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1. Introduction

Our starting point is the following well-known theorem of Schoen—Yau and Gromov—
Lawson, which exhibits the richness of the class of manifolds that can carry Riemannian
metrics with positive scalar curvature. For convenience and brevity, we will adopt the
convention of writing “PSC” for “positive scalar curvature,” and will call a manifold
“topologically PSC” if it can carry Riemannian metrics with positive scalar curvature.

Theorem 1.1 (/17,7]). Let M be a topologically PSC n-manifold with n > 3. Any manifold
obtained from M by performing a sequence of 0-, 1-, ..., and/or (n — 3)-surgeries is also
topologically PSC.

Theorem 1.1 naturally leads one to ask:

Question 1.2. Can all topologically PSC n-manifolds be built out of “simple” topologi-
cally PSC n-manifolds by performing codimension > 3 surgeries?

Our understanding of 3-manifold topology implies a positive answer when n = 3:

Theorem 1.3 (Schoen—Yau and Gromov—-Lawson and Perelman). Every closed, oriented,
topologically PSC 3-manifold can be obtained by performing 0-surgeries on a disjoint
union of spherical space forms (i.e., S*/T'’s, where the I'’s are finite subgroups of SO(4)
acting freely on S3).

In this paper we prove:

Theorem 1.4. Every closed, oriented, topologically PSC 4-manifold M can be obtained
from a possibly disconnected, closed, oriented, topologically PSC 4-orbifold M’ with iso-
lated singularities such that by(M') = 0 and bo(M') < bo(M) by performing 0- and
1-surgeries. All 1-surgeries are standard manifold ones, but 0-surgeries may occur at
orbifold points.

Recall that the jth Betti number b;(M’) of the orbifold M’ is defined to be the jth
Betti number of M’ viewed as a topological space; in our case, this is equivalent to
the jth Betti number of the regular part M., C M’. In the connected case, by (M') is
the same as the rank of the abelianization of the orbifold fundamental group m§™(M’).
Finally, a 0-surgery occurring at two orbifold points both modeled on R*/T' means that

the corresponding connected sum operation is performed with a S/T" neck.

Remark 1.5. Theorem 1.4 will continue to hold if M is itself a 4-orbifold rather than a
4-manifold, but this is somewhat outside the scope of our current paper.

Note that orbifolds are indeed sometimes necessary for surgery decompositions such
as that of Theorem 1.4 in dimension 4.
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Theorem 1.6. Let S?/T' be a lens space with T' a nontrivial finite cyclic subgroup of
SO(4). The 4-manifold M = (S3/T') x S' cannot be obtained by performing manifold 0
and 1-surgeries on a 4-manifold M' with by(M') = 0.

Let us outline the proof of Theorem 1.4. Endow M with an arbitrary PSC metric. We
“exhaust” the codimension-1 homology of M with a two-sided, stable minimal hypersur-
face ¥ (Lemma 2.5). By a now-standard argument of Schoen—Yau, the metric induced
on X is conformal to a PSC metric. Thus, ¥ is topologically the result of 0-surgeries on
spherical space forms (Theorem 1.3). We then show how to locally modify the metric on
M to another PSC metric that is locally a product near ¥ and induces a “model” PSC
metric on ¥ (Lemma 4.1, Definition 4.2). If ¥ is merely the disjoint union of spherical
space forms S3/T", with no O-surgeries, then our model metrics are all round and simple
3-surgeries on M along the components of ¥ yield a 4-orbifold whose by is unchanged
and by is trivial (because ¥ suitably exhausted the codimension-1 homology of M). If ¥
does involve 0O-surgeries, we first undo these using 2-surgeries on M near X’s 0-surgery
neck regions; this may decrease by,. We have only performed 3- and 2-surgeries on M
to get to the orbifold, so M can be obtained from the orbifold via 0- and 1-surgeries,
respectively. Note that our construction preserves the spin condition; see Remark 4.4.

We conclude our introduction by posing the following:

Question 1.7. Let M be a closed, oriented, topologically PSC 4-manifold. Can one obtain
M from a closed, oriented, topologically PSC 4-orbifold M’ with isolated singularities
and the property that each component has finite orbifold fundamental group 7$™ (M)
by performing 0- and 1-surgeries?

Organization of the paper. We first illustrate our homological decomposition argument
for ambient 3-manifolds in Section 2, where the picture is much simpler. Section 3 is a
brief digression offering a homotopical refinement of the 3-dimensional decomposition.
In Section 4, we give the proof of our main theorem. In Section 5 we give the proof of
Theorem 1.6. Finally, our appendix contains the proofs of some technical lemmas.

Acknowledgments. R.B. was partially supported by NSF grant DMS-1906500. C.L. was
partially supported by NSF grant DMS-2202343. C.M. was partially supported by NSF
Grant DMS-2147521. The authors would like to thank the anonymous referee for their
suggestions and Otis Chodosh for some helpful conversations.

2. Warmup: homology decomposition in 3D

We first illustrate our homological decomposition argument on 3D manifolds, where
it yields the following weaker analog of Theorem 1.3. (See, however, Theorem 3.1 and
its subsequent discussion.)
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Theorem 2.1. Every closed, oriented, topologically PSC 3-manifold M can be obtained
from a closed, oriented, topologically PSC 3-manifold M’ with by (M') = 0 by performing
0-surgeries.

Remark 2.2 (The idea in 3D). We want to capture Ho(M;Z) by 2-spheres on which we
can perform 2-surgeries within the PSC category. Of course, 2-surgeries in a 3-manifold
do not a priori preserve the PSC condition (they are not of codimension > 3), but
we will see that 2-surgeries performed on stable minimal spheres do. Indeed, we show
how to reduce a 2-surgery on any stable minimal sphere to the surgically trivial case
of 2-surgery on a round, totally geodesic sphere. There, the PSC condition is obviously
preserved under the surgery.

Lemma 2.3 is the preparation lemma underlying our PSC 2-surgeries. We defer its
proof to Appendix A.

Lemma 2.3 (Metric preparation lemma). Let ¥ be a closed, embedded, two-sided, stable
minimal surface in an oriented, PSC 3-manifold (M, g). Then:

(a) Each component of ¥ is an S2.
(b) Given any auziliary PSC metric p on X, there exists a new PSC metric g on M,
which:

e s isometric to a product cylinder (X, 0) X (—2,2) in the distance-2 tubular neigh-
borhood of 32, and
e coincides with g outside a larger tubular neighborhood of X.

Remark 2.4. If ¥ has one-sided components, then the same is true for them, except they
are RP?’s rather than S?’s, and around them each product cylinder (S?, o) x (—2,2) is
to be taken modulo the Zy action (z,t) — (—x,—t); here, the auxiliary metric ¢ must
be a lift from a metric on RP? to a stable two-sided S? covering.

The lemma below delivers the surface ¥ on which Lemma 2.3 is applied. We state it
in n-dimensional generality, because it is indeed very general, and we will it need again
in Section 4. We defer its proof to Appendix A, and note that it can be viewed as a
generalization of the “slicing” procedure in [3, Lemma 19].

Lemma 2.5 (Minimal (hyper)surface preparation lemma). Let (M,g) be a closed, con-
nected, oriented n-manifold, with n < 7. There exists a closed, embedded, two-sided,
stable minimal hypersurface ¥ C M such that M=M \ X is connected and the map
Hn,l(al\Zf; Z) — n,l(M; Z) is surjective.

Proof of Theorem 2.1. Without loss of generality, M is connected. Endow M with a PSC
metric g. Let ¥ be as in Lemma 2.5, with components {3;}*_,. By Lemma 2.3 and the
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two-sidedness of each component ¥;, and we can modify the metric g near ¥; and arrange
for a new PSC metric § on M inducing a product metric isometric to (S?, pgz) x (—2,2)
on the distance-2 tubular neighborhood of ¥;, where gg2 is the standard round metric.

Now excise the distance-1 tubular neighborhood U; of each ¥; and cap off the two

newly formed boundary components with a pair of PSC 3-balls {(B&,n%)}%_; whose
metric has been suitably deformed near the boundary to match smoothly with a product

cylinder over (S?, pg2). Then,
(M',g") = (M\ Uy U, ) U (Vi) Uam12(BF, 1))

with the obvious boundary identifications is a PSC 3-manifold obtained from M by
performing a 2-surgery for each ;. Thus, M can be obtained from M’ by performing
O-surgeries.

It remains to verify by (M’) = 0. Denote

M= M\UF_ ;.
Tracking the homology exact sequence
Hy(0M;Z) =5 Hy(M;Z) 2 Hy(M,0M;Z) 2 Hy(0M;Z),

we find ker j, = imgi, = Hy(M;Z) (due to Lemma 2.5), so j, = 0, so Hy(M,dM;Z)
injects into Hi (8M; Z). By Lemma 2.3, OM consists of 2-spheres, so Hl(aM; Z)=0
and thus Hy(M,0M;Z) = 0 by the exact sequence. By Lefschetz duality, H'(M;Z) = 0.
The Mayer—Vietoris sequence then implies H*(M'; Z) = 0, and thus b;(M’) = 0 by the
universal coefficient theorem. 0O

3. A digression: homotopy decomposition in 3D

This section can be skipped at first reading. We digress to present a homotopy-based
refinement of Theorem 2.1, show how it can directly imply a certain homotopy version
of Theorem 1.3, and discuss why we find this of interest.

Theorem 3.1. Every closed, oriented, topologically PSC 3-manifold can be obtained from
a closed, oriented, topologically PSC 3-manifold with vanishing mo (on each connected
component) by performing 0-surgeries.

Instead of representing Ho(M; Z) by stable minimal 2-spheres as in Section 2, we seek
to represent mo(M). The key ingredient is the Meeks—Yau proof of the embedded sphere
theorem using minimal surfaces, which will be used in lieu of Lemma 2.5.

Lemma 3.2 ([15, Theorem 7] as Minimal sphere preparation lemma). Let (M,g) be a
closed, connected 3-manifold. There exist conformal maps {f; : S — M}¥_, with pair-
wise disjoint images that generate mo(M) as a m (M)-module. Each f; has least area in
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its homotopy class and is either a conformal embedding of an S? or a 2 : 1 conformal
covering of an embedded RP?.

Of course, the embeddings or immersions above are stable minimal spheres. (The
statement of [15, Theorem 7] doesn’t explicitly mention the pairwise disjointness, but
see the comment in the proof of [15, p. 480, Assertion 1].)

Proof of Theorem 3.1. Without loss of generality, our initial manifold M is connected.
Endow M with a PSC metric g. Let {f; : S2 — M}¥_; be the maps given by Lemma 3.2.
The proof is the same as that of Theorem 2.1, except for the fact that some images
¥; := £i(S?) might be doubly covered embedded one-sided RP?’s. We apply Lemma 2.3
(see Remark 2.4) and modify g locally near each ¥;, arranging for a new PSC metric g
that, in the distance-2 tubular neighborhood of ¥; induces product metrics isometric to
(S2, 0s2) x (—2,2) near X;, where gg2 is round, and all is taken modulo the Z, action
(x,t) — (—x,—t) when f; is a double covering of %;.

We excise (M, §) as before, except for all i corresponding with ¥; ~ RP?2, we only
use a single PSC 3-ball and include an RP? in the new manifold M’. This M’ can be
obtained from M by 2-surgeries, and thus M can be obtained from M’ by 0-surgeries.

It remains to verify that mo(M') = 0. Without loss of generality, we may assume M to
be connected. Denote by 7 : M — M its universal covering and let ¥ := 7~ (Uf_, %;).
The boundary components of M \ ¥ are all 2-spheres.

Claim 1. All components of M \ Y are simply connected.

Proof. Let & be the closure of any component of M \ Y. We inductively construct a
monotone increasing exhaustion {&j}x=12.. of M by taking k41 := & U Cx, where Cg
is the closure of any component of M \ ¥ that shares a boundary component with &.
At each step & is connected by construction. Moreover, 0, N JC; has at most one
component (otherwise one could construct a closed loop intersecting a component of
0&;, N OC, in exactly one point, in contradiction to m (M) = 0). As a result, by the
Seifert—Van Kampen theorem and the fact that all boundary components are 2-spheres,

the map 71(&;) = 71(€i+1) induced by the inclusion is injective. But 71 (M) = 0 is the
direct limit of 71 (&;). Therefore, m1(£1) =0. O

Denote by M’ the manifold obtained by gluing one 3-ball per boundary 2-sphere of
M \ 3 and one 3-sphere per component of 7 1(%;) for any ¥; ~ RP?. By construction:

M’ covers M. (3.1)
By Seifert—Van Kampen and Claim 1:

(M) =0. (3.2)
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Meanwhile, the argument in the proof of Theorem 2.1 gives:

At this point, it follows that

the isomorphism follows from (3.1), and the vanishing follows from (3.2), (3.3), and the
Hurewicz theorem. This completes the proof. 0O

Theorem 3.1 implies a certain homotopy version of Theorem 1.3:

Corollary 3.3. Every closed, oriented, topologically PSC 3-manifold can be obtained from
a closed, oriented, topologically PSC 3-manifold with components covered by homotopy
3-spheres, by performing 0-surgeries.

Proof. Let M’ be the manifold obtained from Theorem 3.1. Without loss of generality,
M’ is connected. It suffices to show that 71 (M’) is finite. Suppose that 71 (M’) were
infinite. Then the universal covering M’ of M’ would be noncompact, so Hs(M';Z) = 0.
On the other hand, 7y(M') 2 mo(M’) = 0. Then, 73(M’) = w3(M') = H3(M';Z) = 0,
the second isomorphism being Hurewicz’s. This strategy iterates to give mp(M’) = 0
for all k > 2, and thus M’ is aspherical. This violates the non-asphericity result for 3D
PSC: by Schoen—Yau and Gromov—Lawson (see [8, Theorem E], [18]), closed aspherical
3-manifolds are not topologically PSC. 0O

It is interesting to compare Corollary 3.3 with the Schoen—Yau and Gromov-Lawson
approach to obtaining a homotopy version of Theorem 1.3:

(a) By the Kneser-Milnor prime decomposition of 3-manifolds [13], and further decom-
posing all prime S? x S!’s as O-surgeries on S%’s, we see that any closed, oriented
3-manifold M can be obtained from:

o aspherical 3-manifolds, and/or
o manifolds covered by homotopy 3-spheres

by performing only 0-surgeries.

(b) One knows [8, Theorem E] (see also [18]) that aspherical 3-manifolds cannot occur
as prime summands of PSC 3-manifolds. This rules out the first source of summands
in (a). Thus, any closed oriented 3-manifold M can be obtained from a closed,
oriented 3-manifold with components covered by homotopy 3-spheres, by performing
0-surgeries.
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In this approach, the topological decomposition in step (a) prevents step (b) from
deciding whether the decomposed pieces, which are all covered by homotopy 3-spheres,
are themselves topologically PSC. (Of course, this follows from Perelman’s resolution of
the elliptization conjecture.) In our approach, step (a) was Theorem 3.1, a geometric
PSC surgery result that allows us to directly guarantee that the decomposed pieces are,
too, topologically PSC. Step (b) is essentially unchanged for us.

A note about higher dimensions. Step (b) of the program above was recently carried
out for 4-(and 5-)manifolds by the second author together with Otis Chodosh [3] (see also
[9,4]). Step (a) remains a challenge. There are no suitable topological decompositions
to perfectly replace step (a) in 4D, and we instead also proceed with a homological
decomposition obtained via geometric measure theory.

4. Main theorem: homology decomposition in 4D

We now extend the strategy of Section 2 to 4D. We capture H3(M;Z) by a stable
minimal hypersurface ¥, using Lemma 2.5. In the current higher dimensional setting we
need to use Lemma 4.1 (instead of the two-dimensional Lemma 2.3) to reduce to the
product case. We state it below but defer its proof to Appendix A.

Lemma 4.1. Let ¥ be a two-sided, closed, embedded, stable, minimal hypersurface inside
an oriented PSC 4-manifold (M, g). Then:

(a) ¥ must be topologically PSC and thus as in Theorem 1.5.
(b) Given any auziliary PSC metric o on X, there exists a new PSC metric § on M,
which:

e is isometric to a product cylinder (X,0) x (=2,2) in the distance-2 tubular
neighborhood of ¥, and
e coincides with g outside a larger tubular neighborhood of X.

We will apply this lemma with various choices of o, one being;:

Definition 4.2 (Model metric). Let & be obtained by performing 0-surgeries on spherical
space forms. A PSC metric on ¥ is called a model metric if the neck corresponding to
each 0-surgery contains an isometric copy of (S2, 0) x (—2,2) for some size round metric
0 on S2.

Proof of Theorem 1.4. Without loss of generality, M is connected. Fix a PSC metric
gon M, let ¥ be as in Lemma 2.5. We will stray slightly from the notation in the
statement of Theorem 1.4 below: M’ will not denote the ultimate decomposition, but
only an intermediate one, and the ultimate decomposition will be denoted M.
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Step I. In this step, we assume that X involves at least one O-surgery, otherwise we
proceed to Step II by setting (M’,¢’) := (M, g) and ¥/ := .

By Lemma 4.1 we can modify the metric g of M locally near ¥ and arrange for a
new PSC metric § on M that induces a product metric (¥, 0) x (—2,2) in the distance-2
tubular neighborhood of ¥, where o is a model metric (Definition 4.2).

Now consider the neck regions {N;}¢_; of ¥ where, due to the model metric structure,
(X, o) restricts on N; to an isometric copy of (S2, 9;), where g; is a round metric on S?2
of radius ¢;. By construction of g, the distance-2 tubular neighborhood of N; in (M, §)
is isometric to (S?, 0;) x (—2,2) x (=2,2). Let U; be the interior of a smoothing of the
domain S? x [—1,1] x [—1, 1] in these coordinates, where the smoothing only takes place
outside S? x [—1,1] x [-1,1] and S? x [-1,1] x [-4, 1]. Note that U; ~ S* x B?. For
small ¢;, we can construct a PSC metric 7; on V; := B3 x S! which matches smoothly
with U; on their respective boundaries (=~ S? x S!). Then,

(M',g") == (M \U_U;, ) U (Ui_y (Vi,m:))

with the obvious boundary identifications, is a PSC 4-manifold obtained from M by 2-
surgeries. Thus, M can be obtained from M’ by 1-surgeries. The surgeries above can be
performed so that ¥ gets replaced by a hypersurface ¥/, whose components are spherical
space forms. Moreover, by choosing (V;,7;) to be a local product on the S! factor, we
may assume that the metric ¢’ is locally a product near ¥’ and ensure that Y’ is again
stable.

Note that the components of M’\ ¥/ arise from the components of M \ ¥ by attaching
copies of B3 x [—1, 1] along S? x [-1, 1] to its boundary components. This shows that the
surjectivity of the natural map H3(0(M'\X');Z) — Hs(M'\Y’; Z), initially guaranteed
in Lemma 2.5 for H3(0(M \ X£); Z) — H3(M \ ¥;Z), is maintained.

Finally, since we’re performing 2-surgeries, we have ba (M) < by(M). (See Lemma A .2,
where the roles of M and M’ are reversed.)

Step II. In this step we work with (M’,¢’) and the components {X/}% | of ¥/, each of
which is, by construction, a spherical space form, i.e., ¥} a~ S3/T;, for finite subgroups
I'; of SO(4) acting freely on S3.

We invoke Lemma 4.1 again, except we modify the metric ¢’ of M’ locally near each
Y. and arrange for a new PSC metric §’ that induces a product metric (X}, 0}) x (—2,2)
in the distance-2 tubular neighborhood of 3, where o} is a round metric on ¥}. For
convenience, we denote by A C {1,2,...,k'} the set of i’s for which ¥} ~ S3, and by
B C{1,2,...,k'} the remaining 4’s.

For each i € A, we can excise the distance-1 tubular neighborhood U/ of X/ and
smoothly replace it with two PSC 4-balls {(B¢,0%)}2_,. Note that this is a 3-surgery,
and is therefore undone with a 0-surgery.

For each ¢ € B, we can still excise the distance-1 tubular neighborhood U] of X, but
now we have to smoothly glue in two PSC 4-orbifold-balls {(B%,#*)}2_, whose orbifold

RAE) a=1
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singularity is modeled on R*/I';. Note that this is an orbifold 3-surgery, and is therefore
undone by a O-surgery at orbifold points.

The ultimate space we end up with is

(M",g") == (M'\ U, U/,§") U (Uica Ua=1,2(B3,63)) U (Uien Ua=1.2(B2, éf))
As explained, M can be obtained from M" by performing 0-surgeries (possibly on the
orbifold points) and then 1-surgeries (on the smooth part).

We now prove by (M") = 0. Set M := M'\ ¥'. As in the proof of Theorem 2.1, we
track the homology exact sequence

H3(0M;Z) =5 Hy(M;Z) L Hy(M,0M;Z) % Ho(0M;Z).

We have Hg(al\Zf ;Z) = 0 since the components X} of OM are spherical space forms. As
before, i, is guaranteed to be surjective, so Hg(]\Zf,al\Zf; Z) =0, so Hl(M; Z) = 0 by
Lefschetz duality, and b, (M") = 0 from Mayer—Vietoris.

Finally, bo(M") = bay(M') < beo(M). The inequality follows from Step I and the
equality from the 3-surgeries on M’ to get M". The latter can be verified applying
MayerVietoris twice to get by(M") = by(M) = by(M’): once on the open cover of M’
by M and U¥_,U!, and once on the open cover of M” by M and (U; o Bf)U (Ui o BY). O

Remark 4.3. The orbifold singularities in the decomposition are due to the spherical
space forms appearing in ¥’ in Step II above.

Remark 4.4. Our proof of Theorem 1.4 preserves the spin condition; i.e., if M is spin,
then the ultimate orbifold M’ is spin too, in the sense that its regular part M, is spin.
In Step I we can endow each B? x S! we are gluing in to replace U; with a spin structure
to induce the same spin structure on S% x S! that 9U; did; one can see this, e.g., from
that 71(S? x S') — 71 (B? x S!) is an isomorphism and 7o (B3 x S!) = 0. Likewise, in
Step II we can similarly endow each Bf* or Bf‘ with a spin structure to induce the same
spin structure on each S3/T; that ¥/ did from either side.

5. Proof of Theorem 1.6

Suppose, for the sake of contradiction, that M = (S3/T') x S* can be obtained by
manifold 0 and 1-surgeries from a 4-manifold M’ with by (M’) = 0. The key features of
M are that

m (M) =T x Z with ' < SO(4) finite, cyclic, nontrivial, (5.1)
bi(M) =1, ba(M)=0. (5.2)

Since 1 < 4/2, all the 0 and 1-surgeries commute. So first take the connected sum of
all connected components of M’, and call it M". Note that by (M") = 0. Perform all
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remaining O-surgeries, so that M" turns into M”#k(S3 x S!) for some integer k > 0.
Then, M is obtained by performing 1-surgeries on M"#k(S? x S!), which has

by (M #k(S? x 81)) = k.

Combining Lemma A.2 with (5.2), we see that the integer k above is such that &k > 1
and that exactly (k — 1) 1-surgeries were performed.
On the level of fundamental groups, since M is obtained from M”#Fk(S® x S!) by
performing (k — 1) 1-surgeries, (5.1) yields
T1y: 7’rk—1>a

where G = 7 (M"), Z** = Z x - - -+ Z (k times) and 71, ...,7;_; represent the relations

rng<G*Wk

(possibly trivial) introduced by the 1-surgeries. We are led to a contradiction from this
presentation of I' x Z and that the abelianization of G has rank b (M") = 0 via the
following group theoretic lemma.

Lemma 5.1. Suppose that T' is a nontrivial finite cyclic group, and that G is a group
whose abelianization has rank 0. Then I' X Z cannot be expressed as

rng<G*Tk

Ty 7Tk—1>- (53)

Proof. If N is the minimal normal subgroup of G * Z** containing (r1,--- ,7,_1), then,
by (5.3),

N Z*k
rxzxG* /N. (5.4)
Consider the standard embedding i : G — G * Z**, and consider the normal subgroup
G'=i"Y(N)<QG.

We will reduce to the case G’ = {1}. If N’ denotes the minimal normal subgroup in
G * Z** containing i(G"), then

G>|<Z*’“/Ng (G*Z*k/N')/(N/N/)

If we denote by #; the image of r; under the map G * Z** — (G /G’) * Z**, and we
denote by N the minimal normal subgroup of (G /G') * Z** containing (71, -- ,7_1),
then the rightmost group above is

~ (G/@") *Z*k/N'



12 R.H. Bamler et al. / Advances in Mathematics 430 (2023) 109231

Also, under the standard embedding i : G /G’ — (G / G') x Z**, we have
() = 11,

Thus, by replacing G with G/ G" and r; with #;, we may assume that we had
V) = 1),

all along as desired. Note that this reduction preserves the property that the rank of the
abelianization equals zero. Then,

. wk
GH ozt G2 /Ngrxz,

(the last isomorphism is (5.4)) is injective. Therefore G is abelian since I' x Z is. The

rank of the abelianization of G, and thus of G, is assumed to be 0, so G is finite. Since Z

has no torsion, G must inject into I' x {0} = T", which is assumed to be finite and cyclic,

SO

G=27Z,,, m>1.

ISTRRE ,rk_1> o~ <Z*Z*k

where r( is a word that gives order m to the generator of the first Z factor. Thus, for

Therefore,

szg<zm*z*’“

To, 71, 7rk—1>a (55)

every n > 1,

FxZn%<Z*Z*k

To,T1," " aTk:—lv’rk>7 (56)

with 7 being a word that reduces to (0,n) in (5.5).

We show that (5.6) must fail for some n by comparing the Schur Multiplier (denoted
by M (-)) of both sides. Indeed, it follows from (5.6) that T X Z,, is a finitely represented
group with the same number of generators and relations (a group of zero deficiency), so

M(T % Z,) = {1}

by [5, Lemma 1.2]. On the other hand, if we choose n to be equal to the order of T, so
I' 2 Z,, then, invoking [10, Theorem 2.1] yields

M(T % Zy) = M(Zp, % Z) = M(Z) x M(Z) % (Zy @ Z)) = Zn..

This is a contradiction since n > 2. O
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Appendix A. Technical lemmas

We first prove Lemmas 2.3, 4.1. Our proof relies on the flexibility of two-sided sta-
ble minimal hypersurfaces in 3- and 4-manifolds due to the second and third authors
[11]." We need one additional piece of notation and an auxiliary lemma. For any closed
connected manifold ¥, set

M () = {0 € Met(X) : —A, + LR, has positive principal eigenvalue};
here, R, denotes the scalar curvature of o. This space is denoted ///173(2) in [11].

Lemma A.1. Suppose (0t)e[0,1] 95 a smooth path in A (X) with oy = 07 = 0. There exists
a smooth u : 3 x [0,1] — (0,00) so that the metric h = oy + u?dt? on ¥ x [0,1] has the
following properties:

(a) ¥ x {0} and ¥ x {1} are totally geodesic;
(b) Rp > 0 everywhere.

Proof. We make use of the curvature formulas from [11, Lemma A.1]. Right away we
note that (a) is a consequence of o, = ¢} = 0, no matter what u is. For (b), the key
observation is that if @ : ¥ x [0,1] — (0, 00) is held fixed and A > 0 is a constant, both
to be determined, then

Ro’t+A2a2 dt2 = 2ﬂ_1(Agth + %Rgtfb) + O(A_2) as A — oo. (Al)

Take each (-,t) : & — (0,00) to be a positive principal eigenfunction of —A,, + 3R, .
This can be done smoothly over ¥ x [0,1] because the principal eigenvalue is simple;
see [14, Lemma A.1]. With this @, the first term on the right hand side of (A.1) is
bounded below by the minimum principal eigenvalue over ¢, thus uniformly positive
since oy € A (X) for all t. Now, (b) follows with v := Agz and A> 1. O

Proof of Lemma 2.3. Conclusion (a) is a well-known consequence of [16].

To arrange conclusion (b), we first cut (M, g) along 3. This introduces two bound-
ary components isometric to (X, 09). We will join them together using a PSC cylinder
constructed using Lemma A.1, and its reflection.

To that end, note that oy € M(X) by [11, Lemma C.6]. The auxiliary metric o on
¥ also satisfies o0 € M(X) because it has positive scalar curvature. The existence of a
smooth path (o¢)icp0,1] C #(X) with 01 = ¢ is guaranteed by [14, Proposition 1.1];

L Another proof relies on the conformal cobordism theory of Akutagawa—Botvinnik [1] and the known
path-connectedness of the space of PSC metrics on topologically PSC manifolds due to Weyl [19] in 2D and
the first author and Bruce Kleiner [2] in 3D. We thank Demetre Kazaras for bringing this alternative and
particularly [1] to our attention.
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the condition oj = of = 0 is trivially arranged by a time reparametrization. Then
Lemma A.1 yields a PSC metric h on ¥ x [0,1] that induces o; on ¥ x {t} for all
t € [0,1], with both boundary components totally geodesic. We then extend h to a
metric on ¥ X [0, 4] by taking it to be a product metric (X, 0) x (1,4].

Along each boundary component of (M, g) \ X, we glue in a copy of (¥ x [0,4],h),
identifying the boundary ¥ with ¥ x {0}, and the two copies of ¥ x {4} with each other,
suitably reversing orientations. This yields a new manifold diffeomorphic to M, with a
Lipschitz metric § that satisfies all desired conclusions of the lemma, except it is only
smooth away from the various copies of 3 x {0, 1}. Since these hypersurfaces are minimal
from both sides in (M, §), they can be smoothed out locally while preserving PSC. One
can do this using [12], which is easily localized using cut-off functions in view of the strict
positivity of scalar curvature in our case; see [11, Lemma 7.1] for details. O

Proof of Lemma 4.1. The proof of Lemma 2.3 carries through verbatim, except conclu-
sion (a) is due to [17] and one needs to invoke [11, Proposition 3.1] rather than [14,
Proposition 1.1] when proving (b). O

Proof of Lemma 2.5. We offer a generalization of the method [3, Lemma 19].

We proceed by induction. Suppose that we have constructed a sequence of pairwise
disjoint, two-sided, stable hyperminimal surfaces 3i,...,3; C M such that M, =
M\ U;‘?:le is connected. If the map

i - Hn_l((?Mk; Z) — Hn—l(Mk; Z)

is surjective, we are done; set ¥ := U?Zle in the statement of the lemma. So let us
assume it is not. Using geometric measure theory [6] (this is the source of the dimensional
restriction n < 7) we can find a closed, connected, two-sided, stable minimal surface
Yg+1 C Mk such that Mk+1 = ]\ka \ Xk41 is connected and such that

[Zk—i-l] ¢ img ik. (AZ)
To see that this process terminates, we will show that the cokernels
Fk = Hn—l(Mk§ Z)/ imgik

have strictly decreasing rank. Since I'g = H,,_1(M;Z) is finitely generated, the process
will have to terminate after finitely many steps.

So, it remains to prove the ranks decrease strictly. We apply the Mayer—Vietoris
sequence to the open cover of ]\Zk consisting of Mk+1 and a tubular neighborhood of
Yit+1. Writing H;(Xg41;Z) and H;(Xg4+1 x {£1};Z) for the homology groups of the
tubular neighborhood of ¥j;4; and for the intersection of both subsets, respectively:

Hy1(Sigr < {£152) = Hyoy(Mys152) & Hoo1(Siy13 Z) — Hyyoy (M Z)
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This implies that the kernel of the natural map
Hpyy(Myy1;Z) — H,—1(My; Z), (A.3)

which is induced by the inclusion map Mk+1 — Mk, is contained in imgéx41. Thus the
map (A.3) descends to an injection

Dt < Hoo1(My; 2) [ (img iy, + Z - [Sr1]) = Ti/(Z - [Srena]), (A4)

where [[Zx41]] denotes the equivalence class of [Eg41] within T'y.
Note that the 'y, are all torsion-free. Indeed, from the homology long exact sequence

Hy 1(0My;Z) 2 Hy oy (M Z) — Hyy (M, 0My; Z) % H,o_5(0M; Z)

we get [y, = ker 0. However, Hn_l(Mk, OM,; Z) = Hl(Mk; Z) by Lefschetz duality. The
latter is torsion-free by the universal coefficient theorem. Thus, 'y is torsion-free.
Since the T'y, are torsion free, rank 'y 1 < rank 'y follows from (A.2) and (A.4). O

The following lemma is well-known to the experts but we include a proof for clarity:

Lemma A.2. Suppose M, M’ are closed, oriented 4-manifolds and that M is obtained
from M’ by a 1-surgery. Then by (M) < by(M') and by(M) > bo(M'). In fact, either

by(M) = by (M) — 1 and ba(M) = ba(M')
bl(M> = bl(M/) and b2(M> = bg(M/) + 2.

Proof. Let M be the manifold obtained by removing a S' x B® from M’. The Mayer—
Vietoris sequence implies that

Ho(Sl « SQ;Z) ((20)+,(d0)«)

Ho(M;Z) ® Ho(S' x B%;Z) — Hy(M';Z) — {1}.
For Hy, the map ((i0)«, (jo)«) is the diagonal map, so it is injective. Therefore, again
from Mayer—Vietoris:

((11)+,(51)+)

H,(S! x 8%, 7) H,(M;Z)® H,(S* x B%;Z) — H,(M';Z) — {1}.

Observe that j; : St x 82 — S! x B? induces an injection on H;. Counting ranks in

(108:2) & (S BND) Gy = O,
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we conclude that by (M) = by (M').
Similarly,

) ((#1) (k1) +)

Hy(S* x SY,Z ) Hy(M;Z)® Hy(S? x B Z) — Hy(M;Z) — {1}.

Counting ranks, by (M) = by (M) 4 rankim((i)«, (k1)«) = by (M) + rank im (i, ).. Com-
bining these, we have that

by(M) = by (M) or by (M) = by (M') — 1, (A.5)

depending on whether rankim(i;). = 0 or 1.
On the other hand, the Euler characteristics of X, Y satisfy:

o

X(M') = x(M) + x(S" x B%) — x(S" x 8?),
X(M) = x(M) + x(8* x B?) — x(S' x §?).

Therefore, x(M) = x(M') 4+ 2. The result follows in combination with (A.5). O
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