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ARTICLE INFO ABSTRACT

Keywords: Electrostatic rotary bell atomizers are extensively used as paint applicators in the automobile industry. Paint
NGA undergoes atomization after exiting the edge of a high-speed rotating bell. In most setups, the paint is
CFD electrically charged and a background electric field is applied between the nozzle and the target surface to
Electric ﬁ,eld, X increase the transfer efficiency (TE). The atomization process directly determines the droplet size and droplet
Charge distribution e . - . .
Electrospray thrge distributions wh1c}1 subsequently cs)ntro.l TE and surface finish qual'lty. Optimal spl.ray pa.rameters used
Rotary atomizer in industry are often obtained from expensive trial-and-error methods. In this work, three-dimensional near-bell
atomization is computationally simulated using a high-fidelity volume-of-fluid transport scheme that includes
electrohydrodynamic (EHD) effects. We find that electrifying the setup results in the production of smaller
droplets. Additionally, the electric field has a minor effect on primary atomization but a negligible effect on
the size and stability of atomized droplets after secondary breakup. This cost-effective method of simulating
EHD-assisted atomization allows for the understanding of the effect of the electric field and the extraction of
droplet charge characteristics which is otherwise challenging to obtain experimentally.

1. Introduction Rotary bell atomizers (RBAs) (Fig. 1) are extensively used as paint
applicators in the automobile industry. In addition to automobile paint
shops, rotary atomizers are used in several other applications such
as agricultural spraying (Craig et al., 2014), food processing (Oxley,
2012), and pharmaceutical drug-delivery (Mackaplow et al., 2006).
An RBA is a high-speed rotating nozzle that atomizes paint into

droplets that range from a few micrometers to tens of micrometers in

With the world becoming increasingly dependent on automotive
means of transportation and motor vehicle production approaching
100 million units per year (OICA, 2019), automobile manufacturers
are looking for ways to minimize production costs. In an automobile
manufacturing facility, the paint shop can account for up to 70% of
the total energy costs (Galitsky and Worrel, 2008), demand up to 50%
of the electricity and up to 60% of the fossil fuel energy (Leven and
Weber, 2001) used in the facility. These costs are associated with the
energy used in operating and maintaining the HVAC equipment of the
painting booth, paint drying, and control of pollutants like volatile
organic compounds generated by paint overspray (Galitsky and Worrel,
2008). The overspray leads to significant material waste causing envi-
ronmental and cost concerns. The paint shop is thus one of the most
expensive aspects of automobile manufacturing, accounting for up to

diameter. Paint is injected onto the inner surface of a bell-shaped nozzle
where it spreads into a thin film on the surface due to centrifugal forces.
The fluid film, on reaching the edge of the high-speed rotating bell,
exits as multiple ligaments which further atomize into droplets (Frost,
1981). It is common practice to electrically charge the paint and apply
a background electric field to enhance the transfer efficiency (TE) of
the device (Domnick and Thieme, 2006; Im et al., 2000). Atomized
droplets, which also carry electric charge, move towards the grounded

50% of its total costs (Akafuah et al., 2013; Clément et al., 2014). The
global automotive paints and coatings market size was valued at $17.34
bn in 2019 and is expected to be about $26.8 bn by 2027 (Precedence
Research, 2019). Additionally, the paint shop is responsible for over
80% of the environmental concerns in a manufacturing facility (Geffen
and Rothenberg, 2000).

* Corresponding author.

target surface under the influence of the electric field.

Metrics of significant importance such as the droplet size unifor-
mity, surface finish quality, TE, deposition thickness, and environ-
mental impact are directly dependent on the atomization process in
the nozzles (Domnick and Thieme, 2006; Akafuah et al., 2016; Cor-
beels et al., 1992). The nozzle operating conditions used in industry
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Fig. 1. A rotary bell atomizer in operation. Photograph courtesy of RISE Research
Institutes of Sweden and Fraunhofer-Chalmers Centre.

that optimize these metrics are often obtained from expensive trial-
and-error experimental methods. The optimal setup of RBAs can still
be improved, for example, painters currently are required to over-
coat the target surface to ensure sufficient finish quality using excess
paint (Sadegh et al., 2018). Due to the high expense of the painting
process, small improvements can result in significant cost savings and
waste reduction.

Early research conducted in RBAs investigated the physics behind
the atomization process (Hinze and Milborn, 1950; Balachandran and
Bailey, 1984; Domnick, 2010; Mahmoud and Youssef, 2014; Naoki
et al., 2019; Corbeels et al., 1992; Loch et al., 1998; Dombrowski and
Lloyd, 1974). These works identified four crucial processes leading
up to atomization — film formation, ligament formation, ligament
thinning, and ligament breakup. Several articles have studied and
characterized the process of film formation as paint flows along the
inner surface of the bell (Tatsuya et al., 2015; Domnick et al., 2008;
Kuhnhenn et al., 2018; Makarytchev et al., 1997; Symons and Bizard,
2015) and ligament formation at the edge of the bell (Rezayat and
Farshchi, 2019; Shirota et al., 2012; Saye et al., 2023). In this work,
ligament thinning and ligament breakup are the relevant physical
processes. While many RBAs are equipped with shaping air (an annular
stream of focused air around the bell) to increase TE, the system
modeled here does not include it.

Multiple research groups have studied the operation of non-electr-
ified RBAs focusing on various aspects such as the bell geometry (Dom-
nick, 2010; Sidawi et al., 2021a; Kazama, 2003; Panneton, 2002), the
effect of shaping air (Stevenin et al., 2015; Darwish Ahmad et al.,
2018), the breakup process (Shen et al., 2019; Ogasawara et al., 2010;
Keshavarz et al., 2020; Saye et al., 2023), and the droplet size distribu-
tion (Ahmad et al., 2019).

As mentioned, RBAs are often operated in a background electric
field that helps improve their TE. The electric field interacts with
the charged liquid and affects its flow near the bell. Electrified flows
are described by electrohydrodynamics (EHD) - the science of charac-
terizing interactions between fluid dynamics and electrostatics (Chen
et al., 2003; Fylladitakis et al., 2014). EHD has seen several decades
of research and is now employed in various engineering applications
including food technology (Anukiruthika et al., 2021; Khan et al., 2012;
Gorty and Barringer, 2011), inkjet printing (Raje and Murmu, 2014),
electrostatic precipitation (Yamamoto and Velkoff, 1981), powder coat-
ing (Jaworek et al., 2018), biochemistry (Stimpson and Evans Jr.,
1978), microfluidics (Azizian et al., 2019), and biomedical applica-
tions (Enayati et al., 2011; Eagles et al., 2006; Farook et al., 2007).
It is common practice to use electric fields to control uncharged liquid
jets (Vajdi Hokmabad et al., 2014) and charged fuel sprays (Fredrich
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et al., 2022; Shrimpton and Laoonual, 2006). EHD-assisted atomization
has been an increasingly important means of producing liquid droplets
that is well-established to offer advantages over other industrial spray-
ing processes (Bailey, 1974; Hayati et al., 1986; Grace and Marijnissen,
1994).

Previous studies on electrified RBAs that have included an electro-
static model have explored its effects as a macroscopic phenomenon
focusing on the resulting spray pattern, paint film thickness, over-spray
control, and TE (Arumugham-Achari et al., 2015; Im et al., 2004; Dom-
nick et al., 2005; Colbert and Cairncross, 2005; Ellwood and Braslaw,
1998; Sidawi et al., 2021b; Pendar and Pascoa, 2021; Mark et al., 2013;
Im et al.,, 2003, 2000; Hines, 1966; Viti et al., 2010). Experimental
studies on near-bell atomization in electrified RBAs have been limited
in their ability to understand droplet charge characteristics (Wilson
et al., 2018). Recent numerical efforts have characterized the effects
of various operating parameters on droplet trajectories, droplet size
distribution, and charge evaporation in electrified RBAs (Colbert, 2007;
Ellwood et al., 2014; Pendar and Péascoa, 2019, 2020; Ray and Hen-
shaw, 2018; Guettler et al., 2020). Generally, most prior models have
given little or no attention to electric effects on multiphase transport
phenomena driving atomization. Moreover, high-speed cameras and
imaging equipment are seldom placed in electrified RBA setups to
prevent electric arcing (Godeke et al., 2021). For these reasons, ex-
perimental studies of the atomization process in electrified RBAs are
limited in detail. Additionally, there is currently no experimental data
on the charge distribution in atomized droplets in RBAs. Although some
research has been conducted on the effect of charge density on the
surface finish quality (Toljic et al., 2011) and charge distribution in
atomized droplets (McCarthy and Senser, 2005) in electrostatic sprays,
they have not been studied for charged rotary atomizers.

The process of atomization in the presence of an electric field can be
modeled using the incompressible Navier-Stokes and EHD governing
equations. In this way, the operation of this device can be studied
computationally for a wide range of parameters without the cost of
operating the device in a lab. Moreover, numerical analysis allows
varying fluid properties with ease thus avoiding the expensive pro-
cess of meticulously fabricating an appropriate fluid for experimental
procedures.

In this project, we investigate the microscopic effects of EHD on at-
omization by computationally simulating three-dimensional RBA near-
bell atomization using a high-fidelity volume-of-fluid transport scheme
that includes EHD effects. We perform numerical experiments to un-
derstand the effect of EHD on atomization to obtain and examine
the resulting droplet size distributions and droplet charge distribu-
tions in the atomized droplet cloud near the nozzle. Ultimately, this
research contributes to the understanding of the underlying physics
in electrically-assisted atomization processes and provides insight into
the droplet conditions after atomization. These conditions can serve
as initial conditions for a Lagrangian flow solver that predicts the
trajectories of the atomized charged droplets towards the target surface
in a background electric field.

The governing equations of the physics modules used to model
liquid flows in electrified RBAs are detailed in Section 2. The validation
efforts of the physics modules, details of the domain geometry, and the
mesh sensitivity of the tool are presented in Section 3. Inferences from
a parameter study and atomization statistics are addressed in Section 4.
Section 5 contains a summary of the project and potential future work
that can be conducted with the tool built to study atomization in
electrified RBAs.

2. Governing equations
The physics modules discussed below have been implemented

within a code called NGA - a high-order, fully conservative, variable
density, low Mach number Navier-Stokes solver that contains various
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multi-physics modules implemented in parallel using message pass-
ing interface (MPI). The formulation discretely conserves mass and
momentum in a periodic domain. NGA uses a conservative unsplit
geometric volume-of-fluid (VOF) scheme as described in the works
of Blanquart et al. (2009), Desjardins et al. (2008a,b) and Owkes and
Desjardins (2015b,a, 2014, 2017). NGA has been developed by several
groups to solve multiphase EHD flows, details of which can be found
in Van Poppel et al. (2010) and Sheehy and Owkes (2017).

2.1. Multiphase fluid dynamics

For low-Mach number, variable density, multiphase flows, mass and
momentum conservation laws in both phases can be written as follows

i LY. () =0 [63)
at pl 1

L = Vp, +V-(of +0° 5, +f @
T + ‘(,0,-“,-@“,-)— —-Vp; + '(6,' +0—,‘)+ykn s T Xexternal

where p is the density, u is the velocity field vector, ¢ is time, and p
is the hydrodynamic pressure. The subscript i denotes the fluid phase
(gas or liquid). The term yxnd, denotes surface tension force, where y is
the surface tension coefficient, x is the local curvature of the interface
computed using the ACES technique (Owkes et al., 2018), n is the
normal vector to the interface, and §, is a Dirac-delta function that
is nonzero only on the interface (Owkes and Desjardins, 2015b). The
viscous stress tensor o-f in Eq. (2) is given by

2
o' = p;(Vu; + vul) - SV )l 3)

where u is the dynamic viscosity and Il is the identity tensor. These
equations form the basis of the fluid dynamics module in this work and
further details can be found in Owkes and Desjardins (2017, 2014) and
Desjardins et al. (2008a,b). o is the Maxwell stress tensor which will
be described in the next section. f,,,; is @ combination of the forces
experienced by a fluid element in the system.

fexlernal = Lcentrifugal + fCoriolis + fgravily (4)
2.2. Electrohydrodynamics
The Maxwell stress tensor o7 in Eq. (2) is given by

a§=e,.E,.®E,.—%E,.-E,.<1—§a—?>|| )
1 1
where E is the electric field vector and ¢ is the electric permittivity
equal to the product of the relative permittivity «; and the vacuum
permittivity space ¢,. Magnetic effects have been ignored since the EHD
time scale is several orders of magnitude larger than the magnetic time
scale (Saville, 1997) in the atomization process that is of interest here.
This electrostatic assumption eliminates the effect of the velocity of
the charges (i.e., current) on the electric field thus dictating that the
electric field is only influenced by the instantaneous electric charge
distribution. The electric force can be expressed as the divergence of
the Maxwell stress tensor,
V-o-f:q,-E,-—%EfV£,+V<%p,~Z—;;Ef> 6)
where ¢ is the volumetric electric charge density. The first term on
the right-hand side of Eq. (6) is the Coulomb (or Lorentz) force. The
second and third terms denote the dielectric and the electrostrictive
forces respectively, which are only significant in a transient electric
field with time scales several orders of magnitude larger than what
is encountered in atomization problems (Kourmatzis and Shrimpton,
2009).

As the electric field vector is irrotational it can be expressed in terms
of the scalar electric potential ¢ as

E, =-V¢. )
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The electric potential Poisson equation describes the relationship be-
tween charge density ¢; and ¢ as

—V (V) = g;. ®

The electric Poisson equation is solved using the hypre library of
routines for scalable parallel solutions of linear systems (Falgout et al.,
2004, 2006).

The accumulation of bulk volumetric charge as a surface charge in
a thin electric boundary layer much smaller than the hydrodynamic
boundary layer is a commonly made assumption in charged jet sim-
ulations (Wang et al., 2019; Turnbull, 1989). The electric charge has
previously been modeled in two ways: either a constant bulk volumetric
charge or a fully relaxed surface charge. According to the classic leaky
dielectric model (Melcher and Taylor, 1969; Taylor, 1966; Saville,
1997) that is commonly used to describe the effects of electric charge
in dielectric liquids, the fundamental underlying assumption is that
bulk volumetric electric charge has sufficient time to fully relax to a
surface charge. However, for atomizing flows the advection time scale
is similar to the charge relaxation time scale and a fully relaxed charge
assumption is invalid. The charge relaxation time 7, represents the time
required for volumetric charge g, to relax to the surface (Crowley, 1986;
Kourmatzis and Shrimpton, 2009). The fluid advection timescale 7y isa
characteristic time for a fluid element to move across a relevant length
scale L. The ratio of the two time scales called the electric Reynolds
number Re, was formulated in Stuetzer (1962) as

£
7, = L, (C)]
Y 4
Ly
Ty = T’ (10)
Tq
Re, = — an
2

where values of the quantities that correspond to typical automotive
paints and RBA operations listed in Table 1 yield a value of Re,
approximately equal to 8.93. This suggests that the advection and
charge relaxation timescales are comparable in this application. The
above time scale analysis highlights the necessity to model the process
of charge relaxation by migration and diffusion in addition to advection
with the fluid velocity. The common assumption of charges to be ac-
cumulated on the surface disallows the charge migration dynamics and
limits the accuracy of the droplet charge distribution after atomization.
In this work, we assume a constant bulk volumetric charge at the
injector and allow charges to relax as the jet propagates through the
domain. Charge transport is described by the conservation equation
% +V-J;,=0 12)
ot

where the current density J; is formulated as (Melcher, 1981; Van Pop-
pel et al., 2010)

Ji = qv; + qy,E; — D;Vg; 13

where y; is the charge mobility coefficient and D, is the molecular
diffusivity. The three terms that contribute to the current density can
be described as advection due to the velocity field, advection due to
the electrical velocity, and diffusion. In summary, the charge density
field (¢) and boundary conditions (BCs) in electric potential are used
to obtain the electric potential field (¢) using Eq. (8). The electric field
(E) is then obtained using Eq. (7) after which Eq. (6) allows for the
calculation of the Coulomb force (f,..i.) on the charged fluid. More
details on the equations involved in the formulation of the EHD module
can be found in Sheehy and Owkes (2017).

2.3. Rotating reference frame
In an RBA undergoing ligament breakup mode, each ligament ex-

iting the serrated bell edge behaves similarly with statistically similar
droplet size distribution and charge transport behavior. Therefore, we
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Case 3

X

Fig. 2. Validation of centrifugal force: Numerical results of a rotating tank experiment where cases 1, 2, and 3 correspond to rotation rates of 4, 10, and 14 rad/s respectively.
The analytical solution of the interface (Eq. (16)) at various locations is plotted with red circles. The numerically computed liquid interface and liquid bulk are shown as black
lines and blue areas respectively. The dashed line represents the axis of rotation for each case. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

focus on one ligament ejected from the bell edge in our numerical
simulations. We attach our reference frame to the rotating nozzle and
ligament.

To account for the rotating nozzle and the consequent forces, we in-
clude equations that describe the rotating reference frame. This subjects
the liquid to centrifugal and Coriolis forces which can be formulated as

(14
(15)

fcemrifugal =—poX(@®Xr)
feoriolis = —2p;@ X u;

where o is the angular velocity and r is the radial distance from the
axis of rotation.

3. Numerical simulations of RBA jets
3.1. Validation of physics modules

The EHD module in NGA has seen continued development and
validation efforts have been presented in Sheehy and Owkes (2017).

To validate the implementation of centrifugal force (described in
Section 2.3) into the EHD formulation, numerical experiments of a
rotating tank configuration are conducted. The solution for the steady-
state interface profile a(x) of a liquid in a rotating tank is analytically
derived as

h(x) = hy + L (@x)? (16)
2g

where h, is the height of the liquid at the axis of rotation and g is
the gravitational acceleration (Laplace, 2009). Numerical results show
excellent agreement with the analytical solution for varying rotation
rates (Fig. 2). The numerical implementation of the Coriolis force
(described in Section 2.3) is tested by simulating a liquid jet in a
rotating frame. The path of an object experiencing the centrifugal and
Coriolis forces follows a circle with a growing radius, i.e., a spiral. The
analytical solution for the position of the object (x, y) at a given time ¢
is obtained as

x(t) = (xo + uxot) cos (@t) + 1t (Uy() + a)xo) sin (@t) an
¥(t) = = (xq + Uypt) sin (@1) + 1 (v, + @) cos (@r)
where v, and v, are the x and y components of the initial velocity of
the jet and x, is the position of the jet at r = 0. The derivation of this
analytical solution is provided in Appendix. This solution is derived
for a rigid point-like object with its all mass concentrated at its center.
Liquid jets, however, are not point-like approximations and include
effects of viscosity and surface tension. Despite these challenges, we
proceeded with validating the effect of the Coriolis force on liquid jets
in a rotating reference frame and obtained satisfactory results. Numer-
ically simulated liquid jets follow the analytically predicted trajectory
for varying rotation rates (Fig. 3).

-A-500 rad/s
-©-1000 rad/s
1500 rad/s
-5-2000 rad/s
52500 rad/s

Fig. 3. Validation of Coriolis force: Numerical results of the liquid jet interfaces in
a reference frame rotating counter-clockwise about an axis that points out of the 2D
plane. The analytical solution (Eq. (17)) is shown as a superimposed solid line for each
case.

3.2. Using e-Mesh

An addition to the EHD module of NGA developed for this project
involves using a domain called e-Mesh. e-Mesh is much larger than
the flow-solver domain (henceforth called the NS-Mesh) where the
equations described in Section 2 are solved. Since our interest lies in
primary and secondary atomization, NS-Mesh lies at the edge of the
bell and extends a few millimeters outside of it. NS-Mesh requires a
well-defined electric potential field (¢) to obtain the electric field (E).
We solve for ¢ using appropriate BCs at the boundaries of NS-Mesh.
However, Fig. 4(a) highlights that ¢ is well-defined (labeled Dirichlet)
only at the nozzle (bell electric potential) and at the target surface
(grounded) but is not readily available at the boundaries of NS-Mesh.
Instead of assuming values of BCs on NS-Mesh, a new domain called
e-Mesh that spans between regions of well-defined ¢ is initialized and
used to obtain accurate BCs on NS-Mesh. The volume of e-Mesh is about
8000 times larger than that of NS-Mesh, i.e., the region of interest in
this project lies in about 0.0125% of the volume of e-Mesh. Making
NS-Mesh this large would require significantly more computational
resources to solve the fluid dynamics far from the bell edge. The
breakup activity and charge transport within the liquid, which are
the processes of interest in this work, are already completed within
the NS-Mesh domain. To avoid solving hydrodynamics outside of NS-
Mesh, we create e-Mesh - a domain spanning the entire region between
the bell and the target surface - to be used exclusively as an electric
potential solver. A Dirichlet BC of the value of the bell electric potential
is imposed on the top boundary where the nozzle overlaps e-Mesh. A
zero potential boundary condition is imposed on the bottom boundary
which represents the target surface. Periodic BCs are imposed on the
z* and z~ boundaries of e-Mesh and Neumann BCs are imposed on its
remaining boundaries. The right boundary (x*) was chosen in such a
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i

Target
surface

(a) e-Mesh shown in context with NS-Mesh
and available ¢ BCs

oV

Target
surface
(]

(b) Electric potential field (¢) on e-Mesh

Fig. 4. Boundary conditions and electric potential field (¢) on e-Mesh (not to scale)

way that it is far enough away that the electric potential field lines are
perpendicular to the target surface, allowing for a Neumann BC to be
imposed. In addition to the BCs, e-Mesh is populated with the charge
density field (¢) which is used to solve for ¢ (on e-Mesh) (Fig. 4(b)).
Values of ¢ are interpolated from e-Mesh (which has a stretched grid
and is coarser than NS-Mesh) to cells that lie on the boundaries of NS-
Mesh using a tri-cubic interpolation method. These interpolated values
are then used as BCs to compute ¢ on NS-Mesh.

3.3. Simulation setup

The domain geometry is represented schematically in Fig. 5. NS-
Mesh, where the electrohydrodynamics is solved, has dimensions of
12.96 mm X 480 pm x 360 pm. e-Mesh, which spans from the bell edge
to the target surface, has dimensions of 0.2 m x 0.25 m x 360 pm.

In this work, a bell of radius 25 mm is simulated. Some RBAs are
equipped with serrations present at the edge of the bell which causes
the fluid to be ejected as thin jets. In the absence of these serrations,
the fluid forms liquid sheets on the inner surface of the bell. These
liquid sheets may be subject to interfacial instability and form periodic
ligaments at the edge of the bell or break up in sheet mode depending

International Journal of Multiphase Flow 168 (2023) 104566

Table 1

Standard values of parameters in the RBA simulations.
Property Symbol Value Unit
Bell rotation rate ® 40 x 103 RPM
Bell radius Rypen 0.025 m
Edge angle - 25 deg
Inlet jet diameter Djet 60 x 10°° m
Liq. flow rate - 7.96 x 107° m3/s
Liq. viscosity Hy 0.1 Pas
Liq. density o 1000 kg/m3
Surface tension y 0.03 N/m
Bell electric potential Viell 80 x 103 \%
Liq. charge density a 2.879 C/m?
Liq. rel. permittivity K 50 -
Liq. molecular diff. D, 2 x 10°° m?/s
Liq. ionic mobility v 1.79 x 1078 m?/V s

on the operating conditions. The bell simulated in this work is equipped
with 418 serrations along its edge, each of which is 375 pm wide. While
the liquid profile in a serration does not have a circular cross-section,
we approximate a 60 pm diameter jet that exits the bell edge when
operating at 40 kRPM (Domnick et al., 2005). For a nozzle flow rate of
200 mL/min, the flow rate through each serration is 7.96 x 10~ m?/s.
In RBAs, the bell edge plane is angled away from the plane perpendic-
ular to the axis of rotation. In the numerical setup, the jet is injected
into the domain from the top wall with initial velocity components
that correspond to an edge angle of 25° through an elliptical cross
section. A magnitude of 2.879 C/m?> for liquid charging is commonly
applied to the liquid in industrial paint shops (Ellwood and Braslaw,
1998; Pendar and Péascoa, 2021). While the charging mode in practice
does not typically yield a uniform bulk initial charge distribution, we
assume such a case for simplicity. It is worth noting that the charges
are still free to redistribute by the processes of advection, diffusion, and
migration once the liquid is in the flow domain. In future work, the
initial charge distribution in ligaments can be varied. Table 1 contains
a list of parameter values used in simulations.

The top boundary is a wall that allows slip velocity and the left
boundary is a no-flux wall. the bottom and right boundaries are con-
vective outflows. Periodic BCs are imposed on the front and back walls.
Although the periodic BCs on a Cartesian mesh would misrepresent
jet interaction far from the bell edge, the angular separation of the
jets close to the bell edge is not significant enough to account for
its curvature. In addition to mass and momentum (and charge) being
transported across the periodic z boundaries, the electric field is also
computed with the effect of the periodicity. This means that at any
instance the single jet simulated in the computational domain is solved
with full consideration of its nearest neighboring jets.

The axis of rotation, which is the center of the bell, is located one
radial length away (in the negative x direction) from the inflow. As
mentioned previously, the model does not currently include a shaping
air setup. Breakup is induced by imparting velocity modulations to the
inflow. The inflow velocity (u;,q.) is modulated by adding sinusoidal
perturbations at a superposition of three (40, 50, and 60 kHz) frequen-
cies (w) at an amplitude (A) which is 9% of its original velocity (u)
(Eq. (18)).

3
Ujpflow = U+ Z A sin (2zw,t) . (18)

n=1

3.4. Mesh sensitivity

To determine the effect of mesh resolution on atomization and
to help choose an optimal numerical setup, three simulations of an
electrified RBA jet (Table 1) are performed with varying mesh reso-
lutions (Table 2). We note from Fig. 6 that droplets larger than 10 pm
are resolved in a 5 cells-per-diameter (CPD) mesh while the 10 CPD
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Fig. 5. A schematic representation of the domain geometry of the numerical problem
showing positions and dimensions (not to scale) of NS-Mesh and e-Mesh.

Table 2

Mesh sensitivity simulation domain parameters.
Mesh Cells per Cell Processor No. of
D diameter width count structures
05 CPD 5 12 pm 16 74
10 CPD 10 6 pm 96 121
15 CPD 15 4 pm 256 705

mesh captures droplets smaller than 10 pm. Additionally, the 15 CPD
mesh captures the droplets even smaller than 5 pm. Larger droplets are
similarly resolved for all meshes. Between the two finer meshes the
smaller droplets are increasingly well resolved.

We note the necessity for a mesh finer than 5 CPD since the
coarseness of the mesh does not allow for charge migration to be
captured. All liquid structures in the 5 CPD mesh contain the injected
charge density value of 2.879 C/m?. Using 10 and 15 CPD meshes, we
are able to resolve the charge migration process and investigate the
resulting droplet charge distribution. Most droplets contain a charge
density close to the initial bulk charge density value. Compared to
the initial charge density, it is more probable to find a droplet with
a lower charge density. Fig. 7 highlights that charge migration is more
resolved in a 15 CPD mesh and is consistent in its trend with the
10 CPD mesh. Although there is uncertainty with the smallest scales of
droplet sizes, the number of droplets larger than 20 pm does not vary
on increasing the mesh resolution, suggesting that the larger droplets
are well resolved in a 15 CPD mesh. Since the goal of this project
is to demonstrate the development of the tool, we believe that the
underlying physical processes are sufficiently captured when using a
15 CPD mesh.

4. Results and discussion

Simulations are performed in a domain as described in Section 3.3
with parameters listed in Table 1.

4.1. Discussion of non-dimensional quantities

The non-dimensional numbers corresponding to the simulations are
listed in Table 3. In the interest of understanding the effect of EHD on
the flow, we present a brief discussion on the relevant non-dimensional
numbers. The electric Reynolds number (Re,) (Stuetzer, 1962) is the
ratio of the charge advection timescale to the charge mobility timescale
while the electric Péclet number (Pe,) (Sheehy and Owkes, 2017) is
a measure of the charge mobility timescale to the charge diffusion
timescale. For high values of Re,, charge migration is insignificant and
the initial charge distribution will prevail in the liquid jet. For low
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values of Re,, charge migration acts quickly to relax the charges to
the surface allowing for surface charge models to be appropriate. For
high values of Pe,, charge migration dominates the charge diffusion
process and vice versa. Based on the values of Re, and Pe, for this
setup, it is reasonable to model all three charge dynamics processes,
i.e., advection, diffusion, and migration, since their timescales are
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Fig. 8. Liquid interface positions of a single jet exiting the edge of the bell at different times as viewed from an x-y plane. The nozzle is shown for reference at the top left corner

of each image and is not to scale.

Table 3

Non-dimensional numbers used in the RBA simulations.
Number Definition Value
Density ratio p1/py 830.56
Viscosity ratio il Hy 5546.31
Permittivity ratio K /K, 50.00
CFL [ x| A1/ Ax 0.30
Reynolds (Re) P |We | Djec/ 1y 1006.24
Weber (We) 110t "Dt /¥ 77.87
Ohnesorge \/VE/Re 0.0088
Electric Reynolds &leel /(Layyy) 8.93
Electric Péclet qy, L*/ (Dje)) 0.21
Electric Bond &|EPL/y 0.091

Electro-inertial 0.0017

gL/ (51ﬂ1|“jet|z)

comparable to one another. The electric Bond number (Berthier and
Brakke, 2012) quantifies the importance of the deforming electrical
force compared to the restoring surface tension force. A low value
signifies the dominance of surface tension-driven breakup activity. The
electro-inertial number (Sheehy and Owkes, 2017) denotes the impor-
tance of EHD forces compared to inertial advective forces. A low value
implies that inertial forces predominantly drive the hydrodynamics of
the flow in this setup.

4.2. Electrified simulations of RBAs

Simulations of an electrified RBA jet in a 15 CPD mesh are per-
formed with parameters listed in Table 1. Figs. 8 and 9 show the
positions of the liquid interface of the jet at different instances in time
as viewed from different viewing planes. We can capture complex and
chaotic breakup activity comprising primary and secondary atomiza-
tion that begins approximately 6 mm away from the bell edge. The
breakup processes leading to primary atomization consist of ligament
thinning, Rayleigh-Plateau instabilities and aerodynamic breakup due
to interaction with quiescent air.

Primary atomization is first observed about 130 diameters down-
stream of the bell edge. Various parameters including the rotation rate,
surface tension coefficient, and liquid viscosity affect the distance at
which primary atomization begins. Additionally, the electric field has

a complex effect due to a combination of its stabilizing effect in some
applications and its impact on reducing the effective surface tension of
the liquid. The effect of the electric field on breakup is discussed in
more detail in Section 4.4. It is therefore worth exploring the physics
of the breakup process in the future.

4.3. Parameter study

We conduct a parameter study on a 15 CPD mesh to investigate the
impact of changing four parameters - nozzle rotation rate, nozzle flow
rate, liquid charge density, and bell electric potential - one parameter at
a time. Results of the parameter study are shown in Fig. 10 as snapshots
of the liquid interface after 200 p s. The values of all parameters are
listed in Table 1 unless otherwise stated in the figure.

As the nozzle rotation rate increases, centrifugal forces are stronger
on the jet and stretch it out faster leading to early elongation and
breakup (Fig. 10(a)). Slower rotation rates do not stretch the jet out
as much in the same duration. A higher flow rate through the same
jet diameter acts in the same way as increasing jet velocity, which
initially pushes the jet out further before centrifugal forces take over
(Fig. 10(b)). While experimental studies are limited in their ability to
independently vary the flow rate or rotation rate without affecting the
jet diameter, the numerical model allows such tests to be performed.

An increase in either g;, or ¢y, stretches the jet along its down-
stream direction (Figs. 10(c), 10(d)). This is because the Coulomb
force vectors point towards the direction of propagation of the liquid
jet, i.e., the electric potential field contour lines are approximately
perpendicular to the liquid velocity at that location. It is evident that
no other significant effects of g, or ¢, are observed on the length
of ligaments, as expected from the low value of the electro-inertial
number.

4.4. Comparing electrified and non-electrified operation

In order to identify the effect of EHD on atomization, we compare a
standard electrified jet (presented in Section 4.2) with a non-electrified
jet. Numerical experiments of the latter are performed in a setup
identical to that of the electrified simulation (Table 1) but with zero
liquid charge density and zero bell electric potential.

In this particular simulation, after 300 ps, an electrified jet contains
about 40% more droplets than a non-electrified jet. A lateral shift is
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(c) t=320us

Fig. 9. Liquid interface positions of six individual jets exiting a serrated bell edge at different times as viewed from an x — z plane. The nozzle is rotating clockwise and is shown
for reference at the left edge of each image and is not to scale. The simulation domain is outlined by a dashed box. Owing to the periodic boundary conditions along the z-axis,
an arc along the bell edge spanning six serrations is depicted in this view by stacking the domains in an attempt to vaguely recreate some experimental images available in Shirota

et al. (2012), Oswald et al. (2019), Domnick (2010) and Wilson et al. (2018).

evident in the probability distribution of the size distribution between
the two cases (Fig. 11(a)), i.e., the most probable diameter in an
electrified jet is about 8% smaller than a non-electrified jet. Moreover,
both the number and probability distributions show that significantly
more droplets of smaller size are produced when the jet is electrified.
This behavior is in agreement with the findings presented in Pendar
and Pascoa (2021) where a similar shift towards smaller droplets has
been observed in the number distribution for increasing background
potentials. According to Pendar and Pascoa (2021), the presence of
an electric field causes a net reduction in the effective surface tension
in large droplets and ligaments and therefore an increase in the local
Weber number of the structures. This can be the reason behind the
increased rate of breakup and the production of smaller droplets in
an electrified setup. Fig. 11(b) highlights that droplets are created at
a higher rate in an electrified domain. The delay in the first instance of
atomization in a charged jet is speculated to be due to a stabilizing force
provided by the electric field on the liquid core (Bhuptani and Sathian,
2017; Saville, 1971; Nayyar and Murty, 1960; Saville, 1970; Mestel,
1996). However, once the breakup begins, the electric field accelerates
the breakup process. This behavior will be further investigated in future
work.

It is valuable to know the charge density in droplets after atom-
ization. Fig. 12(a) shows that a majority of the droplets contain a
charge density that is very close to the input charge density (shown
as a black dashed line). Additionally, compared to the initial charge

density, it is more probable to find a droplet with a lower charge
density. This can be explained as follows - as charges relax and move to
the surface of the ligament, the charge density in the bulk of the liquid
reduces. Since a majority of the liquid structures break off the bulk
volume (simply because of a greater liquid volume in the bulk than
near the surface), most droplets contain a charge density slightly lower
than the input value. The process of charge relaxation determines the
distribution of charge in droplets. The electric Reynolds number listed
in Table 3 is the ratio of the residence time of liquid in the domain to
the charge relaxation timescale. The moderate value of 8.93 indicates
that the charges have time to relax to some degree, but not enough
time to fully relax to the surface. Furthermore, the computed electric
Reynolds number is an overestimation of its true value as the velocity
used to calculate the liquid advective timescale is at the bell edge -
which is a significant underestimation. The velocity of the jet rapidly
increases by about 30 times due to the centrifugal force. It is therefore
possible that the charges do not fully relax through the ligament before
atomization occurs. This is supported by the observation that most
generated droplets contain a charge density close to the initial bulk
charge value. Further studies are required to fully understand the
relaxation of charges in the ligament and the factors influencing the
distribution of charges in atomized droplets.

A common question in industrial applications is whether the
droplets contain enough charge to overcome surface tension and un-
dergo fissive breakup. Lord Rayleigh considered the balance of the
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Fig. 10. A comparison of snapshots of the liquid interface positions after 200 ps in the parameter study simulations. The nozzle is shown for reference at the top left corner of

each image and is not to scale.

destabilizing electrical force arising from the charges within a small
droplet and the opposing capillary force due to its surface tension
(Rayleigh, 1882). The result of this analysis based on the linear stability
theory was the Rayleigh charge limit that defines the surface charge
required to cause the fissive rupture of a charged droplet. Assumptions
are often made regarding the charge contained in droplets after atom-
ization (Domnick et al., 2005). We find that most droplets are charged
to less than 5% of their corresponding Rayleigh limit (Fig. 12(b)).
However, if the bulk charge density imparted to the liquid is increased,
charge-driven Coulomb breakup might be observed.

The presence of charges in the liquid plays a role in the breakup
process by causing more atomization. Electric charge can have an
effect, albeit small, on primary atomization of ligaments and large
droplets but a negligible effect on the size and stability of atomized
droplets after secondary breakup. The feebleness of the electric field
on atomization is further supported by the low value of the electric
Bond number in the setup (Table 3). The effect of the electric charge
on the droplet trajectories becomes significant at larger distances from
the bell edge (Pendar and Pascoa, 2019; Im et al., 2004). However,
small droplets are sometimes undesirable in the droplet cloud as they
tend to disperse and escape as over-spray after atomization due to the
weakness of the Coulomb force acting on them. Therefore, we believe
that optimal operating conditions (electric field strength, liquid charge
density, nozzle rotation rate, shaping air properties, liquid flow rate,

etc.) that yield the highest TE and a suitable surface finish quality need
to be determined carefully.

5. Conclusions

Electrostatic rotary bell atomizers are popular paint application de-
vices used in the automotive industry. The charged setup that includes a
background electric field increases the transfer efficiency of the device.
In this work, we have built a tool to understand the effect of the
electric field on near-bell droplet size and charge characteristics. This
cost-effective method of simulating electrohydrodynamic atomization
allows for the extraction of atomization statistics that are challenging
to obtain experimentally in electrified setups.

A numerical model has been developed to simulate a liquid jet
ejected from an electrostatic RBA. The formulation is built in a code
called NGA that includes physics modules that accurately model EHD
and a rotating frame. From the charge density distribution of atomized
droplets, it is evident that most droplets contain a charge close to the
initial bulk charge density value. Additionally, compared to the initial
charge density, it is more probable to find a droplet with a lower charge
density. Most droplets are charged to less than 5% of their correspond-
ing Rayleigh limit suggesting that breakup is not primarily driven by
fission due to charge accumulation. The presence of charges reduces
the effective surface tension in large droplets and ligaments which leads
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Fig. 11. A comparison of the atomization statistics between non-electrified and
electrified simulations.

to the production of smaller droplets. If the charge density in the bulk
liquid is increased, charge-driven Coulomb breakup might be observed.
However, since smaller droplets tend to escape as over-spray, optimal
operating conditions need to be determined carefully.

The tool developed can be employed to provide a set of initial
conditions to a droplet cloud that includes information on position,
diameter, velocity, and charge distributions to a flow solver that mod-
els the Lagrangian motion of droplets towards the target surface. In
the future, this work will be extended to extract droplet genealogy
statistics to identify the means of atomization in electrostatic RBAs.
The simulation tool will also be used to conduct simulations on a finer
mesh to understand the charge relaxation dynamics for non-uniform
initial liquid charge distributions. A non-Newtonian model has been
implemented into NGA and will be used to model the shear-thinning
behavior of paint more accurately. Such development will allow for a
deeper understanding of the charge distribution dynamics for industrial
applications of RBAs.
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Appendix. Trajectory of an object influenced by the coriolis force

To validate the implementation of the Coriolis force in the flow
solver, we performed a simulation of a liquid jet in a two-dimensional
rotating frame and compared its trajectory to that provided by the
analytical solution. Consider a point-like object of mass m at position
ro = (xo, o) moving with an initial velocity vy = (vy,v,0) in a frame
rotating about the z axis with an angular velocity .

A force balance equation on the object influenced by centrifugal and
Coriolis forces (14) can be formulated as

F=ma=-2moXv+moX(@Xr)

where a = (%, j) and v = (%, y). On expanding the terms and separating
the x and y components, we get

m(E% + 39) = 2 mo [x(=9) + ¥ + m [0 (%) + 0*y(P)] -

We now separate the x and y components of the force balance
equation to yield the following pair of coupled differential equations

mi = 2 moy+ mao*x

my = =2 mwx + mw’y.

We now cancel out the mass terms and define # = x +iy. On adding
i times the j equation to the % equation, we get

% +ij = 0*(x +iy) — 2iw( + i)
which reduces to the form
i = a)zn - 2iwn.

This linear second order differential equation has a solution of the
form

n(t) = e (Cy +1C,) .

After imposing initial conditions of r, and v, and assuming y, = 0,
we get C; = xy and C, = v, + i(v)g + wxg). This gives the solution to
as

n(t) = xge ™' 4 e [Ux() +i(vy + coxo)]

which can be decomposed to yield the x and y components of the object
trajectory r by examining the real and imaginary parts as

x(1) = (xq + Uyt) cos (@1) + 1 (0,9 + @X() sin (wr)
¥(1) = = (xg + vyot) sin(@t) + 1 (0,9 + wx,) cos ().
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