ that induces a product metric (Σ′
i, σ

′
i) × (−2, 2)

in the distance-2 tubular neighborhood of Σ′
i, where σ′

i is a round metric on Σ′
i. For 

convenience, we denote by A ⊆ {1, 2, . . . , k′} the set of i’s for which Σ′
i ≈ S3, and by 

B ⊆ {1, 2, . . . , k′} the remaining i’s.
For each i ∈ A, we can excise the distance-1 tubular neighborhood U ′

i of Σ′
i and 

smoothly replace it with two PSC 4-balls {(Bα
i , θ

α
i )}2

α=1. Note that this is a 3-surgery, 
and is therefore undone with a 0-surgery.

For each i ∈ B, we can still excise the distance-1 tubular neighborhood U ′
i of Σ′

i, but 
now we have to smoothly glue in two PSC 4-orbifold-balls {(B̂α

i , θ̂
α
i )}2

α=1 whose orbifold 
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singularity is modeled on R4/Γi. Note that this is an orbifold 3-surgery, and is therefore 
undone by a 0-surgery at orbifold points.

The ultimate space we end up with is

(M ′′, g′′) := (M ′ \ ∪k
i=1U

′
i , g̃

′) ∪
(
∪i∈A ∪α=1,2(Bα

i , θ
α
i )
)
∪
(
∪i∈B ∪α=1,2(B̂α

i , θ̂
α
i )
)
.

As explained, M can be obtained from M ′′ by performing 0-surgeries (possibly on the 
orbifold points) and then 1-surgeries (on the smooth part).

We now prove b1(M ′′) = 0. Set M̆ := M ′ \ Σ′. As in the proof of Theorem 2.1, we 
track the homology exact sequence

H3(∂M̆ ;Z) i∗−→ H3(M̆ ;Z) j∗−→ H3(M̆, ∂M̆ ;Z) ∂−→ H2(∂M̆ ;Z).

We have H2(∂M̆ ; Z) = 0 since the components Σ′
i of ∂M̆ are spherical space forms. As 

before, i∗ is guaranteed to be surjective, so H3(M̆, ∂M̆ ; Z) = 0, so H1(M̆ ; Z) = 0 by 
Lefschetz duality, and b1(M ′′) = 0 from Mayer–Vietoris.

Finally, b2(M ′′) = b2(M ′) ≤ b2(M). The inequality follows from Step I and the 
equality from the 3-surgeries on M ′ to get M ′′. The latter can be verified applying 
Mayer–Vietoris twice to get b2(M ′′) = b2(M̆) = b2(M ′): once on the open cover of M ′

by M̆ and ∪k
i=1U

′
i , and once on the open cover of M ′′ by M̆ and (∪i,αB

α
i ) ∪(∪i,αB̂

α
i ). �

Remark 4.3. The orbifold singularities in the decomposition are due to the spherical 
space forms appearing in Σ′ in Step II above.

Remark 4.4. Our proof of Theorem 1.4 preserves the spin condition; i.e., if M is spin, 
then the ultimate orbifold M ′ is spin too, in the sense that its regular part M ′′

reg is spin. 
In Step I we can endow each B3×S1 we are gluing in to replace Ui with a spin structure 
to induce the same spin structure on S2 × S1 that ∂Ui did; one can see this, e.g., from 
that π1(S2 × S1) → π1(B3 × S1) is an isomorphism and π2(B3 × S1) = 0. Likewise, in 
Step II we can similarly endow each Bα

i or B̂α
i with a spin structure to induce the same 

spin structure on each S3/Γi that Σ′
i did from either side.

5. Proof of Theorem 1.6

Suppose, for the sake of contradiction, that M = (S3/Γ) × S1 can be obtained by 
manifold 0 and 1-surgeries from a 4-manifold M ′ with b1(M ′) = 0. The key features of 
M are that

π1(M) = Γ × Z with Γ ≤ SO(4) finite, cyclic, nontrivial, (5.1)
b1(M) = 1, b2(M) = 0. (5.2)

Since 1 < 4/2, all the 0 and 1-surgeries commute. So first take the connected sum of 
all connected components of M ′, and call it M ′′. Note that b1(M ′′) = 0. Perform all 
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remaining 0-surgeries, so that M ′′ turns into M ′′#k(S3 × S1) for some integer k ≥ 0. 
Then, M is obtained by performing 1-surgeries on M ′′#k(S3 × S1), which has

b1(M ′′#k(S3 × S1)) = k.

Combining Lemma A.2 with (5.2), we see that the integer k above is such that k ≥ 1
and that exactly (k − 1) 1-surgeries were performed.

On the level of fundamental groups, since M is obtained from M ′′#k(S3 × S1) by 
performing (k − 1) 1-surgeries, (5.1) yields

Γ × Z ∼=
〈
G ∗ Z∗k

∣∣∣∣r1, · · · , rk−1

〉
,

where G = π1(M ′′), Z∗k = Z ∗ · · · ∗ Z (k times) and r1, . . . , rk−1 represent the relations 
(possibly trivial) introduced by the 1-surgeries. We are led to a contradiction from this 
presentation of Γ × Z and that the abelianization of G has rank b1(M ′′) = 0 via the 
following group theoretic lemma.

Lemma 5.1. Suppose that Γ is a nontrivial finite cyclic group, and that G is a group 
whose abelianization has rank 0. Then Γ × Z cannot be expressed as

Γ × Z ∼=
〈
G ∗ Z∗k

∣∣∣∣r1, · · · , rk−1

〉
. (5.3)

Proof. If N is the minimal normal subgroup of G ∗Z∗k containing 〈r1, · · · , rk−1〉, then, 
by (5.3),

Γ × Z ∼= G ∗ Z∗k/
N. (5.4)

Consider the standard embedding i : G → G ∗ Z∗k, and consider the normal subgroup

G′ = i−1(N) � G.

We will reduce to the case G′ = {1}. If N ′ denotes the minimal normal subgroup in 
G ∗ Z∗k containing i(G′), then

G ∗ Z∗k/
N

∼=
(
G ∗ Z∗k /N ′)/

(N /N ′)

If we denote by r̃i the image of ri under the map G ∗ Z∗k → (G / G′) ∗ Z∗k, and we 
denote by Ñ the minimal normal subgroup of (G / G′) ∗ Z∗k containing 〈r̃1, · · · , ̃rk−1〉, 
then the rightmost group above is

∼= (G/G′) ∗ Z∗k/
˜ .
N
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Also, under the standard embedding ĩ : G / G′ → (G / G′) ∗ Z∗k, we have

(̃i)−1(Ñ) = {1}.

Thus, by replacing G with G / G′ and ri with r̃i, we may assume that we had

i−1(N) = {1},

all along as desired. Note that this reduction preserves the property that the rank of the 
abelianization equals zero. Then,

G
i−→ G ∗ Z∗k → G ∗ Z∗k/

N
∼= Γ × Z,

(the last isomorphism is (5.4)) is injective. Therefore G is abelian since Γ × Z is. The 
rank of the abelianization of G, and thus of G, is assumed to be 0, so G is finite. Since Z
has no torsion, G must inject into Γ ×{0} ∼= Γ, which is assumed to be finite and cyclic, 
so

G ∼= Zm, m ≥ 1.

Therefore,

Γ × Z ∼=
〈
Zm ∗ Z∗k

∣∣∣∣r1, · · · , rk−1

〉
∼=

〈
Z ∗ Z∗k

∣∣∣∣r0, r1, · · · , rk−1

〉
, (5.5)

where r0 is a word that gives order m to the generator of the first Z factor. Thus, for 
every n ≥ 1,

Γ × Zn
∼=

〈
Z ∗ Z∗k

∣∣∣∣r0, r1, · · · , rk−1, rk

〉
, (5.6)

with rk being a word that reduces to (0, n) in (5.5).
We show that (5.6) must fail for some n by comparing the Schur Multiplier (denoted 

by M(·)) of both sides. Indeed, it follows from (5.6) that Γ ×Zn is a finitely represented 
group with the same number of generators and relations (a group of zero deficiency), so

M(Γ × Zn) = {1}

by [5, Lemma 1.2]. On the other hand, if we choose n to be equal to the order of Γ, so 
Γ ∼= Zn, then, invoking [10, Theorem 2.1] yields

M(Γ × Zn) = M(Zn × Zn) = M(Zn) ×M(Zn) × (Zn ⊗ Zn) = Zn.

This is a contradiction since n ≥ 2. �
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Appendix A. Technical lemmas

We first prove Lemmas 2.3, 4.1. Our proof relies on the flexibility of two-sided sta-
ble minimal hypersurfaces in 3- and 4-manifolds due to the second and third authors 
[11].1 We need one additional piece of notation and an auxiliary lemma. For any closed 
connected manifold Σ, set

M (Σ) := {σ ∈ Met(Σ) : −Δσ + 1
2Rσ has positive principal eigenvalue};

here, Rσ denotes the scalar curvature of σ. This space is denoted M>0
1/2(Σ) in [11].

Lemma A.1. Suppose (σt)t∈[0,1] is a smooth path in M (Σ) with σ′
0 ≡ σ′

1 ≡ 0. There exists 
a smooth u : Σ × [0, 1] → (0, ∞) so that the metric h = σt + u2dt2 on Σ × [0, 1] has the 
following properties:

(a) Σ × {0} and Σ × {1} are totally geodesic;
(b) Rh > 0 everywhere.

Proof. We make use of the curvature formulas from [11, Lemma A.1]. Right away we 
note that (a) is a consequence of σ′

0 ≡ σ′
1 ≡ 0, no matter what u is. For (b), the key 

observation is that if ũ : Σ × [0, 1] → (0, ∞) is held fixed and A > 0 is a constant, both 
to be determined, then

Rσt+A2ũ2 dt2 = 2ũ−1(Δσt
ũ + 1

2Rσt
ũ) + O(A−2) as A → ∞. (A.1)

Take each ũ(·, t) : Σ → (0, ∞) to be a positive principal eigenfunction of −Δσt
+ 1

2Rσt
. 

This can be done smoothly over Σ × [0, 1] because the principal eigenvalue is simple; 
see [14, Lemma A.1]. With this ũ, the first term on the right hand side of (A.1) is 
bounded below by the minimum principal eigenvalue over t, thus uniformly positive 
since σt ∈ M (Σ) for all t. Now, (b) follows with u := Aũ and A � 1. �
Proof of Lemma 2.3. Conclusion (a) is a well-known consequence of [16].

To arrange conclusion (b), we first cut (M, g) along Σ. This introduces two bound-
ary components isometric to (Σ, σ0). We will join them together using a PSC cylinder 
constructed using Lemma A.1, and its reflection.

To that end, note that σ0 ∈ M(Σ) by [11, Lemma C.6]. The auxiliary metric σ on 
Σ also satisfies σ ∈ M(Σ) because it has positive scalar curvature. The existence of a 
smooth path (σt)t∈[0,1] ⊂ M (Σ) with σ1 = σ is guaranteed by [14, Proposition 1.1]; 

1 Another proof relies on the conformal cobordism theory of Akutagawa–Botvinnik [1] and the known 
path-connectedness of the space of PSC metrics on topologically PSC manifolds due to Weyl [19] in 2D and 
the first author and Bruce Kleiner [2] in 3D. We thank Demetre Kazaras for bringing this alternative and 
particularly [1] to our attention.
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the condition σ′
0 ≡ σ′

1 ≡ 0 is trivially arranged by a time reparametrization. Then 
Lemma A.1 yields a PSC metric h on Σ × [0, 1] that induces σt on Σ × {t} for all 
t ∈ [0, 1], with both boundary components totally geodesic. We then extend h to a 
metric on Σ × [0, 4] by taking it to be a product metric (Σ, σ) × (1, 4].

Along each boundary component of (M, g) \ Σ, we glue in a copy of (Σ × [0, 4], h), 
identifying the boundary Σ with Σ ×{0}, and the two copies of Σ ×{4} with each other, 
suitably reversing orientations. This yields a new manifold diffeomorphic to M , with a 
Lipschitz metric ĝ that satisfies all desired conclusions of the lemma, except it is only 
smooth away from the various copies of Σ ×{0, 1}. Since these hypersurfaces are minimal 
from both sides in (M, ̂g), they can be smoothed out locally while preserving PSC. One 
can do this using [12], which is easily localized using cut-off functions in view of the strict 
positivity of scalar curvature in our case; see [11, Lemma 7.1] for details. �
Proof of Lemma 4.1. The proof of Lemma 2.3 carries through verbatim, except conclu-
sion (a) is due to [17] and one needs to invoke [11, Proposition 3.1] rather than [14, 
Proposition 1.1] when proving (b). �
Proof of Lemma 2.5. We offer a generalization of the method [3, Lemma 19].

We proceed by induction. Suppose that we have constructed a sequence of pairwise 
disjoint, two-sided, stable hyperminimal surfaces Σ1, . . . , Σk ⊂ M such that M̆k :=
M \ ∪k

j=1Σj is connected. If the map

ik : Hn−1(∂M̆k;Z) → Hn−1(M̆k;Z)

is surjective, we are done; set Σ := ∪k
j=1Σj in the statement of the lemma. So let us 

assume it is not. Using geometric measure theory [6] (this is the source of the dimensional 
restriction n ≤ 7) we can find a closed, connected, two-sided, stable minimal surface 
Σk+1 ⊂ M̆k such that M̆k+1 := M̆k \ Σk+1 is connected and such that

[Σk+1] /∈ img ik. (A.2)

To see that this process terminates, we will show that the cokernels

Γk := Hn−1(M̆k;Z)/ img ik

have strictly decreasing rank. Since Γ0 = Hn−1(M ; Z) is finitely generated, the process 
will have to terminate after finitely many steps.

So, it remains to prove the ranks decrease strictly. We apply the Mayer–Vietoris 
sequence to the open cover of M̆k consisting of M̆k+1 and a tubular neighborhood of 
Σk+1. Writing Hj(Σk+1; Z) and Hj(Σk+1 × {±1}; Z) for the homology groups of the 
tubular neighborhood of Σk+1 and for the intersection of both subsets, respectively:

Hn−1(Σk+1 × {±1};Z) → Hn−1(M̆k+1;Z) ⊕Hn−1(Σk+1;Z) → Hn−1(M̆k;Z)
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This implies that the kernel of the natural map

Hn−1(M̆k+1;Z) → Hn−1(M̆k;Z), (A.3)

which is induced by the inclusion map M̆k+1 ↪→ M̆k, is contained in img ik+1. Thus the 
map (A.3) descends to an injection

Γk+1 ↪→ Hn−1(M̆k;Z)
/
(img ik + Z · [Σk+1]) = Γk/(Z · [[Σk+1]]), (A.4)

where [[Σk+1]] denotes the equivalence class of [Σk+1] within Γk.
Note that the Γk are all torsion-free. Indeed, from the homology long exact sequence

Hn−1(∂M̆k;Z) i∗−→ Hn−1(M̆k;Z) → Hn−1(M̆k, ∂M̆k;Z) ∂−→ Hn−2(∂M̆ ;Z)

we get Γk
∼= ker ∂. However, Hn−1(M̆k, ∂M̆k; Z) ∼= H1(M̆k; Z) by Lefschetz duality. The 

latter is torsion-free by the universal coefficient theorem. Thus, Γk is torsion-free.
Since the Γk are torsion free, rank Γk+1 < rank Γk follows from (A.2) and (A.4). �
The following lemma is well-known to the experts but we include a proof for clarity:

Lemma A.2. Suppose M , M ′ are closed, oriented 4-manifolds and that M is obtained 
from M ′ by a 1-surgery. Then b1(M) ≤ b1(M ′) and b2(M) ≥ b2(M ′). In fact, either

b1(M) = b1(M ′) − 1 and b2(M) = b2(M ′)

or

b1(M) = b1(M ′) and b2(M) = b2(M ′) + 2.

Proof. Let M̆ be the manifold obtained by removing a S1 × B3 from M ′. The Mayer–
Vietoris sequence implies that

H0(S1 × S2;Z) ((i0)∗,(j0)∗)−−−−−−−−→ H0(M̆ ;Z) ⊕H0(S1 ×B3;Z) → H0(M ′;Z) → {1}.

For H0, the map ((i0)∗, (j0)∗) is the diagonal map, so it is injective. Therefore, again 
from Mayer–Vietoris:

H1(S1 × S2;Z) ((i1)∗,(j1)∗)−−−−−−−−→ H1(M̆ ;Z) ⊕H1(S1 ×B3;Z) → H1(M ′;Z) → {1}.

Observe that j1 : S1 × S2 → S1 ×B3 induces an injection on H1. Counting ranks in
(
H1(M̆ ;Z) ⊕H1(S1 ×B3;Z)

)/
∼= H1(M ′;Z),
im((i1)∗, (j1)∗))
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we conclude that b1(M̆) = b1(M ′).
Similarly,

H1(S2 × S1;Z) ((i1)∗,(k1)∗))−−−−−−−−→ H1(M̆ ;Z) ⊕H1(S2 ×B2;Z) → H1(M ;Z) → {1}.

Counting ranks, b1(M̆) = b1(M) + rank im((i1)∗, (k1)∗) = b1(M) + rank im(i1)∗. Com-
bining these, we have that

b1(M) = b1(M ′) or b1(M) = b1(M ′) − 1, (A.5)

depending on whether rank im(i1)∗ = 0 or 1.
On the other hand, the Euler characteristics of X, Y satisfy:

χ(M ′) = χ(M̆) + χ(S1 ×B3) − χ(S1 × S2),

χ(M) = χ(M̆) + χ(S2 ×B2) − χ(S1 × S2).

Therefore, χ(M) = χ(M ′) + 2. The result follows in combination with (A.5). �
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