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Quantifying the role of antiferromagnetic
fluctuations in the superconductivity of the doped

Hubbard model

Xinyang Dong®?, Emanuel Gull

Superconductivity arises from the pairing of charge-e elec-
trons into charge-2e bosons—called Cooper pairs—and
their condensation into a coherent quantum state. The exact
mechanism by which electrons pair up into Cooper pairs in
high-temperature superconductors is still not understood.
One of the plausible candidates is that spin fluctuations can
provide an attractive effective interaction that enables this'.
Here we study the contribution of the electron-spin-fluctuation
coupling to the superconducting state of the two-dimensional
Hubbard model within dynamical cluster approximation*
using a numerically exact continuous-time Monte Carlo
solver°. We show that only about half of the superconductivity
can be attributed to a pairing mechanism arising from treating
spin fluctuations as a pairing boson in the standard one-loop
theory. The rest of the pairing interaction must come from
as-yet unidentified higher-energy processes.

In conventional superconductors such as lead, a comparison of
the frequency dependence of the superconducting gap function to
the frequency spectrum of phonons (quantized lattice vibrations)®’
establishes the fact that the electron-phonon interaction provides
the pairing glue that binds electrons into Cooper pairs. Many
unconventional superconductors are now known®'' in which the
pairing glue is believed not to be provided by phonons. Substantial
indirect evidence indicates that in many cases, the relevant interac-
tion is the exchange of spin fluctuations'~, but direct evidence has
been lacking and many other mechanisms have been proposed'*"".

The theoretical study of unconventional superconductivity that is
believed to arise from strong electron—electron interactions requires
a model that captures the essentials of correlated electron physics,
and can be studied non-perturbatively. The Hubbard model'*" has
been proposed as the minimal theoretical model of quantum mate-
rials such as the copper-oxide-based high-T, (T, transition temper-
ature) superconductors”. This model describes electron hopping
among sites of a lattice (here we consider the two-dimensional
square lattice case with nearest-neighbour hopping of amplitude ¢)
and subject to a site-local repulsive interaction U.

To have non-perturbative access to both static phase diagram
and dynamical properties, we use the dynamical cluster approxi-
mation (DCA)* method. In DCA, the electron propagator and
spin-fluctuation spectrum are computed within the same formal-
ism and at the same level of approximation, enabling a quantitative
analysis of the electron-spin-fluctuation interaction. The resulting
solution?"* produces a good qualitative description of the physics of
the high-T, copper oxide superconductors, including a high-doping
Fermi-liquid regime, a Mott insulator, a low-doping pseudogap
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and an intermediate-doping dome of d-wave superconductivity.
The extent to which a stripe magnetic phase pre-empts the super-
conducting phase found in the DCA is currently under debate'*?*,
but we emphasize that the superconductivity found in DCA is
well defined and locally stable, with properties that we study in
this paper.

We quantify the strength of the electron-spin-fluctuation cou-
pling in the model by analysing the frequency dependence of the
computationally determined electron self-energy, superconducting
gap function and spin-fluctuation spectrum. Our analysis shows
that at intermediate interaction and slightly overdoped regime,
about half of the superconductivity is attributable to spin fluctua-
tions in the one-loop spin fluctuation theory, with the other half
coming from higher-energy processes.

We investigated several different doping levels and interaction
strengths. We present here the results obtained for doping x=0.10
(carrier concentration n=1—x per site) and temperatures as low as
T=t/50. For this carrier concentration at U=6t, the normal state
is a momentum-space-differentiated Fermi liquid outside the pseu-
dogap regime, corresponding to the overdoped side of the cuprates.
The superconducting state, which we explicitly construct, appears
below T~ t/40. The choice of parameters is influenced by the fol-
lowing considerations: for higher U, calculations become more
difficult’, whereas for lower U, they are less relevant for strong cor-
relation superconductivity. Higher doping levels reduce T,, whereas
lower doping levels enhance the effects of the nearby pseudogap
and the effects of the antiferromagnetic state around half-filling,
making one-loop spin-fluctuation theory less likely to succeed. We
will briefly comment on the results for different doping levels in the
conclusions.

We calculate the normal (N) and anomalous (A) components of
the electron self-energy. Using recent algorithmic developments®,
we also calculated the impurity-model spin susceptibilities y in both
normal and superconducting states.

Spin-fluctuation theories yield the contribution of spin
fluctuation (SF) to the N and A self-energies in terms of spin
susceptibility as well as N and A components of the Green function
G as™o* (Fig. 1)
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We assess the relevance of spin fluctuations by using our calculated
G and y, along with an estimated coupling constant g to compare X
(equation (1)) with our numerically calculated self-energies.
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Fig. 1| Spin-fluctuation diagrams for normal and anomalous self-energy.
Solid lines denote normal or anomalous Green's function and wavy lines,
spin susceptibility.

The method to estimate g* is explained in detail in Methods.
In general, we partition the imaginary part of the real-frequency
self-energy into a low-frequency part that we suppose arises mainly
from spin fluctuations and a higher-frequency part that represents
all the other processes contributing to the imaginary part of the

self-energy: ImXIy (@) = ImZN () + ImZI}?gh:N(w),. We take

255N to have the functional form of equation (1) and determine g* by
requiring consistency with our numerically computed self-energies.
We have computed the self-energies in all the momentum tiles but
we focus here on the self-energies corresponding to the tiles centred
on the antinode points (x,0)/(0, xt), where the superconducting gap
is the maximum and the normal component of the self-energy is
the largest. We consider consistency both directly on the Matsubara
axis (avoiding the ambiguities associated with analytical continua-
tion) and on the real axis. For the imaginary-axis analysis, we note

N
that the quantity Z¥ = W related to the normal-state mass

enhancement may be estimated from the Matsubara axis results as

ZN _ Im(S (o) = S (o)
N =

P (Fig. 2, inset) and cannot be larger than
1—®o

the contribution from the spin-fluctuation sector.

The top panel in Fig. 2 shows the Matsubara analysis of the nor-
mal component of the antinode self-energy and the bottom panel
shows the real-axis fits. Both cases are consistent with a value of
¢=3.8, implying that about 2/3 of Z~ comes from the electron—
spin-fluctuation interaction.

With the spin-fluctuation spectrum and the electron-
spin-fluctuation coupling constant in hand, we next determine the
extent to which superconductivity arises from spin fluctuations by
solving the anomalous component of equation (1) and compar-
ing the result to the numerically exact continuous-time quantum
Monte Carlo solution, which gives d,._,.-symmetry supercon-
ductivity. We begin with the equation for T, obtained by lineariz-
ing equation (1) in the anomalous component of self-energy. The
resulting equation is a linear eigenvalue equation for eigenvector
2A(iw,,); the largest eigenvalue 1 increases as temperature decreases,
and T, is the temperature at which the leading eigenvalue equals
unity (equation (16)). A d,>_.-symmetry gap yields a non-negative
eigenvalue. Using our estimated g?= 3.8, we find that at temperature
T=1/40, the leading eigenvalue A is about 0.5 (Fig. 3, inset); there-
fore, increasing the net pairing strength by a factor of about two
would be needed to bring the leading eigenvalue up to 1.0 (in fact,
a larger increase would be required because the coupling constant
of the normal-state self-energy means that T, does not vary linearly
with the coupling).

Figure 3 compares the quantum Monte Carlo anoma-
lous self-energy with the spin-fluctuation self-energy X% at
K=(0,7). We note that the spin-fluctuation interaction has two
components, one from fluctuations near the antiferromagnetic
wavevector (w,mt) and one from fluctuations at small momenta
near Q=(0,0). The small momentum fluctuations make a nega-
tive contribution to X%. At the lowest Matsubara frequency,
the X34 produced by the spin-fluctuation theory is approxi-
mately half the quantum Monte Carlo self-energy, again indicat-
ing that spin-fluctuation theory® alone cannot account for the
superconductivity.

1294

NATURE PHYSICS
5
=
A
£
L L L L L
0 2 4 6 8 10
wn
P \//
Y 0 10
E w
T /
ZN
SSFiN
0 L L L L L L L
-1.5 -1.0 -0.5 0 0.5 1.0 15

Fig. 2 | Self-energies. Imaginary part of the normal component of the
Matsubara self-energy for the antinode (0, ) at U=6.0t, pt=35 and
u=-1.0t (n~0.90) compared with spin-fluctuation self-energy computed
with g?=3.8 (top). The inset shows ImE,Q’(iwn)/wm. Negative of the
analytically continued real axis, the antinode (O, &) self-energy and
spin-fluctuation contribution computed with g2=3.8 (bottom). The inset
shows the self-energy over a wide frequency range.

In Fig. 4, we examine the frequency dependence of gap function
A(w), a complex function of real frequency defined in terms of the
normal and anomalous self-energies at K= (0,n) as***
T (@) - IR (~)

Alw) = Zg(w)/ |1 — -

)

Following another study®, we compare the frequency depen-
dence of the spin-fluctuation spectrum, imaginary part of the
DCA-computed gap function and estimated gap function com-
puted by solving equation (1) using the continuous-time quantum
Monte Carlo-computed X* and y. The real-frequency quantities are
obtained from the maximum-entropy analytical continuation of
the imaginary-frequency data obtained at T=1¢/50, well below the
superconducting T.. As noted elsewhere®, the presence of a gap in
the electron Green function means that a peak in y at frequency
@, implies a peak in A at Aj+w,.,; therefore, we shift y by the
zero-frequency gap function in the comparison.

We emphasize that the uncertainties in the analytical continu-
ation are not small; although the areas are reliably estimated, the
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Fig. 3 | Total measured anomalous self-energy 2,‘2 and estimated :
spin-fluctuation contribution EZF"A of K=(0, rt) at U=6.0t, pt =50 and 0.06 :
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momenta Q=(x, ®) and Q=(0, 0). The inset shows the leading eigenvalues 3 0.04 1 :
computed from the linearized self-energy equation (equation (16)). The E; :
value of g% is chosen to be 3.8 for all the temperatures. The dotted line 0.02 1 :
shows the linear fit to gt=30, 35, 40. 1
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peak heights and widths are subject to some uncertainty. From -002+ |
Fig. 4, it is evident that although the peaks in the gap function and ! | | |
shifted y roughly coincide, the spin-fluctuation contribution to the 0 05 1.0 15 2.0

imaginary part of the gap function is concentrated at lower fre-
quencies, decaying much more rapidly than the DCA-computed
gap function, further demonstrating the importance of a
high-frequency non-spin-fluctuation contribution to the electron
self-energy.

Spin-fluctuation theories, in which spin fluctuations (as param-
etrized by susceptibility) are treated as a pairing boson within the
one-loop approximation, are widely considered to be promising can-
didates for theories of superconductivity. Here we have performed a
quantitative study, in a well-defined numerically controlled theory,
of the extent to which this is actually the case. The theory produces
a superconducting state and a spin-fluctuation spectrum, which
(taking advantage of recent developments®) we can exactly obtain
numerically. Access to the spin-fluctuation spectrum enables us to
compare the spin-fluctuation theory calculation of the normal-state
self-energies with the numerically exact results for the same quanti-
ties, thereby allowing an estimate of the electron-spin-fluctuation
coupling constant. Knowledge of the coupling constant then enables
a quantitative analysis of the contribution of spin fluctuations to the
superconducting T and to the magnitude and form of the super-
conducting gap function. In qualitative consistency with previous
results®, we find that low-frequency spin fluctuations contribute to
the superconductivity, but we find that quantitatively only about
half of the pairing can be attributed to these fluctuations. The
other half of the pairing, therefore, arises from higher-frequency
fluctuations, whose nature and precise physical origin remain to
be determined.

We have similarly examined other doping values and interaction
strengths (Supplementary Information). For (U=6.0t, pu=-0.9¢
(x~0.089)), (U=6.0t, u=—1.1¢ (x~0.120)) and (U=5.5t, u = —0.6t
(x~0.067)), our analysis is internally consistent and provides
reasonable estimates of the spin-fluctuation contribution to the
self-energy. We find that as doping decreases below x~0.10 at
U=6t, spin-fluctuation theory rapidly becomes a much less satis-
factory description of the normal state, with the spin-fluctuation
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Fig. 4 | Comparison of true gap function, gap function from spin
fluctuation, antiferromagnetic susceptibility Im;('s’;ﬁfj?,n) and FM
susceptibility Im;(‘s‘;f&o) shifted by A,=Red (w =0) =0.057 at U=6.0t,
pt=50 and u=—1.0t (n= 0.90). Imaginary part (top). The inset shows

the integral of ImA(w)/w starting from w=0. Real part (bottom).

contribution to XV apparently decreasing as T. weakly increases.
As the doping increases above x=0.10, the spin-fluctuation contri-
bution to the normal-state self-energy and gap function becomes
larger, but T, rapidly decreases. These results are consistent with our
finding that spin fluctuations do not fully account for the supercon-
ductivity exhibited by the model. An interesting question for future
research is to extend this analysis to compute the ¢ and U depen-
dence of the spin-fluctuation spectrum and compare the results
with the known?* dependence of superconducting T..

The theoretical model used in this work is the eight-site clus-
ter dynamical mean-field approximation in the ‘DCA’ implemen-
tation. The cluster size is chosen based on previous literature to
capture the pairing and magnetic fluctuations at reasonable com-
putational expense. Cluster dynamical mean-field theory does not
adequately capture, for example, stripe physics'>***=*°, which may
pre-empt superconductivity in some parameter ranges, and the
cluster sizes available, whereas large enough to provide results that
compare well with the experiment and more exact calculations, as
well as cannot capture many of the interesting specifics of super-
conducting phenomenology. However, it is important to emphasize
that the method provides a single internally consistent computa-
tional scheme that produces a well-defined locally stable superc
onducting phase whose properties can be studied, and that pro-
vides—at the same level of approximation—normal and anomalous
self-energies and spin-fluctuation spectra, enabling a theoretically
meaningful comparison.
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Our finding that spin fluctuations, as parametrized by the
spin-spin correlation function y, and coupled to electrons via the
standard one-loop approximation, are not the dominant form of
superconductivity suggests more generally that spin-fluctuation
theories of this type may miss important aspects of correlated elec-
tron superconductivity. One may put the question in more general
terms: Fig. 2 shows that an effective low-energy theory involv-
ing spin fluctuations coupled to Greens functions renormalized
by high-energy processes accounts at least approximately for the
normal-state self-energy. How should the low-energy theory be
extended to account for the superconductivity? One may simply
supplement the low-energy theory with an additional Bardeen—
Cooper-Schrieffer-type pairing interaction. The frequency depen-
dence of the gap function (Fig. 4) indicates that the microscopic
physics involves a frequency scale at about f rather lower than the
approximate 2—3¢-frequency scale characterizing the high-energy
part of the normal component of self-energy. If the nature of these
higher-frequency contributions to the pairing could be elucidated,
tuning the relevant degrees of freedom might be an effective strat-
egy for raising T..
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Methods

Hubbard model, self-energy and spin susceptibility. We study the two-
dimensional single-band Hubbard model in both normal and superconducting
states:

H= Z(ek — W)y Che + UZ nip iy, (3)
ko i

where y is the chemical potential and &, = -2#(cosk, + cosk,) is the dispersion
with nearest-neighbour hopping ; U is the strength of the interaction, i labels a
lattice site, k labels the momentum and 7 is the density operator.

We measure Green’s function matrix G(k, iw,) in the impurity solver, and the
self-energy can be computed from the Dyson equation

Sk iwn) = Gy (kiwn) — G (k iws), (4)

where

G (D), (0) ek (2)e_xy (0)
Gk ) = (T ) ) ®)
¢ (el (0) ¢y, ()i (0)

Gk iw,) = j;)ﬂ dre*G(k, )

Gy (ion) Gy (i) ©)

G‘,?T* (iwy) —Glikl(—i(un)

iw, —ex+p0
Gy ' (kiwn) = . . @)

iwy + € — p

' I (o) T (i)
2k iw,) = " v ) . (8)
X (iwn) 727“(71(0")

The SU(2) symmetry of the system gives Gy = GY.
The magnetic susceptibility is defined with the correlator of magnetization in
the z direction, that is, S; = ny — ny:

Yo (@ 7) = (T5:(4,D)8:(—4,0)) — (5.(9))", ©)

s .
Xspin(% i02,) = / dfelgﬂ)(spin(q’ 7). (10)
0

We measure y,,,(q,7) on the Chebyshev-Gauss-Lobatto collocation points and
compute y,,.(q,i€2,) via spectral transform®-**.

Numerical method. We use the DCA approach to compute the single-particle
Green function and susceptibility. The DCA* proceeds by tiling the Brillouin zone
into N equal-area non-overlapping tiles a centred at momentum points K, and
approximating the electron self-energy as Xy (iw,) — Xk, (iw,) for k in tile a, so
that the momentum dependence is approximated as a sum of piecewise constant
functions and the full frequency dependence is retained. The X, (iw, ) values are
obtained from the solution of an N-site quantum impurity model with the same
interaction U as in the original model and single-particle parameters obtained
by a self-consistency condition. We have chosen N=8, which provides sufficient
momentum resolution and allowing for calculation of the detailed dynamical
information needed here.

The impurity model is solved with the continuous-time quantum Monte Carlo
methods™”.

Coupling constant. We compute the one-loop spin fluctuations in the Matsubara
frequency space via

SN (i,,) = % > 202G G (0w — i82,). (11)

Qif,

To estimate the coupling constant g?, we partition the exact normal self-energy
from DCA into a low-frequency part that is supposed to arise mainly from spin
fluctuations and a higher-frequency part that represents contributions from all the
other processes:

high;N

ISR (iw,) = ImSp (iw,) + ImZp8™ (iw,), (12)
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where the high-frequency process is fitted by a minimal two-parameter equation

fitN A oy

ImX (iwy) = —

(13)

T @2 2
T W, + X,

with A and x, being two fitting parameters. The other relation we impose in the

N —1
fitting procedure is that the quasi-particle weight [1 — %{%(m)]] given by the
exact self-energy and approximated self-energy from the spin fluctuation plus the

high-frequency fitting are approximately the same.

ZZ _ Z]f?;N + Zf(F;N, (14a)
N/ _ N/
ZQ _ Im (X (iw) EK(lwo)). (14b)

w1 — Wy

The fitting procedure is as follows:

«  Foragiven g, compute X5 (iw,) as in equation (11).

«  Compute ImE;igh;N(iwn) as in equation (12).
high:N

«  Fit InZ(iw,) to Im}

A and x, from the maximum of Imz’?gh’w(imn).
«  Compute g* from the requirement of equation (14).

(iw,) by computing the two fitting parameters

«  The value of ¢* is decided by requiring ¢> = g in the above procedure,
under the constraint A> 0, —ImZ;F"N(i(un) < —ImX¥(iy), Vnand
—ZpN < 2%

Linearized self-energy equation. From the matrix form of the Dyson equation,
the linearized anomalous Green function can be computed as

ImGY (i)

G _ _ ImGg(iw,)
i (ion) @, — ImX¥ (iw,)

22 (iwn). (15)

In an eight-site DCA simulation with d-wave superconductivity, the anomalous
Green function and self-energy will only be non-zero at K=(0,x) and (x,0), and
Glom (iwn) = —Gfy g (iw,) and Gy, (iws) = Gl ) (iw). The one-loop spin
fluctuations (equation (11)) can then be rewritten as

2?0,7[) (iwn)
= /%v > [)((0,0) (ion — iom) — () (100 — ia)m)]
O
. 16)
ImGY . (iw,,) A X (
m,,,—Im(g_J’z' oy > (0) ({@m)
(o)
= F(iwy, iom) Z( ) (iom),

Wy

where F(iw,,i®,,) is a matrix in @, and @,,. The leading eigenvalue 4 of this matrix
should cross one at T, if spin fluctuations of this form cause superconductivity;
otherwise, it denotes the fraction of superconductivity given by one-loop spin
fluctuations.
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