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THE GEOMETRY OF GENERALIZED LOXODROMIC
ELEMENTS

by Carolyn R. ABBOTT & David HUME (*)

Abstract. — We explore geometric conditions which ensure that a given ele-
ment of a finitely generated group is, or fails to be, generalized loxodromic; as part
of this we prove a generalization of Sisto’s result that every generalized loxodromic
element is Morse. We provide a su�cient geometric condition for an element of
a small cancellation group to be generalized loxodromic in terms of the defining
relations and provide a number of constructions which prove that this condition is
sharp.

Résumé. — Nous présentons des conditions su�santes pour qu’un élément d’un
groupe de type fini soit, ou ne soit pas, loxodromique généralisé; dans ce cadre,
nous prouvons une généralisation du résultat de Sisto selon lequel tout élément
loxodromique généralisé a la propriété de Morse. Nous donnons une condition géo-
métrique su�sante pour qu’un élément d’un groupe de petite simplification soit
loxodromique généralisé en termes des relations définissant le groupe et fournissons
plusieurs constructions prouvant que cette condition est optimale.

1. Introduction

A recurring theme in group theory is that a useful way to develop an un-
derstanding for a given group or class of groups satisfying some weak form
of non-positive curvature is to construct interesting actions of them on hy-
perbolic spaces. Principal examples of this heuristic come from Bass–Serre
theory, understanding actions of groups on trees in terms of amalgamations
and HNN-extensions; understanding relatively hyperbolic groups via their
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actions on coned-o� graphs, cusped spaces, or combinatorial horoballs; un-
derstanding mapping class groups via their actions on curve complexes of
subsurfaces; and understanding Out(Fn) via its actions on the free factor
and free splitting complex, among many others. One particular type of in-
teresting action which has received much recent attention is an acylindrical
action.

An action of a group G by isometries on a metric space X is acylindrical
if for all d > 0 there exist constants M, N > 0 such that for all x, y œ X

with d(x, y) > M , the number of elements g œ G satisfying d(x, gx) 6 d

and d(y, gy) 6 d is at most N . An element g of a group G is generalized
loxodromic if there is an acylindrical action of G on a hyperbolic space
X such that g acts loxodromically. A group is acylindrically hyperbolic if
and only if it is not virtually cyclic and contains a generalized loxodromic
element [15].

The class of acylindrically hyperbolic groups is incredibly rich, includ-
ing all non-elementary hyperbolic and relatively hyperbolic groups, as well
as two of the most intensively studied classes of groups in recent years:
mapping class groups and the outer automorphism groups of free groups.
At the same time the consequences of being acylindrically hyperbolic are
strong: these groups are SQ-universal [10], have non-abelian free normal
subgroups [10], have infinite dimensional second bounded cohomology [6,
13], and have a well-developed small cancellation theory [14].

One of the most important outstanding questions about finitely gener-
ated acylindrically hyperbolic groups is whether the class is closed under
quasi-isometry. One important di�culty in answering this questions is that
there is currently little connection between the existence of generalized loxo-
dromic elements and the geometry of the group. Given a finitely generated
(non-virtually cyclic) group G, there exist both su�cient and necessary
geometric conditions for an element g (of infinite order) to be generalized
loxodromic (see Section 1 for precise definitions):

• If there is a finite symmetric generating set S of G and a constant
D such that ÈgÍ is D-quasi-convex and D-strongly contracting in
Cay(G, S), then g is generalized loxodromic [5].

• If g is generalized loxodromic, then for any finite symmetric gener-
ating set S of G, ÈgÍ is a Morse quasi-geodesic in Cay(G, S) [16].

Note that by [4, Theorem 4.19] the statement “there exists a constant D

such that ÈgÍ is D-strongly contracting in Cay(G, S)” can even depend on
the choice of finite generating set S.

ANNALES DE L’INSTITUT FOURIER
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In [3] fl-contraction is introduced as a generalization of strongly contract-
ing, and it is proved that a subset of a geodesic metric space is Morse if
and only if it is fl-contracting for some function fl. Moreover, in [4, Theo-
rem 4.15] it is demonstrated that (periodic) geodesics in finitely generated
groups exhibit all possible types of fl-contraction.

1.1. Saturation

Our first task in this paper is to prove that contraction is (in general)
the wrong measure to use to determine whether an element is generalized
loxodromic.

Theorem 1.1. — Given any non-decreasing unbounded function fl :
[0, Œ) æ [0, Œ), there is a group G generated by a finite set S and an
element a œ S such that the map n ‘æ a

n is an isometric embedding of
Z into Cay(G, S) and ÈaÍ is fl

Õ-contracting for some fl
Õ ∞ fl, but a is not

generalized loxodromic.

Theorem 1.2. — There is a group G generated by a finite set S and an
element a œ S such that the map n ‘æ a

n is an isometric embedding of Z
into Cay(G, S) and a is generalized loxodromic, but ÈaÍ is not fl-contracting
for any fl such that lim infræŒ fl(r) log(r)/r = 0.

The first of these results was also proved in [4, Theorem 6.4] using torsion
as an obstruction. The examples we give can be made torsion-free, but
rely heavily on the technology developed in [4] to control the contraction.
The log(r) term in Theorem 1.2 is intriguing. While it is clear that our
method cannot be improved, we can show that for any function fl such
that lim infræŒ fl(r)/r = 0 there is a countable group G generated by a
set X and an element a œ X such that the map n ‘æ a

n is an isometric
embedding of Z into Cay(G, X) and a is generalized loxodromic, but ÈaÍ is
not fl-contracting.

Let us introduce a new measure which is more closely linked to general-
ized loxodromic elements. Given two words v, w œ F (S), with v cyclically
reduced, we define the w-saturation of v to be satw(v) = k/|v|S where k is
the largest number of letters in a cyclic conjugate of v which can be covered
by (not necessarily disjoint) copies of cyclically reduced conjugates of the
word w. For example sata(a3

ba
4) = sata4(a3

ba
4) = 7

8 but sata8(a3
ba

4) = 0.
Our first result states that for any group, a strong form of w-saturation is
su�cient to prevent w from being a generalized loxodromic element.

TOME 70 (2020), FASCICULE 4



1692 Carolyn R. ABBOTT & David HUME

Theorem 1.3. — Let G be a group generated by a symmetric set S. If
there exist cyclically reduced words vi œ F (S) such that vi =G 1 for each
i, the image of the path [1, vi] in Cay(G, S) is quasi-isometric to a cycle of
length |vi|S (with constants independent of i) and

(1.1) lim
næŒ

lim sup
iæŒ

(satwn(vi)) > 0,

then w is not generalized loxodromic.

When (1.1) is satisfied we say {vi} is w-saturated. To prove Theorem 1.3
we use an obstruction given by [10, Proposition 4.14]. From this we deduce
the following corollary, first proved by Sisto [16].

Corollary 1.4 ([16]). — Let G be a group generated by a symmetric
subset S, and let ÈwÍ be an undistorted infinite cyclic subgroup of G with
respect to the word metric on S. If w is generalized loxodromic, then ÈwÍ
is Morse as a subset of Cay(G, S).

1.2. Small cancellation groups

The examples constructed in Theorems 1.1 and 1.2 are small cancellation
groups (which are acylindrically hyperbolic by [12]). Thanks to [4], we have
a clear understanding of contraction in such groups: given a C

Õ( 1
6 ) small

cancellation presentation G = ÈS |RÍ and an infinite order element g œ G,
we have that g being fl-contracting is essentially equivalent to the statement
that no relation in R with length at most n contains a subword equal to a
power of a cyclically reduced conjugate of g of length greater than fl(n).

For these reasons, small cancellation groups are a natural collection of
groups in which to start studying connections between generalized loxo-
dromic elements and geometric notions of negative curvature. Our next
goal in this paper is to better understand when an element of a small
cancellation group is (and is not) generalized loxodromic.

Theorem 1.5. — Let G = ÈS |RÍ be a C
Õ( 1

6 ) small cancellation presen-
tation, enumerate R = {r1, r2, . . .} and let pi be the length of the longest
piece in ri. Let w œ F (S) have infinite order in G. If there exists some m

such that

(1.2) lim sup
iæŒ

pi · satwm(ri) < Œ,

then w is generalized loxodromic.

ANNALES DE L’INSTITUT FOURIER
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The strategy behind the proof is to show that G is a subgroup of an-
other C

Õ( 1
6 ) small cancellation group G

Õ such that ÈwÍ is D-contracting in
a Cayley graph of G

Õ.
We present two results explaining the sharpness of Theorem 1.5. The

first is Theorem 1.3: if lim supiæŒ satwm(ri) has a positive lower bound
which is independent of m, it is clear that (1.2) cannot hold, since (pi)
is unbounded (for every m, some cyclically reduced conjugate of w

m is
a piece). The second says that it is always possible to build examples of
groups which prevent the hypotheses of the above theorem from being
strengthened.

Theorem 1.6. — For every unbounded function fl : N æ N there is
a C

Õ( 1
6 ) small cancellation presentation G = Èa, b, c, d |r1, r2, . . .Í such that

the map Z æ Cay(G, {a, b, c, d}) given by n ‘æ b
n is an isometric embedding

and pi · satb(ri) ∞ fl(i) (where pi is the length of the longest piece in ri),
but b is not generalized loxodromic.

Notice that Theorems 1.3 and 1.5 greatly generalize the su�cient and
necessary conditions for an element of a group to be a generalized loxo-
dromic given earlier, but they certainly do not give a complete classification
of generalized loxodromic elements.

1.3. Universally acylindrical groups

Given an acylindrically hyperbolic group it is natural to ask not only
which of its elements are generalized loxodromic, but also which of these
generalized loxodromic elements can simultaneously act loxodromically
with respect to single acylindrical action on a hyperbolic space. A partic-
ularly strong version of this is to ask whether a given group is universally
acylindrical; that is, does it admit an acylindrical action on a hyperbolic
space in which every generalized loxodromic element acts loxodromically.
Such an action is called a universal acylindrical action. Non-elementary
hyperbolic groups, mapping class groups, and, more generally, hierarchi-
cally hyperbolic groups are all universally acylindrical [2, 8]. In [1], the
first author proved that Dunwoody’s inaccessible group is not universally
acylindrical, the first finitely generated example of such a group.

One can ask under what conditions a small cancellation group is uni-
versally acylindrical. The only existing construction of a hyperbolic space
admitting a natural action of a small cancellation group is the coned-o�

TOME 70 (2020), FASCICULE 4
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graph described by Gruber and Sisto in [12], which is defined to be the Cay-
ley graph of the group with respect to the generating set consisting of the
original generating set together with all subwords of relators. Coulon and
Gruber show in [9] that the action of the group on this graph is acylindrical
if and only if there is an upper bound on the proper powers appearing in
relators and, moreover, that this action is a universal acylindrical action if
and only if the same condition holds.

Our goal is find more general hypotheses which determine when a small
cancellation group is universally acylindrical. Our first result in this direc-
tion is a natural extension of Theorem 1.5. Given a cyclically reduced word
w œ F (S) and n œ N we define the saturation by nth powers of w to be
satn(w) = k/|w|S where k is the maximal number of letters in a cyclic
conjugate of w which can be covered by copies of nth powers of cyclically
reduced elements of F (S). For example sat1(a3

ba
4) = 1, sat6(a3

ba
4) = 7

8
and sat8(a3

ba
4) = 0.

Theorem 1.7. — Let G = ÈS |RÍ be a C
Õ( 1

6 ) small cancellation presen-
tation, and enumerate R = {r1, r2, . . . }. Let pi be the length of the longest
piece in ri. If there exists some m such that limiæŒ pi · satm(ri) < Œ, then
G is universally acylindrical.

The second result uses techniques from Theorem 1.1 to construct un-
countably many quasi-isometry classes of torsion-free groups which are
acylindrically hyperbolic but not universally acylindrical.

Theorem 1.8. — There exist 2›0 quasi-isometry classes of torsion-free
C

Õ( 1
6 ) small cancellation groups which are not universally acylindrical.

1.4. Questions

(1) Let us construct a small cancellation presentation which contains
an element which does not satisfy the hypotheses of either of The-
orems 1.3 or 1.5. Define w1 = b œ F (a, b) and inductively define
wi = wi≠1a

i
wi≠1. Let {vi} µ F (c, d) be a family of C

Õ( 1
11 ) small

cancellation relations with |vi| = 11 |wi|. Set R = {ri = viwi} and
G = Èa, b, c, d |RÍ. A simple calculation shows that this presentation
is C

Õ( 1
6 ) and limiæŒ satan(ri) = –n > 0 for all n, but –n æ 0 as

n æ Œ. Is a œ G generalized loxodromic?
(2) Is there an “unsaturated criterion” in the style of (1.2) such that

given any finitely generated group G generated by a finite set S
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and an infinite order element w œ G where every undistorted loop
in Cay(G, S) is w-unsaturated, then w is generalized loxodromic?

(3) Is it true that for any function fl such that lim infræŒ fl(r)/r = 0
there is a group G generated by a finite set S and an element
a œ S such that the map n ‘æ a

n is an isometric embedding of
Z into Cay(G, S) and a is generalized loxodromic, but ÈaÍ is not
fl-contracting?

Plan of the paper

After establishing some background results we prove all the su�cient
statements in Section 3. In particular, we give a general construction which
embeds one small cancellation group into another (Theorem 3.2), from
which we deduce Theorems 1.2, 1.5 and 1.7 as corollaries. The obstructions
are contained in Section 4.2: we first prove Theorem 1.3, then give a method
of building non-examples from which we deduce Theorems 1.1, 1.6 and 1.8.

Acknowledgements

The authors are grateful to Rémi Coulon and Dominik Gruber for in-
teresting conversations, and for sharing with us the results of their paper.
The authors also thank the referee for several comments which improved
the clarity of the paper.

2. Preliminaries

Given a group G which is generated by a symmetric set X we denote the
word metric on G with respect to X by dX and define |g|X = dX(1, g) for
all g œ G.

2.1. Small cancellation theory

Let S be a set, and let R be a subset of a free group F (S)\{1} consisting
of cyclically reduced elements which is closed under taking inverses and
cyclic conjugates. Given ⁄ œ (0, 1), we say R satisfies the C

Õ(⁄) small
cancellation condition if, given any distinct pair of elements r, r

Õ œ R which

TOME 70 (2020), FASCICULE 4



1696 Carolyn R. ABBOTT & David HUME

have reduced decompositions r = us and r
Õ = us

Õ, we have |u| < ⁄ |r|. Any
word u satisfying the above property is called a piece.

It is useful to represent families of small cancellation relations graphically.
To each element r œ R, we define a cyclic graph Cr with |r| directed edges
each of which is labeled by elements of S in such a way that the word in
F (S) read clockwise from a fixed vertex v is exactly r (for an edge labeled
s directed clockwise we read s, if it is directed anticlockwise we read s

≠1).
Changing the cyclically reduced representative of r changes the fixed vertex
from which the label is read, while taking inverses corresponds to reading
the label anticlockwise (or considering a reflection of the cycle). A piece is
therefore a labeled, directed subpath which appears in at least two cycles.

We require two fundamental results from small cancellation theory.

Lemma 2.1. — Let R µ F (S) satisfy the C
Õ(⁄) small cancellation con-

dition for some ⁄ 6 1
6 , and define G = ÈS |RÍ and X = Cay(G, S). For

each r œ R, the natural label-preserving map Cr æ X which sends v to 1
is an isometric embedding.

We call translates of the image of the cycle Cr in X relators (with label r).

Lemma 2.2 (Greendlinger’s Lemma). — Let R µ F (S) satisfy the C
Õ(⁄)

small cancellation condition, define G = ÈS |RÍ and let w œ F (S) \ {1}
satisfy w =G 1. There is a cyclically reduced conjugate w

Õ of w and some
r œ R with reduced decompositions r = us and w

Õ = uv
Õ such that |u|S >

(1 ≠ 3⁄) |r|S .

2.2. fl-contraction

A subset Y of a geodesic metric space X is quasi-convex if there exists
a constant M such that any geodesic between two points in Y is contained
in the M -neighborhood of Y . Moreover, Y is Morse if, for every K > 1
and C > 0, there is a constant N = N(K, C) such that any (K, C)-quasi-
geodesic between two points in Y is contained in the N -neighborhood of
Y . When these conditions are satisfied we say that Y is M -quasi-convex
and N -Morse respectively.

Given a subset Y of the vertex set of a graph X we define the closest
point projection fiY from X to a subset of Y by the rule

fiY (x) = {y œ Y | d(x, y) 6 d(x, Y )} .

Given a non-decreasing function fl : [0, Œ) æ [0, Œ) such that fl(r)/r æ 0
as r æ Œ, we say Y is fl-contracting if for any two points x, z œ X with

ANNALES DE L’INSTITUT FOURIER



THE GEOMETRY OF GENERALIZED LOXODROMIC ELEMENTS 1697

d(x, z) 6 d(x, Y ),

diam (fiY (x) fi fiY (z)) 6 fl(d(x, Y )).

We say Y is D-contracting for a constant D if Y is fl-contracting with
fl(r) = D for all r. By [3, Theorem 1.3], a quasi-convex subset Y ™ V X is
Morse if and only if it is fl-contracting for some fl. We compare contraction
functions using the partial order ∞ defined as follows: fl ∞ fl

Õ if there exists
a constant C such that

fl(r) ∞ Cfl
Õ(r) + C for all r.

We write fl ® fl
Õ when fl ∞ fl

Õ and fl
Õ ∞ fl.

We recall the key local-to-global theorem [4, Theorem 4.1] which allows
us to control contraction in small cancellation groups:

Theorem 2.3. — Let R µ F (S) satisfy the C
Õ( 1

6 ) small cancellation
condition, set G = ÈS |RÍ and let – be a geodesic in X = Cay(G, S). There
exists a sublinear function fl

Õ such that – is fl
Õ-contracting in X if and only

if there exists a sublinear function fl such that given any relator Cr which
intersects –, we have |Cr fl –| 6 fl(|Cr|).

Moreover, when either of the above conditions hold we may take fl
Õ ® fl.

3. Detecting generalized loxodromic elements

We begin by describing a hyperbolic graph on which C
Õ( 1

6 )-small cancel-
lations groups act. This space was introduced and studied in [12] in a more
general context than we will present here.

Let R µ F (S) satisfy the C
Õ( 1

6 ) condition and let X be the Cayley graph
of G = ÈS |RÍ with respect to the generating set S. Let L be the set of all
initial subwords of words in R, that is, the set of all u œ F (S) such that
there is some r œ R with reduced decomposition r = uv. The coned-o�
graph ‚X is Cay(G, S fi L), that is, the Cayley graph of G with respect to
the (typically infinite) generating set S fi L.

By [12, Proposition 3.2], ‚X is hyperbolic. Moreover, by [12, Proposi-
tion 4.8], G contains an element g which acts loxodromically on ‚X and
satisfies the weak proper discontinuity (WPD) property (see [6]). In [15,
Theorem 1.4] Osin showed that the existence of an element g satisfying
the WPD property in an action of G on a hyperbolic space is equivalent
to g being a generalized loxodromic element and G being an acylindrically
hyperbolic group.

TOME 70 (2020), FASCICULE 4
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However, in general the action of G on ‚X is not acylindrical [12, Propo-
sition 4.20]. We recall the one situation in which acylindricity of this action
is known. We say R µ F (S) is power-free if, for every w œ F (S)\{1}, there
exists an n such that no r œ R has reduced decomposition r = w

n
v. If n

can be chosen independently of w, then we say R is uniformly power-free.
Coulon and Gruber prove that the action of every uniformly power-free
(graphical) small cancellation group on its coned-o� graph ‚X is acylindri-
cal [9]. They also show that every infinite order element of G is loxodromic
with respect to this action, and thus these groups are universally acylin-
drical. Our goal in this section is to give an alternative construction which
enables us to detect generalized loxodromic elements in small cancellation
groups which are not necessarily uniformly power-free and to find more
groups which are universally acylindrical.

Definition 3.1. — Let G = ÈS |RÍ be a C
Õ( 1

6 ) small cancellation pre-
sentation. For r œ R, let pr be the length of the longest piece in r. Let
W ™ F (S), and let Wm = {w

m | w œ W}. We define lW(r) to be the
maximum number of edges of Cr which can be covered by (not necessar-
ily disjoint) subpaths labeled by powers of cyclically reduced conjugates of
elements of W. The W-saturation of Cr is defined as

satW(Cr) = lW(r)
|Cr| œ [0, 1].

We say R is W-sparse if there exists m > 1 such that
sup
rœR

(pr · satWm(Cr)) < Œ,

and R is W-saturated if
lim

mæŒ
lim sup
|r|SæŒ

(satWm(Cr)) > 0.

Given a C
Õ( 1

6 ) small cancellation group G = ÈS |RÍ and a subset W ™
F (S) such that R is W-sparse, we first show how to construct a C

Õ( 1
6 ) small

cancellation group G
Õ = ÈSÕ |RÕÍ for which there exists an l > 0 such that

no r
Õ œ R

Õ has reduced decomposition r
Õ = w

l
v

Õ for any w œ W, together
with an embedding of G as a subgroup of G

Õ.

Theorem 3.2. — Let R µ F (S) satisfy the C
Õ( 1

6 ) condition, and let
W ™ F (S). If R is W-sparse, then there exists a set S

Õ containing S and a
C

Õ( 1
6 ) subset R

Õ ™ F (SÕ) such that the following hold: the inclusion S Òæ S
Õ

extends to a monomorphism G = ÈS |RÍ æ G
Õ = ÈSÕ |RÕÍ, and there exists

a constant l > 0 such that no r
Õ œ R

Õ has reduced decomposition r
Õ = w

l
v

Õ

for any w œ W \ {1}.
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Moreover, if |S| < Œ, then every element of W which has infinite order
in G is a generalized loxodromic element of G.

Proof. — Define a countably infinite set Y = {y1, y2, . . .} such that Y fl
S = ÿ. We will see that the set Y fi S is our desired generating set S

Õ.
Enumerate R = {r1, r2, . . .}, and let Ci = Cri . Our goal is to define a new
set of disjoint cycles, whose labels give the desired set of relations R

Õ.
Since R is W-sparse, there is a constant m > 1 such that

lim sup
iæŒ

pi · satWm(Ci) = D < Œ.

Notice that increasing m does not increase D, so we may assume that
m > 12D. Fix N such that for all n > N we have pn · satWm(Cn) < 2D.

For each n > N we construct a finite set of cycles D
j
n as follows. First,

color every edge red in Cn which is contained in a path whose label is
a cyclically reduced conjugate of an element of Wm. There are at most
lWm(rn) such edges. Color the other edges blue. In the procedure that
follows, we will be adding new edges at each step which will be colored
white; in the first step, there are no white edges.

For each n > N , define C
0
n = Cn. For each j = 1, 2, . . . in turn, if C

j≠1
n

has no subpath of length at least m consisting solely of red edges, then
set D

j
n = C

j≠1
n and move on to n + 1. Otherwise, notice that the maximal

number of disjoint subpaths of length m consisting solely of red edges is at
most lWm(rn)/m. Additionally, by our choice of constants we have

m|Cn|
lWm(rn) = m

satWm(Cn) >
pnm

2D
> 6pn.

The pigeon-hole principle implies that there is a path P
j
n in C

j≠1
n consisting

of m red edges followed by a mixture of blue, red and white edges satisfying
the following properties:

• there is no red subpath of length greater than m; and
• there are exactly 6pn edges that are blue or red.

Recall that for j = 1 there are no white edges.
Add a path –

j
n of length pn connecting the last vertex of P

j
n to the first

vertex of P
j
n, and label its edges using the first pn unused elements of Y .

Color these new edges white. The graph obtained by adding the path –
j
n

has two simple cycles containing –
j
n. Denote the simple cycle containing

P
j
n by D

j
n, and denote the other by C

j
n. There are only finitely many red

edges in Cn so this process will terminate for each n. (See Figure 3.1.)
Let S

Õ = S fi Y , and let R
Õ be the union of {ri | i < N} and the set of

labels of the cycles D
j
n. It is clear that S Òæ S

Õ. We claim that this inclusion
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Figure 3.1. The darkened portions of the cycle Cn are composed of
red edges, the interior arcs are white, and all other edges are blue.

induces a monomorphism „ : G = ÈS |RÍ æ G
Õ = ÈSÕ |RÕÍ. To see that this

inclusion induces a homomorphism „ : G æ G
Õ, we show that all relations

in G hold in G
Õ. If i < N , then ri œ R

Õ. If i > N , then ri is the label of the
cycle Ci, and by construction, ri is the label of the boundary of a product
of finitely many cycles D

j
i , whose labels are elements of R

Õ. In either case,
the relation ri holds in G

Õ. To further prove that „ is a monomorphism,
suppose v œ F (S) is trivial in G

Õ. Then v is the label of a product of cycles
Ci and D

j
i . However, by construction, the only way the label of such a

product can be an element of F (S) is if v can also be written as the label
of a product of cycles Cn. Therefore, v =G 1.

We now show that R
Õ is a C

Õ( 1
6 ) subset of F (SÕ) and that there exists

some l > 0 such that no r œ R
Õ has a reduced decomposition r

Õ = w
l
v

Õ for
any w œ W.

By construction, a piece in R
Õ is either a piece in R or the label of a

subpath of some –
j
n. If it is a piece in R then it is the label of a subpath of

some Cn. If n < N there is nothing to prove. Otherwise, the piece has length
at most pn, while the length of any D

j
n is at least 7pn by construction. Thus

R
Õ is a C

Õ( 1
6 ) subset of F (SÕ).

Fix l > m so that no subpath of any Cn with n 6 N has label contained
in W l \ {1}, and suppose there exists some r

Õ œ R
Õ which has a reduced

decomposition r
Õ = w

l
v

Õ such that w œ W. Then r
Õ must be the label

of a subpath of some D
j
n which contains at least l consecutive red edges.

However, by construction, any subpath of any D
j
n consisting solely of red

edges has length at most m, so there are no such subpaths.
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Finally, suppose |S| < Œ. Since there are only finitely many words of
a given length, pn æ Œ as n æ Œ. Thus there is a last cycle which con-
tains a path of any fixed length which has not appeared as a subpath of
any previous cycle. For each k let lk be the length of the longest cycle Cn

with pn 6 k. It follows that for all g œ G such that dSÕ(1, g) 6 k, we have
dS(1, g) 6 lkk, so G fl B

SÕ(1; k) has finitely many elements. Therefore, the
image of G in G

Õ is metrically proper, so every element of infinite order
in G acts weakly properly discontinuously on Cay(GÕ

, S
Õ). Moreover, every

infinite order element of W has strongly contracting orbits in Cay(GÕ
, S

Õ)
by [4, Corollary 4.14]. Therefore, by applying [5, Theorem H] and [15, The-
orem 1.4], we conclude that all such elements are generalized loxodromic
elements of G. ⇤

Theorems 1.5 and 1.7 are special cases of the above theorem, where W is
a single infinite order element or the whole of G = ÈS |RÍ, respectively. In
the second case it is easy to see that R

Õ is uniformly power-free. Thus [9,
Theorem 5.10] implies G

Õ (and hence G) acts acylindrically on its coned-o�
graph „X Õ and every infinite order element of G

Õ acts loxodromically. Hence
the action G y „X Õ is universally acylindrical.

Remark 3.3. — To conclude that elements of W are generalized loxo-
dromic in the case where |S| = Œ, one can begin with the argument above
and attempt to prove directly that each infinite order element of W acts as
a WPD isometry of G

Õ. The necessary ingredients would likely include an
understanding of quadrangles with two sides labeled by powers of a word.
Since these are not geodesics in general (though they are close, see [11,
Theorem 4.2]) there is an extra complication to be dealt with before the
classification of quadrangles in small cancellation groups can be used. Since
most interest in these groups is focused on finitely generated examples, we
will not pursue this further here.

We are now ready to prove Theorem 1.2.
Proof of Theorem 1.2. — Set S = {a, b, c, d}, and for each k > 7 fix

2k+4 distinct words w
i
k(b, c) in F (b, c) of length exactly k. Now define

rk = a
2k

�2k+4

i=1 dw
i
k.

Set G = ÈS |r7, r8, . . .Í. It is easy to check that this presentation satisfies
C

Õ( 1
6 ), since |rk| = (16k+17)2k and the longest possible piece in this relator

is a
2k

dw
1
k which has length 2k +k+1 6 2·2k. Since relators in C

Õ( 1
6 ) groups

are isometrically embedded in the Cayley graph, the map Z æ Cay(G, S)
given by n ‘æ a

n is an isometric embedding. Using [4, Theorem 4.1], we
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see that ÈaÍ is not fl-contracting in Cay(G, S) unless fl(r) ≤ r/ log(r). It
remains to prove that a is a generalized loxodromic element.

Next let X = {x1, x2, . . .} be a countably infinite set, define S
Õ = S Û X

and for each k > 5 and 0 6 j 6 2k ≠ 1 define the following elements of
F (SÕ):

R
j
k = ax

j
k

S

U
16(j+1)Ÿ

i=16j+1
dw

i
k(b, c)

T

V (xj+1
k )≠1

where each x
j
k is the product of the first k elements of X which have not

already appeared in some x
i
l with either i < j and l 6 k or l < k, except

for x
0
k and x

2k

k , which are equal to the identity.
We first claim that G

Õ = ÈX |RÍ is C
Õ( 1

8 ) where R is the set of cyclically
reduced conjugates of the R

j
k and their inverses. Since the x

j
k are words in

disjoint alphabets, any piece which is an initial subword of some R
j
k must

either be some (xj
k)±1 or a subword of a word of the form (wi

kdw
i+1
k )±1 or

(w16(j+1)
k aw

16j+1
k )±1. Hence any piece u contained in a relation R

j
k satisfies

|u| 6 2k + 1 and |Rj
k| > 16(k + 1). Since 2k + 1 <

1
8 · 16(k + 1) the claim is

verified.
The proof of Theorem 3.2 can be repeated verbatim to deduce that the

inclusion S Òæ S
Õ extends to a monomorphism G æ G

Õ, that ÈaÍ is strongly
contracting in X

Õ = Cay(GÕ
, S

Õ) and that the action of a on X
Õ is weakly

properly discontinuous. It follows that a is a generalized loxodromic element
of G by again applying [5, Theorem H] and [15, Theorem 1.4]. ⇤

It is clear that the log(r) term in statement of Theorem 1.2 is necessary
for our method of proof, since any word in a finitely generated free group
of length n must contain two identical subwords of length ® log(n) by
the pigeon-hole principle. However, if we do not require that our group be
finitely generated, then for any function fl such that lim infræŒ fl(r)/r = 0,
we can find a countable group G generated by a set Y and an element a

which is a generalized loxodromic element of G but is not fl-contracting in
Cay(G, X). We end this section by describing this construction.

Example 3.4. — Fix a function fl(r) such that 1 6 fl(r) 6 r for all r and
lim infræŒ fl(r)/r = 0. Define an unbounded function · : N æ N such that
·(r)2 6 r/fl(r). Now let Y = {y1, y2, . . .} be a countably infinite set. Fix
a sequence (nk)kœN µ N such that for each nk, lk := Ânk/·(nk)Ê > 6 and
·(nk) > k, and define the following elements of F ({a} Û Y ):

rk = a
lk wk,
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where wk is the product of the first 2nk elements of Y which have not
previously appeared in any wl with l < k. Now

|rk| = lk + 2nk > 2klk,

so G = È{a} Û Y |r3, r4, . . .Í is C
Õ( 1

6 ) since the only pieces are powers of
a. Again, the map n æ a

n defines an isometric embedding of Z into
Cay(G, {a} Û Y ). Suppose for a contradiction that ÈaÍ is fl-contracting,
so by Theorem 2.3 it is locally fl

Õ-contracting for some fl
Õ ® fl. This means

that for any (cyclically reduced conjugate of) a relation rk with reduced
decomposition a

lk wk we must have fl
Õ(|wk| /2) > lk

(1) . But the relations rk

above satisfy

lk 6 fl
Õ(|wk| /2) = fl

Õ(nk) ® fl(nk) ∞ nk

·(nk)2 ∞ nk

k·(nk) ∞ lk

k
,

which is a contradiction for su�ciently large k.
Arguing as before we can construct a supergroup G

Õ of G such that ÈaÍ
is strongly contracting in a Cayley graph X

Õ of G
Õ and G acts metrically

properly on X
Õ (the x

j
k should be chosen to have length ·(nk)). Hence, a

is a generalized loxodromic element of G.

4. Detecting non-generalized loxodromic elements

In this section, we give a su�cient condition for an element of a group to
fail to be generalized loxodromic, proving Theorem 1.3 and Corollary 1.4.
Additionally, we construct a particularly nice family of examples which are
used to prove Theorems 1.1, 1.6, and 1.8.

4.1. Hyperbolically embedded subgroups

We briefly review the definition of a hyperbolically embedded subgroup
and refer the reader to [15] and [10] for a more complete discussion.

Let H be a subgroup of G and X ™ G a relative generating set, i.e., a
subset such that G = ÈX fi HÍ. We consider the Cayley graphs Cay(G, X Û
H) and Cay(H, H), and we naturally think of the latter as a subgraph
of the former. We define a metric ‚d : H ◊ H æ [0, Œ] as follows. Given
h1, h2 œ H, let ‚d(h1, h2) be the length of the shortest path from h1 to h2

(1) Specifically, we have flÕ(Á|wk| /4Ë) > lk. Since the function flÕ is non-decreasing, the
condition flÕ(|wk| /2) > lk is weaker.
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in Cay(G, X Û H) that does not include any edges from Cay(H, H). If no
such path exists, then let ‚d(h1, h2) = Œ.

We say H is hyperbolically embedded in G with respect to X, and write
H Òæh (G, X), if the following hold:

(1) Cay(G, X Û H) is hyperbolic; and
(2) (H, ‚d) is a locally finite metric space, i.e., any ball of finite radius

in H with respect to the metric ‚d contains finitely many elements.
We first gather some facts about hyperbolically embedded subgroups.

Given a generalized loxodromic element w œ G, let E(w) be the maxi-
mal virtually cyclic subgroup containing w. The following lemma is [14,
Corollary 2.9].

Lemma 4.1. — Suppose X is a subset of G such that Cay(G, X) is
hyperbolic, G y Cay(G, X) is acylindrical, and w œ G is loxodromic with
respect to this action. Then E(w) Òæh (G, X).

The next lemma follows from [10, Lemma 4.11(b) and Theorem 4.24(a)].

Lemma 4.2. — If H is a subgroup of G and X a subset of G such that
H Òæh (G, X), then there is a finite subset Y µ H such that ‚d is biLipschitz
equivalent to a word metric dY .

We require one additional lemma, which is a simplified version of [10,
Proposition 4.14]. If H Òæh (G, X), then a subpath p of a path q in
Cay(G, X ÛH) is an H-component if the label of p is a word in the alphabet
H and p is not contained in a longer subpath of q whose label is a word
in the alphabet H. Two H-components p1, p2 of a path q are connected if
there is an edge c labeled by an element of H whose initial vertex is on p1
and whose terminal vertex is on p2. Algebraically, this corresponds to every
vertex of p1 and p2 belonging to the same coset of H. An H-component p

of a path q is isolated if it is not connected to any other H-component of q.
For each µ > 1, c > 0, and n > 2, let Qµ,c(n) denote the set of all

pairs (P, I) where P = p1 . . . pn is an n-gon in Cay(G, X Û H) and I is
the distinguished subset of sides {p1, p2, . . . , pn} such that each pi œ I is
a (µ, c)-quasi-geodesic and an isolated H-component in P. Note that we
allow sides of P to be trivial. Given (P, I) œ Qµ,c(n), let

s(P, I) =
ÿ

piœI

‚d((pi)≠, (pi)+),

and let
sµ,c(n) = sup

(P,I)œQµ,c(n)
s(P, I).
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Lemma 4.3. — Let H be a subgroup of G and X a subset of G such
that Cay(G, X Û H) is hyperbolic. Then for any µ > 1 and c > 0, there
exists a constant D = D(µ, c) > 0 such that sµ,c(n) 6 Dn for any n œ N.

Notice that the hypotheses of Lemma 4.3 are satisfied if H Òæh (G, X).

4.2. Detecting non-generalized loxodromic elements

In this section, we give a su�cient condition under which an element is
not generalized loxodromic. Recall that given a family of cyclic graphs {Cn}
with directed edges labelled by elements of S, and an element w œ F (S)
we say {Cn} is w-saturated if

lim
mæŒ

lim sup
|Cn|SæŒ

(satwm(Cn)) > 0,

where satv(Cn) = lv(n)/ |Cn| and lv(n) is the maximal number of edges in
Cn which lie on (not necessarily disjoint) subpaths of Cn whose labels are
powers of cyclically reduced conjugates of v (see Definition 3.1).

Theorem 4.4. — Let G be a group generated by a symmetric set S,
and suppose there are uniformly (µÕ

, c
Õ)-quasi-isometric simplicial maps

Ân : Cn æ Cay(G, S). Denote the (not necessarily embedded) cycle Â(Cn)
in Cay(G, S) by Dn, and denote the label of Dn (as a word in F (S)) by
rn. If � =

g
n Dn is {w}-saturated for some w œ F (S), then w is not a

generalized loxodromic element of G.
Proof. — Without loss of generality, we may assume that w is cycli-

cally reduced. Suppose for a contradiction that w is a generalized loxo-
dromic element and choose X µ G such that Cay(G, X) is hyperbolic,
G y Cay(G, X) is acylindrical and w is loxodromic with respect to this
action. Let E(w) be the maximal virtually cyclic subgroup containing w.
Choose a constant M so that E(w) is contained in the M -neighbourhood
of ÈwÍ in Cay(G, X). By Lemma 4.1, E(w) Òæh (G, X). Let Y µ E(w) be
the finite subset provided by Lemma 4.2. It follows immediately that there
is a constant Ÿ > 0 such that dY (a, b) > ŸdS(a, b) holds for all a, b œ E(w).

For each su�ciently large l, we choose some N = N(l) such that
satwl(DN ) > Á > 0. We will now replace DN by a 2k(l)-gon, where the
images of odd numbered sides are isolated E(w)-components, while even
numbered sides are geodesics in Cay(G, X Û E(w)) connecting end points
of consecutive odd numbered sides. We will then show that these poly-
gons cannot satisfy Lemma 4.3, contradicting the assumption that w is a
generalized loxodromic element.
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To do this, consider a maximal collection PN of disjoint subpaths of CN

such that for each P œ PN , ÂN (P ) is labeled by w
k for some k > l. Extend

each ÂN (P ) to a maximal length subpath L of DN which is contained in
the same coset of E(w) as the end vertices of ÂN (P ). Notice that for all
N large enough, DN cannot be contained in a single E(w) coset and that
multiple P ’s may define the same L. Let L1, . . . Lk be the collection of all
such paths L, and for each Li let ai, bi be the end vertices of the path.

The cycles DN are uniformly quasi-isometrically embedded in Cay(G, S),
so

kÿ

i=1
lS(Li) ®

kÿ

i=1
dS(ai, bi) ∞

kÿ

i=1
dY (1, a

≠1
i bi) ®

kÿ

i=1

‚d(ai, bi)

The Cayley graph Cay(G, X) is a subgraph of Cay(G, X ÛE(w)), so we can
consider the Li as paths in Cay(G, X Û E(w)). In Cay(G, X Û E(w)) each
Li œ LN can be replaced by an edge ei, and then the ei can be connected
by geodesics “i to form a 2k(l)-gon P = (e1, “1, . . . , ek(l), “k(l)), where the
ei are all isolated E(w)-components. Setting I = {ei | 1 6 i 6 k(l)} we see
that

s(P, I) =
kÿ

i=1

‚d(ai, bi) ≤
kÿ

i=1
lS(Li) ≤

ÿ

P œPN

|P | ≤ lN .

The last step uses the fact that the DN are w-saturated. Thus k(l)/lN is
bounded away from 0 by Lemma 4.3.

On the other hand, each isolated component has length which grows
at least linearly with l, and so there are k(l) ∞ lN /l such components.
Therefore, k(l)/lN æ 0 as l æ Œ, which is a contradiction. ⇤

From this, we recover a theorem of Sisto [16, Theorem 1.1].

Corollary 4.5. — Let G be a group generated by a finite set S, and
suppose there is some w œ G of infinite order such that the orbit of w is not
Morse in X = Cay(G, S). Then w is not a generalized loxodromic element
of G.

Proof. — Suppose towards a contradiction that w is a generalized lox-
odromic element of G. Without loss of generality we may assume w is
cyclically reduced as an element of F (S). Since ÈwÍ is not Morse, there ex-
ist constants K > 1 and C > 0 and continuous (K, C)-quasi-geodesics –n

from 1 to w
m(n) which are not contained in the n-neighbourhood of ÈwÍ.

Fix any geodesic [1, w] in X and consider the bi-infinite path P obtained
by concatenating the translates of [1, w] by ÈwÍ. Let k = lS(w) and assume
n > 3k. Increasing K and C if necessary, we ensure that P is a continuous
(K, C)-quasi-geodesic. Let x œ –n be a vertex at maximal possible distance
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from the restriction of P to a path Pn from 1 to w
m(n). It follows that

l = dS(x, Pn) > n ≠ k. Following –n in each direction from x, let y and y
Õ

be the first vertices satisfying

2KdS(·, Pn) 6 dS(·, x).(4.1)

Choose any geodesics “ and “
Õ from y and y

Õ, respectively, to any closest
points z and z

Õ on Pn. Denote the quasi-geodesic quadrangle with sides
“, “

Õ and the restrictions of Pn and –n to paths from z to z
Õ and y to y

Õ,
respectively, by Dn. (See Figure 4.1).

1

wm(n)

x

y

z z0

y0

↵n

Pn

�
�0

Figure 4.1.

We will now argue, using the proof of Theorem 4.4 as our model, that
the cycles Dn provide an obstruction to w being a generalized loxodromic
element.

Firstly, we argue that {Dn} is w-saturated. For this it su�ces to show
that |P fl Dn| = dS(z, z

Õ) is bounded from below by some positive multiple
of |Dn|. Notice that since y, y

Õ lie on the continuous (K, C)-quasi-geodesic
–n which we may assume is parametrized by arc length, we have

dS(y, y
Õ) > 1

K
(dS(y, x) + dS(x, y

Õ)) ≠ C.(4.2)

Therefore, by the triangle inequality, (4.1), and (4.2), we have
dS(z, z

Õ) > dS(y, y
Õ) ≠ dS(y, Pn) ≠ dS(yÕ

, Pn)

> 1
2K

(dS(y, x) + dS(x, y
Õ)) ≠ C,

so it su�ces to show that dS(x, y) is uniformly proportional to |Dn|. By (4.1)
and the fact that dS(x, y) + dS(y, Pn) > l, we have

dS(x, y) > 2KdS(y, Pn) > 2Kl ≠ 2KdS(x, y)

and thus dS(x, y) > 2Kl
2K+1 .
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Next we bound |Dn|. Since y œ –n, dS(y, Pn) 6 l, so dS(x, y) 6 2Kl.
Therefore the subpath of –n from y to y

Õ has length at most 4K
2
L + C.

Moreover, dS(z, z
Õ) 6 4Kl+2l, so the length of the subpath of P connecting

z to z
Õ has length at most 4K

2
l + 2Kl + C. Thus

|Dn| 6 8K
2
l + 2Kl + 2l + 2C,

completing the argument (for large enough n).
Now it need not be the case that the Dn are uniformly quasi-isometrically

embedded in Cay(G, S), but even so the technique employed in the proof
of Theorem 4.4 can be made to work. As in that proof, consider a maximal
subpath L of the cycle Dn containing Dn fl Pn whose end-vertices are
contained in E(w). By construction (for su�ciently large n) this path is
contained in Dn fl Pn plus two subpaths of [y, z] and [yÕ

, z
Õ] of uniformly

bounded length. Let P be the quadrangle consisting of sides L, the subpaths
of [y, z] and [yÕ

, z
Õ] not already included in L and the restriction of –n to a

path from y to y
Õ. Let a, b be the end vertices of L. Arguing as before we

see that

s(P, I) = ‚d(a, b) ≤ dS(a, b) ≤ |Dn fl Pn| ≤ |Dn| .

This contradicts Lemma 4.3. ⇤
We immediately deduce Corollary 1.4 from this.
Let us finish this section by giving a simple example of a group with an

infinite order element which is Morse but cannot be generalized loxodromic
by Theorem 4.4.

Example 4.6. — Let R be the set of all cyclically reduced conjugates
of the following words (indexed by natural numbers n > 12), and their
inverses, in F (a, b):

rn = ab
n2+1

ab
n2+2

. . . ab
(n+1)2

and define G = ÈS |RÍ. Firstly, R satisfies the C
Õ( 1

6 ) condition, since any
piece in rn is a subword of b

(n+1)2≠1
ab

(n+1)2 or its inverse and so has length
at most 2(n + 1)2, while |rn| > (n + 1)3. Notice that 2(n + 1)2

<
1
6 (n + 1)3

because we assumed n > 12. The corresponding collection of cycles Cn

embed isometrically into X = Cay(G, S), and � =
g

n Cn is {b}-saturated,
so b is not generalized loxodromic by Theorem 4.4. However, the map Z æ
X defined by n ‘æ b

n is an isometric embedding and the geodesic with
vertex set ÈbÍ is fl-contracting for fl(r) ® r

2

3 (see Theorem 2.3).
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4.3. A construction of non-examples

Here we will give a versatile construction which allows us to prove that
the seemingly arbitrary hypotheses of Theorem 1.5 are sharp. This con-
struction can be used to build groups with elements that are contracting
but not generalized loxodromic, as well as torsion-free groups which are not
universally acylindrical.

Example 4.7. — In each case we begin with a collection of distinct words
{gn | n œ N} ™ F (a, b) \ {1} and a function f : N æ N such that f(n) >
12 for all n. From this data we construct elements of F (a, b, c, d) in the
following way:

(4.3) Rn =
f(n)Ÿ

i=1

Ë
c

di

gn(c≠1)di

, c
d(f(n)+i)

gn(c≠1)d(f(n)+i)
È

where we use the conjugation notation x
y = yxy

≠1.
Note that to obtain a cyclically reduced word conjugate to Rn we need

only cancel words of the form dd
≠1 and d

≠1
d. Let Cn be the labeled cyclic

graph corresponding to Rn. Set S = {a, b, c, d} and define R to be the
set of cyclically reduced conjugates of the Rn and their inverses. Define
G = F (a, b, c, d)/ ÈRÍ. Our first goal is to prove that R satisfies C

Õ( 1
6 ).

For each 1 6 k 6 2f(n), and each ‘ œ {±1} there is exactly one subpath
of Cn with each of the following labels:

(4.4) cd
≠k

g
‘
n, g

‘
nd

k
c

≠1
.

Now suppose the label v of a subpath of Cn is a piece. It follows that v

does not contain any of the above words as strict subwords; hence it must
be one of the words in (4.4) or its inverse, a subword of d

≠2f(n)
gnd

2f(n),
or a (strict) subword of a word of the form g

‘
nwg

‘Õ

n where w œ F (c, d) has
length at most 6f(n) + 2. Note that each word in (4.4) has length at most
2f(n) + 1 + |gn| and that Cn has length at least f(n)(3f(n) + 4|gn|), as
each commutator in the product contributes 3 copies of d

f(n) and 4 copies
of gn to a reduced decomposition of Rn. It follows that R satisfies C

Õ( 1
6 ),

since

6(6f(n) + 2 + 2|gn|) 6 36f(n) + 12 + 12|gn| < f(n)(3f(n) + 4|gn|).

For each n set Sn =
)

d
i
cd

≠i
gnd

i
c

≠1
d

≠i
-- 1 6 i 6 2f(n)

*
. Our next goal

is the following.

Proposition 4.8. — For each n, the subgroup of G generated by Sn is
isomorphic to the fundamental group of a closed surface of genus f(n).
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It su�ces to prove that F (Sn)flÈÈ{Rk}ÍÍF (S) = ÈÈRnÍÍF (Sn), where ÈÈXÍÍG

denotes the subgroup of G normally generated by X. In particular, we need
to show that if w œ F (Sn) satisfies w =G 1 then w is equal in F (S) to a
product of conjugates of Rn by elements of F (Sn).

Lemma 4.9. — Any word in F (Sn) has a reduced decomposition in F (S)
which is obtained from a word of the following form only by cancelling words
of the form dd

≠1 and d
≠1

d:

(4.5) w =F (S)

mŸ

l=1
d

xlcd
≠xlg

yl
n d

xlc
≠1

d
≠xl

where each xl > 0, yl œ Z \ {0} and xl ”= xl+1.

Proof. — This obviously holds, since di�erent elements of Si all begin
with di�erent powers of d. ⇤

Proof of Proposition 4.8. — Let w œ F (Sn) satisfy w =G 1, and let
Dw be a minimal diagram whose boundary label read clockwise from a
fixed vertex e is the representation of w in the free monoid M(S Û S

≠1)
presented in (4.5). Note that this diagram has vertices of degree 1 (which we
will call spurs). Such a vertex is always connected to a vertex of degree at
least 3 in Dw by a unique path, all of whose internal vertices have degree 2.
Necessarily the label of this path is a power of d; this corresponds exactly to
the fact that the representation of w in (4.5) can be reduced to a cyclically
reduced word in F (S) only by cancelling words of the form dd

≠1 and d
≠1

d.
By Greendlinger’s lemma, there is a face � in Dw such that ˆ� fl ˆDw

is connected and has at least 1
2 |ˆ�| edges (it may be the whole of ˆ�).

Then the label of ˆ� is equal in F (S) to some Rk, and, in particular, some
subpath of ˆDw has label dg

‘
kd

≠1 for ‘ œ {±1}. Since all of the gi are
distinct, and the label of ˆDw does not contain a subpath labeled dgid

≠1

for any i ”= n, we deduce that k = n.
Moreover, there is a spur x in Dw which is connected by a path to a

vertex in ˆ� of degree at least 3. We see immediately that the label of
the subpath of ˆDw from e to x has exactly the form given in (4.5) and
consequently is an element of F (Sn). It also follows that the label of ˆ�
read from x is (a reduction of) a cyclic conjugate of Rn by an element
of F (Sn). Consequently, w can be expressed as the product of a word
w

Õ œ F (Sn) satisfying w
Õ =G 1 and a conjugate of R

±1
n by an element of

F (Sn). Moreover, we ensure that lF (S)(wÕ) < lF (S)(w). Thus by induction
on lF (S)(w) we see that any w œ F (Sn) with the property that w =G 1,
can be expressed as a product of conjugates of R

±1
n by words in F (Sn). ⇤

We illustrate the above proof in the figure below.
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. . . cd
≠x1gnd

x1c
≠1

. . .

x

. . . cd
≠xk g

±1
n d

xk c
≠1

. . .

�
ˆD

e

d
x1≠xm

Figure 4.2. Intersection of relators and boundary words

We now use the above construction to prove the following result, from
which Theorems 1.1 and 1.6 immediately follow. Given a set

R = {r1, r2, . . .} µ F (S),

let Cn = Crn , and let pn = prn denote the length of the longest piece in rn.

Corollary 4.10. — For every unbounded function fl : N æ N there ex-
ists a set R = {r1, r2, . . .} µ F (a, b, c, d) such that pn · satb(Cn) ∞ fl(n) and
ÈbÍ is fl

Õ-contracting for some fl
Õ ® fl, but b is not generalized loxodromic.

Proof. — Without loss of generality, we may assume that fl(n)/n æ 0
as n æ Œ. In the construction in Example 4.7, set gn = a

n
b

fl(n)
a

≠n and
f(n) = n. It is clear that b has infinite order in the resulting group G =
F (a, b, c, d)/ÈRÍ, and by Theorem 2.3, ÈbÍ is fl

Õ-contracting for some fl
Õ ® fl.

The longest piece in Cn has length ® n. To find an upper bound on
the saturation notice that Cn contains exactly 4n copies of b

fl(n) and that
|Cn| ® n

2. Therefore,

pn · satb(Cn) ∞ n · 4nfl(n)
n2 ∞ fl(n).

Suppose for a contradiction that b is a generalized loxodromic element.
Then there exists a constant N such that for every n > N , ÈÈbnÍÍ is a free
group. Choose k œ N so that fl(k) > N . By construction, ÈÈbfl(k)ÍÍ contains
the subgroup of G generated by Sk. However, this subgroup is not free by
Proposition 4.8, yielding the contradiction. ⇤

We are now ready to prove Theorem 1.8.
Proof of Theorem 1.8. — Let w

ú = (wk)kœN = abbabaab . . . be the
Thue–Morse sequence, that is, the infinite word generated by iterating the
procedures a ‘æ ab and b ‘æ ba on the word a. This sequence is famously
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triple-free. For each n let

gn = (b3
w2nw2n+1 . . . w2n+1≠1)n

in the construction in Example 4.7, and let G = F (a, b, c, d)/ÈRÍ be the
resulting group.

We will first show that every non-trivial element of F (a, b) is generalized
loxodromic in G. Suppose for a contradiction that v is a cyclically reduced
word in F (a, b) such that arbitrary powers of v appear as labels of subpaths
of the cycles Cn. By construction of R, v must be a subword of gn for some
n. Choose a cyclic conjugate of v of the form b

k
v

Õ with |k| maximal. If
|k| > 3, then for all n su�ciently large, no (non-zero) power of v is a
subword of gn, which is a contradiction. If |k| < 3, then for every j > 0
there is some n > 0 such that v

j is a subword of b
2
w2n+1 . . . w2n+1≠1b

2.
However, the Thue–Morse sequence is triple-free, so this word contains no
non-trivial seventh powers, and we again reach a contradiction. Thus v

is D-contracting for some constant D, and so by [4, Theorem 6.2], v is
a generalized loxodromic element. Therefore, every non-trivial element of
F (a, b) is generalized loxodromic in G.

We next show that G is not universally acylindrical. Suppose for a con-
tradiction that G admits a universal acylindrical action. Then by [10, The-
orem 5.3 and Proposition 6.34(b)] there exists a uniform constant m such
that for every generalized loxodromic element h œ G, ÈÈhmÍÍ is a free sub-
group of G. Since every non-trivial element of F (a, b) is generalized lox-
odromic, it follows that for every n > m, ÈÈgnÍÍ is a free subgroup of G.
However, by construction, ÈÈgnÍÍ contains the subgroup of G generated by
Sn which by Proposition 4.8 is not free, yielding the contradiction.

The same proof will work for any infinite subset of {Rn}. Using Bowditch’s
taut loop spectrum [7] as an invariant we obtain non-quasi-isometric groups
which are not universally acylindrical. ⇤

Remark 4.11. — By adjusting the above construction, it is possible to
give an example of a finitely generated group in which every non-trivial
element is generalized loxodromic but which is not universally acylindrical.
For example, one could replace the powers of d in (4.3) by a collection of
words in F (c, d) which are uniformly power-free.
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