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ABSTRACT

This paper studies how RAID (redundant array of independent

disks) could take full advantage of modern SSDs (solid-state drives)

with built-in transparent compression. In current practice, RAID

users are forced to choose a speci�c RAID level (e.g., RAID 10 or

RAID 5) with a �xed storage cost vs. speed performance trade-o�.

The commercial market is witnessing the emergence of a new fam-

ily of SSDs that can internally perform hardware-based lossless

compression on each 4KB LBA (logical block address) block, trans-

parent to host OS and user applications. Beyond straightforwardly

reducing the RAID storage cost, such modern SSDs make it pos-

sible to relieve RAID users from being locked into a �xed storage

cost vs. speed performance trade-o�. In particular, RAID systems

could opportunistically leverage higher-than-expected runtime user

data compressibility to enable dynamic RAID level conversion to

improve the speed performance without compromising the e�ec-

tive storage capacity. This paper presents techniques to enable

and optimize the practical implementation of such elastic RAID

systems. We implemented a Linux software-based elastic RAID

prototype that supports dynamic conversion between RAID 5 and

RAID 10. Compared with a baseline software-based RAID 5, under

su�cient runtime data compressibility that enables the conversion

from RAID 5 to RAID 10 over 60% of user data, the elastic RAID

could improve the 4KB random write IOPS (I/O per second) by

42% and 4KB random read IOPS in degraded mode by 46%, while

maintaining the same e�ective storage capacity.
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1 INTRODUCTION

This paper studies the implementation of RAID (redundant array

of independent disks) [11, 34] over SSDs (solid-state drives) with

built-in transparent data compression. As one of the best-known

computing system design techniques, RAID plays an important role

in building reliable computing infrastructure. In current practice,

when deploying a RAID system, users must choose (and subse-

quently stick with) one speci�c RAID level after, often painfully,

deliberating the trade-o� between the storage cost and speed per-

formance. For example, between RAID 10 and RAID 5, the two

most popular RAID levels, RAID 10 achieves a higher I/O speed

performance, in terms of IOPS (I/O requests per second) and aver-

age/tail latency, at the penalty of a higher data storage cost, while

RAID 5 reduces the data storage cost by sacri�cing the I/O speed

performance. Such a storage cost vs. speed performance trade-o�

is inherent in the design of RAID, regardless of whether its im-

plementation is software-based (e.g., Linux mdraid [29] and Btrfs

RAID [38]) or hardware-based (e.g., RAID controller card [5]).

The commercial market currently witnesses the rise of SSDs

with the built-in transparent data compression capability [20, 40].

Such modern SSDs internally carry out hardware-based compres-

sion on each 4KB LBA (logical block address) block, and could

expose a logical storage space that is (much) larger than their inter-

nal physical NAND �ash memory storage capacity. Evidently, one

could deploy a RAID system (regardless of its RAID level) over such

SSDs to reduce the storage cost without any changes to the RAID

implementation and any degradation of the RAID speed perfor-

mance. This paper shows that, beyond straightforwardly reducing

the storage cost, SSDs with built-in transparent compression bring

a unique opportunity to improve the RAID speed performance by

elastically mixing di�erent RAID levels (e.g., RAID 5 and RAID 10)

in adaptation to the runtime user data compressibility variations.

The basic idea can be described as follows: Suppose we deploy a

RAID 5 over multiple SSDs with a total physical storage capacity of

32TB and format the RAID logical storage capacity as 64TB, i.e., we

expect that the average data compressibility is about 2:1 and hence
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aim at leveraging such SSDs to reduce the e�ective RAID storage

cost by up to 2×. The storage system must adjust its monitoring

and management accordingly to prevent out-of-space failure under

worse-than-expected data compressibility. If the runtime data com-

pressibility exceeds 2:1, the RAID system could opportunistically

convert the protection of some user data from RAID 5 to RAID 10

in order to improve the RAID speed performance (especially in the

degraded mode when one SSD is o�ine due to catastrophic failures),

while still maintaining the total 64TB e�ective RAID data storage

capacity. As the runtime data compressibility dynamically varies,

the RAID system adaptively adjusts the mixture of RAID 5 and

RAID 10. Such an elastic RAID design strategy opportunistically uti-

lizes the runtime residual data compressibility to improve the speed

performance without compromising the e�ective storage capacity.

Elastic RAID can dynamically mix RAID 6 and triple replication

if users demand double drive failure protection. For the purpose

of simplicity, this paper focuses on the case of elastically mixing

RAID 5 and RAID 10 in one RAID system, and the proposed design

solutions could be readily extended to the case of elastically mixing

RAID 6 and triple replication.

In spite of its simple concept, the practical implementation of

elastic RAID is nontrivial. RAID 5 and RAID 10 have di�erent data

mappings and occupy di�erent amounts of storage capacity, which

makes it challenging to dynamically convert between RAID 5 and

RAID 10 on the same array of SSDs at the minimal conversion-

induced overhead in terms of data copy/move/delete operations.

Moreover, we must retain the drive failure protection during the

RAID level conversion. This paper presents a bloated stripe alloca-

tionmethod to facilitate the implementation of dynamic RAID level

conversion at the minimal operational overhead. This paper further

presents a strategy to schedule RAID level conversion both proac-

tively in adaptation to workload characteristics variation and reac-

tively in response to runtime data compressibility change. For the

purpose of demonstration, we implemented a Linux software elastic

RAID prototype in support of the mixture of RAID 5 and RAID 10.

This prototype was developed by modifying/enhancing the existing

Linux mdraid [29] to incorporate the proposed design techniques

and meanwhile enhance the support of multi-threaded operations.

We carried out experiments by deploying the software elastic RAID

over commercial SSDs with built-in transparent compression from

ScaleFlux Inc. [40]. We applied the widely used FIO (�exible I/O

tester) tool [19] to generate heavy I/O workloads and collect the

IOPS and tail latency results. When operating in the RAID 5 only

mode, our elastic RAID implementation could noticeably outper-

form the state-of-the-art software RAID 5 product RAIDIX [37], and

both RAIDIX and our elastic RAID achieve ∼ 10× higher IOPS than

the Linux mdraid. We further carried out experiments to evaluate

the e�ect of elastic RAID 5 and RAID 10 mixture, and the results

demonstrate its e�cacy in improving the RAID speed performance

without compromising the e�ective RAID storage capacity. For

example, compared with the baseline that operates in the RAID 5

only mode, converting 20% and 60% user data from RAID 5 to

RAID 10 could improve the 4KB random write IOPS by 10% and

42%, respectively. When the RAID system operates in the degraded

mode (i.e., one SSD is o�ine), converting 20% and 60% RAID 10

user data from RAID 5 to RAID 10 could improve the 4KB random

read IOPS by 12% and 46%, respectively. The experimental results

show that a small increase in user data compression ratio could

enable a signi�cant increase in RAID 10 coverage. For example, the

RAID 10 coverage could improve by over 40% if the user data com-

pression ratio slightly increases from 1.2 to 1.4. The experimental

results also show that the RAID level conversion can be carried

out with very high throughput and its impact on the RAID system

speed performance is very small (e.g., less than 5%) even under very

heavy foreground user I/O workloads. This work demonstrates

that emerging SSDs with built-in transparent compression make

it practically feasible for a RAID system to opportunistically mix

di�erent RAID levels to improve the speed performance without

compromising the e�ective data storage capacity.

2 BACKGROUND

2.1 Journaling in RAID

The basic design principle of RAID has been very well discussed in

the open literature [11, 34, 41, 45]. Since our elastic RAID prototype

heavily utilizes journaling to improve reliability and speed perfor-

mance, this subsection brie�y discusses the use of journaling in

RAID systems. For RAID levels (e.g., RAID 5/6) that involve parity

calculation, a partial-stripe data write incurs the read-modify-write

operation to calculate the new parity. To hide the long latency

of read-modify-write operations from end users, RAID systems

could �rst log the incoming user data into a journal, and then

carry out read-modify-write operations to update the parity in

the background. Since RAID systems could utilize the journal to

amortize the parity-update overhead, user data may stay inside the

journal for a relatively long time. Hence, it is desirable to apply

RAID 5/6 protection over the journal-resident user data as well.

The append-only nature of journaling makes the implementation

straightforward. Before being written into its destined stripe on the

storage drive, the new parity should also be logged into the journal

to guarantee atomic stripe update and hence obviate the potential

write-hole problem.

For RAID 1/10 systems that do not involve parity calculation,

they could also use journaling to reduce the write completion ac-

knowledgment latency and ensure write atomicity. Upon receiving

a write request, we �rst log the data into the RAID-protected jour-

nal and then acknowledge write completion to the host. In the

background, user data are moved from the journal into their des-

tined locations in the RAID system. In the presence of data write

temporal locality, data journaling could help to reduce the overall

system write ampli�cation.

2.2 In-Storage Transparent Compression

Fig. 1(a) illustrates an SSD with built-in transparent compression:

Its controller SoC (system on chip) performs (de)compression on

each 4KB LBA data block along the I/O path and manages the place-

ment of all the post-compression variable-length data blocks on the

NAND �ash memory. The in-storage per-4KB data compression

is transparent to the host that accesses the SSD as a normal block

data storage device through a standard I/O interface (e.g., NVMe

or SATA). The per-4KB (de)compression latency of the hardware

engine inside the SSD controller SoC can be well below 5`s, which

is over 10× shorter than the TLC/QLC NAND �ash memory read

latency (∼50`s and above) and write latency (∼1ms and above).
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Figure 1: Illustration of (a) an SSD with built-in transparent

compression, and (b) the expanded LBA space exposed by

such SSDs.

Meanwhile, the hardware (de)compression engines could easily

achieve a throughput higher than the aggregated bandwidth of

back-end NAND �ash memory chips (e.g., 4∼8GB/s). Therefore,

SSDs with built-in transparent compression can maintain the same

IOPS and latency performance as traditional SSDs without built-

in compression capability. In fact, by reducing the write stress

on NAND �ash memory through compression, such SSDs could

have (much) lower GC (garbage collection) overhead, leading to

(much) higher IOPS under write-intensive workloads. For example,

under heavy 4KB random writes with 100% LBA span, traditional

NVMe SSDs could achieve up to 200K∼300K IOPS, while NVMe

SSDs with built-in transparent compression (e.g., the one from

ScaleFlux Inc. [40]) could achieve over 600K IOPS under 2:1 user

data compression ratio.

To allow the host to materialize the bene�t of in-storage transpar-

ent data compression, such modern SSDs could expose an expanded

LBA logical storage space that is larger (e.g., by 2× or 4×) than its in-

ternal physical NAND �ash memory storage capacity, as illustrated

in Fig. 1(b). Given the runtime data compressibility variation, such

SSDs with expanded LBA space may possibly run out of physical

storage space before their exposed logical storage space has been

used up by the host. Hence, to avoid running into the out-of-space

error, the host must keep monitoring the SSD physical storage space

usage and accordingly make its storage management aware of the

runtime physical storage space usage, just like when using any

thin-provisioned storage systems.

Finally, we note that data compression can be realized at di�er-

ent levels of the entire I/O stack (e.g., user applications, �le sys-

tem, block layer, and hardware storage devices). Whichever level

handling data compression must meanwhile manage the storage

of post-compression variable-length data blocks. For in-storage

transparent compression, such a management task can be readily

merged into the existing SSD FTL by enhancing SSD FTL to na-

tively handle the storage of variable-length data blocks on NAND

�ash memory chips. However, when compression is performed at

a higher level (e.g., �le system), an extra layer of data mapping

must be introduced to manage the storage of post-compression

variable-length data blocks over normal storage devices, leading to

non-negligible host CPU and memory usage overhead. Moreover,

data compression at a higher level could consume signi�cant host

CPU resources for carrying out the data (de)compression computa-

tion. Modern all-�ash array appliances (e.g., IBM Storwize [24] and

Pure Storage FlashBlade [35]) widely support built-in hardware-

based transparent compression and RAID data protection. However,

such solutions result in higher $/GB costs than SSD in-storage com-

pression. Therefore, for general-purpose RAID systems that can

be deployed in commodity servers, it is highly desirable to employ

SSDs with built-in transparent compression to reduce the storage

cost without incurring any host CPU/memory overhead.

3 PROPOSED ELASTIC RAID

3.1 Rationale and Key Idea

When users deploy RAID over SSDs with built-in transparent com-

pression, they should format their logical storage capacity based

on the expected/estimated data compressibility in order to reduce

the e�ective data storage cost. Let us consider RAID 5 over = + 1

SSDs, and let �5 ;0Bℎ denote the NAND �ash memory capacity of

each SSD (excluding its internal over-provisioned storage capacity

reserved for GC). Throughout this paper, we de�ne the compres-

sion ratio as the pre-compression data block size being divided by

the post-compression data block size (i.e., a larger compression

ratio corresponds to a higher data compressibility). Let U4G? ≥ 1

denote the expected average data compression ratio over the entire

RAID 5 (including both user data and RAID 5 parity). Since all the

user data and RAID 5 parity are evenly striped over the = + 1 SSDs,

all the SSDs will experience the same average data compression

ratio. Hence, the logical storage capacity of the RAID 5 system

should be formatted as �'��� = U4G? · = ·�5 ;0Bℎ , i.e., users expect

to increase the e�ective RAID storage capacity by up to U4G?× via

deploying SSDs with built-in transparent compression. In practice,

users tend to purposely underestimate the value of U4G? in order

to better embrace unexpected data compressibility drop and hence

reduce the probability of encountering out-of-space errors. Let U

denote the runtime average compression ratio of all the data (both

user data and parity) on a RAID 5 system. Once the runtime data

compressibility is better than expected (i.e., U > U4G? ), it will leave

a certain amount of NAND �ash memory storage space unused. We

could utilize such opportunistically available physical data storage

capacity to convert the protection of a portion (or even all) of user

data from RAID 5 to RAID 10. This can contribute to improving

the RAID I/O speed performance including IOPS and latency, while

still maintaining the same RAID logical storage capacity of �'��� .

Fig. 2 further illustrates the basic concept of such elastic RAID:

To materialize the storage cost reduction enabled by deploying

SSDs with built-in transparent compression, an elastic RAID system

exposes a logical storage capacity of �'��� to the host. When

the runtime average data compression ratio U is less than U4G? ,

the elastic RAID system entirely operates as a classical RAID 5

to transform 100% of data compressibility into the storage cost

reduction, as shown in Fig. 2. Being proportional to the average

data compression ratio U , the e�ective data storage capacity that
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Figure 2: Illustration of elastic RAID enabled by in-storage

transparent compression.

is truly consumable by the users is lower than the logical storage

capacity �'��� exposed by the elastic RAID. Hence, users must

closely monitor the true physical storage capacity usage of SSDs

in order to avoid out-of-space errors. Once the average runtime

data compression ratio U reaches U4G? , the e�ective data storage

capacity will reach�'��� (i.e., all the logical storage space exposed

by the RAID system could be truly consumed by the users). As

U exceeds U4G? , the e�ective data storage capacity will remain as

�'��� and the residual data compressibility (i.e., U − U4G? ) will be

exploited to enable RAID 5 to RAID 10 conversion, as illustrated in

Fig. 2, where U 5 D;; denotes the data compression ratio under which

all the user data could be protected by RAID 10.

In summary, as the runtime average data compression ratio U dy-

namically varies between [1, U4G? ], the e�ective data storage capac-

ity of elastic RAID will proportionately change and all the user data

are protected by RAID 5; as U dynamically varies between [U4G? ,

U 5 D;; ], elastic RAID will accordingly adjust the mixture of RAID 5

and RAID 10 while its e�ective data storage capacity remains as

�'��� ; once U exceeds U 5 D;; , all the user data are protected by

RAID 10 and the e�ective data storage capacity remains as �'��� .

Although elastic RAID is built upon a simple idea, its practical and

e�cient implementation poses unique challenges, which will be

studied in the remainder of this section.

3.2 Realization of RAID Level Conversion

Compared with conventional RAID implementation, one unique

challenge of elastic RAID is the realization and management of

dynamic conversion between di�erent RAID levels. Let =+1 denote

the total number of SSDs in the RAID system, and P8 denote the

LBA space exposed by the 8-th SSD. Let LDBA denote the LBA space

exposed by the RAID system to the user. The RAID system applies

a mapping 5 : LDBA → {P1, · · · ,P=+1} to manage the user data

storage over the SSD array. With di�erent amounts of data redun-

dancy, di�erent RAID levels must use di�erent mapping functions

5 , leading to di�erent user data placement over the = +1 SSDs. As a

result, dynamic conversion between di�erent RAID levels demands

runtime varying the mapping function 5 (and hence the placement

of user data and RAID parity). This could signi�cantly complicate

the data placement and management. Meanwhile, changing the

mapping function will incur SSD operational overheads in terms

of data copy/move/delete operations, leading to interference with

foreground user I/O requests. Elastic RAID should reduce such

operational overheads as much as possible to maximize its speed

performance gain and reduce the impact on NAND �ash memory

endurance.

This work proposes a design technique to simplify the switching

between di�erent data mapping functions during the RAID level

conversion. As pointed out above in Section 2.2, SSDs with built-

in transparent compression could expose an expanded LBA space

that is much larger than the physical NAND �ash memory storage

capacity. This enables the storage systems purposely under-utilize

the SSD LBA space while still fully utilizing the physical NAND

�ash memory storage capacity. The key idea of the proposed design

technique is to trade the SSD LBA space utilization e�ciency for

simpler data placement and management in support of dynamic

RAID level conversion. Fig. 3 illustrates this design technique in the

context of elastic RAID with RAID 5 and RAID 10. Given the total

= + 1 SSDs, each RAID 5 stripe contains = user data strips (denoted

as �1, · · · , �=) and one parity strip (denoted as % ). We partition

the entire LBA space of all the = + 1 SSDs {P1, · · · ,P=+1} into a

large number of segments, where each segment is 2× larger than

one RAID 5 stripe. As shown in Fig. 3, each segment is further

partitioned into two equal-sized slots denoted as slot-1 and slot-2.

The two slots in each segment hold di�erent content when the

corresponding data stripe is protected by RAID 5 or RAID 10:

• In case of RAID 5, slot-1 stores the entire RAID 5 stripe and

slot-2 is empty (hence all the LBA data blocks in slot-2 are

trimmed). The utilization of the expanded SSD LBA space is

50%.

• In case of RAID 10, slot-1 and slot-2 each stores one copy

of stripe user data �1, · · · , �= . In each slot, one strip is left

unused and hence can be trimmed. The utilization of the

expanded SSD LBA space is =/(= + 1).

D
1

(trimmed)

D
2

(trimmed) (trimmed). . .

slot-1
. . .

slot-2

One segment 

(RAID 5)

SSD 1 SSD 2 SSD n+1

P

. . .

. . .

. . .

D
1

(trimmed)

D
2

D
1
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. . .
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. . .
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One segment 

(RAID 10) D
n

Figure 3: Illustration of the bloated stripe allocation to facili-

tate the conversion between RAID 5 and RAID 10.

By under-utilizing the SSD LBA space through the bloated stripe

allocation, we can easily switch the data mapping function in sup-

port of dynamic RAID level conversion. Accordingly, the RAID

system mapping function 5 can be decomposed into a large num-

ber of independent segment mapping functions 5 (: ) : L
(: )
DBA →

{P
(: )
1

, · · · ,P
(: )
=+1}, where L

(: )
DBA denotes the user data covered by

one RAID stripe and P
(: )
8 ’s correspond to the LBA space occu-

pied by one segment. Within each segment, elastic RAID systems

could conveniently realize dynamic conversion between RAID 5

and RAID 10:
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• To convert one segment from RAID 5 to RAID 10, we �rst

copy all the data strips �8 ’s from slot-1 to slot-2 in a skewed

pattern so that two copies of the same data do not reside on

the same SSD, and then trim the unused LBAs in slot-1.

• To convert one segment from RAID 10 to RAID 5, we �rst

calculate the parity strip % based on the user data strips,

write % to slot-1, and �nally trim all the LBA data blocks in

slot-2.

During the conversion between RAID 5 and RAID 10, we never

in-place update any data blocks, which can ensure the atomicity of

the conversion operation and hence keep data protected during the

conversion. Moreover, since this design approach under-utilizes

the SSD LBA space by up to 50%, given the target data compression

ratio U4G? , each SSD should be formatted with an LBA space ex-

pansion factor of 2U4G? . Finally, we note that this proposed design

technique only requires that the underlying SSDs can expose an

LBA space larger than their internal physical storage space. This

is essentially irrelevant to whether or not SSDs could carry out

internal transparent compression. Therefore, this design technique

is applicable to any RAID system as long as their SSDs are capable

of exposing an expanded LBA space.

3.3 Management of RAID Level Conversion

Elastic RAID level conversion could be triggered reactively in re-

sponse to data compressibility variation or proactively in adaptation

to workload I/O data access characteristics variation. In either case,

the elastic RAID controller should keep monitoring the SSD’s in-

ternal physical NAND �ash memory storage capacity usage. Since

their internal FTL must keep track of the runtime NAND �ash

memory capacity usage, SSDs could make such information readily

available to the host without incurring any extra SSD implementa-

tion overhead. To enable the host to obtain such runtime physical

storage capacity usage information, one could add a new capacity

query command into the block I/O interface protocol (e.g., NVMe)

or SSD vendors could supply a software tool that can obtain such

information from SSDs via proprietary commands over PCIe and

expose a physical storage capacity query API to the host. In this

work, we developed a software elastic RAID prototype based on

ScaleFlux’s SSDs with built-in transparent compression. ScaleFlux

provides a user-space software tool through which the elastic RAID

could query the runtime physical storage capacity usage of their

SSDs.

Let us �rst consider the scenario of reactively triggering RAID

level conversion in response to data compressibility variation. The

above discussion, as illustrated in Fig. 2, suggests that all the user

data should be protected by RAID 5 until the average data compres-

sion ratio U reaches U4G? under which the e�ective RAID storage

capacity will reach �'��� . This implicitly assumes that the users

always utilize 100% of the available data storage capacity. Never-

theless, it is not uncommon that, in the real-world production envi-

ronment, storage capacity utilization can be well below 100% (e.g.,

80%∼90% and even lower) due to factors such as runtime storage

usage �uctuation and storage capacity over-provisioning for an

operational safety margin. Therefore, instead of triggering RAID

level conversion only when U ∈ (U4G? , U 5 D;; ), we could opportunis-

tically trigger RAID level conversion even under U < U4G? , in the

case of users under-utilizing the available storage capacity. This

can be realized by scheduling RAID level conversion directly based

on the runtime physical storage capacity usage, other than the

runtime data compression ratio. One simple scheduling approach

is described as follows: The scheduler periodically samples the run-

time physical storage capacity usage (denoted as�DC8; ) in each SSD.

Recall that�5 ;0Bℎ denotes the total physical storage capacity of each

SSD, and let �D and �; denote two pre-de�ned parameters (where

�5 ;0Bℎ > �D > �; ). If �DC8; does not exhibit signi�cant variation

and remains below �; in all the SSDs, then the scheduler will de-

clare that the available storage capacity is being under-utilized and

hence will trigger the conversion to promote some regions from

RAID 5 to RAID 10. If �DC8; > �D in any SSD and elastic RAID

currently contains RAID 10 regions, then the scheduler will trigger

the conversion to demote some regions from RAID 10 to RAID 5

to restore su�cient operational safety margin for sudden storage

capacity usage spikes.

To proactively trigger RAID level conversion in adaptation to

data access locality variation, elastic RAID aims to ensure currently

hot data are being covered by RAID 10. To simplify the implemen-

tation, we could partition the entire storage space into a number of

equal-size regions (e.g., 10MB), and monitor the runtime data access

intensity on a per-region basis. Within each region, all the RAID

stripes are protected under the same RAID level (e.g., RAID 5 or

RAID 10). Periodically we sort the per-region data access intensity,

based on which we decide whether the RAID level setting of certain

RAID 5 and RAID 10 regions should be �ipped.

For both reactive and proactive RAID level conversion, the elastic

RAID controller must carefully regulate their frequency. Too fre-

quent RAID level conversion could incur unnecessary NAND �ash

memory read/write activities, leading to noticeable interference

with normal user I/O requests. Moreover, since program/erase (P/E)

cycling wears out the NAND �ash memory cells, especially under

highly scaled technology nodes, too frequent RAID level conversion

could also severely accelerate the wear-out of NAND �ash memory

cells, leading to noticeable degradations of SSD endurance lifetime.

Therefore, when scheduling RAID level conversion, elastic RAID

should cohesively consider the wear-out of SSDs. As SSDs undergo

more P/E cycles, elastic RAID should accordingly more and more

throttle the frequency of RAID level conversion and even suspend

the conversion at the end of the SSD lifetime. Elastic RAID con-

trollers should also appropriately con�gure the throughput of ongo-

ing RAID level conversion operations: On one hand, the conversion

throughput should not be too high in order to avoid signi�cantly

interfering with normal user I/O requests. On the other hand, in

the presence of sudden data compressibility drop, the RAID 10 to

RAID 5 conversion throughput should be su�ciently high to avoid

out-of-space errors.

Finally, we note that, in the presence of intra-SSD transparent

compression, RAID 5 is not necessarily always more cost-e�ective

than RAID 10. This is because user data and their RAID parity

could have signi�cantly di�erent compressibility. For the purpose of

demonstration, using two compression benchmark corpus �les (i.e.,

�le kennedy in the Canterbury corpus [8] and �le samba in the

Silesia corpus [42]) as representative user data, we measured the
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Figure 4: Histograms of per-4KB compression ratio of user

data and RAID 5 parity when using two compression bench-

mark �les in the Canterbury corpus [8] and Silesia cor-

pus [42].

per-4KB compression ratio of both user data and RAID 5 parity (as-

suming 3+1 RAID 5). Fig. 4 shows the histogram of measured per-

4KB compression ratio (using the GZIP compression library), which

clearly reveals that RAID 5 parity has much worse compressibility

than user data. For samba-based experiments, the RAID 5 parity

data are even almost completely incompressible. This phenomenon

can be explained as follows: Lossless data compression is mainly

realized by deduplicating repeated byte strings in the data stream.

Di�erent user data strips within the same stripe most likely have

repeated byte strings at di�erent locations inside 4KB blocks. As

a result, being obtained by bit-wise XOR over multiple user data

strips, RAID parity tends to have much less amount of repeated

byte strings, leading to much worse compressibility as shown in

Fig. 4. Therefore, it is possible that, after converting a region from

RAID 10 to RAID 5, the physical storage capacity usage increases

other than decreases. In this case, we should revert the conversion

and keep the region in the RAID 10 mode. Moreover, if SSDs sup-

port the host query the compression ratio on the per-LBA basis,

we could scan each RAID 5 region to obtain the compression ratio

of user data strips and RAID parity strips. Accordingly, we could

calculate whether converting one stripe to a RAID 10 region could

actually reduce the physical storage capacity usage and then decide

whether we should proactively convert this RAID 5 region into a

RAID 10 region.

4 PROTOTYPING AND EVALUATION

The proposed elastic RAID design strategy could be integrated into

a software RAID solution or a dedicated hardware RAID card. For

the purpose of demonstration, by modifying the existing Linux

mdraid [29], we implemented a Linux software elastic RAID (SW

eRAID) prototype that supports the dynamic mixture of RAID 5

and RAID 10. Following the discussion above in Section 2.1, it im-

plements a write journal to mitigate the well-known write hole

problem [34] of RAID 5 and meanwhile reduce the write request

latency experienced by end users. The write journal spans over all

the SSDs and is protected by RAID 5 as well. Because the write jour-

nal is append-only, its use of RAID 5 is not subject to the write-hole

problem. Upon receiving a write request, SW eRAID �ushes the

data into the write journal and then immediately acknowledges the

write completion to the user. Data are migrated from the write jour-

nal into their destined stripes asynchronously in the background,

which is realized in batches with multiple threads in order to pre-

vent background data migration from becoming the overall RAID

speed performance bottleneck.

We carried out experiments on a server with a 26-core 2.5GHz

Intel Xeon CPU, 565GB DRAM, and 4 commercial NVMe SSDs

with built-in transparent compression from ScaleFlux Inc. [40].

The NVMe SSDs carry out hardware-based zlib [52] compression

on each 4KB LBA data block directly along the I/O path. It can

achieve a compression ratio similar to that of the zlib level-6. We

applied the widely used FIO (�exible I/O tester) tool [19] to generate

heavy foreground random data access I/O workloads and collect

the IOPS and tail latency results. FIO can generate compressible

data according to the target compression ratio speci�ed by the

users. The system OS is CentOS Linux release 7.6.1810, and the FIO

version is 3.13. In all the experiments, RAID strip size is set as 4KB,

and the RAID system spans over all the 4 SSDs.

4.1 Baseline RAID 5 Performance

We �rst carried out experiments to evaluate the baseline speed

performance under random write workloads when the system oper-

ates in the RAID 5 only mode (i.e., all the data are protected by 3+1

RAID 5 over the 4 SSDs). For the purpose of comparison, we carried

out the same experiments over the existing Linux mdraid and the

state-of-the-art software RAID product RAIDIX [37]. We focused

on 4KB random write workloads over the entire 100% LBA span to

trigger the worst-case scenarios for RAID 5. To ensure su�cient I/O

workload stress over all three RAID 5 systems, we con�gured FIO

to run with 16 jobs at the I/O queue depth of 128. Table 1 lists the

IOPS and tail latency results of the three di�erent RAID 5 systems.

Table 1: RAID 5 under 4KB random writes.

IOPS
Tail latency (ms)

99% 99.9%

Linux mdraid 59,003 40.1 43.8

RAIDIX 474,389 40.1 246.4

SW eRAID 677,829 9.6 14.9

The results show that RAIDIX and our SW eRAID can achieve

one order of magnitude higher 4KB random write IOPS than Linux

mdraid. This is mainly because Linux mdraid uses a single man-

agement thread to control the RAID 5 state machine. Although

such single-thread management implementation works well on

HDD-based RAID, it could easily become the speed performance

bottleneck of SSD-based RAID. Compared with RAIDIX, our SW

eRAID achieves 1.4× higher 4KB random write IOPS at 4.2× shorter

99% tail latency. Because we do not have access to the source code

of RAIDIX, we conjecture that this is mainly due to the di�erent

implementation e�ciency of background data movement from the

write journal to destined stripes. The results demonstrate that our

SW eRAID matches the state of the art of SW RAID implementa-

tions, hence it can be used to reliably evaluate the e�ectiveness of

dynamically mixing RAID 5 and RAID 10.
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4.2 RAID 5 vs. RAID 10 Performance

The RAID 5 vs. RAID 10 speed performance di�erence is most no-

ticeable when serving (i) random data write requests or (ii) random

read requests under degraded mode when one SSD is o�ine (e.g.,

one SSD su�ers a catastrophic failure). This is due to the large

RAID 5 vs. RAID 10 di�erence in terms of the read ampli�cation

under these two scenarios. Table 2 summarizes the write/read am-

pli�cation of the SW eRAID when serving random writes under

the normal mode and random reads under the degraded mode.

Table 2: Write/read ampli�cation under random data access.

Random write Random read

(normal mode) (degraded mode)

WA RA RA

RAID 5 2 + (= + 1)/= 2 2=/(= + 1)

RAID 10 2 + (= + 1)/= 0 1

WA: write ampli�cation; RA: read ampli�cation.

Table 3 lists the SW eRAID IOPS and tail latency under 4KB

random write workloads. Again, to ensure su�cient I/O workload

stress on SSDs, we con�gured FIO to run with 16 jobs at the I/O

queue depth of 128. The results show that RAID 10 achieves 1.67×

higher 4KB random write IOPS than RAID 5, while maintaining

a similar tail latency. This is due to the signi�cantly reduced read

ampli�cation of RAID 10 compared with RAID 5 under random

write workloads.

Table 3: SW eRAID under 4KB random write.

RAID Mode IOPS
Tail latency (ms)

99% 99.9%

RAID 5 677,829 9.6 14.9

RAID 10 1,138,546 10.0 16.5

If one SSD becomes o�ine, the RAID system will operate in the

degradedmode and serve read requests only. Given the total 4 SSDs

in the system, as shown above in Table 2, RAID 5 su�ers from a read

ampli�cation of 1.6 under the degraded mode, while RAID 10 does

not experience any read ampli�cation. Table 4 lists the measured

4KB random read IOPS and tail latency when RAID 5 and RAID 10

operate in the degraded mode. To further stress the SSDs under

read workloads, we increased the FIO job number from 16 to 32

while maintaining the same queue depth of 128. The results show

that, compared with RAID 5, RAID 10 could achieve 1.75× higher

read IOPS at 3.3× shorter 99% tail latency. The results demonstrate

the speed performance advantage of RAID 10 over RAID 5, which

motivates our proposed elastic RAID design strategy.

Table 4: 4KB random read in degraded mode.

RAID Mode IOPS
Tail latency (ms)

99% 99.9%

RAID 5 1,434,445 14.5 22.9

RAID 10 2,505,795 4.4 4.8

4.3 SW eRAID with mixed RAID 5/10

Given su�cient runtime user data compressibility, SW eRAID could

transparently convert data protection from RAID 5 to RAID 10

without sacri�cing the e�ective RAID storage capacity. As discussed

in Section 3.3, we partition the entire RAID storage space into

equal-sized segments (10MB per segment in this study) and use the

same RAID level for each segment. RAID 10 outperforms RAID 5

when serving random writes in normal mode and random reads in

degraded mode. Fig. 5 shows the 4KB random write IOPS and tail

latencywhen di�erent percentages of data are protected by RAID 10.

As user data compressibility improves, eRAID will convert the

protection of more data from RAID 5 to RAID 10, which naturally

leads to a higher speed performance shown in Fig. 5.

Fig. 6 shows the 4KB random read IOPS and tail latency under

the degraded mode when di�erent percentages of data are protected

by RAID 10. As one could intuitively justify, the read speed perfor-

mance will improve when user data compressibility increases, and

hence more data are protected under RAID 10. As shown in Fig. 6,

the 99% read tail latency largely drops even as the IOPS increases.

This is because a higher percentage of RAID 10 leads to a lower

read ampli�cation under the degraded mode and hence a smaller

read I/O queue depth, which directly contributes to the shorter read

latency.
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Figure 5: SW eRAID 4KB random write IOPS and 99% tail

latency under di�erent percentages of data being protected

by RAID 10.

 -

 2

 4

 6

 8

 10

 12

 14

 16

 -

 500,000

 1,000,000

 1,500,000

 2,000,000

 2,500,000

 3,000,000

0% 20% 40% 60% 80% 100%

9
9

%
 T

a
il

 L
a

te
n

cy
 (

m
s)

R
e

a
d

 I
O

P
S

RAID 10 Percentage

IOPS 99% Tail Latency

Figure 6: SW eRAID 4KB random read IOPS and 99% tail

latency in the degraded mode under di�erent percentages of

data being protected by RAID 10.
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Figure 7: Percentage of RAID 10 under di�erent storage ca-

pacity expansion factor U4G? when the storage capacity uti-

lization factor VDC8; is 100%.

The above results show that the performance advantage of SW

eRAID heavily depends on the percentage (denoted as %2>=E ) of data

being converted from RAID 5 to RAID 10. In addition to the user

data compressibility, %2>=E also depends on the storage capacity

expansion factor U4G? ≥ 1 and storage capacity utilization factor

VDC8; ≤ 1. Given the total = + 1 SSDs and per-SSD physical storage

capacity of �5 ;0Bℎ , eRAID exposes a total logical storage capacity

of U4G? · = ·�5 ;0Bℎ to the user. As we increase U4G? to more aggres-

sively leverage data compressibility to increase the e�ective RAID

storage capacity, less amount of residual data compressibility will

be left for RAID 5 to RAID 10 conversion. Meanwhile, as discussed

in Section 3.3, users may not always utilize 100% of the storage

capacity, and eRAID could accordingly schedule the RAID level

conversion in response to the runtime storage capacity utilization

factor VDC8; . Fig. 7 shows the percentage of RAID 10 under di�erent

storage capacity expansion factors U4G? . We considered the cases

of = = 3 or = = 5 (i.e., the RAID system contains 4 or 6 SSDs). The

storage capacity utilization factor VDC8; is set as 100% (i.e., users

utilize the entire storage capacity exposed by the RAID system). As

discussed in Section 3.3, RAID 5 parity tends to have a much worse

compression ratio than user data. Let UDBA and U?C~ denote the

compression ratio of user data and RAID 5 parity, according to the

results presented in Fig. 4, we set (UDBA − 1) = 4(U?C~ − 1) so that

the RAID 5 parity is incompressible (i.e., U?C~ = 1) when user data

is incompressible (i.e., UDBA = 1), and RAID 5 parity compression

ratio is 1.5 when user data compression ratio is 3. As shown in Fig. 7,

when the storage capacity expansion factor U4G? increases, a larger

user data compression ratio is required to enable RAID 5 to RAID 10

conversion. Under a larger storage capacity expansion factor U4G? ,

the RAID 10 percentage will increase more slowly with the user

data compression ratio UDBA . For example, when U4G? = 1.0 (i.e.,

users do not leverage data compression to reduce storage cost at

all), the user data compression ratio only needs to increase from 1

to 1.6 in order to enable the 100% RAID 5 to RAID 10 conversion;

when U4G? = 1.8 (i.e., users expect to reduce the storage cost by

up to 1.8× via data compression), the user data compression ra-

tio must jump from 1.8 to 2.8 in order to enable 100% RAID 5 to

RAID 10 conversion. The results also show the noticeable impact

of the total number of SSDs on the relationship between user data
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Figure 8: Percentage of RAID 10 under di�erent storage ca-

pacity utilization factor VDC8; when the capacity expansion

factor U4G? is 1.8.

compressibility and RAID 10 coverage percentage, i.e., the more

SSDs are deployed in the RAID system, the slower the RAID 10

coverage percentage will growwith the user data compression ratio.

This result stems from the fact that as the RAID system contains

more SSDs, the storage e�ciency gap between RAID 5 and RAID 10

will accordingly increase. Hence a higher data compression ratio is

required to �ll the gap.

Fig. 8 shows the percentage of RAID 10 under di�erent storage

utilization factors VDC8; when the storage capacity expansion factor

U4G? is set to 1.8. The results show that under-utilized storage

capacity could be e�ectively leveraged to improve the RAID 10

coverage percentage. For example, under the user data compression

ratio of 2, the RAID 10 coverage percentage is almost 0% when the

storage capacity utilization factor VDC8; is 100%, and it will improve

to 25% and 68% when VDC8; reduces to 90% and 80%, respectively.

Since it is not uncommon for a real production environment to have

a storage capacity utilization factor of 80%∼90% or even lower, the

results suggest that the adaptive RAID level conversion scheduling

could very noticeably improve the RAID 10 coverage percentage.

The above results suggest that a small increase in the user data

compression ratio could enable a noticeable increase in RAID 10

coverage percentage. Meanwhile, real-world I/O workloads typi-

cally exhibit considerable degrees of access locality. As discussed

above in Section 3.3, eRAID could schedule RAID level conversion

in adaptation to the runtime data access locality. Fig. 9 shows the

4KB random read IOPS in the degraded mode under random work-

load (i.e., zero data access locality) and 80/20 skewed workload (i.e.,

80% of reads hit 20% of data). The eRAID system storage capacity

expansion factor U4G? is set to 1.4, and the RAID storage capacity

utilization factor VDC8; is set to 100%. The RAID 10 coverage per-

centage increases from 0% to 100% when the user data compression

ratio increases from 1.4 to 2.2. As shown in Fig. 9, under the 80/20

skewed workload, read IOPS could improve by 33% even when the

user data compression ratio only increases from 1.4 to 1.6.

4.4 RAID Level Conversion

We further evaluated the RAID level conversion and its impact

on RAID system I/O speed performance. Our SW eRAID proto-

type uses multiple background threads to carry out RAID level
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Figure 9: SW eRAID 4KB random read IOPS in the degraded

mode under random and 80/20 skewed workloads.

conversion between RAID 5 and RAID 10. The RAID level conver-

sion throughput improves as the number of background threads

increases. Table 5 shows the RAID level conversion throughput in

the absence of foreground user I/O requests. The user data compres-

sion ratio is 2:1. As discussed in Section 3.2, to convert one stripe

from RAID 5 to RAID 10, we only need to duplicate the data once

within the stripe segment; to convert one stripe from RAID 10 to

RAID 5, we fetch the data stripe and calculate and write the RAID 5

parity. Hence, under our experimental RAID system with 4 SSDs,

RAID 10 to RAID 5 conversion tends to have a lower throughput

than RAID 5 to RAID 10 conversion, as shown in Table 5. The

results suggest that the RAID level conversion can easily achieve

multi-GB/s throughput, which demonstrates the e�ciency of the

proposed bloated stripe allocation strategy.

Table 5: RAID level conversion throughput.

Conversion # of conversion Throughput

mode threads (GB/s)

RAID 5 to RAID 10
8 3.1

24 6.4

RAID 10 to RAID 5
8 2.6

24 5.1

Next, we evaluated the impact of background RAID level conver-

sion on the speed performance of SW eRAID serving foreground

user read/write requests. Evidently, we could control the perfor-

mance impact by throttling the background RAID level conversion

throughput. In the case of a sudden and signi�cant drop in the

average user data compression ratio within a short period, eRAID

may have to accordingly adjust the RAID 10 to RAID 5 conversion

throughput in order to avoid out-of-space errors. Meanwhile, the

impact of background RAID level conversion also depends on the

intensity of the foreground user read/write requests, i.e., the heavier

the foreground I/O workloads are, the more noticeably they will be

impacted by the background RAID level conversion. To examine

the worst-case scenario, we use heavy 4KB random read or write

workloads with 32 FIO jobs to emulate very heavy foreground user

I/O workloads.

Fig. 10 and Fig. 11 show the impact of background RAID level

conversion under three di�erent throttled conversion throughputs,

including 100MB/s, 200MB/s, and 400MB/s. The results show that,

even under the very heavy 32-job FIO foreground I/O workloads,

the impact of background RAID level conversion can be small (e.g.,

no more than 7% of IOPS drop with 200MB/s background RAID

level conversion). The results further show that, compared with

RAID 5 to RAID 10 conversion, RAID 10 to RAID 5 conversion

causes a similar impact on random read speed performance but

noticeably less impact on random write speed performance. This is

because, compared with RAID 5 to RAID 10 conversion, RAID 10

to RAID 5 conversion generates much less amount of write tra�c

to SSDs.
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Figure 10: Impact of background RAID 5 to RAID 10 conver-

sion on heavy random read or write workloads with 32 FIO

jobs.
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Figure 11: Impact of background RAID 10 to RAID 5 conver-

sion on heavy random read or write workloads with 32 FIO

jobs.

4.5 Impact of Inaccurate RAID Level
Con�guration

As discussed above in Section 3.3, we partition all the data into

a number of regions and con�gure RAID level (e.g., RAID 5

vs. RAID 10) on the per-region basis according to the data access

intensity history. Dynamic workload I/O characteristics variation

could inevitably cause RAID level miscon�guration over some re-

gions. We carried out further experiments to evaluate the impact

of possible RAID level miscon�guration. We ran two FIO processes
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Figure 12: Impact of classi�cation accuracy on 4KB random

write IOPS of 80/20 skewed workloads.

to emulate 80/20 skewed 4KB random write workloads. Fig. 12

shows the overall random write IOPS under di�erent RAID level

con�guration accuracy, e.g., 75% accuracy means 75% of write-hot

data under the 80/20 skewed 4KB random write workloads are ac-

curately classi�ed as hot by the RAID system. For the purpose of

comparison, we also considered a Random case where data are just

randomly classi�ed as write-hot. We studied four di�erent data

compressibility under which 10%, 20%, 40%, and 80% of data are

protected by RAID 10. As the data classi�cation accuracy improves,

a higher percentage of write-hot data will be covered by RAID 10,

leading to a higher write IOPS as shown in Fig. 12. Moreover, as

data compressibility improves to enable a higher RAID 10 coverage,

classi�cation accuracy tends to have less impact on the overall

IOPS. For example, when 20% of data can be protected by RAID 10,

write IOPS could increase by 20.6% if the classi�cation accuracy

improves from 50% to 100%. In comparison, when 80% of data can be

protected by RAID 10, increasing the classi�cation accuracy from

50% to 100% improves write IOPS by only 6%.

5 RELATED WORK

RAID. As the most widely deployed data protection solution, RAID

has been very well studied in the open literature. Prior work on

RAID mainly focused on more accurately modeling and analyz-

ing the RAID system reliability [2, 17, 18, 28, 30, 44], reducing

the drive rebuild time and accelerating the data recovery pro-

cess [21, 32, 47, 48, 51], and better embracing the device character-

istics of SSDs [3, 9, 25, 31]. Prior research [33, 49] also studied the

implementation of tiered RAID systems consisting of a hot-data

RAID 10 tier andwarm/cold-data RAID 5/6 tier. The well-knownAu-

toRAID [49] has been commercialized by HP from the late 1990s to

the late 2000s. Operating on traditional HDDs or SSDs, tiered RAID

systems must employ complicated data management/migration

strategies to realize dynamic tiering and embrace di�erent data

mapping functions of di�erent RAID levels, and they are still funda-

mentally subject to the speed performance vs. storage cost trade-o�.

These limitations are at least part of the reason why HP terminated

the AutoRAID product line over a decade ago. To the best of our

knowledge, no prior work has ever studied the feasibility of op-

portunistically leveraging runtime data compressibility to enable a

dynamic mixture of di�erent RAID levels without sacri�cing the

e�ective data storage cost.

Transparent Data Reduction. Prior research has well studied

the implementation of storage data reduction (e.g., compression

and deduplication) with complete transparency to user applica-

tions. Transparent data reduction can be realized at the �lesystem

level [4, 6, 38, 43], block level [1, 27, 46], and even inside storage

hardware [10, 12, 50, 53]. Modern all-�ash array products (e.g., Dell

EMC PowerMAX [16], HPE Nimble Storage [22], and Pure Stor-

age FlashBlade [35]) always come with built-in hardware-based

transparent compression capability. Cloud vendors have started to

integrate hardware-based compression capability into their storage

infrastructure, e.g., Microsoft Corsia [14] and emerging DPU (data

processing unit) [7]. Motivated by the emergence of storage hard-

ware with built-in transparent compression, researchers have re-

cently studied its implications for the design of hash-based key-

value store [13] and B-tree [36].

SSD Sparse Addressing. Prior work studied how one could inno-

vate the data management systems by making SSD expose a sparse

logical address space that is (much) larger than its internal physical

storage capacity. FlashTier [39] utilizes the SSD sparse addressing

to largely simplify the SSD cache management. FlashMap [23] in-

tegrates virtual address translation and SSD FTL sparse address

translation to e�ciently support memory-mapped SSD �les. Das et

al. [15] presented a solution that leverages SSD sparse addressing

to facilitate application-level data compression. DFS �lesystem [26]

takes advantage of SSD sparse addressing to signi�cantly simplify

its data management.

6 CONCLUSIONS

This paper presents an elastic RAID design strategy to take full

advantage of modern SSDs with built-in transparent compression

capability. The key idea is to leverage the opportunistically avail-

able residual data compressibility to enable dynamic RAID 5 to

RAID 10 conversion, which can improve the RAID system speed

performance without sacri�cing its e�ective RAID storage capacity.

This paper presents design techniques for e�ciently implementing

elastic RAID at the minimal RAID level conversion overhead. We

implemented a Linux software-based elastic RAID prototype in

support of dynamic conversion between RAID 5 and RAID 10, and

experimental results demonstrate the e�ectiveness of the proposed

elastic RAID design solution.
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