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ABSTRACT

This paper studies how RAID (redundant array of independent
disks) could take full advantage of modern SSDs (solid-state drives)
with built-in transparent compression. In current practice, RAID
users are forced to choose a specific RAID level (e.g., RAID 10 or
RAID 5) with a fixed storage cost vs. speed performance trade-off.
The commercial market is witnessing the emergence of a new fam-
ily of SSDs that can internally perform hardware-based lossless
compression on each 4KB LBA (logical block address) block, trans-
parent to host OS and user applications. Beyond straightforwardly
reducing the RAID storage cost, such modern SSDs make it pos-
sible to relieve RAID users from being locked into a fixed storage
cost vs. speed performance trade-off. In particular, RAID systems
could opportunistically leverage higher-than-expected runtime user
data compressibility to enable dynamic RAID level conversion to
improve the speed performance without compromising the effec-
tive storage capacity. This paper presents techniques to enable
and optimize the practical implementation of such elastic RAID
systems. We implemented a Linux software-based elastic RAID
prototype that supports dynamic conversion between RAID 5 and
RAID 10. Compared with a baseline software-based RAID 5, under
sufficient runtime data compressibility that enables the conversion
from RAID 5 to RAID 10 over 60% of user data, the elastic RAID
could improve the 4KB random write IOPS (I/O per second) by
42% and 4KB random read IOPS in degraded mode by 46%, while
maintaining the same effective storage capacity.
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1 INTRODUCTION

This paper studies the implementation of RAID (redundant array
of independent disks) [11, 34] over SSDs (solid-state drives) with
built-in transparent data compression. As one of the best-known
computing system design techniques, RAID plays an important role
in building reliable computing infrastructure. In current practice,
when deploying a RAID system, users must choose (and subse-
quently stick with) one specific RAID level after, often painfully,
deliberating the trade-off between the storage cost and speed per-
formance. For example, between RAID 10 and RAID 5, the two
most popular RAID levels, RAID 10 achieves a higher I/O speed
performance, in terms of IOPS (I/O requests per second) and aver-
age/tail latency, at the penalty of a higher data storage cost, while
RAID 5 reduces the data storage cost by sacrificing the I/O speed
performance. Such a storage cost vs. speed performance trade-off
is inherent in the design of RAID, regardless of whether its im-
plementation is software-based (e.g., Linux mdraid [29] and Btrfs
RAID [38]) or hardware-based (e.g., RAID controller card [5]).
The commercial market currently witnesses the rise of SSDs
with the built-in transparent data compression capability [20, 40].
Such modern SSDs internally carry out hardware-based compres-
sion on each 4KB LBA (logical block address) block, and could
expose a logical storage space that is (much) larger than their inter-
nal physical NAND flash memory storage capacity. Evidently, one
could deploy a RAID system (regardless of its RAID level) over such
SSDs to reduce the storage cost without any changes to the RAID
implementation and any degradation of the RAID speed perfor-
mance. This paper shows that, beyond straightforwardly reducing
the storage cost, SSDs with built-in transparent compression bring
a unique opportunity to improve the RAID speed performance by
elastically mixing different RAID levels (e.g., RAID 5 and RAID 10)
in adaptation to the runtime user data compressibility variations.
The basic idea can be described as follows: Suppose we deploy a
RAID 5 over multiple SSDs with a total physical storage capacity of
32TB and format the RAID logical storage capacity as 64TB, i.e., we
expect that the average data compressibility is about 2:1 and hence
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aim at leveraging such SSDs to reduce the effective RAID storage
cost by up to 2X. The storage system must adjust its monitoring
and management accordingly to prevent out-of-space failure under
worse-than-expected data compressibility. If the runtime data com-
pressibility exceeds 2:1, the RAID system could opportunistically
convert the protection of some user data from RAID 5 to RAID 10
in order to improve the RAID speed performance (especially in the
degraded mode when one SSD is offline due to catastrophic failures),
while still maintaining the total 64TB effective RAID data storage
capacity. As the runtime data compressibility dynamically varies,
the RAID system adaptively adjusts the mixture of RAID 5 and
RAID 10. Such an elastic RAID design strategy opportunistically uti-
lizes the runtime residual data compressibility to improve the speed
performance without compromising the effective storage capacity.
Elastic RAID can dynamically mix RAID 6 and triple replication
if users demand double drive failure protection. For the purpose
of simplicity, this paper focuses on the case of elastically mixing
RAID 5 and RAID 10 in one RAID system, and the proposed design
solutions could be readily extended to the case of elastically mixing
RAID 6 and triple replication.

In spite of its simple concept, the practical implementation of
elastic RAID is nontrivial. RAID 5 and RAID 10 have different data
mappings and occupy different amounts of storage capacity, which
makes it challenging to dynamically convert between RAID 5 and
RAID 10 on the same array of SSDs at the minimal conversion-
induced overhead in terms of data copy/move/delete operations.
Moreover, we must retain the drive failure protection during the
RAID level conversion. This paper presents a bloated stripe alloca-
tion method to facilitate the implementation of dynamic RAID level
conversion at the minimal operational overhead. This paper further
presents a strategy to schedule RAID level conversion both proac-
tively in adaptation to workload characteristics variation and reac-
tively in response to runtime data compressibility change. For the
purpose of demonstration, we implemented a Linux software elastic
RAID prototype in support of the mixture of RAID 5 and RAID 10.
This prototype was developed by modifying/enhancing the existing
Linux mdraid [29] to incorporate the proposed design techniques
and meanwhile enhance the support of multi-threaded operations.
We carried out experiments by deploying the software elastic RAID
over commercial SSDs with built-in transparent compression from
ScaleFlux Inc. [40]. We applied the widely used FIO (flexible I/O
tester) tool [19] to generate heavy I/O workloads and collect the
IOPS and tail latency results. When operating in the RAID 5 only
mode, our elastic RAID implementation could noticeably outper-
form the state-of-the-art software RAID 5 product RAIDIX [37], and
both RAIDIX and our elastic RAID achieve ~ 10X higher IOPS than
the Linux mdraid. We further carried out experiments to evaluate
the effect of elastic RAID 5 and RAID 10 mixture, and the results
demonstrate its efficacy in improving the RAID speed performance
without compromising the effective RAID storage capacity. For
example, compared with the baseline that operates in the RAID 5
only mode, converting 20% and 60% user data from RAID 5 to
RAID 10 could improve the 4KB random write IOPS by 10% and
42%, respectively. When the RAID system operates in the degraded
mode (i.e., one SSD is offline), converting 20% and 60% RAID 10
user data from RAID 5 to RAID 10 could improve the 4KB random
read IOPS by 12% and 46%, respectively. The experimental results
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show that a small increase in user data compression ratio could
enable a significant increase in RAID 10 coverage. For example, the
RAID 10 coverage could improve by over 40% if the user data com-
pression ratio slightly increases from 1.2 to 1.4. The experimental
results also show that the RAID level conversion can be carried
out with very high throughput and its impact on the RAID system
speed performance is very small (e.g., less than 5%) even under very
heavy foreground user I/O workloads. This work demonstrates
that emerging SSDs with built-in transparent compression make
it practically feasible for a RAID system to opportunistically mix
different RAID levels to improve the speed performance without
compromising the effective data storage capacity.

2 BACKGROUND

2.1 Journaling in RAID

The basic design principle of RAID has been very well discussed in
the open literature [11, 34, 41, 45]. Since our elastic RAID prototype
heavily utilizes journaling to improve reliability and speed perfor-
mance, this subsection briefly discusses the use of journaling in
RAID systems. For RAID levels (e.g., RAID 5/6) that involve parity
calculation, a partial-stripe data write incurs the read-modify-write
operation to calculate the new parity. To hide the long latency
of read-modify-write operations from end users, RAID systems
could first log the incoming user data into a journal, and then
carry out read-modify-write operations to update the parity in
the background. Since RAID systems could utilize the journal to
amortize the parity-update overhead, user data may stay inside the
journal for a relatively long time. Hence, it is desirable to apply
RAID 5/6 protection over the journal-resident user data as well.
The append-only nature of journaling makes the implementation
straightforward. Before being written into its destined stripe on the
storage drive, the new parity should also be logged into the journal
to guarantee atomic stripe update and hence obviate the potential
write-hole problem.

For RAID 1/10 systems that do not involve parity calculation,
they could also use journaling to reduce the write completion ac-
knowledgment latency and ensure write atomicity. Upon receiving
a write request, we first log the data into the RAID-protected jour-
nal and then acknowledge write completion to the host. In the
background, user data are moved from the journal into their des-
tined locations in the RAID system. In the presence of data write
temporal locality, data journaling could help to reduce the overall
system write amplification.

2.2 In-Storage Transparent Compression

Fig. 1(a) illustrates an SSD with built-in transparent compression:
Its controller SoC (system on chip) performs (de)compression on
each 4KB LBA data block along the I/O path and manages the place-
ment of all the post-compression variable-length data blocks on the
NAND flash memory. The in-storage per-4KB data compression
is transparent to the host that accesses the SSD as a normal block
data storage device through a standard I/O interface (e.g., NVMe
or SATA). The per-4KB (de)compression latency of the hardware
engine inside the SSD controller SoC can be well below 5us, which
is over 10X shorter than the TLC/QLC NAND flash memory read
latency (~50ps and above) and write latency (~1ms and above).
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Figure 1: Illustration of (a) an SSD with built-in transparent
compression, and (b) the expanded LBA space exposed by
such SSDs.

Meanwhile, the hardware (de)compression engines could easily
achieve a throughput higher than the aggregated bandwidth of
back-end NAND flash memory chips (e.g., 4~8GB/s). Therefore,
SSDs with built-in transparent compression can maintain the same
IOPS and latency performance as traditional SSDs without built-
in compression capability. In fact, by reducing the write stress
on NAND flash memory through compression, such SSDs could
have (much) lower GC (garbage collection) overhead, leading to
(much) higher IOPS under write-intensive workloads. For example,
under heavy 4KB random writes with 100% LBA span, traditional
NVMe SSDs could achieve up to 200K~300K IOPS, while NVMe
SSDs with built-in transparent compression (e.g., the one from
ScaleFlux Inc. [40]) could achieve over 600K IOPS under 2:1 user
data compression ratio.

To allow the host to materialize the benefit of in-storage transpar-
ent data compression, such modern SSDs could expose an expanded
LBA logical storage space that is larger (e.g., by 2X or 4X) than its in-
ternal physical NAND flash memory storage capacity, as illustrated
in Fig. 1(b). Given the runtime data compressibility variation, such
SSDs with expanded LBA space may possibly run out of physical
storage space before their exposed logical storage space has been
used up by the host. Hence, to avoid running into the out-of-space
error, the host must keep monitoring the SSD physical storage space
usage and accordingly make its storage management aware of the
runtime physical storage space usage, just like when using any
thin-provisioned storage systems.

Finally, we note that data compression can be realized at differ-
ent levels of the entire I/O stack (e.g., user applications, file sys-
tem, block layer, and hardware storage devices). Whichever level
handling data compression must meanwhile manage the storage
of post-compression variable-length data blocks. For in-storage
transparent compression, such a management task can be readily
merged into the existing SSD FTL by enhancing SSD FTL to na-
tively handle the storage of variable-length data blocks on NAND
flash memory chips. However, when compression is performed at
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a higher level (e.g., file system), an extra layer of data mapping
must be introduced to manage the storage of post-compression
variable-length data blocks over normal storage devices, leading to
non-negligible host CPU and memory usage overhead. Moreover,
data compression at a higher level could consume significant host
CPU resources for carrying out the data (de)compression computa-
tion. Modern all-flash array appliances (e.g., IBM Storwize [24] and
Pure Storage FlashBlade [35]) widely support built-in hardware-
based transparent compression and RAID data protection. However,
such solutions result in higher $/GB costs than SSD in-storage com-
pression. Therefore, for general-purpose RAID systems that can
be deployed in commodity servers, it is highly desirable to employ
SSDs with built-in transparent compression to reduce the storage
cost without incurring any host CPU/memory overhead.

3 PROPOSED ELASTIC RAID

3.1 Rationale and Key Idea

When users deploy RAID over SSDs with built-in transparent com-
pression, they should format their logical storage capacity based
on the expected/estimated data compressibility in order to reduce
the effective data storage cost. Let us consider RAID 5 over n + 1
SSDs, and let Cyj4gp, denote the NAND flash memory capacity of
each SSD (excluding its internal over-provisioned storage capacity
reserved for GC). Throughout this paper, we define the compres-
sion ratio as the pre-compression data block size being divided by
the post-compression data block size (i.e., a larger compression
ratio corresponds to a higher data compressibility). Let aexp > 1
denote the expected average data compression ratio over the entire
RAID 5 (including both user data and RAID 5 parity). Since all the
user data and RAID 5 parity are evenly striped over the n+ 1 SSDs,
all the SSDs will experience the same average data compression
ratio. Hence, the logical storage capacity of the RAID 5 system
should be formatted as CraiD = dexp * 1 * Cfiashs 1., users expect
to increase the effective RAID storage capacity by up to aexpX via
deploying SSDs with built-in transparent compression. In practice,
users tend to purposely underestimate the value of aex) in order
to better embrace unexpected data compressibility drop and hence
reduce the probability of encountering out-of-space errors. Let a
denote the runtime average compression ratio of all the data (both
user data and parity) on a RAID 5 system. Once the runtime data
compressibility is better than expected (i.e., @ > aexp), it will leave
a certain amount of NAND flash memory storage space unused. We
could utilize such opportunistically available physical data storage
capacity to convert the protection of a portion (or even all) of user
data from RAID 5 to RAID 10. This can contribute to improving
the RAID I/O speed performance including IOPS and latency, while
still maintaining the same RAID logical storage capacity of Crarp.

Fig. 2 further illustrates the basic concept of such elastic RAID:
To materialize the storage cost reduction enabled by deploying
SSDs with built-in transparent compression, an elastic RAID system
exposes a logical storage capacity of Crarp to the host. When
the runtime average data compression ratio « is less than aexp,
the elastic RAID system entirely operates as a classical RAID 5
to transform 100% of data compressibility into the storage cost
reduction, as shown in Fig. 2. Being proportional to the average
data compression ratio «, the effective data storage capacity that
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Figure 2: Illustration of elastic RAID enabled by in-storage
transparent compression.

is truly consumable by the users is lower than the logical storage
capacity Crarp exposed by the elastic RAID. Hence, users must
closely monitor the true physical storage capacity usage of SSDs
in order to avoid out-of-space errors. Once the average runtime
data compression ratio & reaches aexp, the effective data storage
capacity will reach Crayp (i-e., all the logical storage space exposed
by the RAID system could be truly consumed by the users). As
@ exceeds dexp, the effective data storage capacity will remain as
Crarp and the residual data compressibility (i.e., @ — @exp) will be
exploited to enable RAID 5 to RAID 10 conversion, as illustrated in
Fig. 2, where ay,;; denotes the data compression ratio under which
all the user data could be protected by RAID 10.

In summary, as the runtime average data compression ratio  dy-
namically varies between [1, aexp], the effective data storage capac-
ity of elastic RAID will proportionately change and all the user data
are protected by RAID 5; as a dynamically varies between [atexp,
afyi], elastic RAID will accordingly adjust the mixture of RAID 5
and RAID 10 while its effective data storage capacity remains as
CRraID; once a exceeds agyy, all the user data are protected by
RAID 10 and the effective data storage capacity remains as Crarp-
Although elastic RAID is built upon a simple idea, its practical and
efficient implementation poses unique challenges, which will be
studied in the remainder of this section.

3.2 Realization of RAID Level Conversion

Compared with conventional RAID implementation, one unique
challenge of elastic RAID is the realization and management of
dynamic conversion between different RAID levels. Let n+1 denote
the total number of SSDs in the RAID system, and #; denote the
LBA space exposed by the i-th SSD. Let £,,5, denote the LBA space
exposed by the RAID system to the user. The RAID system applies
amapping [ : Lys — {P1, -+, Pn+1} to manage the user data
storage over the SSD array. With different amounts of data redun-
dancy, different RAID levels must use different mapping functions
f, leading to different user data placement over the n+1 SSDs. As a
result, dynamic conversion between different RAID levels demands
runtime varying the mapping function f (and hence the placement
of user data and RAID parity). This could significantly complicate
the data placement and management. Meanwhile, changing the
mapping function will incur SSD operational overheads in terms
of data copy/move/delete operations, leading to interference with
foreground user I/O requests. Elastic RAID should reduce such
operational overheads as much as possible to maximize its speed
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performance gain and reduce the impact on NAND flash memory
endurance.

This work proposes a design technique to simplify the switching
between different data mapping functions during the RAID level
conversion. As pointed out above in Section 2.2, SSDs with built-
in transparent compression could expose an expanded LBA space
that is much larger than the physical NAND flash memory storage
capacity. This enables the storage systems purposely under-utilize
the SSD LBA space while still fully utilizing the physical NAND
flash memory storage capacity. The key idea of the proposed design
technique is to trade the SSD LBA space utilization efficiency for
simpler data placement and management in support of dynamic
RAID level conversion. Fig. 3 illustrates this design technique in the
context of elastic RAID with RAID 5 and RAID 10. Given the total
n+ 1 SSDs, each RAID 5 stripe contains n user data strips (denoted
as D1, -, Dyp) and one parity strip (denoted as P). We partition
the entire LBA space of all the n+ 1 SSDs {P1,---,Pn+1} into a
large number of segments, where each segment is 2x larger than
one RAID 5 stripe. As shown in Fig. 3, each segment is further
partitioned into two equal-sized slots denoted as slot-1 and slot-2.
The two slots in each segment hold different content when the
corresponding data stripe is protected by RAID 5 or RAID 10:

o In case of RAID 5, slot-1 stores the entire RAID 5 stripe and
slot-2 is empty (hence all the LBA data blocks in slot-2 are
trimmed). The utilization of the expanded SSD LBA space is

50%.
e In case of RAID 10, slot-1 and slot-2 each stores one copy
of stripe user data D1, - - -, Dy. In each slot, one strip is left

unused and hence can be trimmed. The utilization of the
expanded SSD LBA space is n/(n+1).

slot-1 -,

One segment__

(RAIDS) 3|
P |-
slot-2 -~
slot-1 -

o)

One segment
(RAID 10)

slot-2 "~

Figure 3: Illustration of the bloated stripe allocation to facili-
tate the conversion between RAID 5 and RAID 10.

By under-utilizing the SSD LBA space through the bloated stripe
allocation, we can easily switch the data mapping function in sup-
port of dynamic RAID level conversion. Accordingly, the RAID
system mapping function f can be decomposed into a large num-

ber of independent segment mapping functions f (k) L,y;z —
{Sol(k), e ,P(k) }, where L,SI;Z denotes the user data covered by

n+1
one RAID stripe and Pi(k)’s correspond to the LBA space occu-
pied by one segment. Within each segment, elastic RAID systems
could conveniently realize dynamic conversion between RAID 5
and RAID 10:
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e To convert one segment from RAID 5 to RAID 10, we first
copy all the data strips D;’s from slot-1 to slot-2 in a skewed
pattern so that two copies of the same data do not reside on
the same SSD, and then trim the unused LBAs in slot-1.

o To convert one segment from RAID 10 to RAID 5, we first
calculate the parity strip P based on the user data strips,
write P to slot-1, and finally trim all the LBA data blocks in
slot-2.

During the conversion between RAID 5 and RAID 10, we never
in-place update any data blocks, which can ensure the atomicity of
the conversion operation and hence keep data protected during the
conversion. Moreover, since this design approach under-utilizes
the SSD LBA space by up to 50%, given the target data compression
ratio dexp, each SSD should be formatted with an LBA space ex-
pansion factor of 2aey. Finally, we note that this proposed design
technique only requires that the underlying SSDs can expose an
LBA space larger than their internal physical storage space. This
is essentially irrelevant to whether or not SSDs could carry out
internal transparent compression. Therefore, this design technique
is applicable to any RAID system as long as their SSDs are capable
of exposing an expanded LBA space.

3.3 Management of RAID Level Conversion

Elastic RAID level conversion could be triggered reactively in re-
sponse to data compressibility variation or proactively in adaptation
to workload I/O data access characteristics variation. In either case,
the elastic RAID controller should keep monitoring the SSD’s in-
ternal physical NAND flash memory storage capacity usage. Since
their internal FTL must keep track of the runtime NAND flash
memory capacity usage, SSDs could make such information readily
available to the host without incurring any extra SSD implementa-
tion overhead. To enable the host to obtain such runtime physical
storage capacity usage information, one could add a new capacity
query command into the block I/O interface protocol (e.g., NVMe)
or SSD vendors could supply a software tool that can obtain such
information from SSDs via proprietary commands over PCle and
expose a physical storage capacity query API to the host. In this
work, we developed a software elastic RAID prototype based on
ScaleFlux’s SSDs with built-in transparent compression. ScaleFlux
provides a user-space software tool through which the elastic RAID
could query the runtime physical storage capacity usage of their
SSDs.

Let us first consider the scenario of reactively triggering RAID
level conversion in response to data compressibility variation. The
above discussion, as illustrated in Fig. 2, suggests that all the user
data should be protected by RAID 5 until the average data compres-
sion ratio a reaches aexp under which the effective RAID storage
capacity will reach Crarp. This implicitly assumes that the users
always utilize 100% of the available data storage capacity. Never-
theless, it is not uncommon that, in the real-world production envi-
ronment, storage capacity utilization can be well below 100% (e.g.,
80%~90% and even lower) due to factors such as runtime storage
usage fluctuation and storage capacity over-provisioning for an
operational safety margin. Therefore, instead of triggering RAID
level conversion only when a € (aexp, @fy11), We could opportunis-
tically trigger RAID level conversion even under a < dexp, in the
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case of users under-utilizing the available storage capacity. This
can be realized by scheduling RAID level conversion directly based
on the runtime physical storage capacity usage, other than the
runtime data compression ratio. One simple scheduling approach
is described as follows: The scheduler periodically samples the run-
time physical storage capacity usage (denoted as C,;;;) in each SSD.
Recall that Cfy,45p, denotes the total physical storage capacity of each
SSD, and let C, and C; denote two pre-defined parameters (where
Crlash > Cu > Cp). If Cyyyy does not exhibit significant variation
and remains below C; in all the SSDs, then the scheduler will de-
clare that the available storage capacity is being under-utilized and
hence will trigger the conversion to promote some regions from
RAID 5 to RAID 10. If C;4;; > Cy in any SSD and elastic RAID
currently contains RAID 10 regions, then the scheduler will trigger
the conversion to demote some regions from RAID 10 to RAID 5
to restore sufficient operational safety margin for sudden storage
capacity usage spikes.

To proactively trigger RAID level conversion in adaptation to
data access locality variation, elastic RAID aims to ensure currently
hot data are being covered by RAID 10. To simplify the implemen-
tation, we could partition the entire storage space into a number of
equal-size regions (e.g., 10MB), and monitor the runtime data access
intensity on a per-region basis. Within each region, all the RAID
stripes are protected under the same RAID level (e.g., RAID 5 or
RAID 10). Periodically we sort the per-region data access intensity,
based on which we decide whether the RAID level setting of certain
RAID 5 and RAID 10 regions should be flipped.

For both reactive and proactive RAID level conversion, the elastic
RAID controller must carefully regulate their frequency. Too fre-
quent RAID level conversion could incur unnecessary NAND flash
memory read/write activities, leading to noticeable interference
with normal user I/O requests. Moreover, since program/erase (P/E)
cycling wears out the NAND flash memory cells, especially under
highly scaled technology nodes, too frequent RAID level conversion
could also severely accelerate the wear-out of NAND flash memory
cells, leading to noticeable degradations of SSD endurance lifetime.
Therefore, when scheduling RAID level conversion, elastic RAID
should cohesively consider the wear-out of SSDs. As SSDs undergo
more P/E cycles, elastic RAID should accordingly more and more
throttle the frequency of RAID level conversion and even suspend
the conversion at the end of the SSD lifetime. Elastic RAID con-
trollers should also appropriately configure the throughput of ongo-
ing RAID level conversion operations: On one hand, the conversion
throughput should not be too high in order to avoid significantly
interfering with normal user I/O requests. On the other hand, in
the presence of sudden data compressibility drop, the RAID 10 to
RAID 5 conversion throughput should be sufficiently high to avoid
out-of-space errors.

Finally, we note that, in the presence of intra-SSD transparent
compression, RAID 5 is not necessarily always more cost-effective
than RAID 10. This is because user data and their RAID parity
could have significantly different compressibility. For the purpose of
demonstration, using two compression benchmark corpus files (i.e.,
file kennedy in the Canterbury corpus [8] and file samba in the
Silesia corpus [42]) as representative user data, we measured the
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Figure 4: Histograms of per-4KB compression ratio of user
data and RAID 5 parity when using two compression bench-
mark files in the Canterbury corpus [8] and Silesia cor-
pus [42].

per-4KB compression ratio of both user data and RAID 5 parity (as-
suming 3+1 RAID 5). Fig. 4 shows the histogram of measured per-
4KB compression ratio (using the GZIP compression library), which
clearly reveals that RAID 5 parity has much worse compressibility
than user data. For samba-based experiments, the RAID 5 parity
data are even almost completely incompressible. This phenomenon
can be explained as follows: Lossless data compression is mainly
realized by deduplicating repeated byte strings in the data stream.
Different user data strips within the same stripe most likely have
repeated byte strings at different locations inside 4KB blocks. As
a result, being obtained by bit-wise XOR over multiple user data
strips, RAID parity tends to have much less amount of repeated
byte strings, leading to much worse compressibility as shown in
Fig. 4. Therefore, it is possible that, after converting a region from
RAID 10 to RAID 5, the physical storage capacity usage increases
other than decreases. In this case, we should revert the conversion
and keep the region in the RAID 10 mode. Moreover, if SSDs sup-
port the host query the compression ratio on the per-LBA basis,
we could scan each RAID 5 region to obtain the compression ratio
of user data strips and RAID parity strips. Accordingly, we could
calculate whether converting one stripe to a RAID 10 region could
actually reduce the physical storage capacity usage and then decide
whether we should proactively convert this RAID 5 region into a
RAID 10 region.

4 PROTOTYPING AND EVALUATION

The proposed elastic RAID design strategy could be integrated into
a software RAID solution or a dedicated hardware RAID card. For
the purpose of demonstration, by modifying the existing Linux
mdraid [29], we implemented a Linux software elastic RAID (SW
eRAID) prototype that supports the dynamic mixture of RAID 5
and RAID 10. Following the discussion above in Section 2.1, it im-
plements a write journal to mitigate the well-known write hole
problem [34] of RAID 5 and meanwhile reduce the write request
latency experienced by end users. The write journal spans over all
the SSDs and is protected by RAID 5 as well. Because the write jour-
nal is append-only, its use of RAID 5 is not subject to the write-hole
problem. Upon receiving a write request, SW eRAID flushes the
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data into the write journal and then immediately acknowledges the
write completion to the user. Data are migrated from the write jour-
nal into their destined stripes asynchronously in the background,
which is realized in batches with multiple threads in order to pre-
vent background data migration from becoming the overall RAID
speed performance bottleneck.

We carried out experiments on a server with a 26-core 2.5GHz
Intel Xeon CPU, 565GB DRAM, and 4 commercial NVMe SSDs
with built-in transparent compression from ScaleFlux Inc. [40].
The NVMe SSDs carry out hardware-based zlib [52] compression
on each 4KB LBA data block directly along the I/O path. It can
achieve a compression ratio similar to that of the zlib level-6. We
applied the widely used FIO (flexible I/O tester) tool [19] to generate
heavy foreground random data access I/O workloads and collect
the IOPS and tail latency results. FIO can generate compressible
data according to the target compression ratio specified by the
users. The system OS is CentOS Linux release 7.6.1810, and the FIO
version is 3.13. In all the experiments, RAID strip size is set as 4KB,
and the RAID system spans over all the 4 SSDs.

4.1 Baseline RAID 5 Performance

We first carried out experiments to evaluate the baseline speed
performance under random write workloads when the system oper-
ates in the RAID 5 only mode (i.e., all the data are protected by 3+1
RAID 5 over the 4 SSDs). For the purpose of comparison, we carried
out the same experiments over the existing Linux mdraid and the
state-of-the-art software RAID product RAIDIX [37]. We focused
on 4KB random write workloads over the entire 100% LBA span to
trigger the worst-case scenarios for RAID 5. To ensure sufficient I/O
workload stress over all three RAID 5 systems, we configured FIO
to run with 16 jobs at the I/O queue depth of 128. Table 1 lists the
IOPS and tail latency results of the three different RAID 5 systems.

Table 1: RAID 5 under 4KB random writes.

Tail latency (ms)

TOPS 99% 99.9%

Linux mdraid 59,003 40.1 43.8
RAIDIX 474,389 40.1 246.4
SW eRAID 677,829 9.6 14.9

The results show that RAIDIX and our SW eRAID can achieve
one order of magnitude higher 4KB random write IOPS than Linux
mdraid. This is mainly because Linux mdraid uses a single man-
agement thread to control the RAID 5 state machine. Although
such single-thread management implementation works well on
HDD-based RAID, it could easily become the speed performance
bottleneck of SSD-based RAID. Compared with RAIDIX, our SW
eRAID achieves 1.4x higher 4KB random write IOPS at 4.2X shorter
99% tail latency. Because we do not have access to the source code
of RAIDIX, we conjecture that this is mainly due to the different
implementation efficiency of background data movement from the
write journal to destined stripes. The results demonstrate that our
SW eRAID matches the state of the art of SW RAID implementa-
tions, hence it can be used to reliably evaluate the effectiveness of
dynamically mixing RAID 5 and RAID 10.
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4.2 RAID 5 vs. RAID 10 Performance

The RAID 5 vs. RAID 10 speed performance difference is most no-
ticeable when serving (i) random data write requests or (ii) random
read requests under degraded mode when one SSD is offline (e.g.,
one SSD suffers a catastrophic failure). This is due to the large
RAID 5 vs. RAID 10 difference in terms of the read amplification
under these two scenarios. Table 2 summarizes the write/read am-
plification of the SW eRAID when serving random writes under
the normal mode and random reads under the degraded mode.

Table 2: Write/read amplification under random data access.

Random write Random read
(normal mode) (degraded mode)
WA RA RA
RAID5 | 2+ (n+1)/n 2 2n/(n+1)
RAID10 | 2+ (n+1)/n 0 1

WA: write amplification; RA: read amplification.

Table 3 lists the SW eRAID IOPS and tail latency under 4KB
random write workloads. Again, to ensure sufficient I/O workload
stress on SSDs, we configured FIO to run with 16 jobs at the I/O
queue depth of 128. The results show that RAID 10 achieves 1.67x
higher 4KB random write IOPS than RAID 5, while maintaining
a similar tail latency. This is due to the significantly reduced read
amplification of RAID 10 compared with RAID 5 under random
write workloads.

Table 3: SW eRAID under 4KB random write.

Tail latency (ms)

RAID Mode 10PS 99% 99.9%
RAID 5 677,829 9.6 14.9
RAID 10 1,138,546 10.0 16.5

If one SSD becomes offline, the RAID system will operate in the
degraded mode and serve read requests only. Given the total 4 SSDs
in the system, as shown above in Table 2, RAID 5 suffers from a read
amplification of 1.6 under the degraded mode, while RAID 10 does
not experience any read amplification. Table 4 lists the measured
4KB random read IOPS and tail latency when RAID 5 and RAID 10
operate in the degraded mode. To further stress the SSDs under
read workloads, we increased the FIO job number from 16 to 32
while maintaining the same queue depth of 128. The results show
that, compared with RAID 5, RAID 10 could achieve 1.75X higher
read IOPS at 3.3 shorter 99% tail latency. The results demonstrate
the speed performance advantage of RAID 10 over RAID 5, which
motivates our proposed elastic RAID design strategy.

Table 4: 4KB random read in degraded mode.

Tail latency (ms)

RAID Mode 10PS 99% 95.9%
RAID 5 1,434,445 14.5 22.9
RAID 10 2,505,795 4.4 4.8
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4.3 SW eRAID with mixed RAID 5/10

Given sufficient runtime user data compressibility, SW eRAID could
transparently convert data protection from RAID 5 to RAID 10
without sacrificing the effective RAID storage capacity. As discussed
in Section 3.3, we partition the entire RAID storage space into
equal-sized segments (10MB per segment in this study) and use the
same RAID level for each segment. RAID 10 outperforms RAID 5
when serving random writes in normal mode and random reads in
degraded mode. Fig. 5 shows the 4KB random write IOPS and tail
latency when different percentages of data are protected by RAID 10.
As user data compressibility improves, eRAID will convert the
protection of more data from RAID 5 to RAID 10, which naturally
leads to a higher speed performance shown in Fig. 5.

Fig. 6 shows the 4KB random read IOPS and tail latency under
the degraded mode when different percentages of data are protected
by RAID 10. As one could intuitively justify, the read speed perfor-
mance will improve when user data compressibility increases, and
hence more data are protected under RAID 10. As shown in Fig. 6,
the 99% read tail latency largely drops even as the IOPS increases.
This is because a higher percentage of RAID 10 leads to a lower
read amplification under the degraded mode and hence a smaller
read I/O queue depth, which directly contributes to the shorter read

latency.
1,200,000 12
B [OPS  ——99% Tail Latency
1,000,000 10 7
» 800,000 8 =
a
) ]
600,000 6 &
= -
2 400,000 4 =
x
200,000 2 R
0

0% 20% 40% 60% 80% 100%
RAID 10 Percentage

Figure 5: SW eRAID 4KB random write IOPS and 99% tail
latency under different percentages of data being protected
by RAID 10.
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Figure 6: SW eRAID 4KB random read IOPS and 99% tail
latency in the degraded mode under different percentages of
data being protected by RAID 10.
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Figure 7: Percentage of RAID 10 under different storage ca-
pacity expansion factor a.xp when the storage capacity uti-
lization factor f,;;; is 100%.

The above results show that the performance advantage of SW
eRAID heavily depends on the percentage (denoted as Pcopy) of data
being converted from RAID 5 to RAID 10. In addition to the user
data compressibility, Pcony also depends on the storage capacity
expansion factor aexp > 1 and storage capacity utilization factor
Pusit < 1. Given the total n+ 1 SSDs and per-SSD physical storage
capacity of Cfjqsp, €RAID exposes a total logical storage capacity
of Qexp "N - Cflash to the user. As we increase Qexp to more aggres-
sively leverage data compressibility to increase the effective RAID
storage capacity, less amount of residual data compressibility will
be left for RAID 5 to RAID 10 conversion. Meanwhile, as discussed
in Section 3.3, users may not always utilize 100% of the storage
capacity, and eRAID could accordingly schedule the RAID level
conversion in response to the runtime storage capacity utilization
factor f,,;;;. Fig. 7 shows the percentage of RAID 10 under different
storage capacity expansion factors aexp. We considered the cases
of n =3 or n =5 (ie., the RAID system contains 4 or 6 SSDs). The
storage capacity utilization factor f,;;; is set as 100% (i.e., users
utilize the entire storage capacity exposed by the RAID system). As
discussed in Section 3.3, RAID 5 parity tends to have a much worse
compression ratio than user data. Let aysr and ap;y denote the
compression ratio of user data and RAID 5 parity, according to the
results presented in Fig. 4, we set (aysr — 1) = 4(apsy — 1) so that
the RAID 5 parity is incompressible (i.e., ap;yy = 1) when user data
is incompressible (i.e., aysr = 1), and RAID 5 parity compression
ratio is 1.5 when user data compression ratio is 3. As shown in Fig. 7,
when the storage capacity expansion factor aexp increases, a larger
user data compression ratio is required to enable RAID 5 to RAID 10
conversion. Under a larger storage capacity expansion factor dexp,
the RAID 10 percentage will increase more slowly with the user
data compression ratio aysy. For example, when aexp = 1.0 (ie,
users do not leverage data compression to reduce storage cost at
all), the user data compression ratio only needs to increase from 1
to 1.6 in order to enable the 100% RAID 5 to RAID 10 conversion;
when aexp = 1.8 (i.e., users expect to reduce the storage cost by
up to 1.8% via data compression), the user data compression ra-
tio must jump from 1.8 to 2.8 in order to enable 100% RAID 5 to
RAID 10 conversion. The results also show the noticeable impact
of the total number of SSDs on the relationship between user data
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Figure 8: Percentage of RAID 10 under different storage ca-
pacity utilization factor f,;;; when the capacity expansion
factor aeyx is 1.8.

compressibility and RAID 10 coverage percentage, i.e., the more
SSDs are deployed in the RAID system, the slower the RAID 10
coverage percentage will grow with the user data compression ratio.
This result stems from the fact that as the RAID system contains
more SSDs, the storage efficiency gap between RAID 5 and RAID 10
will accordingly increase. Hence a higher data compression ratio is
required to fill the gap.

Fig. 8 shows the percentage of RAID 10 under different storage
utilization factors f3,,;;; when the storage capacity expansion factor
@exp is set to 1.8. The results show that under-utilized storage
capacity could be effectively leveraged to improve the RAID 10
coverage percentage. For example, under the user data compression
ratio of 2, the RAID 10 coverage percentage is almost 0% when the
storage capacity utilization factor f,;;; is 100%, and it will improve
to 25% and 68% when f,,;;; reduces to 90% and 80%, respectively.
Since it is not uncommon for a real production environment to have
a storage capacity utilization factor of 80%~90% or even lower, the
results suggest that the adaptive RAID level conversion scheduling
could very noticeably improve the RAID 10 coverage percentage.

The above results suggest that a small increase in the user data
compression ratio could enable a noticeable increase in RAID 10
coverage percentage. Meanwhile, real-world I/O workloads typi-
cally exhibit considerable degrees of access locality. As discussed
above in Section 3.3, eRAID could schedule RAID level conversion
in adaptation to the runtime data access locality. Fig. 9 shows the
4KB random read IOPS in the degraded mode under random work-
load (i.e., zero data access locality) and 80/20 skewed workload (i.e.,
80% of reads hit 20% of data). The eRAID system storage capacity
expansion factor aey, is set to 1.4, and the RAID storage capacity
utilization factor f,;;; is set to 100%. The RAID 10 coverage per-
centage increases from 0% to 100% when the user data compression
ratio increases from 1.4 to 2.2. As shown in Fig. 9, under the 80/20
skewed workload, read IOPS could improve by 33% even when the
user data compression ratio only increases from 1.4 to 1.6.

4.4 RAID Level Conversion

We further evaluated the RAID level conversion and its impact
on RAID system I/O speed performance. Our SW eRAID proto-
type uses multiple background threads to carry out RAID level
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Figure 9: SW eRAID 4KB random read IOPS in the degraded
mode under random and 80/20 skewed workloads.

conversion between RAID 5 and RAID 10. The RAID level conver-
sion throughput improves as the number of background threads
increases. Table 5 shows the RAID level conversion throughput in
the absence of foreground user I/O requests. The user data compres-
sion ratio is 2:1. As discussed in Section 3.2, to convert one stripe
from RAID 5 to RAID 10, we only need to duplicate the data once
within the stripe segment; to convert one stripe from RAID 10 to
RAID 5, we fetch the data stripe and calculate and write the RAID 5
parity. Hence, under our experimental RAID system with 4 SSDs,
RAID 10 to RAID 5 conversion tends to have a lower throughput
than RAID 5 to RAID 10 conversion, as shown in Table 5. The
results suggest that the RAID level conversion can easily achieve
multi-GB/s throughput, which demonstrates the efficiency of the
proposed bloated stripe allocation strategy.

Table 5: RAID level conversion throughput.

Conversion # of conversion | Throughput
mode threads (GB/s)
8 3.1
RAID 5 to RAID 10 7 )
8 2.6
RAID 10 to RAID 5 5 51

Next, we evaluated the impact of background RAID level conver-
sion on the speed performance of SW eRAID serving foreground
user read/write requests. Evidently, we could control the perfor-
mance impact by throttling the background RAID level conversion
throughput. In the case of a sudden and significant drop in the
average user data compression ratio within a short period, eRAID
may have to accordingly adjust the RAID 10 to RAID 5 conversion
throughput in order to avoid out-of-space errors. Meanwhile, the
impact of background RAID level conversion also depends on the
intensity of the foreground user read/write requests, i.e., the heavier
the foreground I/O workloads are, the more noticeably they will be
impacted by the background RAID level conversion. To examine
the worst-case scenario, we use heavy 4KB random read or write
workloads with 32 FIO jobs to emulate very heavy foreground user
I/O workloads.

Fig. 10 and Fig. 11 show the impact of background RAID level
conversion under three different throttled conversion throughputs,
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including 100MB/s, 200MB/s, and 400MB/s. The results show that,
even under the very heavy 32-job FIO foreground I/O workloads,
the impact of background RAID level conversion can be small (e.g.,
no more than 7% of IOPS drop with 200MB/s background RAID
level conversion). The results further show that, compared with
RAID 5 to RAID 10 conversion, RAID 10 to RAID 5 conversion
causes a similar impact on random read speed performance but
noticeably less impact on random write speed performance. This is
because, compared with RAID 5 to RAID 10 conversion, RAID 10
to RAID 5 conversion generates much less amount of write traffic
to SSDs.
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Figure 10: Impact of background RAID 5 to RAID 10 conver-
sion on heavy random read or write workloads with 32 FIO
jobs.
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Figure 11: Impact of background RAID 10 to RAID 5 conver-
sion on heavy random read or write workloads with 32 FIO
jobs.

4.5 Impact of Inaccurate RAID Level
Configuration

As discussed above in Section 3.3, we partition all the data into
a number of regions and configure RAID level (e.g., RAID 5
vs. RAID 10) on the per-region basis according to the data access
intensity history. Dynamic workload I/O characteristics variation
could inevitably cause RAID level misconfiguration over some re-
gions. We carried out further experiments to evaluate the impact
of possible RAID level misconfiguration. We ran two FIO processes
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Figure 12: Impact of classification accuracy on 4KB random
write IOPS of 80/20 skewed workloads.

to emulate 80/20 skewed 4KB random write workloads. Fig. 12
shows the overall random write IOPS under different RAID level
configuration accuracy, e.g., 75% accuracy means 75% of write-hot
data under the 80/20 skewed 4KB random write workloads are ac-
curately classified as hot by the RAID system. For the purpose of
comparison, we also considered a Random case where data are just
randomly classified as write-hot. We studied four different data
compressibility under which 10%, 20%, 40%, and 80% of data are
protected by RAID 10. As the data classification accuracy improves,
a higher percentage of write-hot data will be covered by RAID 10,
leading to a higher write IOPS as shown in Fig. 12. Moreover, as
data compressibility improves to enable a higher RAID 10 coverage,
classification accuracy tends to have less impact on the overall
IOPS. For example, when 20% of data can be protected by RAID 10,
write IOPS could increase by 20.6% if the classification accuracy
improves from 50% to 100%. In comparison, when 80% of data can be
protected by RAID 10, increasing the classification accuracy from
50% to 100% improves write IOPS by only 6%.

5 RELATED WORK

RAID. As the most widely deployed data protection solution, RAID
has been very well studied in the open literature. Prior work on
RAID mainly focused on more accurately modeling and analyz-
ing the RAID system reliability [2, 17, 18, 28, 30, 44], reducing
the drive rebuild time and accelerating the data recovery pro-
cess [21, 32, 47, 48, 51], and better embracing the device character-
istics of SSDs [3, 9, 25, 31]. Prior research [33, 49] also studied the
implementation of tiered RAID systems consisting of a hot-data
RAID 10 tier and warm/cold-data RAID 5/6 tier. The well-known Au-
toRAID [49] has been commercialized by HP from the late 1990s to
the late 2000s. Operating on traditional HDDs or SSDs, tiered RAID
systems must employ complicated data management/migration
strategies to realize dynamic tiering and embrace different data
mapping functions of different RAID levels, and they are still funda-
mentally subject to the speed performance vs. storage cost trade-off.
These limitations are at least part of the reason why HP terminated
the AutoRAID product line over a decade ago. To the best of our
knowledge, no prior work has ever studied the feasibility of op-
portunistically leveraging runtime data compressibility to enable a
dynamic mixture of different RAID levels without sacrificing the
effective data storage cost.
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Transparent Data Reduction. Prior research has well studied
the implementation of storage data reduction (e.g., compression
and deduplication) with complete transparency to user applica-
tions. Transparent data reduction can be realized at the filesystem
level [4, 6, 38, 43], block level [1, 27, 46], and even inside storage
hardware [10, 12, 50, 53]. Modern all-flash array products (e.g., Dell
EMC PowerMAX [16], HPE Nimble Storage [22], and Pure Stor-
age FlashBlade [35]) always come with built-in hardware-based
transparent compression capability. Cloud vendors have started to
integrate hardware-based compression capability into their storage
infrastructure, e.g., Microsoft Corsia [14] and emerging DPU (data
processing unit) [7]. Motivated by the emergence of storage hard-
ware with built-in transparent compression, researchers have re-
cently studied its implications for the design of hash-based key-
value store [13] and B-tree [36].

SSD Sparse Addressing. Prior work studied how one could inno-
vate the data management systems by making SSD expose a sparse
logical address space that is (much) larger than its internal physical
storage capacity. FlashTier [39] utilizes the SSD sparse addressing
to largely simplify the SSD cache management. FlashMap [23] in-
tegrates virtual address translation and SSD FTL sparse address
translation to efficiently support memory-mapped SSD files. Das et
al. [15] presented a solution that leverages SSD sparse addressing
to facilitate application-level data compression. DFS filesystem [26]
takes advantage of SSD sparse addressing to significantly simplify
its data management.

6 CONCLUSIONS

This paper presents an elastic RAID design strategy to take full
advantage of modern SSDs with built-in transparent compression
capability. The key idea is to leverage the opportunistically avail-
able residual data compressibility to enable dynamic RAID 5 to
RAID 10 conversion, which can improve the RAID system speed
performance without sacrificing its effective RAID storage capacity.
This paper presents design techniques for efficiently implementing
elastic RAID at the minimal RAID level conversion overhead. We
implemented a Linux software-based elastic RAID prototype in
support of dynamic conversion between RAID 5 and RAID 10, and
experimental results demonstrate the effectiveness of the proposed
elastic RAID design solution.
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