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ARTICLE INFO ABSTRACT

Keywords: Understanding the process of primary and secondary atomization in liquid jets is crucial in describing spray
Atomization distribution and droplet geometry for industrial applications and is essential in the development of physics-
Data extraction based low-fidelity atomization models that can quickly predict these sprays. Significant advances in numerical
NGA

modeling and computational resources allow research groups to conduct detailed numerical simulations and
accurately predict the physics of atomization. These simulations can produce hundreds of terabytes of data.
The substantial size of these data sets limits researchers’ ability to analyze them. Consequently, the process of a
coherent liquid core breaking into droplets has not been analyzed in simulation results even though a complete
description of the jet dynamics exists. The present work applies a droplet physics extraction technique to high-
fidelity simulations to track breakup events as they occur and extract data associated with the local flow. The
data on the atomization process are stored in a Neo4j graphical database providing an easily accessible format.
Results provide a robust, quantitative description of the process of atomization and the details on the local
flow field will be useful in the development of low-fidelity atomization models.

High-fidelity simulation
Reduced-order models

1. Introduction

Atomizing sprays have a wide range of applications in industrial
and environmental fields (e.g. fuel injection [1], agricultural sprays [2],
pharmaceutical sprays [3], and air-sea interaction [4]). Consequently,
the body of research on this topic is vast and spans multiple cen-
turies [5,6]. Researchers have made significant progress in understand-
ing many aspects of the atomization process, however, the mechanisms
that drive instabilities in coherent liquid structures and ultimately
cause breakup are still widely unresolved. This is, in part, due to
limitations in experimental data collection from atomizing flows. Visual
analysis of atomizing jets is difficult because of the scale and speed
at which these systems develop. Furthermore, the development of
droplets creates an opaque cloud, which blocks the view of the liquid
core and severely limits the ability to study primary instability and
breakup mechanics. Recent advances in ballistic [7-9] and X-ray [10-
12] imaging of atomizing flows have attempted to remedy visualization
issues. These methods provide snapshots of the atomization process
and lack important temporal information. Because of challenges with
current experimental methodology, numerical simulations, and particu-
larly high-fidelity simulations that resolve the relevant time and length
scales, have been developed and provide an alternative method to study
the physics of atomization.

Advances in numerical methods and computational efficiency within
the past decade have greatly expanded the capabilities of numerical
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simulations. Researchers are now able to simulate multiphase flows
with exceptional accuracy. Numerically simulating multiple phases is
not a trivial process, however. These systems involve a wide range of
topological scales in fluid and turbulent structures in addition to jumps
in physical qualities at the phase interfaces. Significant effort has been
and is still invested in improving numerical simulation methodology
to more accurately and efficiently simulate atomizing systems. Accord-
ingly, most high-fidelity simulation studies on atomization to date are
focused on the development of numerical methods and testing against
experimental results rather than using the simulations to produce novel
atomization data. But, with the pending maturity of the field, several
research groups have been able to gather some insightful statistics from
high-fidelity atomization simulations.

Following Gorokhovski and Herrmann’s review of atomization sim-
ulations [13], the field developed rapidly. Among the first high-fidelity
simulations of atomizing liquid were Shinjo and Umemura [14] and
Desjardins and Pitsch [15] who simulated round and planar liquid jets,
respectively. These works provided a foundation for future simulation
studies by identifying numerous breakup mechanisms and providing
qualitative descriptions of previously unclassified processes. Following
these pioneering studies, various other works were published that
utilized high-fidelity simulations to expand upon existing descriptions
and identify novel breakup mechanisms. Several of these groups incor-
porated vorticity measurements into their post-processing to strengthen
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descriptions of breakup by integrating this additional dimension to
their analysis [16-22]. Additionally, many researchers focus their ef-
forts on comparing linear-stability theory [23,24] and high-fidelity
simulations [16,25-28]. These studies process renderings of the atomiz-
ing jet to analyze and track wavelengths as they become more unstable,
ultimately leading to breakup. Several recent studies have obtained tur-
bulence statistics throughout the simulation using constrained spatial
and/or temporal domains to limit data-processing requirements [29—
31].

The numerical studies mentioned above have greatly improved
our understanding of the atomization process. They developed robust
qualitative descriptions of breakup events and utilized bulk quantities
to elucidate some of the underlying physics of liquid breakup. However,
despite the recent advances in atomization simulations, there remain
significant gaps in our understanding of the process. This is primarily
due to a lack of available methodology for obtaining many relevant
statistics from high-fidelity simulations. In particular, current research
methods have not been able to extract local, temporally continuous,
quantitative data on liquid breakup. The data include information on
droplet shape and size characteristics, local flow field data in both the
liquid and gas phases, and information on how these values evolve
temporally and spatially throughout a spray system. An appreciable
challenge in obtaining this data is derived from the massive size of
resultant data sets; these can be hundreds of terabytes or even larger.
Parsing such data sets for relevant information is not practical and is
often impossible.

While numerical simulations are becoming more efficient, it remains
computationally expensive and requires the use of high-performance
computing. Reduced-order atomization models aim to provide a viable
alternative to high-fidelity simulations at a fraction of the computa-
tional cost. Some prominent examples of atomization models include
the Taylor analogy breakup (TAB) model [32], the Pilch-Erdman (PE)
model [33], the Kelvin-Helmholtz-Rayleigh-Taylor (KH-RT) model [23,
34], the Eulerian-Lagrangian spray and atomization (ELSA) model [35],
the bag type breakup (BTB) model [36], the multi-mode breakup
(MMB) model [37], and the modified Taylor analogy breakup (MTAB)
model [38]. These atomization models try to predict how and when
a liquid structure breaks apart without fully resolving the physics. As
mentioned above, however, there is little information on the mecha-
nisms that control breakup events and even less information on the
process of atomization. Model developers would greatly benefit from
local data sampled from breakup events throughout the simulation.

The present work aims to address the above obstacles through the
improvement of a framework, first introduced in Rubel and Owkes [39],
that extracts relevant data from breakup and coalescence events in
atomization simulations. The tool operates concurrently with the simu-
lation, extracting information from every breakup or coalescence event.
This eliminates the need for extensive post-processing of massive sim-
ulation datasets. Improvements to the tool include a major revision of
the breakup and coalescence identification algorithm, implementation
of a greater temporal sampling range, and the addition of several new
data types to be extracted. The values extracted are not entirely novel,
however, the ability to extract these values from around every breakup
event in an atomizing system is novel. Previous studies rely on time-
consuming post-processing methods and/or must constrain the data
they extract either temporally or spatially, which limits the statistical
relevance of the dataset. The present work provides a method to gather
significant quantities of these data without constraining the location
or time within the simulation. Through the use of this tool, many
researchers will gain access to extensive and easily accessible data sets
from atomization simulations.

2. Methods

The droplet physics extraction tool, originally proposed in Rubel
and Owkes [39], is improved and applied in this work. The tool is
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implemented into high-fidelity atomization simulations to gather data
from discrete events within these simulations coinciding with liquid
breakup and coalescence. This section will outline the methodology for
this process in detail.

2.1. Computational platform

The proposed extraction tool can be applied to any high-fidelity
Navier-Stokes solver, given the solver incorporates two identification
numbers used to determine breakup and coalescence events, which will
be defined in the following sections. This work employs the NGA com-
putational platform [40-43]. NGA solves the two-phase formulations
of the Navier-Stokes mass and momentum conservation equations,
defined as

op,
—L 4V (pyuy) =0 €
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o + V- (pguy ®uy) =—Vpy + V- (ug[Vuy + V'ld,]) +0y8 (2)

respectively. In these equations, p, is density, u, is the velocity vector,
py is the pressure, u, is the dynamic viscosity, ¢ is time, g is the
gravitational acceleration vector and ¢ is the phase indicator with
either ¢ = g (gas) or ¢ = [ (liquid). These equations are solved on a
staggered Cartesian mesh, in which scalar values, such as pressure, are
stored at cell centers and velocities at the cell faces. Time is discretized
with an iterative Crank-Nicolson formulation and a semi-implicit cor-
rection is applied on each sub-iteration [44]. Away from the phase
interface, mass, momentum, and any other scalars are transported
with conservative, high-order finite difference operators [40]. Near
the interface, a geometric volume-of-fluid (VOF) method is utilized to
ensure conservative transport of mass and momentum [42,43]. The
VOF scheme utilizes semi-Lagrangian transport to predict the volume
of liquid that fluxes through each cell face during a timestep. This is
accomplished through the calculation of geometric flux regions from
the velocity field. In Fig. 1, the geometric flux regions are displayed
as the shaded regions. These are signed volume regions that calculate
fluxes into or out of cells in a given timestep. They are constructed from
velocities at the cell vertices. This formulation of geometric transport
is un-split, and the use of cell vertex velocities prevents flux region
overlap and an accumulation of errors. The interface is reconstructed
using a piece-wise linear interface reconstruction (PLIC) [45] with
interface normal vectors computed using the efficient least-squares
VOF interface reconstruction algorithm (ELVIRA) [46]. The pressure
Poisson equation is solved utilizing the ghost fluid method [47] and
a black box solver [48]. Interface curvature is computed with the
adjustable curvature evaluation scale (ACES) method [49]. NGA is fully
parallelized with a message passing interface (MPI) protocol and scales
well to tens of thousands of cores [15].

2.2. Breakup and coalescence event identification

The coalescence and breakup identification processes operate
through the implementation of two identification numbers, which
are integers unique to every independent liquid structure within a
simulation. These values are referred to as the structure identification
number S and the liquid identification number L. Every liquid structure
in the simulation domain is tagged with each of these values. The
process in which S and £ are assigned, transported, and reassigned
is the basis for identifying liquid splitting and merging events within a
simulation.
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2.2.1. Identification numbers

Liquid identification numbers (£) are transported with the liquid.
and provide a time history of where the liquid moves. £’s are assigned
to every region where the volume fraction of liquid is greater than
zero. Because these values are intended to provide a history of liquid
movement, £’s are not reassigned at every timestep. They are persistent
through time and are only reassigned after a split event creates a
new liquid structure or a coalescence event destroys a liquid structure.
Details of how £ is transported is described below in Section 2.2.2 as
coalescence identification is closely tied with £ transport.

Structure identification numbers (S) are assigned at every timestep
following liquid transport. The values of S are not consequential,
provided that every structure is assigned a unique value. Independent
structures are identified and tagged using a band-growth algorithm first
described by Herrmann [50]. In the present application, the main steps
of the algorithm are:

1. S is assigned on the entire domain to be zero

2. Loop over the domain to find a cell with liquid and where S =0

3. Incorporate adjacent cells into the structure using a key logical
condition, which requires:

(a) There is liquid in the cell

(b) S =0 (cell has not already been tagged)

(c) L of the cell equals that of the current cell (avoids merg-
ing neighboring droplets)

4. Repeat process until there are no more liquid cells with S =0

Here additional details of the algorithm to compute the S’s is
provided. To begin, S is assigned on the entire domain to be zero. Then,
the domain is looped through to find the first untagged liquid node,
meaning the liquid volume fraction is greater than zero and S = 0.
When an untagged liquid node is found, all adjacent cells are compared,
using a key logical statement to create continuous liquid structures.
This statement has been modified in the present work and drastically
improves the accuracy of breakup and coalescence identification. The
logical statement requires that: (a) there is liquid in that cell, (b) it is
untagged (S = 0), and (c) the £ of the adjacent cell must equal that
of the current cell. The third requirement is the primary modification
and ensures that structures, which were not together at the previous
timestep (meaning different £ values), do not coalesce in adjacent cells.
Additionally, the algorithm does not prematurely identify breakup. In
order for structures to break up, there must be a full cell between
them. This process prevents structures from breaking up and re-merging
immediately following breakup as structures advance and naturally in-
habit adjacent cells. Herrmann’s work also described the parallelization
of this process, which is utilized in the extraction tool. This requires that
special consideration be given to communicating S between processors.
Many other methods exist to assign the structure identification num-
ber. This type of tagging problem is known as Connected Component
Labeling, e.g. [51,52].

2.2.2. Coalescence identification

Coalescence of liquid structures is identified by locating liquid
structures with more than one unique associated £. The un-split, semi-
Lagrangian VOF scheme, described in Section 2.1, predicts the volume
of liquid that fluxes through a cell face. So, when liquid is fluxed
through a cell face, the £ that inhabits that liquid will also be fluxed.
L fluxes are assigned a sign (+) or (-) to track the direction they move
through the face using the same sign convention as the VOF transport. £
transport is similar to the transport of liquid, however, when multiple
£’s move into the same cell, they must be treated separately instead
of being summed. An L, list is created for each cell, which tracks
all the unique values of £ that inhabit or move into the cell within
that timestep. Lp,, lists store all the £’s that flux into a given cell
during a timestep. These lists are looped through and any containing
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LFlux =[1, 2]

Fig. 1. An example of two droplets fluxing into the same cell. Shaded regions are
semi-lagrangian flux regions [42], which transport liquid and £’s into the center cell
due to the velocity shown with vectors. The £’s of the two droplets are stored in the
list Ly

ux *

multiple unique £’s indicate coalescence. This represents a significant
change in the algorithm. Previously, structures that were in adjacent
cells could be identified as coalesced, which led to repeated non-
physical breakup and coalescence identifications (see Section 2.2.4).
Fig. 1 displays a visual representation of this process. See Appendix A
for the £ transport and coalescence identification algorithm. When
coalescence is identified, data are extracted from the event, and the
new merged structure takes the smaller £ of the two parent structures.

2.2.3. Breakup identification

Liquid structure splitting or breakup is identified when two different
structures (two unique S’s) have the same £. Two structures become
independent of each other when they are not in adjacent cells i.e., there
is a full cell separating them. This is when the S assignment portion of
the code assigns two structures with unique S’s. If the two structures
have the same £, this indicates that a breakup occurred. Since £’s are
persistent through time, the same value in neighboring cells indicates
that these two droplets were part of the same structure at the previous
timestep. When a breakup is identified, data are extracted from the
event, and a new £ is assigned to the smaller structure(s) created by the
breakup event. See t =0 and ¢ = 1 in Fig. 2 for a visual representation
of this process.

2.2.4. Addressing fictitious events

An issue from the previous work, described in Rubel and Owkes [39]
was the occurrence of numerous fictitious merge and split events.
These occurred when the tool identified a structure that broke into
two structures and then the two structures coalesced. The algorithm
identified this process and repeated many times, when in fact the
liquid structures never re-merged following breakup. The authors of the
original algorithm opted to run the breakup identification portion of
the code every 10 timesteps to avoid an accumulation of non-physical
results. This severely limited the potential usefulness of the tool.

The error stemmed from the original S assignment algorithm.
Droplets in adjacent cells were automatically treated as the same
structure, which resulted in recently split liquid structures coalescing
into their parent droplet when they were in neighboring cells. The
present work introduces two major updates to address this issue.
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Fig. 2. An example of two droplets undergoing breakup and coalescence. Two droplets start on the left, and the top droplet breaks into two droplets. The two droplets are
identified and the split event is processed. The bottom two droplets coalesce, the merge is identified and the merge event is processed. Note that the S can vary between timesteps,

but the £ is persistent until a split or merge causes the value to change.

First, the algorithm which identifies continuous liquid structures was
improved by introducing a logical statement. The statement requires
that for neighboring cells to be labeled as existing within the same
structure, the cells must have the same L. Second, the algorithm which
identifies coalescence was rewritten to create Ly, lists for each cell.
This was implemented to only identify coalescence when multiple £’s
occupy the same cell, indicating two liquids, which were separate at
the previous timestep have merged together. Together these changes
require droplets to be separated by at least one grid cell for breakup
to be identified, contrarily coalescence requires droplets to occupy
the same grid cell. This difference in length scales for breakup and
coalescence ensures that droplets do not breakup and then fictitiously
coalesce. For more information on these updates, see Section 2.2.1. The
updated algorithms drastically boost the accuracy of the tool and allow
it to be run at every timestep without erroneous event identifications.
This provides a high-resolution sampling of data as the jet breaks up
further and breakup and coalescence happen more frequently.

Fig. 3 illustrates this updated S assignment process. At t = 0 a
droplet is breaking up so that there is liquid in adjacent cells. Since
a split has not been identified yet, the £ of both cells is the same,
resulting in a continuous structure. Then, at t = 1 the structure on the
right moves, leaving a full cell between it and the other structure. The
cells adjacent to the blue structure are void of liquid, so the S value is
only assigned to that structure. Since the droplet on the right becomes
independent, it is assigned a new S, a split is processed and it is also
assigned a new L. Finally, at ¢ = 2, previously, the two droplets would
have merged back together as they occupy neighboring cells. But the
structures remain separate with the new algorithm because the £ of the
adjacent droplet does not equal the £ of the blue droplet, they remain
separate structures and will not coalesce unless they enter the same
cell.

2.3. Data extraction

The updated algorithm used to identify breakup and coalescence is
run every timestep and thus identifies these events when they occur
throughout the entire simulation. When an event is identified, impor-
tant statistics including the location, volume, local flow field, and shape
characteristics are computed for each liquid structure and associated
with that event. These statistics are computed for each structure present
in the simulation at a timestep and stored in structure arrays. The struc-
ture arrays are linked lists of the statistics and identification numbers
that are used to tie the statistics to the breakup and coalescence events.

The original work identified breakup events and extracted data
every 10 timesteps causing the extracted data to be temporally removed
from the actual event. The updated algorithm runs every timestep,
thus identifying breakup when it occurs, furthermore, the temporal

sampling range was extended by extracting data from the timestep
immediately preceding breakup in addition to the timestep following
breakup. We accomplish this by saving the structure arrays from the
previous timestep, which contain the statistics and £’s of the structures
at that time. Then, when breakup occurs, the data extraction algorithm
searches the old structure arrays for the structure which has an £ equal
to the old £ of the newly split structures. This improvement provides
insight into the conditions which lead to breakup and the resultant
structures from the breakup.

To highlight some potential uses of the tool, the present work
extracted the locations of the events, the gas and liquid velocities,
droplet volume, and droplet shape information. We calculate structure
volume simply as

struct Z cell,i %i 3

where N; is the total number of cells encompassing the structure,
Veent,; is the volume of the ith cell, and «; is the volume fraction of

liquid within the ith cell. For the purposes of this study, liquid and gas
velocities are calculated as volume-averaged velocities,

N
Z,»=] uVeeni
Ujiquia = Y 4
Zi:l vcell,i @;
N
20 Ve (1 —ay)
Ugas= i=1 i Veell,i i 5)

Z,ﬁxl vcc]l,i a- ai)

respectively. These values are calculated by considering the calculated
velocity field of all cells that contain a liquid structure and all cells
adjacent to those. Where u; is the velocity vector in the cell. This
method for calculating the velocities is preliminary and does not fully
capture the local flow field dynamics. Future work focused on extract-
ing topological data from the flow field will work to better quantify
these values.

2.4. Graphical database

The primary goal of the tool is to make data from atomization
simulations more accessible. Special consideration was given to ensur-
ing that extracted data was stored in an efficient and easily queriable
format. We opted to store the atomization data in a Neo4j graphical
database. Graph databases are commonly used in the corporate sec-
tor for companies to create connections between users and products
through paths, which can reveal patterns in group dynamics and buying
trends. The same principles can be applied to atomization simula-
tions through the construction of paths that connect droplets through
breakup and coalescence events. Storing atomization data in a graph
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Fig. 3. The diagram on the left shows the issue with fictitious merging and splitting events in the original algorithm [39]. The diagram to the right shows how the split and
merge identifier works in the present work. Notice that at 1 =2 in the original algorithm, the two structures occupy neighboring cells and fictitiously merge back together. The
updated code avoids the fictitious merge and the structures do not merge back together. This is because the criterion for coalescence was changed to require the structures to
exist within the same cell, not adjacent cells and the breakup identification uses £ in the logical statement for identifying structures.

database format allows researchers to analyze the evolution of liquid
as it moves from the liquid core to small droplets in an atomizing
flow. In this work, the Neo4j database is used to store the atomization
data. Data from the simulation in this work is initially written to a
CSV file. Then, rather than simply storing the data as a disconnected
list of events, the CSV file is uploaded to Neo4j. The graph format
presents an easy way to connect related events and develop a droplet
ancestry. Additionally, storing data in graph databases provide a unique
way to visualize atomization data and a novel method for studying the
atomization process.

Fig. 4 displays how data are stored in a Neo4j database. This image
represents some of the data from the simulation described in Section 3.
The nodes are droplets produced from breakup events. The breakup
events are represented by the lines connecting the nodes. The node
colors represent the number of times they have broken up. The liquid
core is in the center of the image and the red droplets represent the
fourth breakup event. This image is made up of all the droplets which
broke up 4 times during the first 2.3 ps of the simulation, and all the
intermediate droplets between the coherent liquid core and these fourth
breakup droplets. Within each node is stored the extracted data from
the point and time in the simulation in which that droplet broke up
and became independent. So, this database is saturated with data, but
organized in a logical and accessible format.

The graph database can be efficiently edited, reorganized, and
parsed with the Cypher Query Language. It is syntactically similar to
SQL but designed to specifically query nodes and relationships and
the paths formed with these components. As mentioned above, data
is imported to Neo4j via a CSV file, organized in such a way that each
row is an independent liquid breakup or coalescence event. These rows

are imported into Neo4j as droplet nodes and breakup and coalescence
relationships are created. See Appendix B for a detailed description of
the process to import data into Neo4j. Following data import, Cypher
can be used to further organize the data and/or query the data to
analyze the atomization process. Below are some examples of the
capabilities of Cypher in the present application.

// Rename the liquid core

MATCH(n: droplet) // Find nodes with the "droplet
" label

WHERE n.Event='None' // Node with Event = none is
the liquid core

CALL apoc.refactor.rename.label("droplet","core",n)
// Rename node

YIELD committedOperations

RETURN committedOperations

// ldentify and rename primary droplets

MATCH (n:droplet)

WHERE n.OIdLID = 1 // Find droplets which broke
off of the liquid core

WITH collect(n) as p // Compile a list of nodes
matching criteria

CALL apoc.refactor.rename.label("droplet","primary",
p)

YIELD committedOperations

RETURN committedOperations
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Fig. 4. Example of data points in Neo4j graphical database. Colors represent the number of breakups a structure has undergone (blue = primary, yellow = secondary, green =
tertiary, red = quaternary). Lines connect related droplets, i.e., droplets which split from each other. The liquid core is present at the center of the image. Each node contains

relevant statistics from the breakup event.

// Rename secondary,tertiary, etc. (repeat until no
"droplet" nodes remain)

MATCH (n:droplet),(d:primary)

WHERE n.OldLID = d.NewLID // Find "droplet" nodes
that split from "primary"

WITH collect(n) as p

CALL apoc.refactor.rename.label("droplet","secondary
"p)

YIELD committedOperations

RETURN committedOperations

This portion of code first identifies the core by finding the only
node which has an event not equal to either breakup or coalescence.
Then, it renames this droplet “core”. Note: the “Awesome Procedures
on Cypher” (APOC) library must be enabled to access the renaming
features. Next, primary droplets are identified by finding all the droplet
nodes which previously had a £ (LID) equal to one (the liquid core
has £ = 1). These droplets are renamed “primary”. After primary
droplets are identified, secondary droplets can be identified using a
similar process. The algorithm loops through all droplets and looks for
nodes that previously had £ equal to the £ of a primary droplet. This
process can then be repeated for each subsequent breakup event until
no more “droplet” nodes remain. This is very useful in order to analyze
the evolution of droplets as they break up further. This will be analyzed
in more detail in the Results section.

// Collect all breakup paths of droplets which break
up six times

MATCH (n:sixth), (c:core), p = shortestPath ((c)—[:
Splitx]—>(n))

RETURN [d in nodes(p)| d.Volume]

The “shortestPath” function is used to extract the paths between
specific nodes. In the above example, the shortest path from the liquid
core to droplets that broke up six times is queried. Then, the volume
of each droplet in that path is returned. This feature provides a simple
method to extract useful relational data from the breakup process.

In addition to the Neo4j graphical database system and the Cypher
Query Language, we utilized Python for analysis of results. Both pro-
grams have benefits and drawbacks, which led to the utilization of both.
Neo4j allowed us to build paths very easily between droplets which
breakup from each other or coalesce together. From this information,
we can easily output a CSV that displays how statistics evolve with
breakup events or coalescence events. Following the output of these
CSV files, it is simple to analyze the data using Python’s data science
libraries. Additionally, multiple options exist to query or create graph
databases through Python. These include the official Neo4j driver for
Python and the py2neo Python library. These prove to be very powerful
tools because they allow users to combine python loops, if statements,
and data science libraries with the unique organizational system of
Neo4j. The py2neo library was used in the present work to build
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Fig. 5. Rendering of the liquid jet run in simulation. £ values at final timestep represented by colors with £ ranging from 1 to 76,608 for the number of breakups that occurred.

Rendered using VisIt [53].

Table 1

Non-dimensional parameters used in the diesel jet simulation.
Number Definition Value
Bulk Reynolds number P Ui Dyt 1y 25,000
Bulk Weber number nUZ Do /o) 10,000
Density ratio p,/bg 40
Viscosity ratio il Hy 1.67
Domain length L, /Dy 60
Domain widths L,./Dj 7.5
Cells across diameter Dy /Ax 17.06
CFL number |ut] ax At/ Ax 0.4

the time-series plots in Section 3.6.2. See Appendix C for an example
python script querying a Neo4j database.

3. Application of extraction tool on diesel jet
3.1. Simulation setup

To test the utility of the updated tool we ran a simulation inspired
by a diesel injector. The simulation is the same as that described in
Rubel and Owkes [39] and consists of a turbulent liquid injection
into acquiescent air. The turbulence was computed from a preliminary
turbulent pipe-flow simulation and the velocity field was stored and
used as the inlet boundary condition for the liquid jet. Table 1 pro-
vides the parameters of the simulated jet. The simulation was run on
160 processors on the Hyalite High-Performance Computing Cluster at
Montana State University. The dimensions of the computational mesh
are N, x N, x N, = 1024 x 128 x 128. Note that the resolution of this
simulation is not fine enough to accurately capture small-scale interface
features or the smallest scales of turbulence. However, this simulation is
sufficient to demonstrate the efficacy of the proposed tool. Future work
will focus on applying the tool to a higher resolution simulation to more
accurately extract information on physical phenomena (see Fig. 5).

3.2. Addressing fictitious events confirmation

Section 2.2.4 discusses an update in the coalescence and breakup
identification algorithm, which is intended to prevent the occurrence
of fictitious events. In the original work [39], the fictitious events
coincided with every breakup within the simulation, which forced the
authors to institute a delay in the breakup identification portion of
the code. This meant they only identified breakup events every 10
timesteps. In the present work, breakup identification is performed on
every timestep. It is reasonable in complex flow systems that droplets
may breakup and then re-merge with their parent droplet, so the
algorithm is not intended to prevent these phenomena from occurring
altogether.

To confirm that the updated method is producing reasonable results,
we utilized Neo4j to identify all the droplets which split and re-merged
with their parent droplet. Then, the difference in time between the
coalescence event and the initial breakup event was calculated. 17.93%
of all droplets re-merged with their parent droplet, with the majority

of those being primary droplets coalescing with the liquid core. This
is a well-documented mechanism [14] and is expected in a round
jet injected into quiescent gas. Analyzing only secondary droplets, we
found that 9.31% of secondary droplets re-merged with their parent
droplets. The fictitious events were documented to occur within one
or two timesteps of breakup [39], but in the present simulation, the
average time between coalescence and breakup is 61.7 ps which trans-
lates to about 300 timesteps. Given these statistics, we conclude that
the updates made to the tool in the present work remedied the fictitious
breakup and coalescence issue addressed in the original work and the
identified events in the present work are consistent with physical events
in the spray.

3.3. Secondary atomization analysis

Common descriptions of breakup regimes within an atomizing
system involve discussion of primary atomization, i.e. droplets split-
ting from the liquid core, and secondary atomization, i.e., all further
breakup. As seen in Fig. 6, many droplets are created after multiple
breakup events. Further analysis shows that 53.6% of the total number
of droplets formed in the test diesel jet broke up three or more times,
with 17.0% percent breaking up at least five times. At later times
in the simulation, this percentage becomes more pronounced. The
yellow curve with triangle markers in Fig. 6 is the distribution of
droplets at the final timestep. 67.7% of drops present at this timestep
broke up 3 or more times. Thus, a majority of the breakup in the
simulation occurred after secondary breakup. This indicates that the
final spray field is heavily dependent on mechanisms within these later
atomization regimes, which are all generally grouped in secondary
atomization. Below, the number of breakup events that a droplet has
undergone will be referred to as its breakup stage (e.g. a droplet which
broke up three times is in the third breakup stage).

3.4. Coalescence analysis

Coalescence is a vital process in the study of atomization. Coalescing
droplets will result in larger droplets, and in turn, lead to more breakup.
It is well understood that coalescence occurs in atomization, however,
without access to efficient extraction methods, researchers have not
been able to fully quantify or analyze how it affects a full atomizing
system. A recent study by Prakash et al. [54] was able to identify
coalescence event locations on a limited time domain within their jet
in cross-flow simulation. Our tool provides the ability to analyze the
prevalence of coalescence events throughout entire atomizing systems.
Furthermore, from the paths created by Neo4j, we can track the rela-
tionship between breakup and coalescence from the evolution of every
liquid structure within a system. This provides statistically relevant
insights into a little-understood process. The present simulation pro-
duced 76,608 breakup events and 57,908 coalescence events. Table 2
displays the average number of coalescence events for a given number
of breakup events. These data were calculated using a path-finding
algorithm in Neo4j. The algorithm finds the shortest path of breakup
events from droplets at the given breakup stage back to the liquid
core and counts the number of coalescence events along that path. The
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Fig. 6. Plot displaying the distribution of breakup stages throughout the entire simulation (blue, circle nodes), e.g. about 7,600 droplets underwent a 5th breakup throughout this
system. At the end of the simulation (yellow, triangle nodes), there were about 2,300 droplets present that had undergone 5 breakups.

Table 2

The average number of coalescence events between primary breakup and the breakup
stage is listed in the second column. The third column displays the ratio of coalescence
events to breakup events along breakup paths.

Breakup stage Average number of Ratio of coalescence

coalescence events to breakup

Secondary 1.077 0.5385
Third 1.899 0.6330
Fourth 2.898 0.7245
Fifth 3.974 0.7948
Sixth 5.241 0.8735
Seventh 6.823 0.9747
Eighth 8.276 1.035

average number of coalescence events shown in the table is the average
amongst all droplets that have broken up the associated number of
times. The data in Table 2 indicates that the proportion of coalescence
events increases as the jet evolves and more breakup occurs. This makes
intuitive sense, because as the jet evolves, a high droplet density cloud
develops, which leads to more droplet collisions.

3.5. Local flow field statistics

Another use for this tool is to better understand how the local flow
field is affecting the atomization process. This is information that is
exceedingly difficult, if not impossible, to obtain through experimental
methods. Moreover, gathering a sufficient sample of statistics on these
local flow mechanisms has remained nonviable for those conducting
numerical simulations. This work extracted preliminary data on the
local flow field surrounding breakup events and calculated the resultant
local Weber number, defined as Weyo.,y = p,U2L/o, where p, is the
gas velocity, U, is the slip velocity (defined as U = |Ujiquiq — Ugas|)s L
is the characteristic length (in this case, it is the equivalent spherical
diameter of the droplet prior to breakup), and ¢ is the surface tension
coefficient. Ujig,iq and Uy, are calculated from Egs. (4) and Eq. (5). A
probability density function (PDF) of the logarithm of We,, ., number
is developed from every breakup within the simulation (Fig. 7). The
values are centered roughly about We,,,; = 0.37. These are very small
values of the Weber number, which likely indicates that aerodynamic
forces are not major factors in breakup in this system. This is logical
because the simulation is of liquid injected into quiescent air. This
represents the first method to gather the local Weber number from
every breakup event within a complex atomizing system. This type of

data can be used to analyze how the effects of various atomization
configurations and bulk parameters propagate through these systems
and affect the physics on the local level.

3.6. Atomization evolution

The evolution of local droplet characteristics and global jet devel-
opment throughout the atomization process are important attributes,
which can help elucidate the underlying physics of atomization. Under-
standing how droplets change from the first breakup off of the liquid
core to a final droplet in dilute spray could provide useful information
to atomization model developers seeking to not only describe the final
spray formation, but also the intermediate spray development. The tool
provided in this work enables researchers to extract droplet statistics
throughout a simulation and analyze the evolution of these droplets
and the system as a whole.

3.6.1. Droplet shape and size evolution

Fig. 8 displays a probability density function of the equivalent
spherical diameter of droplets as a function of the number of breakup
events. A reasonable trend toward smaller and more uniformly sized
droplets is seen. Fig. 9 displays the change in diameter of droplets
between breakup stages. Notice that not all values are negative. This
further confirms the prevalence of coalescence events within this sys-
tem. Positive values in the figure indicate that a significant portion
of droplets undergo coalescence and increase in size between breakup
events. Additionally, notice the tendency of droplets to change size
less as more breakup events occur, with the PDFs becoming more
narrow and centered around O pm. The coarse resolution of the present
study affects the accuracy of these values related to a physical system.
However, they display the ability to analyze large quantities of statistics
relevant to the evolution of liquid shapes and sizes throughout an
atomization simulation. The extraction of shape characteristics from
breakup events can provide information on the intermediate processes
of atomization. Current methods allow researchers to analyze final
droplet size and shape distributions, however, there is little information
on the mechanisms that lead to those droplets and the rate of change
of droplet sizes. The extraction tool provides access to this type of
information.
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Fig. 8. A probability density function of droplet diameter as a function of the number of breakups the droplet has undergone.

3.6.2. Time evolution

Because the extraction tool samples from every timestep in which
breakup occurs. Thus, once the jet develops, breakup occurs on every
timestep, providing high-resolution time-series statistics describing the
evolution of the jet. Fig. 10 shows an example of some of the time-
dependent statistics that were extracted in the present work. These
plots describe the rate of droplet development in the simulation. It
is clear from this plot that secondary atomization quickly dominates
droplet production in this system. Understanding when breakups are
occurring throughout these systems is vital to better understanding
atomization as well as in the development of reduced-order models,
which need information describing when liquid breaks up.

3.7. Computational cost

The extraction tool is presented as an addition to atomization simu-
lations rather than a separate post-processing method. The purpose is to
(1) provide access to information that would otherwise be impossible to
obtain via traditional post-processing, and (2) extract the information

efficiently. Thus, the added computational cost of incorporating the tool
into an already computationally intensive simulation is an important
consideration. The tool assigns S, transports £, identifies breakup and
coalescence, and outputs data. We conducted a timing study using
175 timesteps at the end of the Diesel jet simulation. Since the tool
becomes more expensive as more liquid structures are created and
as more breakup and coalescence occur, this analysis represents the
most expensive iterations of the tool in the present simulation. Table 3
displays the average percent of each timestep used by the four main
processes of the tool. £ transport is incorporated into the VOF scheme
and the existing flux calculation. The cost of the £ flux is negligible
and only requires 0.01% of the total timestep time. Multiple £ values
can exist within a single flux, which does require a minor amount
of memory. The identification of liquid structures and assignment of
S values was not trivial and required 2.27% of each timestep. This
is due to the cost of the band-growth algorithm that identifies each
unique structure in the domain. At this stage in the simulation, it
is identifying ~15,000 structures per timestep. Other, more efficient,
connected component labeling algorithms could be used in place of this
to further reduce the computational cost. The breakup and coalescence
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Fig. 10. The cumulative number of droplets as a function of time is shown with the solid blue line. This line is broken out into primary and secondary droplets shown as dashed
yellow and dotted red lines, respectively. Note: secondary droplets in this image represent the classical definition of secondary droplets (i.e. all breakup following primary).

event identifications involve simple list comparisons and only cost
0.28% of the timestep. Data extraction is not costly, only using 0.001%
of each timestep. This is reasonable because it simply involves writing
lines to a CSV file. The total cost for the entire tool was 2.56% of the
total timestep in this simulation. This cost can be reduced by improving
the S assignment algorithm.

4. Conclusions

An extraction tool for numerical simulations of atomization was
developed and tested. Improvements to the methodology originally
proposed by Rubel and Owkes [39] were made. Improvements include
(1) an updated algorithm to stop fictitious identification of merge and

Table 3

The cost of each process within the tool. Displayed as the
average percent of time per timestep. Sampled from 175
timesteps at the end of the simulation.

Process Percent of timestep [%]
S Assignment 2.27

L Transport 0.01

Event Identification 0.28

Data Extraction 0.001

split events, (2) enabling a wider temporal sampling range, and (3)
the extraction of more atomization statistics. Inprovements were made
through an extensive rewrite of algorithms within the tool. Two major
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changes were made. The first was the incorporation of a key logical
statement in the portion of the code that identifies independent liquid
structures. This prevents non-physical coalescence when liquid struc-
tures exist in adjacent computational cells. Additionally, the criteria
for identifying coalescence were updated by improving the transport
and tracking scheme for identification numbers (£), which move with
the liquid. Both of these changes together remedied the identification
of fictitious breakup and coalescence events, present in the previous
work. In addition, the updated tool now samples data from both the
timestep preceding events as well as the timestep following them. This
provides insights into the conditions which led to breakup as well as
the resultant structures from breakup or coalescence.

A diesel-type jet was simulated and droplet statistics were extracted.
The tool displayed utility for extracting data relevant to atomization
model developers as well as providing previously inaccessible informa-
tion on the underlying mechanisms of atomization. New analyses of the
local flow field, the breakup evolution of liquid structures, and coales-
cence dynamics were introduced. The data extracted are preliminary,
but show promise for the tool’s utility in future high-resolution studies.

Future work will focus on the implementation of the tool into high-
resolution atomization simulations to extract useful data to help better
quantify atomization mechanisms on global and local scales. Special ef-
fort will be given to aiding reduced-order model developers to develop
relevant statistics for creating more accurate models. Additionally, we
will focus on the improvement of sampling methods, particularly the
local flow field to attempt to extract not only velocity magnitudes
but also topological flow data to better understand the small-scale
turbulence that affects liquid breakup.
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Appendix A. Liquid identification and coalescence code

The following is a pseudocode describing how the liquid identifica-
tion number is transported and coalescence is identified.
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Algorithm 1 £-transport and Coalescence Pseudocode.
1: fori=1- N do
2 > Form list of £ for this cell
3: £counl = 0
4 if cell has interface or VoF > 0.5 then > Search through cells
with liquid

> Loop over cells in domain

: if £ > 0 then
6: Leount < Leount + 1 > Keep track of the number of unique
L values within the cell

7: Lean(Leount) < L > Keep track of £ value in the cell
8: end if

9: end if

10: for f =1 — Npy. do > Loop over all faces of a cell
11: forn=1- L, do > Loop through all £ that can flux

through a face
if L£g1,,, # 0 then > Check to see if there is an n'M £ flux
into the cell
13: if Loy # Leen(l  Legy) then
fluxes matches any of the current £ in the cell

12:

> Check to see if £

14: Leount < Leoune +1 > Update £ counter in the cell

15: Lean(Loount) < Liax > Keep track of all £ values
in the cell

16: end if

17: end if

18: end for

19: end for

20: > Check for coalescence or merge event

21: if £y, > 2 then > More than one unique £ for this cell

22: forn=2- L, do

23: nMerge = nMerge+1 > Keep track of the number of

coalescence events
L1(nMerge) = min(L (1), Ly (n)) > Make a list of the
L’s which need to be merged

24:

25: £2(nMerge) = max(L (1), Leen(n))
26: end for

27: end if

28: end for

29: > Compute new L after coalescence event

30: for n =1 — nMerge do > Loop over the all identified coalescence

events

31: if £L1(n) = L1(n+ 1) then > Combine identical events
32: if £L2(n) = L2(n+ 1) then
33 Lo < min(L1,£2) 1> Assign the smaller £ to the new

merged structure
Loq < max(L1,L£2)
end if
end if
end for
> Update £ in domain
where (L=L,,): L« L

34:
35:
36:
37:
38:

39: > Update £’s throughout domain

new

Appendix B. Neo4j data input

Data from our simulation are exported in the form of a CSV file.
Each row within the CSV represents a breakup event within the simu-
lation and each column contains statistics we extracted from the event.
Column headers are listed in the following Cypher code, following
the “csvline” variable (i.e. csvline.OldLID and csvline.NewLID are the
old and new L’s associated with each droplet). We import the CSV
into Neo4j to create nodes and relationships. Each node corresponds
to a row within the CSV and the relationships are created using the
identification numbers.

// Import data from CSV and create split/merge nodes
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LOAD CSV WITH HEADERS FROM "link_to_csv" AS csvline
CREATE (n:droplet {id: TOINTEGER(csvline.NewLID)
, Event: csvline.Merge_Split, OldLID: TOINTEGER (
csvline.OIldLID), OldSID: TOINTEGER(csvline.
01dSID), NewLID: TOINTEGER(csvline.NewLID),
NewSID: TOINTEGER(csvline.NewSID), Volume:
TOFLOAT(csvline.Vol), Event_Time: TOFLOAT(
csvline .Time), X: TOFLOAT(csvline.X), Y:
TOFLOAT(csvline.Y), Z: TOFLOAT(csvline.Z), U:
TOFLOAT(csvline .U), V: TOFLOAT(csvline.V), W:
TOFLOAT(csvline .W), U_gas: TOFLOAT(csvline.
U_gas), V_gas: TOFLOAT(csvline.V_gas), W_gas:
TOFLOAT(csvline.W_gas), L1 _old: TOFLOAT(csvline
.L1_old), L2_old: TOFLOAT(csvline.L2_old),
L3_old: TOFLOAT(csvline.L3_old), Ll _new:
TOFLOAT(csvline .L1_new), L2_new: TOFLOAT(
csvline.L2_new), L3_new: TOFLOAT(csvline.L3_new
), Vol_old: TOFLOAT(csvline.Vol_old)})

// Create merge relations between droplets

MATCH (n:droplet{Event:"Split"}),(d:droplet{Event:"
Split"}) ,(m:droplet{Event: "Merge"})

WHERE n.NewLID = m.NewLID AND d.NewLID = m.OIdLID

CREATE (d) —[:Merge]—>(n)

// Create merge relations between droplets and core

MATCH (n:droplet{Event:"None"}),(d:droplet{Event:"
Split"}) ,(m:droplet{Event: "Merge"})

WHERE n.NewLID = m.NewLID AND d.NewLID = m.OIdLID

CREATE (d) —[:Merge]—>(n)

// Deletes merge nodes
MATCH (d:droplet)
WHERE d.Event = 'Merge'
DELETE d;

// Creates split relations

MATCH (n:droplet),(d:droplet)

WHERE n.Event = "Split" and n.OIdLID =
CREATE (d) —[:Split]—>(n);

d.NewLID

Appendix C. Python neo4j driver script

The below script uses the py2neo library to query a Neo4j graph
database from Python. This script was used to analyze the data pre-
sented in Fig. 10. First, communication with a graph is established. The
graph must be running in Neo4j when the script is executed. Then, a
time series is created and result arrays are initialized. Following this,
the Cypher queries are executed. To use a Python variable within the
Cypher query, a $ must be placed immediately before the variable, then
the variable is defined in the second argument in the “.run” function.
The “.evaluate()” function ensures that only values from the query
are returned, otherwise results appear as a dictionary. Results from
the query are then appended to the results lists to be used for further
analysis.

import numpy as np

from py2neo import Graph

# Using Python Neo4j API "py2neo" to query a graph
database

gs = Graph("<Graph URI>",password="<Graph Password>"
) # Graph must be running on the Neo4j platform
for this to work. First input is graph URI and
second is a required password

# Set up time array
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dt = 5e-5
time = []
x = np.arange(0,2.65e—3,dt)

# Convert time class from numpy. float64 to python
native float

for t in x:
time.append(t.item())

# Initialize result arrays

nd = [] # total number of droplets
nl = [] # number of primary droplets
n2 = [] # total number of secondary droplets

# Run Cypher Queries

# Total Droplets
for t in time:

g = gs.run("MATCH(n: droplet) ,(c:core) WHERE n.
Event_Time <= $t RETURN count(n)",t=t).
evaluate () # evaluate() returns only values
from the query

nd.append(g)

# Primary Droplets
for t in time:

g = gs.run("MATCH(n: primary) ,(c:core) WHERE n.
Event_Time <= $t RETURN count(n)",t=t).
evaluate ()

nl.append(g)

# All secondary
for t in time:

g = gs.run("MATCH(n:droplet) ,(c:core) WHERE n.
Event_Time <= $t AND NOT n:primary RETURN
count(n)",t=t).evaluate ()

n2.append(g)
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