
Di git al O bj e ct I d e nti fi er n o. 1 0. 1 1 0 9/ T V C G. 2 0 2 2. 3 2 0 3 1 1 2

I E E E T R A N S A C TI O N S O N VI S U A LI Z A TI O N A N D C O M P U T E R G R A P HI C S, V O L. 2 8, N O. 1 1, N O V E M b E R  2 0 2 2 3 9 0 7

M a n us cri pt r e c ei v e d 1 1 M ar c h 2 0 2 2; r e vis e d 1 1 J u n e 2 0 2 2; a c c e pt e d 2 J ul y 2 0 2 2.
D at e of p u bli c ati o n 0 1 S e pt e m b e r 2 0 2 2; d at e of c u r r e nt v e r si o n 0 3 O ct o b e r 2 0 2 2.

1 0 7 7- 2 6 2 6 © 2 0 2 2 I E E E. P er s o n al u s e i s p er mitt e d, b ut r e p u bli c ati o n/r e di stri b uti o n r e q uir e s I E E E p er mi s si o n. 
S e e htt p s:// w w w.i e e e. or g/ p u bli c ati o n s/ri g ht s/i n d e x. ht ml f or m or e i nf or m ati o n.

O bj e ct s  M a y  B e  F art h er  T h a n  T h e y  A p p e ar:  D e pt h  C o m pr e s si o n

Di mi ni s h e s  O v er  Ti m e  wit h  R e p e at e d  C ali br ati o n i n  Virt u al  R e alit y

Kri st o p h er  K o h m,  S a b ari s h  V.  B a b u,  C hri st o p h er  P a g a n o, a n d  A n dr e w  R o b b

Fi g. 1:  T his fi g ur e s h o ws t h e virt u al e n vir o n m e nt d uri n g t h e c ali br ati o n bl o c k of t h e d e pt h p er c e pti o n e x p eri m e nt.  T h e i m a g e o n t h e
l eft s h o ws t h e p arti ci p a nt g etti n g f e e d b a c k aft er t h eir bli n d r e a c h.  T h e i m a g e i n t h e  mi d dl e is t h e s a m e as t h e i m a g e o n t h e l eft b ut
fr o m t h e p arti ci p a nt’s p oi nt of vi e w.  T h e i m a g e o n t h e ri g ht s h o ws t h e p arti ci p a nt c orr e cti n g t h eir r e a c h b as e d o n t h e f e e d b a c k t h e y
r e c ei v e d. F e e d b a c k  w as pr o vi d e d b y s h o wi n g p arti ci p a nts  w h er e t h e tr u e l o c ati o n of t h e t ar g et  w as.  O n c e s h o w n, p arti ci p a nts c o ul d
c orr e ct t h eir err or b y pl a ci n g t h e ti p of t h eir t o ol o n t h e t ar g et l o c ati o n.  W h e n t h e y s u c c essf ull y c orr e ct e d t h eir err or (i. e. c ali br at e d)
t h e ti p of t h e t o ol gl o w e d gr e e n as s h o w n i n t h e ri g ht- m ost i m a g e.

A b str a ct — Pri or r e s e ar c h i n d e pt h p er c e pti o n a n d p er c e pt u o- m ot or c ali br ati o n h a v e pri m aril y f o c u s e d o n p arti ci p a nt s c o m pl eti n g
e x p eri m e nt s i n si n gl e s e s si o n s a n d t h er ef or e d o n ot e m piri c all y e v al u at e c h a n g e s o v er ti m e.  F urt h er, t h e s e st u di e s d o n ot t y pi c all y t a k e
i nt o a c c o u nt t h e a m o u nt of e x p eri e n c e t h at t h e p arti ci p a nt s h a v e i n virt u al r e alit y ( V R) pri or t o p arti ci p ati o n, t h e r ol e of e x p eri e n c e d uri n g
p arti ci p ati o n, or c ali br ati o n t h at  m a y o c c ur t hr o u g h o ut t h e e x p eri m e nt s e s si o n. I n t hi s c o ntri b uti o n,  w e c o n d u ct e d a n o v el e m piri c al
e v al u ati o n of h o w c ali br ati o n aff e ct s p er c e pti o n- a cti o n c o or di n ati o n o v er ti m e.  W e r e cr uit e d n o vi c e  V R u s er s a n d t h e y c o m pl et e d
ei g ht s e s si o n s of a d e pt h p er c e pti o n r e a c hi n g e x p eri m e nt o v er t h e c o ur s e of 1 2  w e e k s.  D uri n g t h e s e e x p eri m e nt s,  w e e x a mi n e d h o w
p arti ci p a nt s’ a bilit y t o e sti m at e d e pt h i n a virt u al e n vir o n m e nt c h a n g e d a s t h e y gr a d u all y g ai n e d e x p eri e n c e.  W hil e pr e vi o u s lit er at ur e
h a s s h o w n t h at p arti ci p a nt s t e n d t o u n d er e sti m at e di st a n c e s,  w e f o u n d t h at t hi s u n d er e sti m ati o n di mi ni s h e d o v er ti m e a s t h e y g ai n e d
e x p eri e n c e i n t h e virt u al e n vir o n m e nt.  O ur st u d y hi g hli g ht s t h e n e e d f or c arr yi n g o ut  V R st u di e s o v er ti m e a n d t h e i n fl u e n c e t h at
l o n git u di n al c ali br ati o n c a n h a v e o n s p ati al p er c e pti o n i n l o n g-t er m  V R e x p eri e n c e s.

I n d e x  T er m s— Di st a n c e e sti m ati o n, c ali br ati o n, p er c e pti o n, l o n git u di n al, virt u al r e alit y

•  Krist o p h er  K o h m is  wit h  Cl e ms o n  U ni v ersit y,  U S A.  E- m ail:
k c k o h m @ cl e ms o n. e d u.

• S a b aris h  V.  B a b u is  wit h  Cl e ms o n  U ni v ersit y,  U S A.  E- m ail:
s b a b u @ cl e ms o n. e d u.

•  C hrist o p h er  P a g a n o is  wit h  Cl e ms o n  U ni v ersit y,  U S A.  E- m ail:
c p a g a n o @ cl e ms o n. e d u.

•  A n dr e w  R o b b is  wit h  Cl e ms o n  U ni v ersit y,  U S A.  E- m ail:
ar o b b @ cl e ms o n. e d u.

1 I N T R O D U C TI O N

Di st a n c e c o m pr essi o n,  w h er e o bj e cts ar e j u d g e d t o b e cl os er t h a n t h e y
a ct u all y ar e, is a  w ell est a blis h e d p h e n o m e n o n i n virt u al r e alit y ( V R)
h e a d- m o u nt e d dis pl a ys ( H M Ds), p arti c ul arl y  w h e n j u d gi n g dist a n c es
t o o bj e cts i n t h e n e ar fi el d [ 2 5, 4 9].  D es pit e e xt e nsi v e r es e ar c h, it is n ot
e ntir el y cl e ar  w h at c a us es dist a n c e c o m pr essi o n i n  H M Ds. Pr o p os e d
f a ct ors i n cl u d e fi el d- of- vi e w ( F O V) [ 1 2, 2 8], t h e a bs e n c e of a visi bl e
b o d y [ 3 2, 4 3], t h e a c c o m m o d ati o n- v er g e n c e c o n fli ct [ 6], gr a p hi c al
q u alit y [ 4 2], dis pl a y r es ol uti o n [ 1 0], g e o m etri c dist orti o ns [ 3 2, 5 5], a n d
t h e a bs e n c e of k n o w n r ef er e n c e o bj e cts [ 2, 4 1].

It h as b e e n d e m o nstr at e d t h at c ali br ati o n c a n r e d u c e t h e eff e ct of
dist a n c e c o m pr essi o n, p ot e nti all y e v e n eli mi n ati n g it [ 2 2].  C ali br ati o n
is t h e pr o c ess b y  w hi c h p e o pl e us e f e e d b a c k t o s c al e t h eir a cti o n c a p a-
biliti es t o t h e aff or d a n c es pr es e nt i n t h eir e n vir o n m e nt aft er c h a n g es t o
t h eir b o d y s c h e m a or  w hil e  wi el di n g t o ols [ 1 3].  C ali br ati o n h as b e e n
us e d t o i m pr o v e dist a n c e esti m ati o n u n d er n or m al r e a c hi n g cir c u m-
st a n c es [ 1 8],  w h e n a us er’s r e a c h b o u n d ar y is e xt e n d e d vi a a t o ol [ 1 9],
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and when a user’s reach boundary is extended by modifying the bodily
proportions of their self-avatar [13]. The efficacy of calibration can
be further enhanced by repeating the calibration process until errors in
distance judgments have almost disappeared [22].

While it has been shown that repeated calibration can improve dis-
tance estimation, this effect has not been studied in a longitudinal
context. What information we have about calibration and distance
perception in VR has generally come from single-session experiments,
typically lasting 30 minutes to an hour. It is unclear whether the gains
established by calibration will continue to improve distance perception
in future uses of VR or whether distance compression will reassert
itself and thus require re-calibration each time VR is used. This is a
particularly important question given that the ever-increasing availabil-
ity of VR devices and applications means that most people who use VR
applications will likely have done so in the past or will do so again in
the future. If repeated calibration does affect distance estimation and
depth compression in the long-term, it is important to understand how
this effect manifests to better understand how distance judgments may
differ between users with different levels of experience in VR.

To examine how repeated calibration over time influences distance
estimation, we conducted a study where participants without prior VR
experience were given an Oculus Quest to use for 12 weeks. During
these 12 weeks, participants completed a near-field distance estimation
activity eight times allowing us to measure the magnitude of the change
in depth compression over time. During each session, participants
completed four blocks of reaching trials with tools of various lengths.
All reaches were blind reaches and the target distance was always
within their maximum reach boundary. Feedback was provided to
participants in one of the blocks after they had performed their reach
so that participants could calibrate their reaching behavior.

Our hypotheses include:

H1: The overall effect of depth compression will decrease with time
as participants repeatedly re-calibrate their distance judgments
each time they use an HMD.

H2: Participants will be more accurate with a tool that is a length they
have previously calibrated to than with a tool of a different length
over time.

H3: With feedback, participants will reach full calibration (i.e. where
their performance is no longer improving) faster over time.

H3a: Participants’ baseline performance will improve over time,
explaining why they calibrated faster.

H3b: Participants’ rate of calibration will improve over time,
explaining why they calibrated faster.

H4: There will be a difference in accuracy between the pre- and post-
calibration blocks due to carryover effects, and the effects will
diminish over time.

2 RELATED WORKS

2.1 Depth Perception in VR
As mentioned, several works have studied distance estimation in virtual
environments. Gagnon et al. examined how reaching out and up with
feedback could improve distance estimation in immersive virtual envi-
ronments (IVEs) [22]. The researchers found that participants initially
overestimated distances but that their estimations became more accu-
rate with feedback across several blocks. Overestimation of distances
is an uncommon finding in work related to near-field depth perception
in VR. Witmer and Kline analyzed how observers estimated distances
in virtual environments when moving and when stationary [63]. They
found that participants underestimated distance in the real and virtual
environment, but that the underestimation was more profound in the
virtual environment. Napieralski et al. compared near-field distance
estimation in the real world against an IVE using physical reaches
and verbal reports of measures [39]. They found that participants con-
sistently underestimated distances in both conditions, but that verbal
responses in the virtual world underestimated distance less than in the

real world. This work also showed that verbal reports for distance
estimation was less accurate than action-based measurements. Based
on this work, our study used reaching as an action based measurement
for near-field distance estimation.

Altenhoff et al. had participants give verbal and reach-based esti-
mates in an IVE in a pre-calibration, calibration, and post-calibration
block [1]. They showed that depth perception estimations were more
accurate after the calibration block suggesting that the effects of cal-
ibration carried over between the blocks. This experimental design
is similar to the one we are presenting in this paper, but we repeated
these blocks over a prolonged period of time and added a block be-
fore pre-calibration to measure carryover effects of calibration between
sessions.

2.2 Calibration

In the ecological approach to perception, the environment is part of
the perception-action system. The organism’s interaction with the envi-
ronment lawfully generates information which specifies the organism-
environment relationship [8]. The organism, or in this case VR user,
has to perceive what opportunities for action are available to them
so that they can act; Gibson described these opportunities as  affor-
dances” [23]. Calibration allows the user to remap their actions to
match the affordances of the environment when their own capabilities
for action are altered. An alteration of the whole environment, such as
a novel experience in an IVE, could also require calibration.

Bingham and Romack investigated the effects of calibration on
participants’ ability to adapt to displacement prisms which skewed their
vision while completing a task requiring reaches across several sessions
and days [5]. They found that there was no rate of change in calibration
during the blocks but that later trials required less calibration because
participants were more accurate at the start of subsequent blocks. This
result suggests that the calibration to the displacement prisms in the
experiment may have carried over between sessions, even if sessions
were completed over an extended period of time (in this instance three
days). This would imply that a  carryover” effect of calibration was
present. Bingham and Pagano investigated the influence of calibration
on correcting underestimation in distance perception caused by an
alteration to the participant’s viewing capability [7]. They found that
feedback from reaching could eliminate the influence of the altered
viewing capability by reducing the underestimation of distance.

A study by Day et al. examined how an altered virtual avatar af-
fected action capabilities when a calibration phase was and was not
present [13]. They reported that participants were successfully able to
calibrate to thee altered avatar when feedback was present. Ebrahimi et
al. studied carryover effects of calibration when negative and positive
gain was applied to the movement of a virtual stylus [17]. The re-
searchers concluded that VR users can calibrate to visual feedback even
if it conflicts with physical movement. Ebrahimi et al. had also exam-
ined reaches during closed-loop feedback co-located with the physical
location of a tracked stylus [16]. They found that visuo-motor calibra-
tion was present since participants improved their reaching accuracy
over trials.

Calibration in virtual environments throughout these studies is shown
to be effective in improving distance estimation. Feedback can even
help bridge the gap between motor capabilities in the real world and vir-
tual world [18]. The missing aspect from these studies is an evaluation
of calibration on distance estimation in IVEs over time.

2.3 Long-Term Exposure VR Studies

There are several different kinds of studies related to long-term ex-
posure in VR that have been conducted over several different time
frames. A study by Lin et al. examined if participants could calibrate
to audio reverberation for distance perception [33]. They found similar
patterns of underestimation as found in some of the works discussed
above. They also found that participants were able to calibrate to the
reverberation and that the calibration persisted. In sessions held one
and six months after the first the authors found that the calibration from
the first session still impacted participants’ distance estimation.
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Steinicke and Bruder exposed a participant to an IVE for 24 hours
straight (with short breaks allowed during the session) [54]. They
reported that the participant experienced varying levels of sickness
throughout the course of the experiment based on the SSQ that was
not mitigated by time. A similar study by Nordahl et al. exposed two
participants to prolonged exposure in HMD’s for 12 hours [40]. They
found that participants’ reported sickness went up and down inconsis-
tently throughout the study. Zielasko also self-reported sensitivity to
simulator sickness, but instead of prolonged exposure to VR in one
session they discussed their seven year exposure to VR systems [64].

A survey of studies related to simulator sickness by Dużmańska et
al. found that duration of sickness and a threshold time for maximum
sickness varies greatly between studies [15]. Porter and Robb found
evidence that suggested the way consumers talk about simulator sick-
ness and other factors in VR in online forums may change as they gain
experience over prolonged periods of exposure [46]. Baileson and Yee
studied users in a collaborative virtual environment across 10 weeks in
15, 45 minute sessions [3]. They found that users reported less sickness
as the participants gained experience in the virtual environment, but
also that participants looked at each other less over time. Porter et al.
also found a small effect related to simulator sickness over time through
a study comparing immersive and non-immersive virtual environments
in 6, 45 minute sessions over 3 weeks [45].

Many longitudinal studies in VR are system usability studies where
the researchers study participants’ behavior in the context of particular
VR systems over time. This work spans studies related to training (e.g.
[50,53,62]), therapeutic applications (e.g. [14,20,21,27,58]), education
(e.g. [24, 57]), and computer-supported collaboration (e.g. [26, 37, 59]).
The primary focus of these studies is usually on specific experiences in
VR and not general changes in interactions as they gain experience.

Based on these related works, there is evidence to suggest that VR
users can calibrate their near-field depth perception capabilities, that
the effect of this calibration can carryover, and that longitudinal studies
provide unique insight for VR studies outside of single experimental
sessions. Our work examines how calibration over a longer period of
time and repeated across several sessions influences depth-perception
in open-loop responses. It also explores how long the carryover effects
of calibration may last and what influences carryover effects in reaching
estimations.

3 METHODS

3.1 Participants

We recruited 22 participants via an email sent to undergraduate and
graduate students enrolled at Clemson University. Participants were
required to have normal or corrected-to-normal vision and to have had
less than one hour of prior experience using VR. Due to the longitudinal
nature of the study, we experienced a high dropout rate. Six participants
completed enough sessions of the experiment to be included in the
analyses. Of these six participants, four were male and two were
female. Ages ranged from 19 to 25, with a median age of 21 years.
Two participants were left-handed. Participants’ arm lengths ranged
from 67.6 cm to 96.3 cm. Participants received a $50 gift card when
they started the study and a $75 gift card at the end of the study if they
completed at least half of the experiment modules. This study was
approved by the IRB office at Clemson University.

3.2 Procedure

Participants were loaned an Oculus Quest to use for the duration of
the 12 week study. Participants were asked to spend at least five
hours per week using the headset including time spent completing
the study activities and any applications of interest to participants
(e.g. games, movies, social applications). In addition to the distance
estimation activity, participants were also asked to complete two other
experimental activities, one dealing with sensitivity to rotational gains
and another with sensitivity to offsets applied to their virtual hands.
While the focus of this paper is on the results of the distance estimation
activity, we briefly explain the other activities to provide context for
everything participants did during the 12 week experiment.

Fig. 2: On starting our application, participants were greeted by the
schedule for their activities. They could press “Start Next Activity” to
begin the next scheduled activity.

Participants completed each of the three activities before repeating
them again. The order in which activities were completed was ran-
domly assigned to each participant, but was held constant across the
weeks for a given participant. The number of activities assigned each
week varied, with activities completed more frequently at the begin-
ning of the experiment when participants were less familiar with VR.
The application we developed enforced this schedule and reminded
participants when they were supposed to complete different activities
(see Figure 2). Participants completed each activity twice in the first
week and once in the second, fourth, sixth, eighth, tenth, and twelfth
weeks. Participants were asked to refrain from using the Quest for
games and other personal use before completing each of the different
experiments once to establish a baseline for each. Participants were
also asked to submit a brief journal online each week reflecting on
their experience while using the Quest during that week to encourage
engagement. Participants were given detailed instructions on how to
set up the Quest and how to install our custom application using the
Sidequest1 application.

The “hand offset” and “rotational gain” activities are outside of the
scope of this paper, however we provide a short description of each
activity here. In the hand offset activity, participants were instructed to
repeatedly stack blocks on top of each other while seated at a virtual
table. Blocks were grasped using a pinching gesture, which was tracked
using the Oculus Quest’s hand tracking system. While stacking blocks,
an offset was sometimes applied to the visible location of participants’
hands. Participants were asked to identify when an offset was present
each time they stacked a set of blocks. In the rotational gain activity,
participants stood in the center of a virtual garage and performed a
series of rotations to the left and the right, with a positive or negative
gain applied to one of the rotations. After turning to the left and the
right, participants were asked to indicate whether they believed a gain
had been applied to the first or the second rotation.

Figure 3 shows an annotated example of what participants saw dur-
ing the distance estimation activity. As participants completed these
activities outside of the lab, detailed instructions were recorded and
shown to participants prior to beginning each activity. Instructions were
also provided during the activity about the specific tasks they should
complete. Participants were instructed to sit in a stationary chair in a
location where the Quest guardian bounds were not visible. After press-
ing a button to indicate they had done this, they were re-centered in the
virtual environment such that they were aligned with a virtual chair. In
the first session of the depth perception experiment, participants were
asked to measure their maximum arm reach. To do this, a blue line
appeared slightly below eye height and participants were asked to reach
as far along the blue line as was possible to do comfortably as shown
in the left-most image in Figure 1. A video was played during these

1https://sidequestvr.com/
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instructions illustrating this process and how to reach. Participants
were allowed to bend at the waist while reaching as there was no way
to physically constrain this motion outside of a laboratory. Participants
were next asked to rest their hand comfortably on their leg and pull the
trigger to capture this position. This was used as the resting position
all trials started and ended at. The resting position was indicated to
participants with a translucent blue sphere that was always visible.

Once participants had completed the introduction, they began the
first of four reaching blocks: the carryover block, the pre-calibration
block, the calibration block, and the post-calibration block. In each of
these blocks, participants were provided with a tool that extended their
reach boundary. Targets appeared in front of participants at the same
height as the blue line that was used to measure participants maximum
arm reach. Participants were asked to reach out and place the tip of
their tool in the same location these targets appeared. Participants’
vision was blinded at the start of their reach, as determined by when
their hand left the resting position measured at the start of the first
session. Once participants believed the tool was aligned, they pulled
the trigger to record the position of the tool. In the calibration block,
participants’ vision was restored at this point and they were instructed
to move their tool until the tip was correctly aligned with the target and
to then return their hand to the resting location. In the other blocks,
participants’ vision was only restored once they had returned their hand
to the resting position. The next trial began once participants returned
their hands to the resting position. Participants completed a total of 60
trials in each block. At the end of each session participants were asked
to complete the Igroup Presence Questionnaire [48].

Fig. 3: The depth perception environment. Annotations in the image
indicate salient aspects of the simulation.

3.3 Apparatus
Data collected during each activity was automatically saved to the de-
vice and uploaded to a remote SQL server. In the event that the Quest
was not connected to the Internet when an activity was completed, the
locally saved data would be uploaded the next time our application
was started and the Quest was connected to the Internet. Our custom
application was configured to automatically track participants’ applica-
tion usage on the Quest using Android’s Usage Stats API, however this
data was not consistently recorded due to several participants failing to
allow our application the permissions required to access this portion of
the API. In future experiments, additional steps will need to be taken to
ensure that all participants properly grant permission to our application
to access the Android Usage Stats API.

Each block in each session had a different tool length from the
previous block as shown in Table 1. We wanted to avoid making the
tool too short (like an unaided reach) or too long (entering medium field
distance). We also wanted each tool to be a distinct length so we could
compare calibration to specific tools over time vs. general calibration.
Finally, we wanted the length of the calibration tool to be alternatively
shorter or longer than the pre-calibration tool so participants would not
learn that it was always longer or shorter. The pre- and post-calibration
blocks used the same tool length so we could compare performance
in an open-loop setting before and after closed-loop calibration with a
tool of a different length (e.g. [16, 17,39]). These constraints limited
the space of possible tool lengths appropriate for this experiment. We
ultimately settled on four tool lengths for the pre- and post-calibration
blocks ranging from 20 to 50 cm. The tool in the calibration block was
either increased or decreased by 12.5 cm, the maximum amount we
judged possible without resulting in tools that were too short or too long.
The carryover tool was the same length as the calibration tool from the
previous session, allowing us to assess the extent to which closed-loop
calibration to a specific tool length persisted across sessions. In the first
session, the carryover tool length was arbitrarily chosen since there was
no calibration block before it.

The tool lengths used in the first four sessions were repeated in the
final four sessions. We would have preferred to use unique tool lengths
in each session. However, attempts to do this resulted in different
sessions using tools that were nearly indistinguishable from other tools
due to the constraint that all reaches should remain within the near-field.
As such, we settled on two repetitions of four variations of the tool
lengths.

As is common practice in reaching experiments, the target distances
were scaled based on percentages of each participants’ maximum arm
reach (e.g. [7, 39]). Target reaching distances were scaled based on a
participant’s unique reach boundary, which was determined by their
unaided maximum arm reach plus the length of their current tool. The
targets were placed between 33% and 84% (in 6% increments) of the
participant’s reach boundary in the pre-calibration and post-calibration
blocks and between 33% and 87% (in 6% increments) in the carryover
and calibration block. In all four blocks, the target distances were
presented in a random order. We wanted the target distances to differ
between the pre- and post- and carryover and calibration blocks which
is why their ranges are offset by 3%. We did not want participants to
reach to the same distances four times in a row in a given session. Since
the target distances were scaled based on percentages of maximum
reach, if we only changed the tool length but left the distances the same
then the participants would have seen the same actual distances between
blocks. By offsetting these ranges, the distances that participants reach
to alternate with every other block.

Table 1: Tool lengths used between sessions and blocks. The target
distance was scaled to a percentage of each participant’s maximum arm
reach plus the tool length.

Session Carryover Pre-Calibration Calibration Post-Calibration

1 15.0 cm 30.0 cm 17.5 cm 30.0 cm
2 17.5 cm 20.0 cm 32.5 cm 20.0 cm
3 32.5 cm 50.0 cm 37.5 cm 50.0 cm
4 37.5 cm 40.0 cm 52.5 cm 40.0 cm
5 52.5 cm 30.0 cm 17.5 cm 30.0 cm
6 17.5 cm 20.0 cm 32.5 cm 20.0 cm
7 32.5 cm 50.0 cm 37.5 cm 50.0 cm
8 37.5 cm 40.0 cm 52.5 cm 40.0 cm

3.4 Analyses
We used linear-mixed models (LMMs) to analyze the results of this
experiment. The models were created in R [47] first using the ’build-
mer’ [60] and ’lme4’ [4] R packages. Buildmer automatically tests
different possible models based on a set of independent variables and
uses the likelihood-ratio test and minimum Bayesian information cri-
terion to select the model that best fits the observed data [52]. The
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models suggested by buildmer was then considered from a theoreti-
cal perspective; in our case, all suggested models were theoretically
sound. We then checked for violations of assumptions and made any
necessary modifications to the suggested model formula based on the
results. Once the final model was specified, we fit it to the data using
the lmer command provided by lme4. The lmerTest package [31] was
used to estimate p-values using the Satterthwhaite degrees of freedom
method [51] for the models generated by lmer. Figures were generated
using ggplot2 [61].

Each of the models was checked for normality of residuals, normal-
ity of random effects, a linear relationship, homogeneity of variance,
and multicollinearity (see the ’check model’ function in the ’perfor-
mance’ R package [34]). These checks led to the alteration of some
of the model formulas output by buildmer, primarily due to violations
of collinearity. In particular, we removed predictors with variance in-
flation factors (VIFs) greater than five. These moderate to high levels
of collinearity were often caused by interaction effects in the models.
We also grand mean centered the continuous variable log(day) in the
calibration block model. Grand mean centering of continuous indepen-
dent variables prior to computing the interaction terms are typically
conducted in multiple regression and hierarchical multilevel linear mod-
eling analyses. Centering minimizes or eliminates high correlations
between the individual independent variables or predictors and the inter-
action terms derived from them [29]. If a predictor was removed from a
model to correct a violated assumption, the new model’s conditional r2
value was computed and compared against the previous model to assess
the change’s impact on model fit. In our case, all model adjustments
resulted in negligible changes to model fit.

As mentioned previously, only six participants completed enough of
the experiment to be included in our analysis. Of those six participants,
five completed all eight sessions and one participant completed the first
six sessions. The ’check outliers’ function of the ’performance’ R pack-
age [34], with the outlier threshold set to a z-score of three, was used
to identify and exclude 412 out of 11,040 data points. Outliers were
excluded on a per-participant basis to account for inter-participant vari-
ability in error scores. Outliers were excluded prior to the construction
of the LMMs.

3.5 Interpreting Linear Mixed-Effect Models
LMMs are becoming a widely used approach to statistical analyses
when working with quantitative data in psychological research [36],
but we have yet to see their widespread use in papers related to VR
research. Thus, we briefly discuss their advantages and how to interpret
their results here.

LMMs are particularly well suited to analyze data involving cor-
relations between conditions or measurements (e.g. when a single
participant’s behavior is measured multiple times [30]). When com-
pared with repeated-measures ANOVAs, LMMs are more robust to
assumption violations and also perform better when analyzing datasets
with missing or imbalanced data. Additionally, LMMs are capable of
handling data collected on a variable schedule, making them practical
for use with human-subject research and its natural variability. Taken
together, these features make LMMs especially appropriate when ana-
lyzing longitudinal data [11].

LMMs model both fixed and random effects [36]. Fixed effects
model the influence of predictors on the measured quantities, while ran-
dom effects model the unexplained variability associated with individ-
ual differences between participants. To do this, LMMs independently
model each participants’ response to the data. Random effects can be
modeled as random intercepts, where the intercept of each participant’s
individual model is allowed to vary based on the best fit to that partic-
ipant’s data. Random effects can also be modeled as random slopes,
where the slope of each participant’s individual model is also allowed
to vary based on the best fit to their particular data. Including random
effects in the model improves LMMs’ abilities to precisely model the
response of fixed effects independent of the innate variability between
participants.

The fitted model includes an intercept, which describes the predicted
value of the modeled variable when all predictors are set to 0. The

model also includes fitted beta values for each fixed effect, which de-
scribe how much the modeled variable is predicted to change when the
fixed effect unit increases by one. Beta values are highly sensitive to
the scale of a given dependent variable, such that dependent variables
spanning a small range of values produce smaller beta values and vice
versa. This makes it difficult to judge the relative importance of a fixed
effect from the size of the beta values alone. Therefore, we also provide
standardized beta values (abbreviated std. beta in our tables), which are
scaled based on the individual distribution of each dependent variable.
This makes it easier to determine the relative contribution each fixed ef-
fect has on the independent variable. Instead of determining the change
in the dependent variable when the independent variable increases by
one unit (holding all other variables constant), the standardized beta
values tell us the standard deviation change in the dependent variable
when the independent variable changes by one standard deviation [9].

We also provide both marginal and conditional r2 values. Marginal
r2 values (abbreviated m. r2 in our tables) report the amount of variance
explained by the fixed effects alone and conditional r2 values report the
amount of variance explained by both the fixed and random effects [38].
Thus, the conditional r2 values tell us the explanatory power for the
entire model.

4 RESULTS

4.1 Dependent and Independent Variables
Our analyses include several independent variables and one primary
dependent variable, signed-error. Signed-error is the difference be-
tween a participant’s judgment and the actual distance for a given
trial. A negative-signed error indicates distance underestimation, and
a positive-signed error indicates distance overestimation. In addition
to our analysis of signed-error, we also include a graph visualizing the
original measures, target distance and reach estimate, in Figure 4.

Our primary independent variable is time, given that it is the main
focus of this work. We represent time in our analyses as the natural log
of days since the start of the study (represented as log(days)). Work by
Mazur and Hastie has shown that changes in human performance over
time, including performance related to perception and motor skills, are
rarely linear and can be better modeled as a negative exponential or
logarithmic relationship [35]. As such, a log transform was applied to
days in order to more appropriately model the relationships in our data
using LMMs.

We considered two other secondary independent variables when
constructing our models. These variables were included primarily
to control for unwanted effects that may make it more difficult to
determine whether a relationship between signed-error, log(days), and
block was present in our data. The variables included the 1) trial
number within a block and 2) the target distance as a percentage of a
participant’s current reach boundary.

4.2 Hypotheses
H1 was tested by examining participants’ performance in the pre-
calibration block. Participants used a tool with an unfamiliar length
during this block and had not yet received feedback about their perfor-
mance. As such, a reduction in underestimation in this block would
indicate that the effect of depth compression was decreasing. We
expected a similar change to be visible in all four blocks if depth com-
pression decreased. However, this can be most directly tested using the
pre-calibration block for the reasons explained above.

H2 was tested by comparing the results of the pre-calibration block
with the carryover block. If the effects of calibrating to a tool of
a specific length persisted, rather than the calibration affecting the
overall system of depth perception, we expected to see a difference
in performance between the carryover block (which used a familiar
tool) and the pre-calibration block (which used a tool of a different
length). In particular, we expected to see that performance in the
carryover block was better than in the pre-calibration block (assuming
participants’ performance had actually improved in the previous session
after calibration).

H3 was tested by evaluating participants’ performance in the cal-
ibration block where they received feedback about their reaches. If
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(a) Carryover block
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(b) Pre-Calibration block
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(c) Calibration block
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(d) Post-Calibration block

Fig. 4: This shows the relationship between the target distances and participants’ reach distances for all four blocks across all sessions. The
graphs show that as time went on, indicated by log(days), participants appear to underestimate distances less. The line in the center of the graph
represents a slope of one, so if participants had perfect accuracy then the point would fall on the line. We also note that the data in the calibration
and post-calibration blocks are more tightly grouped around the center line indicating a higher level of accuracy.

participants’ baseline performance improved with time, we would ex-
pect to see a main effect of log(days) in the model, as this would
correspond to improved performance even in the first trial. Alterna-
tively, if the rate of calibration improves with time, we would expect
to see a main effect of trial in the model (a higher rate of calibration
equates to more improvement within a given trial).

Finally, H4 was tested by comparing participants’ performance in
the pre- and post-calibration blocks. Assuming participants calibrated
to the specific tool length used in the calibration block, this calibra-
tion should continue to influence reaches in the post-calibration block
where participants do not receive feedback. If the effect of calibration
diminishes over time, we would expect to observe an interaction effect
between block and log(days), where block (and thus the calibration that
occurs within a block) would have less of an impact on error over time.

4.3 Signed Error in Carryover vs. Pre-calibration Blocks
To evaluate H1 and H2, we fit a model using the data from the carryover
and pre-calibration blocks. The fitted linear model included log(day),
block, trial, and target distance as fixed effects and participant ID as
a random effect. Buildmer originally included the between log(day)
and target distance but this interaction had a very large VIF (35) so it
was removed from the model. The removal of this interaction had a
negligible impact on the fit of the model. The model’s total explanatory
power (conditional r2) is 0.43 and the explanatory power of the fixed
effects alone (marginal r2) is 0.27. The parameter values for the model
are shown in Table 2.

Based on the model’s intercept (when all predictors were zero),
participants underestimated distances by 9.81 cm. Underestimation
decreased by 3.21 cm for each unit of log(day). It also decreased
by 1.26 cm when moving from the carryover to pre-calibration block,
decreased by 0.03 cm for each trial completed, and increased as targets
were placed farther away from the participant. All model parameters
had significant effects on the predicted signed-error, with log(Day)
having the largest impact as indicated by both the standardized beta
and marginal r2 values.

4.4 Signed Error in the Calibration Block
To evaluate H3, we fit a model to the data from the calibration block
to understand how performance changed over time when participants
were receiving feedback about their reaches. The fitted linear model
included target distance, log(day), trial, and the interaction between
log(day) and trial as fixed effects and participant ID as a random effect.
The model’s total explanatory power (conditional r2) is 0.24 and the

explanatory power of the fixed effects alone (marginal r2) is 0.09. The
parameter values for the model are shown in Table 3.

Unlike previous models that did not require data to be grand-mean
centered, the intercept for this model does not accurately reflect the
amount of error present when all predictors were zero and is thus
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Fig. 5: The relationship between log(days) and signed-error in each
of the four blocks is shown here. Depth compression, indicated by a
negative signed-error, decreased with time.
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Table 2: Carryover vs. Pre-Calibration Parameters

Fixed Effect beta [95% CI] Std. beta [95% CI] t(5225) p m. r2

(Intercept) -9.81 [-12.61, -7.01] – -6.88 <0.001 –
log(Day) 3.21 [3.08, 3.35] 0.52 [0.50, 0.55] 47.49 <0.001 0.2552
Block 1.26 [0.93, 1.59] 0.16 [0.12, 0.20] 7.48 <0.001 0.0062
Trial 0.03 [0.02, 0.04] 0.07 [0.05, 0.09] 6.33 <0.001 0.0042
Target Distance -3.39 [-4.70, -2.08] -0.06 [-0.08, -0.03] -5.08 <0.001 0.0028

more difficult to interpret. However, grand-mean centering does not
affect the interpretation of the other effects in this model. The model
suggests that participants would underestimate the distance to their
reach boundary by 11.26 cm. Underestimation decreased by 1.15 cm
per unit of log(day). Trial did not have a significant effect on signed-
error in this model, indicating that trial number had little to no effect
on signed-error. Finally, the interaction effect of trial on log(day) was
significant. This interaction effect indicates that the main effect of
log(day) diminished by 0.0195 cm with each trial. By the end of the 60
trials, the main effect of log(day) was reduced by 1.17 cm. As the main
effect of log(day) was 1.15 cm, this suggests that log(day) no longer
impacted signed-error by the end of the calibration block. Except
for trial, all model parameters had a significant effect on signed-error.
Target distance had the largest impact on signed-error in this model as
judged by both the standardized beta and marginal r2 values.

Table 3: Calibration Parameters

Fixed Effect beta [95% CI] Std. beta [95% CI] t(2668) p m. r2

(Intercept) 7.87 [5.81, 9.92] – 7.516 <0.001 –
Target Distance -11.62 [-13.07, -10.17] -0.27 [-0.30, -0.24] -15.71 <0.001 0.0703
log(Day) 1.15 [0.88, 1.43] 0.15 [0.11, 0.18] 8.35 <0.001 0.0206
Trial 0.00280 [-0.00779, 0.01] 0.0088 [-0.02, 0.04] 0.52 0.604 <0.001
log(Day):Trial -0.0195 [-0.03, -0.01] -0.08 [-0.12, -0.05] -4.81 <0.001 0.0065

4.5 Signed Error in Pre-calibration vs. Post-calibration
To evaluate H4, we fit a model using the data from the pre-calibration
and post-calibration blocks. The fitted linear model included log(day),
block, trial, and target distance as fixed effects, and participant ID as a
random effect. An interaction effect between log(day) and block was
also included in the final model. The model’s total explanatory power
(conditional r2) is 0.36 and the explanatory power of the fixed effects
alone (marginal r2) is 0.19. The parameter values for the model are
shown in Table 4.

Based on the model’s intercept (when all predictors were zero),
participants underestimated distances by 8.16 cm. Underestimation
decreased by 3.17 cm for each unit of log(day). Underestimation
also decreased by 6.87 cm when moving from the pre-calibration to
post-calibration block, decreased by 0.03 cm for each trial completed,
and increased as target distance increased. The interaction effect be-
tween log(day) and block also increased distance underestimation, such
that the difference between pre-calibration and post-calibration blocks
decreased by 1.80 cm for each unit of log(day). There was a main
effect of block, indicating that depth compression decreased in the post-
calibration block compared to the pre-calibration block. Therefore, the
interaction effect indicates that the magnitude of the main effect of
block diminished with time. This can likely be attributed to the increase
in baseline performance during the pre-calibration phase which limited
the improvement possible for the post-calibration phase. As before, all
model parameters had a significant effect on signed-error, and log(day)
remained the parameter with the largest impact on signed-error, as
judged by both the standardized beta and marginal r2 values.

5 DISCUSSION

Our analyses of the data provided evidence to support H1. A main
effect of log(day) was observed in the model of the carryover and pre-
calibration data where depth compression decreased by 3.21 cm for
each unit of log(Day). An interaction effect was not observed between
log(day) and block, which indicates that this improvement in perfor-
mance was similar between blocks. We are primarily concerned with

Table 4: Pre-Calibration vs. Post-Calibration Parameters

Fixed Effect beta [95% CI] Std. beta [95% CI] t(5315) p m. r2

(Intercept) -8.16 [-10.73, -5.58] – -6.21 <0.001 –
log(Day) 3.17 [2.99, 3.35] 0.59 [0.56, 0.62] 34.52 <0.001 <0.001
Block 6.87 [6.09, 7.66] 0.21 [0.17, 0.26] 17.19 <0.001 0.0356
Trial 0.03 [0.02, 0.04] 0.07 [0.04, 0.09] 5.81 <0.001 0.0040
Target Distance -3.54 [-4.79, -2.28] -0.06 [-0.08, -0.04] -5.52 <0.001 0.0038
log(Day):Block -1.80 [-2.04, -1.56] -0.33 [-0.38, -0.29] -14.70 <0.001 0.0261

the improvement visible in the pre-calibration block, as participants
used a tool of an unfamiliar length in this block. Given that partici-
pants had no experience using this tool prior to a given session, we
can attribute the observed improvement to an overall improvement in
distance judgments rather than to improvements with a specific tool.

Regarding H2, we did not observe any evidence that calibration to a
tool of a given length persisted across sessions. In particular, we did
not find an interaction effect between log(day) and block in the model
of the carryover and pre-calibration data. An interaction effect would
have suggested that participants used a new tool and a tool they had
previously calibrated to differently. Instead, our findings suggest that
participants performed worse with tools they had previously calibrated
to. Specifically, depth compression was more evident in the carryover
block (when they used the tool they had calibrated to in the previous
session) than in the pre-calibration block (when they used a tool of an
unfamiliar length).

It is surprising that participants would perform worse with the carry-
over tool than the pre-calibration tool. In the pre- vs. post-calibration
model we observed a reduction in depth compression between the
blocks, indicating that performance improved after calibration. If cal-
ibrating to a specific tool carried over between sessions, we would
expect to see improved performance in the carryover block compared
to the pre-calibration block. If calibrating to a specific tool did not
carryover between sessions, we would expect to see no difference in
performance between the blocks. Instead, we found the opposite of
this. On further consideration, this effect may potentially be attributed
to the small, but significant effect of trial in the carryover vs. pre-
calibration model. While participants did not receive feedback in the
carryover block, their performance improved by a small amount for
each trial. Distance estimation research typically assumes that per-
formance only changes in the presence of explicit feedback, but the
ecological approach to perception posits that people constantly cali-
brate to invariants in the environment [8]. This means that performance
can change minutely even when feedback is not explicitly present. It
may be that the observed difference between the carryover and the
pre-calibration blocks is due to this learning effect. This is made more
plausible by an examination of the estimated model parameters. Each
trial was estimated to reduce overestimation by 0.03 cm. Given that
there were 60 trials in the carryover block, we would expect to see
a reduction in overestimation of 1.8 cm by the end of the carryover
block. This corresponds to the observed effect of block which estimated
that underestimation was reduced by 1.26 cm when moving from the
carryover to the pre-calibration block.

Regarding H3, the results in the calibration block model partially
supported the hypothesis that participants would reach full calibration
faster over time with feedback. The main effect of log(day) indicates
that their baseline performance improved over time in the calibration
block (H3a). Conversely, the lack of significant effect for trial suggests
that the rate of calibration did not change over time (H3b). Trial
moderated the effect of log(day), reducing its influence to basically
zero at the end of the 60 trials in the calibration block. This is likely
a reflection of how participants’ reach estimates were highly accurate
by the end of the calibration block, regardless of log(day). Their initial
performance (i.e. the first trial) improved with time due to the main
effect of log(day). However, log(day) ceased to matter in the final trials
as participants had calibrated their performance based on the feedback
they received.

Regarding H4, we observed a carryover effect of calibration in-
dicated by the main effect of block in the model of pre- and post-
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calibration data. Both the pre- and post-calibration blocks employed
tools of the same length, so the difference between these blocks can be
attributed to the carryover effects from the calibration block where feed-
back was provided while participants reached with a different length
tool. We also observed an interaction effect between log(days) and
block. This interaction effect indicated that the effect of calibration
diminished with time, such that reaches in the pre- and post-calibration
block became more similar with time. This interaction effect can likely
be attributed to the improved baseline performance. Specifically, as
depth compression in general decreased, there was less potential (and
less need) to calibrate in the calibration block.

While depth compression decreased in the earlier sessions, we did
not find that signed error approached zero by the end of the experi-
ment. Surprisingly, participants showed signs of depth expansion, or
overestimation of distances by the end of the experiment. We fit a
curvilinear function to check whether this was an artifact of fitting the
data with a linear model. The curvilinear function also suggested that
participants were overestimating distance by the end of the experiment.
This observation was unexpected, so we suggest that future research
explore this further.

The most unexpected finding from this study was the shift from
underestimation to overestimation of distances that occurred by the end
of the study. This was an unexpected result given the well-documented
phenomenon of underestimation and the ability for calibration to min-
imize error. This is especially true given that our data was modeled
using a linear fit. However, this may misrepresent the trend in the data
if it actually follows a non-linear trajectory given the small sample
size. That said, the application of a log transform to our time variable
makes the use of a linear model less problematic, and we observed that
applying a curvilinear fit to the data shown in Figure 5 also suggested
that participants were overestimating distances by the end of the exper-
iment. The linear models also demonstrated reasonably good measures
of fit, with conditional r2 values ranging between 0.24 and 0.43. This
overestimation requires further investigation and would benefit from
confirmation via additional studies.

5.1 Limitations
Despite recruiting 22 participants, only six completed enough sessions
to be used in our analyses. As we expected significant dropout going
into the study, we intentionally set the number of trials and sessions
high so as to gather substantial amounts of data from the participants
who completed the study. Further, spatial perception in individuals with
no perceptual or motor deficits is not expected to differ based on race,
gender, etc. in VR with strong depth cues (e.g. [44]) like we might
expect of cognitive effects (e.g. [56]). Even with a relatively small
participant pool, completing a relatively large number of trials provides
sufficient power for the results to generalize to a larger population of
normal sighted (or corrected to normal) and motor capable individuals.
LMMs are also well suited for analyzing longitudinal data with few
participants as they model the individual variability of each partici-
pant separately, which allows to overall trends to be better identified
independent of the variability that may be present in small samples.
That said, our final sample size was small and was limited to young,
motor capable individuals. Future work that incorporated more diverse
participants could help strengthen the evidence of the phenomena we
observed.

A second limitation of this work was that the order of tool lengths
were not randomized between participants. This choice was made to
simplify the already complex analysis but given the limited sample size
counter-balancing the lengths could have a significant impact on the
models.

6 CONCLUSION

In this paper, we discussed the results of the first study to date that
considered how depth perception in VR changes with time and experi-
ence. We found that repeated calibration reduced the effect of depth
compression over time, potentially even to the point of depth expan-
sion, where users began to overestimate distances in VR. Our results
suggested that this occurred broadly, rather than being restricted to

tools of specific lengths that have been used previously. Our findings
also suggested that the effects of calibration that occurred within a
given session diminished with time, likely due to reductions in depth
compression prior to calibration. It is important to note that calibration
can occur in any virtual environment that provides feedback to users
about the accuracy of their reaches. In practice, this is essentially all
virtual environments. A specific calibration block was employed in our
experiment to examine the effects of feedback on reaching behavior,
but such a block is not necessarily required in other activities where
users do not engage in blind reaching. Therefore, we would expect
that depth compression will diminish with time as users gain experi-
ence with VR, possibly generally across all applications they encounter
and almost certainly when they repeatedly use the same application as
in this experiment. While this work specifically focused on distance
estimation and depth compression, its findings have implications for
other perceptual phenomena affected by VR. Future work is needed to
understand whether similar effects can be observed in users’ abilities
to detect perceptual distortions, both unintentional and otherwise.
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