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Magnetic phases of the anisotropic triangular lattice Hubbard model

Yang Yu ,1,* Shaozhi Li ,2 Sergei Iskakov ,1 and Emanuel Gull 1

1Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
2Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 28 November 2022; revised 13 January 2023; accepted 20 January 2023; published 2 February 2023)

The Hubbard model on an anisotropic triangular lattice in two dimensions, a fundamental model for frustrated
electron physics, displays a wide variety of phases and phase transitions. This work investigates the model using
the ladder dual fermion approximation which captures local correlations nonperturbatively but approximates
nonlocal correlations. We find metallic, one-dimensional antiferromagnetic, noncollinear antiferromagnetic,
square-lattice antiferromagnetic, and spiral phases but no evidence of collinear antiferromagnetic order in
different parts of the phase diagram. Analyzing the spin susceptibility in detail, we see both regions of agreement
and of discrepancy with previous work. The case of Cs2CuCl4 is discussed in detail.
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I. INTRODUCTION

Correlation physics on triangular lattices is a sub-
ject of intense interest. Many triangular lattice magnets
including Cs2CuCl4 [1], κ-(BEDT-TTF)2Cu2(CN)3 [2],
EtMe3Sb[Pd(dmit)2]2 [3], NiGa2S4 [4], Ba3CuSb2O9 [5],
Ba3CoSb2O9 [6], YbMgGaO4 [7], and NaYbO2 [8] have been
experimentally investigated. Transition metal dichalcogenide
moiré superlattices [9–11] and triangular optical lattices
[12,13] have also recently been proposed as platforms to study
correlation physics on the triangular lattice. Theoretically,
both triangular lattice spin models and the triangular lattice
Hubbard model have been investigated to describe frustrated
quantum magnets. Nevertheless, the phase diagrams of trian-
gular lattice systems are still under debate both experimentally
[14–16] and theoretically [17,18]. Quantum spin liquid (QSL)
states [19–23] and Mott transitions [24–27] proposed in trian-
gular lattice systems therefore remain elusive.

The case of spatially anisotropic hopping or exchange
interaction is particularly interesting. Previous studies show
inconsistencies for both the anisotropic triangular lattice
Heisenberg and Hubbard model. Among those is the existence
of collinear antiferromagnetic order in the limit of weakly
coupled one-dimensional chains [28–48].

Here we present a dual fermion (DF) study of the
anisotropic triangular lattice Hubbard model. The DF method,
as one of the diagrammatic extensions of the dynamical mean-
field theory (DMFT), is unbiased (in the sense that it does
not favor certain types of magnetic orders) and provides high-
resolution spin susceptibilities, which renders it a valuable
tool in discussing the above-mentioned problem. We survey
the phase diagram, connect it to ground-state simulations, and
discuss in detail the parameter believed to be relevant for
Cs2CuCl4.

The remainder of this paper proceeds as follows. In Sec. II,
we give a brief introduction to the methodology by describ-
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ing the model, the dual fermion method, the observables of
interest, and the possible magnetic orders. In Sec. III, we
present our phase diagram, discuss the phases and phase
transitions, and apply the method to the concrete example of
Cs2CuCl4. Conclusions are drawn in Sec. IV.

II. METHOD

A. Hubbard model

We study the Hubbard model [49,50],

Ĥ = −
∑

〈i j〉σ
ti j ĉ

†
iσ ĉ jσ + H.c. + U

∑

i

n̂i↑n̂i↓ − µ
∑

iσ

n̂iσ , (1)

on an anisotropic triangular lattice in two dimensions at half
filling. Here ĉiσ (ĉ†

iσ ) are fermion annihilation (creation) oper-
ators on site i with spin σ =↑,↓. n̂iσ = ĉ†

iσ ĉiσ is the particle
number operator. 〈i j〉 denotes nearest-neighbor pairs on the
triangular lattice. U is the on-site interaction. The anisotropic
hopping is set to be ti j = t for two of the three directions and
ti j = t ′ for the third direction as illustrated in Fig. 1(c). When
t ′ ' t , the system approaches the limit of decoupled one-
dimensional chains, and when t ′ ( t , the system becomes a
square lattice. The chemical potential µ is chosen such that
the system is close to half filling (we adjust µ such that
|
∑

σ 〈n̂iσ 〉 − 1| < 0.01). All the data in this paper are calcu-
lated at fixed temperature T = 0.1t (β = 1/T = 10/t) unless
stated otherwise. In the remainder of the paper, the hopping t
is set to 1 and used as an overall energy scale.

B. Dual fermion expansion and ladder dual
fermion approximation

The DF expansion [51] is a diagrammatic technique devel-
oped to describe nonlocal correlation effects in models with
local interactions. It can be understood as an expansion around
a local limit in terms of “dual” diagrams. At the lowest order,
only local correlations are captured, but the method converges
to the exact limit when all “dual” diagrams to all orders
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FIG. 1. Ordering wave vectors for magnetic orders on the triangular lattice are represented by the different symbols or lines in (a) where
the $ point is set to be the origin and the hexagon indicates the first Brillouin zone with side length equaling 4π/3. The corresponding spin
configurations in the real space are illustrated in (c) square-lattice antiferromagnetic (SAFM), [(d), (e)] collinear antiferromagnetic (CAFM1,
CAFM2), (f) spiral, (g) noncollinear antiferromagnetic (NCAFM), and (h) one-dimensional antiferromagnetic (1DAFM) orders. The ground
state of the classical Heisenberg model is illustrated in (b) where the relative angle between the spin on each site and the spin on the bottom
left site is indicated.

are summed. In contrast to other diagrammatic techniques,
it provides both a nonperturbative strongly correlated local
self-energy and nonlocal contributions on a continuous mo-
mentum grid, as well as direct access to one- and two-particle
correlation functions. A detailed discussion of the technique
is presented in Refs. [51–54] and in a review [55].

In this paper, we employ the ladder dual fermion approx-
imation (LDFA) with a dynamical mean-field theory [56]
starting point (see Refs. [57–62] for previous DF work on
the triangular lattice Hubbard model). This approximation
only contains dual particle-hole ladder diagrams, which are
summed to infinite order. All nonladder diagrams and all
higher-order vertices are neglected. The quality of the approx-
imation is assessed in Refs. [63–67] (see also Ref. [68]). We
use the implementation provided by the open-source OPENDF
code [69] based on ALPSCORE [70,71].

As a starting point, the self-consistent vertices and self-
energies of a DMFT impurity problem are used as the input
of the LDFA [72]. These quantities are obtained using numer-
ically exact continuous-time auxiliary field quantum Monte
Carlo [73–76] (for analytic expressions of the noninteracting
triangular-lattice local density of states see the Appendix).
The LDFA method proceeds by solving the Bethe-Salpeter
equation (BSE) to obtain dual vertex functions. Once the dual
vertex functions are obtained, the Schwinger-Dyson equa-
tion (SDE) and the Dyson equation are used to obtain dual
self-energies, which are used to update the dual Green’s func-
tions. The BSE, SDE, and the Dyson equation are iterated
until convergence [69]. This iterative procedure method may
encounter convergence issues where the DMFT starting point
is far from the exact solution, in particular in the vicinity of
phase transitions and at low temperatures.

LDFA results, such as one-body Green’s function G and
spin susceptibility χs, are obtained as a function of Matsubara
frequencies. Dynamical quantities, such as spectral functions
and dynamical spin susceptibilities, require analytic contin-

uation from the Matsubara to the real axis. This procedure
is ill conditioned and uncontrolled [77]. In this paper, where
possible, we therefore present quantities that can be directly
extracted from the Matsubara results. Where we show ana-
lytically continued quantities, we use the maximum entropy
method implemented in the open-source MAXENT code [78]
based on ALPSCORE [70,71].

Despite being approximate, the LDFA has advantages that
make it a unique tool for studying correlated phases. First,
since it contains strong local correlations nonperturbatively,
it can be used to study strongly correlated systems outside
the perturbative regime. Second, since it gives access to gen-
eralized susceptibilities with almost continuous momentum
resolution (we use systems of size 24 × 24 and 48 × 48 in
this work), it can be used to detect the emergence of phases
with long-range and incommensurate orders. Finally, since the
formalism is based on detecting large fluctuations, rather than
entering an ordered state, all possible orders are treated on
equal footing without an a priori assumption of an expected
phase.

C. Spin structure factor

The main quantities of interest in this paper are the dy-
namical spin susceptibilities and the dynamical spin structure
factor. The magnetic scattering cross section is directly related
to the dynamical spin structure factor,

Sαα (q,ω) = 1
N

∫ ∞

−∞

dt
2π

eiωt 〈Ŝα
q (t )Ŝα

−q(0)
〉
, (2)

where Ŝα
q =

∑
i e−iq·ri Ŝα

i denotes the Fourier transform of the
spin operator with α = x, y, z, and N is the number of lattice
sites. The total scattering cross section that integrates over all
frequencies is related to the equal-time spin structure factor,

Sαα
0 (q) = 1

N

〈
Ŝα

q (0)Ŝα
−q(0)

〉
. (3)
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Our calculation is performed in the normal state, where
SU(2) symmetry is preserved, which allows us to focus on
the z component. The frequency- and momentum-dependent
dynamical spin susceptibility,

χs(q,ω) = − i
N

∫ ∞

0
dtei(ω+i0+ )t 〈[Ŝz

q(t ), Ŝz
−q(0)

]〉
, (4)

which describes the response to a weak externally applied
magnetic perturbation, can be extracted from the spin suscep-
tibility on the Matsubara axis,

χs(q,ωn) = − 1
N

∫ β

0
dτeiωnτ

〈
Tτ Ŝz

q(τ )Ŝz
−q(0)

〉
, (5)

via analytic continuation. (Note a minus sign difference with
respect to the physical spin susceptibilities.) The dynamical
spin structure factor can then be written as

Szz(q,ω) = − 1
π

[1 + nB(ω)] Im χs(q,ω) (6)

via the fluctuation-dissipation relation [79,80], where
nB(ω) = 1/(eβω − 1) denotes the Bose-Einstein distribution.
The equal-time spin structure factor can be calculated from a
sum over the Matsubara susceptibility as

Szz
0 (q) = − 1

β

∑

ωn

χs(q,ωn). (7)

D. Magnetic orders

Upon approaching a magnetically ordered state, a di-
vergence in the equal-time spin structure factor with the
ordering wave vectors indicates the onset of the corresponding
magnetic order. Since the LDFA calculation performed here
always remains in the normal state, large well-defined peaks in
the equal-time spin structure factor indicate strong magnetic
correlations. These are viewed as a precursor of magnetic
order. To compare our results with previous studies of re-
lated models at zero temperature, we identify strong magnetic
correlations at the lowest temperature studied (T = 0.1) with
the corresponding magnetic orders at zero temperature in this
work.

For the symmetry-broken magnetically ordered states, we
can directly evaluate the ordering wave vectors from the
definition in Eq. (3). Figures 1(c)–1(h) show the real-space
spin configurations for the magnetic orders discussed in
this paper. The corresponding ordering wave vectors and
equivalent points and lines are indicated by the different sym-
bols in Fig. 1(a). Square-lattice antiferromagnetic (SAFM)
order [Fig. 1(c)] with wave vector at M′(0, 2π/

√
3) and

two degenerate collinear antiferromagnetic (CAFM1 and
CAFM2) orders ([Figs. 1(d) and 1(e)] with wave vectors at
M(π ,π/

√
3) and M′′(π ,−π/

√
3), have no difference in spin

configurations except for the direction of the ferromagneti-
cally ordered chains. The spiral order with wave vector at
K(4π/3, 0) and the noncollinear antiferromagnetic (NCAFM)
order with wave vector at X(π , 0) are shown in Figs. 1(f)
and 1(g), respectively. Additionally, the one-dimensional an-
tiferromagnetic (1DAFM) order is shown in Fig. 1(h). In the
1DAFM order, no correlation exists between the horizontal
antiferromagnetic chains, resulting in ordering wave vectors

FIG. 2. Phase diagram of the anisotropic triangular lattice Hub-
bard model. Green, cyan, red, orange, and yellow regions correspond
to metal, one-dimensional antiferromagnetic (1DAFM), noncollinear
antiferromagnetic (NCAFM), spiral, and square-lattice antiferro-
magnetic (SAFM) orders, respectively. Plus markers, places with
converged results; square markers, LDFA fails to converge; star
markers, data points shown in Sec. III C. All the points are assigned
to the closest commensurate orders or the metallic phase.

uniformly spread over the line connecting M and M′. The
values of equal-time spin structure factor on this line for the
1DAFM order are expected to be much smaller than the peak
values for the two-dimensional (2D) magnetically ordered
states mentioned above [32].

III. RESULTS

A. Phase diagram

The phase diagram of the anisotropic triangular lattice
Hubbard model, as identified by LDFA, is shown in Fig. 2. At
4 ! U ! 6, the metallic phase dominates around the isotropic
lattice limit and transforms into the SAFM order when t ′ is
decreased and into the 1DAFM order when t ′ is increased. At
6 ! U ! 10, the metal-insulator transitions from the metallic
phase to SAFM, spiral, and NCAFM orders emerge at differ-
ent t ′ due to the increase of U . A transition from 1DAFM to
CAFM also begins in this region with larger t ′. At 10 ! U !
12, different magnetic phases appear in the order of SAFM,
spiral, NCAFM, and 1DAFM orders upon the increase of t ′

going from the square lattice limit to the isotropic lattice limit
to the limit of decoupled chains.

A 24 × 24 lattice is used to scan this phase diagram. The
physical quantities obtained from the 24 × 24 lattice are found
to have no qualitative difference from the ones obtained from a
48 × 48 lattice which have higher resolution and are therefore
shown in the remainder of the paper. To identify the differ-
ent phases in Fig. 2, we use two quantities that reflect the
properties of the system in the charge sector and in the spin
sector, respectively: the spectral weight at the Fermi energy,
A(ν = 0) = − Im G(i0+)/π , and the static spin susceptibility,
χs(q,ωn = 0).
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We first identify the 2D magnetically ordered states accord-
ing to the absolute values of the static spin susceptibility at
the possible magnetic wave vectors mentioned in Sec II D,
i.e., the K, M, M′, M′′, and X points shown in Fig. 1(a).
If the largest absolute value at those points is larger than 1,
then we identify the system as belonging to the corresponding
magnetically ordered state. As we will show in Sec. III C,
incommensurate magnetic orders where the ordering wave
vectors do not belong to those points, and a coexisting phase
where the features for the 1DAFM and NCAFM orders coex-
ist, are also observed. For simplicity, we attribute them as the
closest commensurate magnetic orders in Fig. 2.

To further classify the remainder of the phase diagram,
we define that a point where the spectral weight at the Fermi
energy is larger than 0.1 lies in a metallic phase, and otherwise
lies in a phase for the 1DAFM order. This way of identification
of the metallic phase is consistent with the above method
used for the 2D magnetically ordered states. Note that using
other threshold values for the static spin susceptibility and
the spectral weight instead of 1 and 0.1 will generate slightly
different phase diagrams but the overall shape of the phase
diagram remains similar for those values.

Although our phase diagram does not give precise phase
boundaries, our results can reflect the rich phases of the
anisotropic triangular lattice systems. A precise determination
of the location of the boundaries of phases in the ground
state would need additional careful studies of the temperature
dependence and of corrections to LDFA which is beyond our
current focus. Note that we use the terminology “1DAFM
order or state” in this work to refer to the state that has a
straight line feature connecting M and M′′ in the equal-time
spin structure factor, such as the case of the uncorrelated
antiferromagnetically ordered chains illustrated in Sec. II D.
In fact, the quantum state with a such one-dimensional (1D)
feature found by the DF method is the previously identified
1D QSL which is not a magnetically ordered state [28–37,44–
46].

B. Discussion of previous studies

Before discussing the details of our results, we review
previous numerical studies on related systems. Both the Hub-
bard model and the Heisenberg model are known to have a
rich ground-state phase diagram on the anisotropic triangular
lattice. In the discussion of the Heisenberg model, we will
focus on the J-J ′ model where J is used to denote the nearest-
neighbor exchange interaction along two directions and J ′

the one along the remaining direction. We will not discuss
other possible interactions in the spin model such as in-plane
isotropy, next-nearest-neighbor exchange, and ring exchange
that may or may not be related to the Hubbard model at
intermediate U [81].

In the classical ground-state solution of the anisotropic
triangular lattice Heisenberg model, the next-nearest-neighbor
chains in the vertical direction are ferromagnetically corre-
lated. The ordering wave vector is given by (2θ , 0) where
θ = cos−1[−J/(2J ′)] for 0 ! J/J ′ ! 2 and θ = π for J/J ′ >
2 [82,83]. The real-space spin configuration is illustrated in
Fig. 1(b), where θ is the angle between two nearest-neighbor
spins in the two diagonal directions while 2θ is the angle

between two nearest-neighbor spins in the horizontal direc-
tion. When J/J ′ increases from zero to 1 to infinity, the
system undergoes the 1D-to-2D transition from NCAFM to
spiral to SAFM orders with the ordering wave vector changing
smoothly from X to K to M′. (Note that one of the equivalent
points of M′ is located at (2π , 0) so there is no jump in the
ordering wave vector during the transition.) For the NCAFM
order in this classical solution, the spins on the nearest-
neighbor chains in the vertical direction are orthogonal to each
other since θ = π/2. Note that a nonorthogonal configuration
gives the same energy in the classical solution. Further, the
peak at X in the equal-time spin structure factor is only related
to the fact that the next-nearest-neighbor antiferromagnetic
chains are ferromagnetically correlated in the vertical direc-
tion and are not related to the relative configuration between
the nearest-neighbor chains. Therefore, when the real-space
illustration for the NCAFM order is presented in Fig. 1(g),
we intentionally show a nonorthogonal configuration to leave
some ambiguity.

Unlike the classical case, the quantum solution of the
Heisenberg model is complicated and is still under debate.
In the square-lattice limit (J ′/J = 0) and the isotropic lattice
(J ′/J = 1), the SAFM order [84–86] and the spiral order
[87–91] are still the ground states, as in the classical prob-
lem. The incommensurate orders between the spiral order and
SAFM order are also observed [32,35,37,82,92]. However, the
transition point between the SAFM order and the spiral and/or
incommensurate orders are found to be shifted above the
classical value J ′/J = 0.5 [28,30–32,35–37,82,93–95]. Fur-
thermore, a dimerized phase is proposed by series expansion
(SE) [82] and a putative QSL phase is proposed by mod-
ified spin wave theory (MSWT) [30,31], variational Monte
Carlo (VMC) [35], exact diagonalization (ED) [36], and high-
temperature SE [95] in the region between the SAFM order
and the spiral order. Going from the isotropic lattice (J ′/J =
1) to the limit of decoupled chains (J ′/J = ∞), the phase
diagram becomes more involved, especially between the limit
of decoupled chains and the region where the incommen-
surate orders are found [32,34,35,37,40,42,43,82,96]. While
the Tomonaga-Luttinger physics in the 1D antiferromagnetic
Heisenberg chain has been clear for some time [97–100], there
is some controversy in the 1D-to-2D crossover region. On
one hand, a gapless QSL, which corresponds to the 1DAFM
order in our notation, is expected to occur as a remnant of
the Tomonaga-Luttinger liquid in the crossover region and is
expected to occupy a large portion of the phase diagram due to
dimensional reduction by frustration and quantum fluctuation
[101]. This gapless QSL, along with a strong 1D feature, is
confirmed by density matrix renormalization group (DMRG)
[28], resonating valence bond mean-field theory [29], MSWT
[30,31], functional renormalization group (FRG) [32], VMC
[33–35], ED [36], and Schwinger boson theory [37]. On
the other hand, an unexpected CAFM order, which does not
have a classical counterpart, is purposed to be stabilized in
the crossover region by renormalization group (RG) studies
[38,39] and is later supported by SE [40], the coupled cluster
method [41], RG [42], and ED [43]. Besides, DMRG [94] and
ED [43] studies point out that incommensurate correlations
may exist in the entire region going from the square-lattice
limit to the limit of decoupled chains. In addition, other QSL
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states besides the 1D QSL are also proposed in the crossover
region [30,33,34,36,102].

For the Hubbard model at half filling, a metallic phase
at small U and intermediate anisotropy is expected to
be connected with the isotropic noninteracting triangular
lattice. The possibility of a superconducting phase in the
nearby region is also proposed [103–105] but remains
controversial [61,106–108]. Recent DMRG studies find
that a Luther-Emery liquid (LEL) [109] could be the true
ground state in this region [46,110,111]. Another recent
DMRG study also points out that the superconducting
phase only exists with large doping at intermediate U
[112]. Approaching the square-lattice limit at small U , a
metal-insulator transition (MIT) is expected since the SAFM
order is known to be the ground state of the square-lattice
Hubbard model for all U [50]. Approaching the limit of
decoupled chains at small U , a MIT is reported from
variational cluster approximation (VCA) [44] and VMC [45]
studies while recent DMRG work also shows the possibility
of transiting from metal or LEL to 1D metal [46]. Besides
the two MITs just mentioned, another interaction-driven
MIT around the isotropic lattice limit upon the increasing
of U is heavily investigated [44–48,57,59,61,62,103,106–
108,111,113–128]. Many studies further propose a QSL or
a nonmagnetic insulating (NMI) phase existing between
the metallic region at small U and the ordered phase
at large U , which makes a Mott transition between the
metallic phase and the QSL or NMI phase possible
[46,58,59,61,103,106,111,113,115,116,119,123,125–127].
Recent studies show evidence of chiral order in the
intermediate-U region, leading to a conclusion of chiral
QSL [46,111,112,127,129–132]. At large U , similar to the
Heisenberg model, the phases at t ′/t < 1 are more or less
clear with an observation that the transition line between
the SAFM order and the spiral and/or incommensurate
orders tends to move above the classical value t ′/t =

√
2/2

[46,47,61,104,107,108,113,124]. The proposal of a QSL or a
NMI phase existing between the SAFM and spiral orders is
also aroused by VMC [108,118] and VCA [47]. For t ′/t > 1,
the phase diagram is as unclear as the corresponding part
of the Heisenberg model. VCA [44,47], VMC [45], cluster
dynamical mean-field theory [48], and DMRG [46] studies
find a CAFM order above the spiral and/or incommensurate
orders. The 1DAFM order, i.e., the 1D QSL phase, is also
found in a similar region by VCA [44], VMC [45], and
DMRG [46]. Note that the CAFM order and 1DAFM order
are found to belong to different regions of the phase diagram
in Refs. [44,45] but they were found in different DMRG
simulation configurations in Ref. [46]. The additional QSL
phases in the 1D-to-2D crossover region besides the 1D QSL
are also found in some configurations in Ref. [46].

C. Magnetic phases

Our results for the equal-time spin structure factor as a
function of t ′ at small U and large U are given in Fig. 3.

When t ′ < 1, the SAFM order is observed in a large portion
of the parameter space admitting the competition with the
spiral order when approaching the isotropic lattice limit. As
shown in Figs. 3(l) and 3(n), at relatively large U , a peak at M′

FIG. 3. Equal-time spin structure factor Szz
0 (q) at small U (left

column) and large U (right column) with different t ′ ranging from 0.5
(bottom row) to 5 (top row). U and t ′ are as indicated. The Brillouin
zone is shown by the white dashed lines.

is established in equal-time spin structure factor at t ′ = 0.50
and is then split into two peaks when an incommensurate
order is formed at t ′ = 0.75. A similar transition with less
obvious peaks is also observed in the metallic region as shown
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in Figs. 3(k) and 3(m). For the isotropic lattice, the peaks at
the six corners of the first Brillouin zone are formed when
U is gradually increased, as shown in Figs. 3(i) and 3(j). No
obvious Mott-insulating phase is observed at the temperature
studied, which agrees with the previous DF results [59] and a
recent multimethod study [127]. For the potential spin liquid
in the middle of the MIT, the multimethod study shows that
related rotonlike excitations are developed when the temper-
ature decreases from T = 0.1 [127], which can be inferred
from the equal-time spin structure factor at the M point. In a
similar region, we find convergence difficulties at half filling
below T = 0.1. Therefore, the nonmagnetic insulator phase
is absent on our phase diagram. A different starting point for
the DF method may alleviate the convergence problem at low
temperature [58].

Approaching the limit of decoupled chains with large U ,
incommensurate order is observed between t ′ = 1 and t ′ ≈ 2
with the peak value in the equal-time spin structure factor
evolving from the K point to the X point as shown in Figs. 3(j),
3(h), and 3(f). At even larger t ′, as shown in Figs. 3(b) and
3(d), the peak at X decreases while a background broadening
ranging from M to M′ emerges and finally becomes compara-
ble to the peak at X. A similar trend is also observed at small
U as shown in Figs. 3(i), 3(g), 3(e), 3(c), and 3(a), where
the broadening 1D feature corresponding to the 1DAFM or-
der appears much earlier with the increase of t ′. Despite the
occurrence of the 1DAFM order, we note that the peak at X
seems to be stable and may extend to large t ′ for both small
and large U .

Our equal-time spin structure factor results at large U
clearly show a smooth transition from the NCAFM order to
the 1DAFM order, which is remarkably similar to the sus-
ceptibility or structure factor shown in the FRG study of the
Heisenberg model [32] and the ED study of the XX model
[133]. The unexpected CAFM order proposed in the Heisen-
berg model [38–43] and the Hubbard model [44–48] is not
found in our calculation. Furthermore, the coexisting state,
where both the peak at X and the line going from M to M′ are
visible in the equal-time spin structure factor such as the one
shown in Fig. 3(d), is found to connect the NCAFM order and
the 1DAFM order despite that we classify them to the nearest
ordered phase in Fig. 2. To our best knowledge, this coexisting
state has not yet been discussed and could be directly related
to the controversy in the large-(t ′/t) or large-(J ′/J) region.
We find some literature indeed providing indirect evidence
for this coexisting state. For example, both DMRG [94] and
ED [43] studies for the Heisenberg model support that the
incommensurate correlation exists in the entire region going
from the isotropic lattice to the limit of decoupled chains
which agrees with the observation here that the peak at X
tends to exist at very large t ′. Although the ED study [43]
observes a phase transition from the incommensurate order to
the CAFM order instead of the NCAFM order as J ′ increases,
the energy of the NCAFM order is found to be larger than
the CAFM order only by a margin of ∼10−7 at large J ′,
and this small energy difference even decreases with system
size. Besides, a recent DMRG study on the Hubbard model
also finds a similar phase like the coexisting phase found
here in the YC6 cylinder [46]. The supplemental material of
Ref. [46] also points out that the 1D QSL phase found by the

work may be nontrivial because of the isolated gapless points
(probably at $ and X). We note that this is consistent with
the picture of the NCAFM order coexisting with the 1DAFM
order presented here. Furthermore, a recent VMC work on the
Hubbard model found a similar coexisting state of the CAFM
order and the 1DAFM order where additional anisotropy is
introduced for the hopping terms in the model such that
CAFM can be stabilized in the nearby regions [134]. In the
VMC work, this coexisting phase is further identified as a new
type of QSL. Lastly, a smooth transition from the 1DAFM
order to the SAFM order is also indicated in the auxiliary
field quantum Monte Carlo (AFQMC) study of the anisotropic
square-lattice Hubbard model with additional frustration from
the next-nearest-neighbor hopping [135].

Besides the 1DAFM order and the coexisting state dis-
cussed above, the phases slightly above and below the
isotropic lattice limit at large U may also not have counter-
parts in the classical solution of the Heisenberg model. As
shown in Figs. 3(h) and 3(l), the amplitude of the equal-time
spin structure factor decreases in these two regions and the
peaks get blurred. We note that it is possible to relate the
characteristics of the equal-time spin structure factor for the
coexisting state and the phases shown in Figs. 3(h) and 3(l) to
QSL phases [34,133,134]. However, we do not have other reli-
able methods to classify QSL within the framework of LDFA
and we cannot obtain convergence for even larger U to discuss
the stability of these phases at the infinite-U limit. Therefore,
we conservatively classify them as the nearest ordered phases
in the phase diagram, Fig. 2.

D. Lifshitz transitions

For the small-U region of the phase diagram, we identify
the 1DAFM order from the metallic phase according to the
spectral weight at the Fermi energy in Sec. III A. In fact, the
same boundary between these two phases is also related to
the Lifshitz transitions which in our case is the Fermi surface
opening at the boundary of the Brillouin zone. Figure 4 shows
the electron occupation n(k) =

∑
σ,ωn

e−iωn0−
Gσ (iωn, k)/β at

U = 4 and U = 6 with different t ′ ranging from 0.5 to 1.5.
The black line indicates the noninteracting Fermi surface
ε(k) − µ = 0. We see that at U = 4 the Fermi surface (white
regions) roughly matches the noninteracting Fermi surface at
all t ′ and two Lifshitz transitions inherited from the nonin-
teracting limit occur at t ′ slightly above 1.5 and below 0.5.
At U = 6, with the changing of t ′ the Fermi surface may
have already opened at t ′ = 0.5 and t ′ = 1.5, as indicated
by the white regions in Figs. 4(b) and 4(f). In the recent
DMRG study of the same system, the Fermi surface opening
is also observed at very close regions and the trend that the
Fermi surface at larger U opens at t ′ closer to 1 also agrees
well [46]. Besides, as shown in Fig. 4, in the presence of
interactions the saddle points of Lifshitz transitions for the
noninteracting case become broadened white regions and at
larger U the Fermi surface encloses effectively a larger region.
This phenomenon is well understood in a Landau-type theory
[136] as flat bands near the conventional Lifshitz transition.
Similar phenomena are also found in the isotropic triangular
lattice Hubbard model at van Hove filling [60] and the doped
Kondo lattice model [137].
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FIG. 4. Electron occupation n(k) at U = 4 (left column) and
U = 6 (right column) with different t ′ ranging from 0.5 (bottom row)
to 1.5 (top row). U and t ′ are as indicated. Black lines show the
noninteracting Fermi surfaces. The Brillouin zone is shown by the
white dashed lines.

We note that in Ref. [46], although a similar Lifshitz tran-
sition is found, the small-U and large-t ′ region (top left corner
of Fig. 2) is recognized as 1D metal instead of 1DAFM. In our
calculation, lower temperature data are needed to distinguish
the insulating phase and a correlated metal. This is beyond
the scope of the method. We note that the insulating phase
is found in VCA [44] and VMC [45] in similar regions,
which agrees with the 1DAFM order at large t ′ we found.
Besides, a similar transition from a 1D insulating phase to
a higher-dimensional metallic phase with antiferromagnetic
spin correlations is reported from the AFQMC study of the
anisotropic square-lattice Hubbard model [138]. Therefore,
the metallic or insulating nature at the small-U and large-t ′

region may need further study.

E. Spin excitation of Cs2CuCl4

The anisotropic triangular lattice Hubbard model at
t ′ = 1.715 (estimated from J/J ′ = 0.34) is believed to de-
scribe the physics of Cs2CuCl4. We present the spin structure
factors and compare them with the inelastic neutron scattering
experiment of Cs2CuCl4 [1]. Our results overall show good
agreement with Ref. [1]. Besides, we find a region where a
distorted 1D feature and the feature of an incommensurate
order coexist in the equal-time spin structure factor. This is
similar to the coexisting states of the NCAFM and 1DAFM
orders discussed in Sec. III C.

Figure 5 shows the equal-time spin structure factor at
U = 11 and t ′ = 1.715 with different temperatures. Upon in-
creasing the temperature from T = 0.1 to T = 1, the peaks at
the incommensurate ordering wave vector shown in Fig. 5(a)
gradually evolve into broadening 1D curves as shown in
Fig. 5(c). At intermediate temperature T = 0.5 as shown in
Fig. 5(b), both the blurred peaks at the incommensurate or-
dering wave vector and a distorted 1D feature are observed.
Such coexistence actually also appears at T = 0.1 and T = 1
with either the 1D feature or the peak at the incommensu-
rate ordering wave vector being much less obvious. At high
temperature, T = 10, as shown in Fig. 5(d), the structure
factor becomes almost featureless considering the minor dif-
ference between the maximum and the minimum. The finite
temperature transition presented above is consistent with the
transition from an incommensurate magnetic order to a spinon
excitation continuum to a paramagnetic state observed in the
inelastic neutron scattering experiment [1]. The coexisting
states also appear to be consistent with the dispersion relation
given in the experiment.

To further illustrate the spin excitations, we also present
the dynamical spin structure factor in Fig. 6 with momentum
cuts at qy = 0, qy =

√
3π , and qx = −π/2, following the

ones used in Fig. 3 of Ref. [1]. The comparison of the spin
excitations from the experiment and calculations based on the
Heisenberg model are well known. The peak dispersion of
neutron scattering is well described by series expansion and
1/S expansion [139–142]. A perturbative calculation based
on 1D spin chains further reveals that the excitation contin-
uum and the peak dispersion originate from lower-dimension
spinons [143].

Due to the ill-conditioned nature of the analytic contin-
uation problem, the details of the dynamical spin structure
factor depend on the default model used in maximum entropy
calculation and are also sensitive to the error estimation of

FIG. 5. Equal-time spin structure factor Szz
0 (q) at U = 11 and t ′ = 1.715 with different temperatures T ranging from 0.1 (left) to 10 (right).

T is as indicated. The Brillouin zone is shown by the white dashed lines.
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FIG. 6. Dynamical spin structure factor Szz(q, ω) at U = 11 and t ′ = 1.715 with different temperatures T ranging from 0.1 (top row) to
10 (bottom row). T is as indicated. Left column, middle column, and right column show Szz(q, ω) at qy = 0, qy =

√
3π , and qx = −π/2,

respectively. White lines show the locations of peaks for each fixed q. White open squares are peak values at T < 0.1 K reported from the
neutron scattering experiment with a rescaling by a factor of 2 [1]. Values of peaks at qy = 2π/

√
3 and qy = 4π/

√
3 are shown in the right

column with white solid dots and numbers.

the calculation which is difficult to obtain in the LDFA cal-
culation. This limits the reliability of the dynamical quantities
and thus makes the direct comparison with experimental data
difficult. Since fine-tuning the parameters in the analytic con-
tinuation process may introduce misleading agreement, we
conservatively choose to use the same model and same error
estimation for all momentum points q and all temperatures
T studied. This results in anomalies that could be removed
by tuning the parameters such as high-energy tails around
qx = π , 3π in Fig. 6(a) and around qx = π in Fig. 6(b) where
the Matsubara data are significantly larger than at other q
points.

As shown in the top row of Fig. 6, the peak disper-
sion (white line) at low temperature, T = 0.1, qualitatively
matches the peak dispersion (white open square) below 0.1 K
given in the neutron scattering experiment [1]. More pre-
cisely, the minimum close to qx = π and qx = 3π shown in
Fig. 6(a), the asymmetric dispersion with respect to qx = π
and qx = 3π shown in Fig. 6(a), the symmetric dispersion
with respect to qx = π shown in Fig. 6(b), and the asymmetric
dispersion with respect to qy =

√
3π shown in Fig. 6(c) all

agree with the dispersion relation obtained in the experiment.
Note that to highlight this agreement, the experimental re-
sults have been scaled by a factor of 2. Using the estimate
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J = 4t2/U and J = 0.128(5) meV [1], one can show T = 0.1
used in the calculation corresponds to a physical temperature
above 0.1 K but below TN = 0.62 K, the transition tempera-
ture from an incommensurate order to excitation continuum
reported in Ref. [1]. Adjusting temperature T (and/or U, t ′)
therefore may yield a more accurate absolute agreement here.
Besides the agreement for dispersion, the peak value at q =
(−π/2, 2π/

√
3) is found to be larger than the peak value at

q = (−π/2, 4π/
√

3) as indicated by the white solid dots and
numbers in Fig. 6(c). The ratio of these two peak values is
found to be about 4 in the experiment (see scans E and F in
Fig. 5 of Ref. [1]) and is well explained by the perturbative
study [143]. Although the ratio found in our calculation is
much smaller than the experiment value, we find the feature of
a larger peak value occurring at q = (−π/2, 2π/

√
3) is robust

upon different default models and error estimation.
When temperature T is further increased, the dispersion

tends to become flat as shown in the second to the fourth
rows of Fig. 6, where signatures of the features of the incom-
mensurate order at lower temperature gradually disappear.
The ratio of peak values at q = (−π/2, 2π/

√
3) and q =

(−π/2, 4π/
√

3) becomes larger at T = 0.5 and then de-
creases, which agrees with the picture that spinon excitations
are enhanced at intermediate temperature and the paramag-
netic state appears at higher temperature [1].

IV. CONCLUSION

We have presented a comprehensive study of the phase
diagram of the anisotropic triangular lattice Hubbard model
as a function of t ′ and U at half filling.

The ladder dual fermion approximation used here cap-
tures all local correlations while treating nonlocal correlations
perturbatively. It provides a fine k-space resolution of the
susceptibility and is able to resolve spin fluctuations without
an a priori assumption of possible orders.

We found a rich phase diagram with metallic, SAFM,
spiral, NCAFM, and 1DAFM phases. While many aspects of
the phase diagram have been found before, we resolve the
discrepancies between previously published results. More pre-
cisely, the disputed CAFM order (see Sec. III B) near the limit
of decoupled chains is not found by our method. Instead, the
NCAFM order and the coexisting phase of the 1DAFM and
NCAFM orders are found to be dominant in the corresponding
region. Some indirect support in previous studies related to
the newly found coexisting phase is discussed in Sec. III C.
We also investigated the Lifshitz transition on the anisotropic
triangular lattice in the presence of interaction.

Our study investigated the physics of the model for pa-
rameters relevant to Cs2CuCl4 in more detail. We found a
transition from an incommensurate magnetic order to a spinon

excitation continuum to a paramagnetic state upon the in-
crease of temperature, which is in agreement with the inelastic
neutron scattering experiment [1]. Despite the limitation of
analytic continuation, the dynamical spin structure factor at
U = 11 and t ′ = 1.715 shows a dispersion relation consistent
with results obtained in Ref. [1].
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APPENDIX: LOCAL DENSITY OF STATES FOR THE
NONINTERACTING ANISOTROPIC TRIANGULAR

LATTICE

The local density of states, ρ(ν) = − Im G0(ν + i0+)/π ,
of the noninteracting anisotropic triangular lattice is used as
the input of DMFT (see Ref. [144] for the expression of
the noninteracting Green’s function G0). It can be expressed
analytically in terms of the complete elliptic integral of the
first kind, K (m) =

∫ π/2
0 dφ[1 − m sin2 φ]−1/2, as

ρ(ν; t, t ′) = 1
π2t ′√z0

K
(

z1

z0

)
, (A1)

z0 =






q, 0 < p ! q

p, 0 < q < p

p − q, q < 0,

(A2)

z1 =






q − p, 0 < p ! q

p − q, 0 < q < p

p, q < 0,

(A3)

where we define two dimensionless parameters u = t/t ′ " 0
and E = ν/t along with the following notation:

r ≡ u
√

u2 − Eu + 2,

p ≡ 4r,

q ≡ (r − u2)2(r2 − 4u2 + 2ru2 + u4)
4u4

.

(A4)

The range of ν is indicated by

− 4 − 2
u
! E ! u + 2

u
, 0 < u ! 2,

− 4 − 2
u
! E ! 4 − 2

u
, u > 2.

(A5)
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