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Superconductivity arises from the pairing of charge-e elec-
trons into charge-2e bosons—called Cooper pairs—and 
their condensation into a coherent quantum state. The exact 
mechanism by which electrons pair up into Cooper pairs in 
high-temperature superconductors is still not understood. 
One of the plausible candidates is that spin fluctuations can 
provide an attractive effective interaction that enables this1–3. 
Here we study the contribution of the electron–spin-fluctuation 
coupling to the superconducting state of the two-dimensional 
Hubbard model within dynamical cluster approximation4 
using a numerically exact continuous-time Monte Carlo 
solver5. We show that only about half of the superconductivity 
can be attributed to a pairing mechanism arising from treating 
spin fluctuations as a pairing boson in the standard one-loop 
theory. The rest of the pairing interaction must come from 
as-yet unidentified higher-energy processes.

In conventional superconductors such as lead, a comparison of 
the frequency dependence of the superconducting gap function to 
the frequency spectrum of phonons (quantized lattice vibrations)6,7 
establishes the fact that the electron–phonon interaction provides 
the pairing glue that binds electrons into Cooper pairs. Many 
unconventional superconductors are now known8–11 in which the 
pairing glue is believed not to be provided by phonons. Substantial 
indirect evidence indicates that in many cases, the relevant interac-
tion is the exchange of spin fluctuations1–3, but direct evidence has 
been lacking and many other mechanisms have been proposed12–17.

The theoretical study of unconventional superconductivity that is 
believed to arise from strong electron–electron interactions requires 
a model that captures the essentials of correlated electron physics, 
and can be studied non-perturbatively. The Hubbard model18,19 has 
been proposed as the minimal theoretical model of quantum mate-
rials such as the copper-oxide-based high-Tc (Tc, transition temper-
ature) superconductors20. This model describes electron hopping 
among sites of a lattice (here we consider the two-dimensional 
square lattice case with nearest-neighbour hopping of amplitude t) 
and subject to a site-local repulsive interaction U.

To have non-perturbative access to both static phase diagram 
and dynamical properties, we use the dynamical cluster approxi-
mation (DCA)4 method. In DCA, the electron propagator and 
spin-fluctuation spectrum are computed within the same formal-
ism and at the same level of approximation, enabling a quantitative 
analysis of the electron–spin-fluctuation interaction. The resulting 
solution21,22 produces a good qualitative description of the physics of 
the high-Tc copper oxide superconductors, including a high-doping 
Fermi-liquid regime, a Mott insulator, a low-doping pseudogap 

and an intermediate-doping dome of d-wave superconductivity. 
The extent to which a stripe magnetic phase pre-empts the super-
conducting phase found in the DCA is currently under debate19,23, 
but we emphasize that the superconductivity found in DCA is 
well defined and locally stable, with properties that we study in  
this paper.

We quantify the strength of the electron–spin-fluctuation cou-
pling in the model by analysing the frequency dependence of the 
computationally determined electron self-energy, superconducting 
gap function and spin-fluctuation spectrum. Our analysis shows 
that at intermediate interaction and slightly overdoped regime, 
about half of the superconductivity is attributable to spin fluctua-
tions in the one-loop spin fluctuation theory, with the other half 
coming from higher-energy processes.

We investigated several different doping levels and interaction 
strengths. We present here the results obtained for doping x ≈ 0.10 
(carrier concentration n = 1 − x per site) and temperatures as low as 
T = t/50. For this carrier concentration at U = 6t, the normal state 
is a momentum-space-differentiated Fermi liquid outside the pseu-
dogap regime, corresponding to the overdoped side of the cuprates. 
The superconducting state, which we explicitly construct, appears 
below Tc ≈ t/40. The choice of parameters is influenced by the fol-
lowing considerations: for higher U, calculations become more 
difficult5, whereas for lower U, they are less relevant for strong cor-
relation superconductivity. Higher doping levels reduce Tc, whereas 
lower doping levels enhance the effects of the nearby pseudogap 
and the effects of the antiferromagnetic state around half-filling, 
making one-loop spin-fluctuation theory less likely to succeed. We 
will briefly comment on the results for different doping levels in the 
conclusions.

We calculate the normal (N) and anomalous (A) components of 
the electron self-energy. Using recent algorithmic developments24, 
we also calculated the impurity-model spin susceptibilities χ in both 
normal and superconducting states.

Spin-fluctuation theories yield the contribution of spin  
fluctuation (SF) to the N and A self-energies in terms of spin  
susceptibility as well as N and A components of the Green function 
G
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 as1,3,6,25 (Fig. 1)
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We assess the relevance of spin fluctuations by using our calculated 
G and χ, along with an estimated coupling constant g to compare ΣSF 
(equation (1)) with our numerically calculated self-energies.
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The method to estimate g2 is explained in detail in Methods. 
In general, we partition the imaginary part of the real-frequency 
self-energy into a low-frequency part that we suppose arises mainly 
from spin fluctuations and a higher-frequency part that represents 
all the other processes contributing to the imaginary part of the 
self-energy: ImΣ

N

K

(ω) = ImΣ
SF;N

K

(ω) + ImΣ
high:N
K

(ω),. We take 
ΣSF;N to have the functional form of equation (1) and determine g2 by 
requiring consistency with our numerically computed self-energies. 
We have computed the self-energies in all the momentum tiles but 
we focus here on the self-energies corresponding to the tiles centred 
on the antinode points (π, 0)/(0, π), where the superconducting gap 
is the maximum and the normal component of the self-energy is 
the largest. We consider consistency both directly on the Matsubara 
axis (avoiding the ambiguities associated with analytical continua-
tion) and on the real axis. For the imaginary-axis analysis, we note 
that the quantity ZN

K

=
∂[ReΣN

K
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 related to the normal-state mass 
enhancement may be estimated from the Matsubara axis results as 
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 (Fig. 2, inset) and cannot be larger than 
the contribution from the spin-fluctuation sector.

The top panel in Fig. 2 shows the Matsubara analysis of the nor-
mal component of the antinode self-energy and the bottom panel 
shows the real-axis fits. Both cases are consistent with a value of 
g2 = 3.8, implying that about 2/3 of ZN comes from the electron–
spin-fluctuation interaction.

With the spin-fluctuation spectrum and the electron–
spin-fluctuation coupling constant in hand, we next determine the 
extent to which superconductivity arises from spin fluctuations by 
solving the anomalous component of equation (1) and compar-
ing the result to the numerically exact continuous-time quantum 
Monte Carlo solution, which gives d

x

2

−y

2-symmetry supercon-
ductivity. We begin with the equation for Tc, obtained by lineariz-
ing equation (1) in the anomalous component of self-energy. The 
resulting equation is a linear eigenvalue equation for eigenvector 
ΣA(iωn); the largest eigenvalue λ increases as temperature decreases, 
and Tc is the temperature at which the leading eigenvalue equals 
unity (equation (16)). A d

x

2

−y

2-symmetry gap yields a non-negative 
eigenvalue. Using our estimated g2 = 3.8, we find that at temperature 
T = t/40, the leading eigenvalue λ is about 0.5 (Fig. 3, inset); there-
fore, increasing the net pairing strength by a factor of about two 
would be needed to bring the leading eigenvalue up to 1.0 (in fact, 
a larger increase would be required because the coupling constant 
of the normal-state self-energy means that Tc does not vary linearly 
with the coupling).

Figure 3 compares the quantum Monte Carlo anoma-
lous self-energy with the spin-fluctuation self-energy ΣSF;A

K

 at 
K = (0, π). We note that the spin-fluctuation interaction has two 
components, one from fluctuations near the antiferromagnetic 
wavevector (π, π) and one from fluctuations at small momenta 
near Q = (0, 0). The small momentum fluctuations make a nega-
tive contribution to ΣA

K

. At the lowest Matsubara frequency, 
the ΣSF;A

K

 produced by the spin-fluctuation theory is approxi-
mately half the quantum Monte Carlo self-energy, again indicat-
ing that spin-fluctuation theory6 alone cannot account for the  
superconductivity.

In Fig. 4, we examine the frequency dependence of gap function 
Δ(ω), a complex function of real frequency defined in terms of the 
normal and anomalous self-energies at K = (0, π) as26,27

∆(ω) = Σ
A

K

(ω)/

[
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2ω

]
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Following another study6, we compare the frequency depen-
dence of the spin-fluctuation spectrum, imaginary part of the 
DCA-computed gap function and estimated gap function com-
puted by solving equation (1) using the continuous-time quantum 
Monte Carlo–computed ΣA and χ. The real-frequency quantities are 
obtained from the maximum-entropy analytical continuation of 
the imaginary-frequency data obtained at T = t/50, well below the 
superconducting Tc. As noted elsewhere6, the presence of a gap in 
the electron Green function means that a peak in χ at frequency 
ωpeak implies a peak in Δ at Δ0 + ωpeak; therefore, we shift χ by the 
zero-frequency gap function in the comparison.

We emphasize that the uncertainties in the analytical continu-
ation are not small; although the areas are reliably estimated, the 

Fig. 1 | Spin-fluctuation diagrams for normal and anomalous self-energy. 
Solid lines denote normal or anomalous Green’s function and wavy lines, 
spin susceptibility.
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Fig. 2 | Self-energies. Imaginary part of the normal component of the 
Matsubara self-energy for the antinode (0,!π) at U!=!6.0t, βt!=!35 and 
μ!=!−1.0t (n!≈!0.90) compared with spin-fluctuation self-energy computed 
with g2!=!3.8 (top). The inset shows ImΣN

K

(iω
n

)/ω

n

. Negative of the 
analytically continued real axis, the antinode (0,!π) self-energy and 
spin-fluctuation contribution computed with g2!=!3.8 (bottom). The inset 
shows the self-energy over a wide frequency range.
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peak heights and widths are subject to some uncertainty. From 
Fig. 4, it is evident that although the peaks in the gap function and 
shifted χ roughly coincide, the spin-fluctuation contribution to the 
imaginary part of the gap function is concentrated at lower fre-
quencies, decaying much more rapidly than the DCA-computed 
gap function, further demonstrating the importance of a 
high-frequency non-spin-fluctuation contribution to the electron  
self-energy.

Spin-fluctuation theories, in which spin fluctuations (as param-
etrized by susceptibility) are treated as a pairing boson within the 
one-loop approximation, are widely considered to be promising can-
didates for theories of superconductivity. Here we have performed a 
quantitative study, in a well-defined numerically controlled theory, 
of the extent to which this is actually the case. The theory produces 
a superconducting state and a spin-fluctuation spectrum, which 
(taking advantage of recent developments24) we can exactly obtain 
numerically. Access to the spin-fluctuation spectrum enables us to 
compare the spin-fluctuation theory calculation of the normal-state 
self-energies with the numerically exact results for the same quanti-
ties, thereby allowing an estimate of the electron–spin-fluctuation 
coupling constant. Knowledge of the coupling constant then enables 
a quantitative analysis of the contribution of spin fluctuations to the 
superconducting Tc and to the magnitude and form of the super-
conducting gap function. In qualitative consistency with previous 
results3, we find that low-frequency spin fluctuations contribute to 
the superconductivity, but we find that quantitatively only about 
half of the pairing can be attributed to these fluctuations. The 
other half of the pairing, therefore, arises from higher-frequency 
fluctuations, whose nature and precise physical origin remain to  
be determined.

We have similarly examined other doping values and interaction 
strengths (Supplementary Information). For (U = 6.0t, μ = −0.9t 
(x ≈ 0.089)), (U = 6.0t, μ = −1.1t (x ≈ 0.120)) and (U = 5.5t, μ = −0.6t 
(x ≈ 0.067)), our analysis is internally consistent and provides 
reasonable estimates of the spin-fluctuation contribution to the 
self-energy. We find that as doping decreases below x ≈ 0.10 at 
U = 6t, spin-fluctuation theory rapidly becomes a much less satis-
factory description of the normal state, with the spin-fluctuation 

contribution to ΣN apparently decreasing as Tc weakly increases. 
As the doping increases above x ≈ 0.10, the spin-fluctuation contri-
bution to the normal-state self-energy and gap function becomes 
larger, but Tc rapidly decreases. These results are consistent with our 
finding that spin fluctuations do not fully account for the supercon-
ductivity exhibited by the model. An interesting question for future 
research is to extend this analysis to compute the t′ and U depen-
dence of the spin-fluctuation spectrum and compare the results 
with the known24 dependence of superconducting Tc.

The theoretical model used in this work is the eight-site clus-
ter dynamical mean-field approximation in the ‘DCA’ implemen-
tation. The cluster size is chosen based on previous literature to 
capture the pairing and magnetic fluctuations at reasonable com-
putational expense. Cluster dynamical mean-field theory does not 
adequately capture, for example, stripe physics19,23,28–30, which may 
pre-empt superconductivity in some parameter ranges, and the 
cluster sizes available, whereas large enough to provide results that 
compare well with the experiment and more exact calculations, as 
well as cannot capture many of the interesting specifics of super-
conducting phenomenology. However, it is important to emphasize 
that the method provides a single internally consistent computa-
tional scheme that produces a well-defined locally stable superc 
onducting phase whose properties can be studied, and that pro-
vides—at the same level of approximation—normal and anomalous 
self-energies and spin-fluctuation spectra, enabling a theoretically 
meaningful comparison.
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 of K"="(0,"π) at U"="6.0t, βt"="50 and 
μ"="−1.0t (n"≈"0.90). Individual contributions to ΣSF;A from transferred 
momenta Q!=!(π,!π) and Q!=!(0,!0). The inset shows the leading eigenvalues 
computed from the linearized self-energy equation (equation (16)). The 
value of g2 is chosen to be 3.8 for all the temperatures. The dotted line 
shows the linear fit to βt!=!30,!35,!40.
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Our finding that spin fluctuations, as parametrized by the 
spin–spin correlation function χ, and coupled to electrons via the 
standard one-loop approximation, are not the dominant form of 
superconductivity suggests more generally that spin-fluctuation 
theories of this type may miss important aspects of correlated elec-
tron superconductivity. One may put the question in more general 
terms: Fig. 2 shows that an effective low-energy theory involv-
ing spin fluctuations coupled to Green’s functions renormalized 
by high-energy processes accounts at least approximately for the 
normal-state self-energy. How should the low-energy theory be 
extended to account for the superconductivity? One may simply 
supplement the low-energy theory with an additional Bardeen–
Cooper–Schrieffer-type pairing interaction. The frequency depen-
dence of the gap function (Fig. 4) indicates that the microscopic 
physics involves a frequency scale at about t rather lower than the 
approximate 2−3t-frequency scale characterizing the high-energy 
part of the normal component of self-energy. If the nature of these 
higher-frequency contributions to the pairing could be elucidated, 
tuning the relevant degrees of freedom might be an effective strat-
egy for raising Tc.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41567-022-01710-z.

Received: 10 November 2021; Accepted: 7 July 2022;  
Published online: 18 August 2022

References
 1. Miyake, K., Schmitt-Rink, S. & C. M., Varma Spin-!uctuation-mediated 

even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34, 
6554–6556 (1986).

 2. D. J., Scalapino Superconductivity and spin !uctuations. J. Low Temp. Phys. 
117, 179–188 (1999).

 3. T. A., Maier, Poilblanc, D. & D. J., Scalapino Dynamics of the pairing 
interaction in the Hubbard and t−J models of high-temperature 
superconductors. Phys. Rev. Lett. 100, 237001 (2008).

 4. Maier, T., Jarrell, M., Pruschke, T. & M. H., Hettler Quantum cluster theories. 
Rev. Mod. Phys. 77, 1027–1080 (2005).

 5. Gull, E., Werner, P., Parcollet, O. & Troyer, M. Continuous-time 
auxiliary-"eld Monte Carlo for quantum impurity models. EPL 82,  
57003 (2008).

 6. D. J., Scalapino, J. R., Schrie#er & J. W., Wilkins Strong-coupling 
superconductivity. I. Phys. Rev. 148, 263–279 (1966).

 7. W. L., McMillan Transition temperature of strong-coupled superconductors. 
Phys. Rev. 167, 331–344 (1968).

 8. Steglich, F. et al. Superconductivity in the presence of strong Pauli 
paramagnetism: CeCu2Si2. Phys. Rev. Lett. 43, 1892–1896 (1979).

 9. J. G., Bednorz & K. A., Müller Possible high Tc superconductivity in the 
Ba–La–Cu–O system. Z. Physik B—Condens. Matter 64, 189–193 (1986).

 10. Maeno, Y. et al. Superconductivity in a layered perovskite without copper. 
Nature 372, 532–534 (1994).

 11. Kamihara, Y. et al. Iron-based layered superconductor: LaOFeP. J. Am. Chem. 
Soc. 128, 10012–10013 (2006).

 12. Castellani, C., Di Castro, C. & Grilli, M. Non-Fermi-liquid behavior and 
d-wave superconductivity near the charge-density-wave quantum critical 
point. Z. Physik B—Condens. Matter 103, 137–144 (1996).

 13. C. M., Varma Non-Fermi-liquid states and pairing instability of a general 
model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

 14. Capone, M., Fabrizio, M., Castellani, C. & Tosatti, E. Strongly correlated 
superconductivity and pseudogap phase near a multiband Mott insulator. 
Phys. Rev. Lett. 93, 047001 (2004).

 15. P. W., Anderson Is there glue in cuprate superconductors? Science 316, 
1705–1707 (2007).

 16. T. D., Stanescu, Galitski, V. & Das Sarma, S. Orbital !uctuation  
mechanism for superconductivity in iron-based compounds. Phys. Rev. B 78, 
195114 (2008).

 17. Saito, T., Yamakawa, Y., Onari, S. & Kontani, H. Revisiting 
orbital-!uctuation-mediated superconductivity in LiFeAs: nontrivial 
spin-orbit interaction e#ects on the band structure and superconducting gap 
function. Phys. Rev. B 92, 134522 (2015).

 18. J. P. F., LeBlanc et al. Solutions of the two-dimensional Hubbard model: 
benchmarks and results from a wide range of numerical algorithms. Phys. 
Rev. X 5, 041041 (2015).

 19. B.-X., Zheng et al. Stripe order in the underdoped region of the 
two-dimensional Hubbard model. Science 358, 1155–1160 (2017).

 20. P. W., Anderson $e resonating valence bond state in La2CuO4 and 
superconductivity. Science 235, 1196–1198 (1987).

 21. Gull, E., Ferrero, M., Parcollet, O., Georges, A. & A. J., M. Momentum-space 
anisotropy and pseudogaps: a comparative cluster dynamical mean-"eld 
analysis of the doping-driven metal-insulator transition in the 
two-dimensional Hubbard model. Phys. Rev. B 82, 155101 (2010).

 22. Gull, E., Parcollet, O. & A. J., Millis Superconductivity and the pseudogap in 
the two-dimensional Hubbard model. Phys. Rev. Lett. 110, 216405 (2013).

 23. Qin, M. et al. Absence of superconductivity in the pure two-dimensional 
Hubbard model. Phys. Rev. X 10, 031016 (2020).

 24. Chen, X., J. P. F., LeBlanc & Gull, E. Superconducting !uctuations in the 
normal state of the two-dimensional Hubbard model. Phys. Rev. Lett. 115, 
116402 (2015).

 25. P. W., Anderson & W. F., Brinkman Anisotropic super!uidity in 3He: a 
possible interpretation of its stability as a spin-!uctuation e#ect. Phys. Rev. 
Lett. 30, 1108–1111 (1973).

 26. Poilblanc, D. & D. J., Scalapino Calculation of Δ(k, ω) for a two-dimensional 
t−J cluster. Phys. Rev. B 66, 052513 (2002).

 27. Gull, E. & A. J., Millis Pairing glue in the two-dimensional Hubbard model. 
Phys. Rev. B 90, 041110 (2014).

 28. E. W., Huang, C. B., Mendl, H.-C., Jiang, Moritz, B. & T. P., Devereaux Stripe 
order from the perspective of the Hubbard model. npj Quantum Mater. 3,  
22 (2018).

 29. Wietek, A., Y.-Y., He, S. R., White, Georges, A. & E. M., Stoudenmire Stripes, 
antiferromagnetism, and the pseudogap in the doped Hubbard model at "nite 
temperature. Phys. Rev. X 11, 031007 (2021).

 30. Mai, P., Karakuzu, S., Balduzzi, G., Johnston, S. & T. A., Maier Intertwined 
spin, charge, and pair correlations in the two-dimensional Hubbard  
model in the thermodynamic limit. Proc. Natl Acad. Sci. USA 119, 
e2112806119 (2022).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.
Springer Nature or its licensor holds exclusive rights to this article under a publishing 
agreement with the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the terms of such 
publishing agreement and applicable law.
© The Author(s), under exclusive licence to Springer Nature Limited 2022

NATURE PHYSICS | VOL 18 | NOVEMBER 2022 | 1293–1296 | www.nature.com/naturephysics1296

https://doi.org/10.1038/s41567-022-01710-z
https://doi.org/10.1038/s41567-022-01710-z
http://www.nature.com/naturephysics


LETTERSNATURE PHYSICS

Methods
Hubbard model, self-energy and spin susceptibility. We study the two- 
dimensional single-band Hubbard model in both normal and superconducting 
states:
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∑
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with nearest-neighbour hopping t; U is the strength of the interaction, i labels a 
lattice site, k labels the momentum and n is the density operator.
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k↑

(iω
n

)

G

A∗

k↑

(iω
n

) −G

N

−k↓

(−iω

n

)





,

(6)

G

−1

0

(k, iω
n

) =

(

iω

n

− ϵ

k

+ μ 0

0 iω

n

+ ϵ

k

− μ

)

, (7)

Σ(k, iω
n

) =





Σ
N

k↑

(iω
n

) Σ
A

k↑

(iω
n

)

Σ
A∗

k↑

(iω
n

) −Σ
N

−k↓

(−iω

n

)





. (8)

The SU(2) symmetry of the system gives GN

↑

= G

N

↓

.
The magnetic susceptibility is defined with the correlator of magnetization in 

the z direction, that is, Ŝ
z

= n

↑
− n

↓
:

χ

spin

(q, τ) = 〈T Ŝ

z

(q, τ)Ŝ
z

(−q, 0)〉 − 〈Ŝ
z

(q)〉
2

, (9)

χ

spin

(q, iΩ
n

) =

∫

β

0

dτe

iΩ
n

τ

χ

spin

(q, τ). (10)

We measure χspin(q, τ) on the Chebyshev–Gauss–Lobatto collocation points and 
compute χspin(q, iΩn) via spectral transform31,32.

Numerical method. We use the DCA approach to compute the single-particle 
Green function and susceptibility. The DCA4 proceeds by tiling the Brillouin zone 
into N equal-area non-overlapping tiles a centred at momentum points Ka and 
approximating the electron self-energy as Σ

k

(iω
n

) → Σ
K

a

(iω
n

) for k in tile a, so 
that the momentum dependence is approximated as a sum of piecewise constant 
functions and the full frequency dependence is retained. The Σ

K

a

(iω
n

) values are 
obtained from the solution of an N-site quantum impurity model with the same 
interaction U as in the original model and single-particle parameters obtained 
by a self-consistency condition. We have chosen N = 8, which provides sufficient 
momentum resolution and allowing for calculation of the detailed dynamical 
information needed here.

The impurity model is solved with the continuous-time quantum Monte Carlo 
methods5,33.

Coupling constant. We compute the one-loop spin fluctuations in the Matsubara 
frequency space via

Σ
SF;N/A

K

(iω
n

) =
g

2

βN

∑

Q,iΩ
n

χ

Q

(iΩ
n

)GN/A

K−Q

(iω
n

− iΩ
n

). (11)

To estimate the coupling constant g2, we partition the exact normal self-energy 
from DCA into a low-frequency part that is supposed to arise mainly from spin 
fluctuations and a higher-frequency part that represents contributions from all the 
other processes:

ImΣ
N

K

(iω
n

) = ImΣ
SF;N

K

(iω
n

) + ImΣ
high;N

K

(iω
n

), (12)

where the high-frequency process is fitted by a minimal two-parameter equation

ImΣ
fit;N

K

(iω
n

) = −

A

π

ω

n

ω

2

n

+ x

2

0

, (13)

with A and x0 being two fitting parameters. The other relation we impose in the 
fitting procedure is that the quasi-particle weight 

[

1 −

∂[ReΣN

K

(ω)]

∂ω

]

−1

 given by the 
exact self-energy and approximated self-energy from the spin fluctuation plus the 
high-frequency fitting are approximately the same.

Z

N

K

= Z

fit;N

K

+ Z

SF;N

K

, (14a)

Z

N

K

=
Im(ΣN

K

(iω
1

) − Σ
N

K

(iω
0

))

ω

1

− ω

0

. (14b)

The fitting procedure is as follows:
•	 For a given g2, compute ΣSF;N

K

(iω
n

) as in equation (11).
•	 Compute ImΣ

high;N

K

(iω
n

) as in equation (12).
•	 Fit ImΣ

fit;N

K

(iω
n

) to ImΣ
high;N

K

(iω
n

) by computing the two "tting parameters 
A and x0 from the maximum of ImΣ

high;N

K

(iω
n

).
•	 Compute ḡ2 from the requirement of equation (14).
•	 $e value of g2 is decided by requiring g2 = ḡ

2 in the above procedure, 
under the constraint A > 0, −ImΣ

SF;N

K

(iω
n

) ≤ −ImΣ
N

K

(iω
n

), ∀n and 
−Z

SF;N

K

≤ −Z

N

K

.

Linearized self-energy equation. From the matrix form of the Dyson equation, 
the linearized anomalous Green function can be computed as

G

A

K

(iω
n

) =
ImG

N

K

(iω
n

)

ω

n

− ImΣN

K

(iω
n

)
Σ

A

K

(iω
n

). (15)

In an eight-site DCA simulation with d-wave superconductivity, the anomalous 
Green function and self-energy will only be non-zero at K = (0, π) and (π, 0), and 
G

A

(0,π)(iωn

) = −G

A

(π,0)(iωn

) and GN

(0,π)(iωn

) = G

N

(π,0)(iωn

). The one-loop spin 
fluctuations (equation (11)) can then be rewritten as

Σ
A

(0,π)(iωn

)

= g

2

βN

∑

ω

m

[

χ(0,0)(iωn

− iω

m

) − χ(π,π)(iωn

− iω

m

)
]

×

ImG

N

(0,π)
(iω

m

)

ω

m

−ImΣN

(0,π)
(iω

m

)
Σ

A

(0,π)(iωm

)

=
∑

ω

m

F(iω
n

, iω

m

)ΣA

(0,π)(iωm

),

(16)

where F(iωn, iωm) is a matrix in ωn and ωm. The leading eigenvalue λ of this matrix 
should cross one at Tc, if spin fluctuations of this form cause superconductivity; 
otherwise, it denotes the fraction of superconductivity given by one-loop spin 
fluctuations.
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