
Runway: In-transit Data Compression on

Heterogeneous HPC Systems

John Ravi

North Carolina State University

Raleigh, NC, USA

jjravi@ncsu.edu

Suren Byna

The Ohio State University

Columbus, OH, USA

byna.1@osu.edu

Michela Becchi

North Carolina State University

Raleigh, NC, USA

mbecchi@ncsu.edu

AbstractÐTo alleviate bottlenecks in storing and accessing data
on high-performance computing (HPC) systems, I/O libraries are
enabling computation while data is in-transit, such as HDF5
filters. For scientific applications that commonly use floating-
point data, error-bounded lossy compression methods are a crit-
ical technique to significantly reduce the storage and bandwidth
requirements. Thus far, deciding when and where to schedule
in-transit data transformations, such as compression, has been
outside the scope of I/O libraries.

In this paper, we introduce Runway, a runtime framework that
enables computation on in-transit data with an object storage
abstraction. Runway is designed to be extensible to execute user-
defined functions at runtime. In this effort, we focus on studying
methods to offload data compression operations to available
processing units based on latency and throughput. We compare
the performance of running compression on multi-core CPUs, as
well as offloading it to a GPU and a Data Processing Unit (DPU).
We implement a state-of-the-art error-bounded lossy compression
algorithm, SZ3, as a Runway function with a variant optimized
for DPUs. We propose dynamic modeling to guide scheduling
decisions for in-transit data compression. We evaluate Runway
using four scientific datasets from the SDRBench benchmark
suite on a the Perlmutter supercomputer at NERSC.

Index TermsÐObject Data Management, In-transit Computa-
tion, Heterogeneous Resources

I. INTRODUCTION

Current high-performance computing (HPC) systems pro-

cess massive amounts of data. These systems are built with

high performance interconnects and parallel file systems to

support data intensive workloads. Such workloads not only

consume, but can also produce large amount of data for

post-processing, such as analysis or visualization. In addition,

since large-scale simulations often run for multiple hours or

even days, these applications typically checkpoint state over

some specified duration. Managing data movement can quickly

become a barrier to perform scientific research at scale.

Solutions to manage persisted data for large-scale appli-

cations can range from using high-level I/O libraries, such

as HDF5 [1] and ADIOS2 [2], to application-specific frame-

works, such as AMReX native I/O [3]. Application developers

typically prefer the I/O libraries, since they offer performance

portability while keeping the application code maintainable.

These libraries aim to abstract the specifics of the system

architecture, parallel file system parameters, and data format.

However, current I/O libraries have complex APIs and tuning

methods to make efficient use of storage. This motivates a

need for simpler I/O libraries, e.g., pMEMCPY [4].

In addition to abstracting optimizations, many high-level

I/O libraries provide a way to define and perform computa-

tions or transformations while data is being moved between

memory and storage. For example, HDF5 [1] offers filters,

while ADIOS2 [2] offers plugins. These extensions enable

developers to extend the I/O libraries with new features, which

others can use and optimize for their needs. For example,

scientific data reduction is an actively researched feature to

enable better bandwidth and storage utilization [5]. Although

useful, we believe the current development and integration of

these features in widely used I/O libraries is still limited. For

example, popular I/O libraries offer limited resource handling

and scheduling capabilities, which can be critical to high

performance applications. Other optimization techniques, such

as asynchronous I/O and compression filters, are offered by

existing I/O libraries (e.g., HDF5), but are limited to per-

application task scheduling. Understanding when to apply a

transformation and what system resources to use has been out

of scope for I/O libraries.

Recent research has explored the ability to directly read

and write to storage from Graphics Processing Units (GPUs).

This eliminates the need to buffer data on system memory and

frees up CPU cycles to perform other critical tasks. NVIDIA

provides driver support to enable I/O to NVMe and NVMe-oF

through GPUDirect Storage (GDS) [6]. GDS enables lower

I/O latency due to less data transfers. It also allows higher

aggregate bandwidth with multiple storage targets not needing

to be serialized through a CPU-backed memory buffer. I/O

libraries have begun exploring how to support GPUs directly

in the data path [6].

The complexity of data management solutions is further

increased by the use of accelerators found in many modern

HPC systems. In the exascale era of HPC, many applications

rely on GPUs as general compute accelerators. Programming

heterogeneous computing resources on HPC systems (i.e.,

CPUs and GPUs) is tricky due to different design consider-

ations. While multi-core CPUs rely on large caches, GPUs

use smaller caches and rely on the programmer to optimize

memory accesses. GPUs support concurrent execution of or-

ders of magnitude more threads which helps to hide memory

access latency. With these design considerations, it is often

229

2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

979-8-3503-0119-9/23/$31.00 ©2023 IEEE
DOI 10.1109/CCGrid57682.2023.00030

20
23

 IE
EE

/A
CM

 2
3r

d
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Cl
us

te
r,

Cl
ou

d
an

d
In

te
rn

et
 C

om
pu

tin
g

(C
CG

rid
) |

 9
79

-8
-3

50
3-

01
19

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
OI

: 1
0.

11
09

/C
CG

RI
D5

76
82

.2
02

3.
00

03
0

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:23:47 UTC from IEEE Xplore. Restrictions apply.

difficult to provide I/O functionality that can optimally use

CPUs and GPUs. Moreover, future systems might see even

more specialized accelerators, each with specific algorithm

design considerations.

Data Processing Units, or DPUs [7], are becoming more

popular for various use cases in HPC systems and data centers.

Typically, DPUs are equipped with CPUs and specialized

accelerators to offload network-related tasks such as filtering.

Offloading I/O and data management tasks to the DPU frees

up compute cycles on the host DPU which can be used by the

application. Programmers and I/O libraries can take advantage

of specialized hardware on the DPU to perform tasks, such as

data compression, to further accelerate data movement.

In this work, we investigate the dynamic integration of

in-transit data transformation and analysis capabilities in I/O

libraries. This requires mechanisms to transparently map and

schedule data transformation tasks on available processing

resources, and adapt the data transformation parameters to

the characteristics of the data. Our proposed mapping and

scheduling policy considers the following factors: current and

target data location, data transfer costs, and available process-

ing units. We propose Runway, a configurable and extensible

runtime system for in-transit data processing. Runway builds

on top of the Proactive Data Containers (PDC) system [8],

[9], a data management framework with a client-server design

that offers an object storage abstraction. In PDC, data to

be persisted are stored in objects, which are partitioned in

data regions handled by different PDC servers. As example

data transformation task we consider lossy compression, and

explore setting the compression error bound adaptively to

different partitions of a data object for balancing accuracy and

performance.

In summary, we make the following contributions:

• A GPU- and DPU-aware runtime framework enabling

computation on in-transit data. Our system, called Run-

way, performs dynamic mapping of data transformation

tasks on available compute resources, while adaptively

setting the data transformation parameters (e.g., compres-

sion error bound) based on the data;

• A dynamic resource mapping scheme based on a cost

model taking into account factors such as resource avail-

ability and overlapping of compute and data movement;

• An adaptive compression scheme with per-region tuning.

We evaluate Runway on Perlmutter, a state-of-the-art large-

scale cluster at NERSC, equipped with AMD EPYC CPUs

and NVIDIA A100 GPUs to demonstrate the I/O scalability.

We also evaluate Runway on a smaller testbed system that

has an NVIDIA A30 GPU and an NVIDIA Bluefield-2 DPU

to showcase our proposed dynamic resource mapping scheme

across diverse accelerators.

II. BACKGROUND AND MOTIVATION

A. Data Management Software Libraries

Data management software, including high-level and mid-

dleware I/O libraries, enables portable performance optimiza-

tions across systems and application domains. Popular I/O

libraries, such as HDF5, offer a self-describing file format that

provides an abstraction layer to manage the data and metadata

within a single file [1]. HDF5 filters enable compression of

data using a filters approach, where compression is executed

on CPUs. A user needs to manually enable and tune the

compression method to their application needs. Nonetheless,

HDF5 feature set can be extended using Virtual Object Layer

(VOL) and Virtual File Driver (VFD). The HDF5 VOL feature

has been used to implement an asynchronous I/O VOL connec-

tor that enables asynchronous I/O for HDF5 operations using

background threads [10]. The scope of this feature, however, is

limited to a single application. Currently, HDF5 exists only as

a compiled library with no runtime system that arbitrates I/O

tasks among multiple applications. Adding a daemon-based

runtime system to HDF5 will require significant rework of

core library functionality to ensure proper metadata handling.

Proactive Data Containers, or PDC [8], [9], is a data

management framework, which offers a data object-focused

abstraction instead of a file-based storage abstraction. It is im-

plemented as a runtime system with a set of data management

services to perform automatic data movement and metadata

search. PDC implements a client-server architecture with a

set of servers managing data movement across applications.

Hence, this framework enables better resource handling es-

pecially in workflow-based applications. Although, arbitrarily

increasing the concurrency capacity of PDC with application

instances and data servers can have diminishing performance

improvement. Figure 1 reports the results of an experiment

where we progressively increase the number of PDC data

server instances, with each data server running the QVAPOR-

IO compression kernel on in-transit data. As can be seen, the

system reaches a maximum throughput before saturating the

multi-core CPU, and increasing the number of PDC server

instances beyond 5 is not beneficial to performance.

1 2 3 4 5 6
Instances of QVAPOR-IO and PDC Server(s)

0

100

200

Th
ro

ug
hp

ut
 (M

B
/s

)

0.25

0.50

0.75

C
P

U
 U

til
iz

at
io

n

CPU Utilization

Fig. 1: Data transfer throughput can saturate when a hardware

resource is fully utilized. This data transfer performs ZFP

compression in-transit while persisting the QVAPOR data

object of the Hurricane ISABEL dataset.

PDC currently lacks the extensibility found in other I/O

libraries, such as HDF5. In this work, we build Runway

on top of PDC’s client-server design; thus, Runway inherits

PDC’s data object abstraction. We propose a novel way of

supporting dynamic features, focusing on compression on

in-transit data and scheduling to compute accelerators, such

as GPUs and DPUs. Supporting dynamic features is critical

to enable researchers to integrate their work in production

applications. The client-server design allows us to decouple

2230

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:23:47 UTC from IEEE Xplore. Restrictions apply.

application parallelism with I/O parallelism. The current de-

sign of HDF5 filters only supports parallelism with number

of MPI ranks the application launches. Moreover, there is no

support to perform the computation asynchronously. Runway

demonstrates a need to support asynchronous computation and

better resource management. We compare Runway’s dynamic

resource mapped in-transit compression to the current state-

of-the-art in-transit compression, namely, HDF5 filters.

B. Hardware Accelerators

Recent work on I/O libraries have also explored supporting

hardware accelerators in the data path. HDF5 exposes low-

level I/O operations through the virtual file driver (VFD). Since

many applications utilize GPUs for compute, HDF5 had added

support for GPUDirect Storage (GDS) through the GDS VFD

[6]. GPUDirect Storage eliminates the need to buffer data

in system memory. GPUs can support computations at very

high throughput compared to a multi-core CPUs. Thus, GPU

compression with GPUDirect Storage can be used to accelerate

I/O throughput [11].

Developers often want to schedule I/O tasks on idle hard-

ware, so they do not contend with resources used by more

critical computations, such as CPUs and GPUs. For example,

PDC reserves a core on each compute node for its data

servers. In this work, we consider offloading data management

servers to the DPU. We also explore taking advantage of

the DPU’s specialized compression accelerator to increase the

lossy-based compression throughput.

C. Scientific Data Reduction

Recent work on error bound lossy compression, such as

ZFP [12] and SZ [5], has shown that scientific data reduction

can yield high compression ratios and still maintain high

quality thresholds. Moreover, these data transforms can be

implemented efficiently by using high throughput parallel

resources, including multicore CPUs and GPUs [13]. These

recent developments enable I/O libraries to take advantage of

scientific data reduction to improve I/O latency and reduce I/O

bandwidth.

The effectiveness of data reduction can depend on multiple

factors, including error bounds and entropy of the data. For

example, data intended for visualization can tolerate larger

error bounds. Larger error bounds allow lossy compression

to dramatically reduce data size at the cost of losing some

result quality, typically measured with peak signal-to-noise

ratio (PSNR). Figure 2 shows how varying the absolute error

bound can impact compression ratio, compression latency, and

compression quality. See Section IV for more information

about the experimental setup. Recent efforts have begun ex-

ploring automatically tuning these error bounds [14], [15].

However, for sparse scientific data, the effectiveness of

data reduction methods might not be uniformly beneficial at

a global data object. For example, object data can contain

multiple temporal and spatial data regions. Each of the regions

might have different characteristics, leading to different error

bounds. Recent work has begun exploring the need for a

locally tuned error bound [16]. For example, in Figure 3 we

show a data object (QRAIN) from the Hurricane ISABEL

dataset. This data object is of dimensions 100x500x500 as

shown on the top row of the figure. Because this data object

contains both a temporal and spatial dimension, it is a 3

dimensional data object, where the first object indicates the

timestep. Analysis is distributed across discrete grids, or data

regions, indicated as 100x100 regions in the bottom 3 figures.

Some data regions yield much higher compression ratios than

others. In this paper, we demonstrate the benefits of supporting

a non-uniform compression scheme in I/O middleware.

III. THE RUNWAY FRAMEWORK

We design Runway to be a novel object data management

service that supports in-transit computation. As mentioned

above, Runway builds on the design of an existing object data

management service, i.e., Proactive Data Containers (PDC)

[8]. Similar to PDC, our framework targets large-scale appli-

cations and systems. Because our goal aligns well with PDC’s

using a server for scheduling in-transit computations and to

perform asynchronous I/O, we use PDC as the base frame-

work. Current and upcoming large-scale systems leverage

heterogeneous resources to push computing limits. Runway

aims to simplify the application developer’s effort to manage

data in the context of heterogeneous resources. To use our

framework, application developers need to replace calls to

existing I/O functionality with a simplified data management

API. Using a distributed client-server model, Runway can

move data in and out of the application memory address space

asynchronously using remote procedure calls (RPCs).

In Figure 4 we show the high-level design of the Run-

way framework. Runway uses Mercury, a high performance

RPC library that facilitates data movement through Remote

Memory Access (RMA) [17]. Mercury enables low overhead

communication and fast data transfer for large-scale systems.

Application developers can register Runway lambdas, which

are computation operations on data that would be executed

in-transit. Runway lambdas are mapped and scheduled on the

available compute resources at runtime. We describe each of

these features in detail in the following sections.

A. Supporting Object Data Model

Runway implements an object data model used in PDC.

Data are organized as a collection of objects inside containers.

Each object is composed of a binary blob and metadata,

including a name, ID, dimensions, time of data generation,

ownership, etc [8]. Large objects are partitioned into smaller

regions that are defined by starting offsets in the object,

element counts, and data sizes. A region is the primary way to

interface with data; it can reside in any layer of the memory

hierarchy (i.e., GPU memory, CPU memory, NVMe, disk,

etc.) [9]. This approach enables a simple programming model

to interface with data while relying on a flexible runtime to

support a deep memory hierarchy. In this paper, we build

on this object data model abstraction to enable an extensible

computation framework.

3231

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:23:47 UTC from IEEE Xplore. Restrictions apply.

0.0 0.1 0.2 0.3 0.4 0.5
(Absolute) Error Bounds

20

40

60
C

om
pr

es
si

on
 R

at
io

sz2
sz3

0.0 0.1 0.2 0.3 0.4 0.5
(Absolute) Error Bounds

0.60

0.65

0.70

0.75

C
om

pr
es

si
on

 T
im

e
(s

)

sz2
sz3

0.0 0.1 0.2 0.3 0.4 0.5
(Absolute) Error Bounds

50

60

70

80

P
S

N
R

 (d
B

)

sz2
sz3

(a) QCLOUD-IO from Hurricane ISABEL

10
1

10
0

10
1

10
2

10
3

(Absolute) Error Bounds

0

200

400

C
om

pr
es

si
on

 R
at

io

sz2
sz3

10
1

10
0

10
1

10
2

10
3

(Absolute) Error Bounds

4

6

C
om

pr
es

si
on

 T
im

e
(s

)

sz2
sz3

10
1

10
0

10
1

10
2

10
3

(Absolute) Error Bounds

80

100

120

140

160

P
S

N
R

 (d
B

)

sz2
sz3

(b) Nyx-Temperature-IO from Nyx

Fig. 2: Comparison of the performance of the SZ2 and SZ3 compression algorithms on two applications from SDRBench.

The left plots shows how compression ratio (Y-axis) increases with higher absolute error bound (X-axis). The center plots

show how the same error bounds (X-axis) can impact compression time. The right plots show how the quality metric, PSNR

(Y-axis), varies with the absolute error bound.

Fig. 3: Hurricane Isabel QRAIN data object with dimensions

100x500x500. The top two plots show the entire 500x500 data

object at simulation timesteps 0 and 100, respectively. The

bottom six plots show the first three 100x100 data regions in

the x-direction for bottom simulation timesteps.

B. Supporting In-transit Computations

The Runway framework supports computations, or oper-

ations on data that is in memory. There are two types of

lambdas: data transformations and data analysis. Data trans-

formations are defined as operations that change the input

Fig. 4: Overview of Runway which is implemented using a

client-server model.

data in some way. Examples of data transformations include

compression, decompression, encryption, and decryption. Data

analysis produces some new results based on the input. Anal-

ysis functions include computing statistical summaries (min,

max, histograms, etc.) of a region. Analysis functions can

also include calculating the data entropy of a dataset, a useful

metric for data reduction.

In addition to the built-in lambdas, Runway is designed to

be extensible with user-defined plugins. A common interface

exists for registering computation functions. Client-sided com-

putations operate on region-only data, whereas server-sided

computations operate on object-level data. The region-only

data are mapped to the application process address space, so no

new data need to be accessed. However, data objects can span

multiple data locations, such as across memories of distributed

compute nodes. Thus, accessing data objects requires the use

of data iterators to fetch data blocks.

A computation function can have multiple variants. For

example, multiple approaches currently exist to perform scien-

4232

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:23:47 UTC from IEEE Xplore. Restrictions apply.

tific data reduction. The most suitable compression method to

use depends heavily on the application and its data. Moreover,

each compression function might have different hardware-

specific implementations. To capture this, Runway allows for

multiple variants to be registered for a computation function.

There are two types of interfaces for a computation function:

Direct and Iterative. The direct interface supports region-

based functions, while the iterative interface supports object-

based functions. The direct interface is a straightforward

method to operate on in-transit data. Data are passed to the

direct interface function as a function argument through an

opaque pointer. Additionally, metadata about the data region

are passed through function arguments. The iterative interface

allows computation to operate on entire data objects without

needing to map to a smaller region. Since data objects can be

very large, and often exceed the memory capacity, data can

be traversed with iterators. In this case, the function argument

is composed of a data iterator that is used to retrieve the next

data block. The runtime will transparently retrieve data blocks

that might reside in the working memory of another node in

the distributed data server.

C. Supporting Heterogeneous Resources

Our runtime is built to take advantage of accelerators in

HPC systems. For computations, multiple variants can be

registered where each variant targets a different resource.

We can have a variant that is optimized for performing the

computation on the CPU and another on the GPU. This allows

the Runway system to decide which resource to utilize to

perform the computation.

1) GPU: Graphics processing units (GPUs) enable process-

ing data at very high throughput. Recent work has explored

directly interacting with data stored in the file system with

GPUs. Runway enables using the GPU as a data movement

accelerator. We support this by offloading computation, includ-

ing data transformations and data analysis, to the GPU when

compatible code variants are registered.

Figure 6 shows the performance differences between SZ

running on a recent data center CPU and cuSZ (i.e., a

CUDA implementation of SZ) running on recent data center

GPUs. We measure the overall compression throughput of

using an A30 GPU to be 2.5 GB/s. Although this is 2-3x

higher throughput than a multi-threaded CPU implementation,

GPU execution incurs the additional cost for transferring data

between the host and device memory.

2) DPU: Data processing units (DPUs) are typically used

in data centers to offload networking and communication tasks

from the host CPU. A SmartNIC is a type of network interface

card (NIC) that includes a programmable CPU that executes

the offloaded tasks. In this paper, we use the terms DPU and

SmartNIC interchangeably to refer to the NVIDIA Bluefield-2

device. This DPU includes an ARM Cortex-A72 CPU meant

to handle less compute intensive tasks, and Runway’s worker

instances can be fully offloaded to it. The Bluefield-2 DPU

also includes specialized accelerators for specific tasks, such as

data compression and hashing. Future versions of the Bluefield

DPU are planned to include a GPGPU as well.

To understand the performance from offloading a computa-

tion to the DPU, we profile a popular compression algorithm

on real-world scientific data. As expected, we found the

embedded ARM core on the DPU to be much slower than the

host CPU, especially for multi-threaded workloads. However,

the Bluefield-2 board includes a special-purpose accelerator of

DEFLATE, a lossless data compression algorithm that uses a

combination of LZ77 algorithm and Huffman coding. Lossy

compression algorithms make use of lossless compression as

the last step, which we found to be a bottleneck. We devised

a variant of SZ that uses ZLIB (DEFLATE), which can be

offloaded to the DEFLATE accelerator found on the Bluefield-

2 device.

D. Supporting Asynchronous Tasks

More complex computations can add latency to data op-

erations. Also, data transfers to discrete memory found on

accelerators can impose extra latency. In order to avoid de-

creasing the overall application throughput, we implement an

asynchronous event system. To automate targeting computa-

tion variants for different heterogeneous resources, Runway

uses a task scheduler. The task scheduler uses a simple cost

model that takes into account the overall latency to perform

an in-transit computation. We define the overall latency to

include the time to transfer the data to and from an accelerator

memory, as shown in Equation 1.

tlatency = th2d time + tcompute + td2h time (1)

The data transfer latency can be calculated based on the

peak interconnect bandwidth and data size. For synchronous

I/O, we keep a running average of past compute kernels’

execution time. This is sufficient to statically map to resources.

However, when we overlap an I/O phase with compute (asyn-

chronous I/O), the challenge of avoiding contention due to

oversubscribing resources becomes an issue. Thus, we propose

an empirical model to estimate the execution time of an in-

transit computation based on runtime data, such as tracking

device utilization during execution. We define ªdevice utiliza-

tionº as the percentage of time spent busy over a sampling

period.

To estimate the compute latency of performing an in-transit

compression, we find a correlation between device utilization,

data size, and compression latency. Equation 2 shows a cubic

polynomial which takes two input variables, xi,0 (device

utilization) and xi,1 (data size) to predict the compression

latency yi. The i parameter represents an index into the past

history of previous measurements. Using least squares of a

cubic polynomial, we can fit a line of best fit for the data

collected on each device. Each device we fit this model to

will have a different set of β0, β1, β2, and β3.

fest compute =⇒ yi = β0 ∗ x
3

i,0 + β1 ∗ x
2

i,1 + β2 ∗ xi,1 + β3 (2)

5233

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:23:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I: System Configuration

Testbed
Two-node system

NERSC Perlmutter
Large scale cluster

CPU
2x Intel Xeon ES-2530 v4,
10-Core

AMD EPYC 7763
64-Core

RAM 126GB DDR4 256GB DDR4

GPU NVIDIA A30 PCIe 24GB NVIDIA A100 SXM4 40GB

DPU NVIDIA Bluefield-2 -

OS Ubuntu 18.04.5 SUSE Linux 15

Drivers NVIDIA Driver 515.48.07, CUDA 11.7

TABLE II: Benchmarks used for Evaluation

Dataset Data Objects Entropy Dimensions Mem. Req.

Nyx Temperature 23.99
512x512x512

Single Precision
512 MB

Hurricane
ISABEL

QCLOUD 1.30
100x500x500

Single Precision
100 MBQRAIN 21.45

QVAPOR 24.19

QMCPACK
QMCPack
(einspline)

26.08
115x69x69x28

Single Precision
612 MB

S3D Pressure 26.77
500x500x500

Double Precision
1 GB

Miranda Density 22.5

96 regions of
3072x3072x3072
Single Precision

106 GB

In summary, the dynamic resource mapping scheme uses a

cost matrix that takes into account the following parameters: 1.

current data location, 2. transfer costs, 3. target data location,

and 4. available compute units. We use empirical data from

past runs to refine the model for future operation.

IV. EXPERIMENTAL SETUP

With a mixture of I/O kernels, computation kernels, and real

world data from scientific applications, we evaluate Runway

on a testbed system and a large-scale cluster. In this section,

we describe the systems and benchmarks in detail.

A. System Configuration

Perlmutter is a pre-exascale supercomputing system with

200 petaflops (PF) performance located at OLCF [18]. It is

composed of 1,536 GPU nodes and 3072 CPU nodes. Each

GPU-accelerated node features four NVIDIA A100 GPUs and

one AMD ºMilanº EPYC 7763 CPU. The memory subsystem

in each GPU node includes 40GB of HBM2 per GPU and

256GB of host DRAM. Each CPU node features two AMD

EPYC CPUs with 512GB of memory per node. The entire

compute system is connected to a HPE Cray’s ClusterStor

E1000 storage with 35 PB of storage space. It is an all-flash

file system, built on a Lustre file system, with an aggregate

bandwidth of > 5 TB/sec and 4 million IOPS (4 KiB random).

Our smaller testbed system is equipped with two Intel Xeon

CPUs, two NVIDIA A100 GPUs, and an NVIDIA Bluefield-

2 DPU. Each GPU has 24GB of HBM2 memory and 126GB

of host DRAM. The DPU has an embedded ARM Cortex-

A72 SoC with 16GB of DRAM. It has an Ethernet network

interface with dual ports of 25 Gb/s. Both the GPU and DPU

are connected over PCIe and serve as offload accelerators to

the host CPU. Refer to Table I for a summary of the system

configurations.

B. I/O Kernels

We implement I/O kernels using scientific datasets found

in the Scientific Data Reduction Benchmark, SDRBench [19].

SDRBench is a standard compression assessment benchmark

suite that contains multiple real-world scientific datasets across

different domains. Metadata, which document how to parse the

data from the binary files, are provided for each dataset. Refer

to Table II for a summary of the datasets used in this paper.

Nyx is a massively parallel, adaptive mesh, cosmology simula-

tion. During its execution, it stores simulation state composed

of particle data for checkpoint-restart of the simulation or post-

analysis visualization. The dataset found in SDRBench has

post-analysis Nyx simulation data composed of 3D arrays in

space of size 512x512x512. Each particle contains 6 fields

of single-precision floating-point data: velocity x, velocity

y, velocity z, temperature, dark matter density, and baryon

density. Our I/O kernel treats each field as a separate data

object. Since all of the fields have a similar data entropy, we

only show results for one of the data object (temperature) in

our paper.

Hurricane ISABEL is a climate simulation application. The

dataset contains 13 single-precision floating-point fields where

each field is a 3D array of 100x500x500. The first dimension

is a simulation timestep. We evaluate three of the fields, each

represented as a data object, in our I/O kernel. Of the three

fields we evaluate, QCLOUD has much lower data entropy

than QRAIN, and QVAPOR.

QMCPACK is an ab initio quantum MonteCarlo package for

analyzing the electronic structure of atoms, molecules, and

solids. In this dataset, there is one field called ’einspline’,

which represents the state stored in memory during the sim-

ulation. In our I/O kernel, we represent this field as a single-

precision floating-point data object with size 115x69x69x288.

The first three dimensions represent the x,y,z coordinates and

the last one is orbital index.

S3D is a combustion simulation application. The dataset

contains 11 fields components each of which is a 3D array

of double-precision floating-point values of size 500x500x500.

We evaluate the pressure component as a separate data object

in our S3D-I/O kernel.

Miranda is a hydrodynamics simulation code used to study

instability growth of turbulent mixing. This dataset has a single

data object, density, from a late time step of a simulation

run on a 3072x3072x3072 uniform grid. The density data

object have been partitioned into 96 regions of dimensions

3072x3072x32. Some of the regions in this data set have zero

entropy (all have the same value).

C. Computation Kernels

Using Runway’s dynamic extensions, we implement inter-

faces to two error-bound lossy compression transforms: ZFP

and SZ. In addition to in-transit compression kernels, we also

utilize a compute kernel which computes π.

ZFP [12] is a lossy compression library for floating-point

data. It contains four critical steps: (1) partition data into

grids of 4d blocks; (2) convert each block to a fixed-point

6234

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:23:47 UTC from IEEE Xplore. Restrictions apply.

representation; (3) decorrelate values by applying orthogonal

transforms; (4) perform bit manipulation (an embedded coding

from MSB to LSB), then truncation. ZFP implements three

modes to bound compression error: fixed rate, fixed accuracy,

or fixed precision. The fixed rate mode compresses a block to

a fixed number of bits. The fixed precision mode compresses

to a variable number of bits but keeps the number of bit

planes fixed. The fixed accuracy mode compresses a block

with relation to a tolerated maximum error.

SZ [20] is a modular parametrizable lossy compressor frame-

work for scientific data. It contains four critical steps: (1)

predict data values based on a model; (2) apply linear quan-

tization; (3) perform variable-length encoding; (4) perform

lossless compression using existing algorithms. SZ provides

three modes to bound compression errors: absolute error

bound, relative error bound, and peak-to-signal noise ratio

(PSNR). cuSZ [13] is a CUDA implementation of SZ which

performs all of the algorithm steps on a GPU.

We propose dpuSZ as a DPU implementation of SZ that

utilizes the lossless compression acceleration of the NVIDIA

Bluefield-2. Due to its superior compression ratio and speed,

SZ3 uses Zstandard (ZSTD) by default to perform its lossless

compression [21]. However, we revisit using ZLIB as SZ’s

lossless compressor due to ZLIB being based on DEFLATE,

which is accelerated on the Bluefield-2 DPU.

BBP-π is a compute kernel that implements the Bailey-

Borwein-Plouffe (BBP) algorithm to calculate the n-th hex-

adecimal digit of π without calculating the first n − 1 digits

[22]. Although the BBP algorithm can calculate any arbitrary

digit of π, it still scales linearithmically, O(n log n). We use

this kernel to vary the utilization of compute units. This

enables us to explore how our dynamic resource mapping

strategy performs when overlapping a computation kernel

other than compression kernels. We implement two variants of

this algorithmÐan OpenMP implementation targeting multi-

core CPU and a CUDA implementation targeting a GPU.

V. EXPERIMENTAL EVALUATION

A. Accelerated Offloading

We first look at the performance of SZ compression on the

BlueField-2 DPU and the NVIDIA A100 GPUs available in

our testbed system.

DPU execution - Figure 5 shows the execution time break-

down of the critical steps of the SZ algorithm on DPU.

As discussed in Section IV-C, SZ is a modular compression

framework, which allows multiple implementations for dif-

ferent steps of the algorithm. In the figure, ZSTD identifies

the default SZ implementation; ZLIB is the version of SZ

that uses a software implementation of ZLIB in the lossless

compression step, and DPDK ZLIB is the version that uses the

DEFLATE accelerator available on DPU for this last step. For

all three versions, we have a single- and a 4-threaded OpenMP

implementation: the former using a single Arm core, and the

latter using all four Arm cores of the DPU (4 cores). As can

be seen, for ZSTD the lossless compression part of the SZ

algorithm has execution time comparable to the other steps.

0 1000 2000 3000 4000 5000
Execution Time (ms)

ZSTD

ZSTD
(4 cores)

ZLIB

ZLIB
(4 cores)

DPDK_ZLIB

DPDK_ZLIB
(4 cores)

S
Z3

 L
os

sl
es

s
M

od
e 46.38 MB/s

120.3 MB/s
21.02 MB/s

50.29 MB/s
63.13 MB/s

184.26 MB/s

Prediction & Quantization Coding Lossless

Fig. 5: Comparison of different modes of SZ (Y-axis) executed

on the DPU with a breakdown of execution time (X-axis) of

each step of the SZ algorithm. The QVAPOR data object from

the Hurricane ISABEL dataset is being compressed in-transit

with Runway. The compression throughput for each mode is

indicated on the right of each bar.

With ZLIB, software-implemented lossless compression is 6×

slower than ZSTD with similar compression ratio. However,

thanks to the hardware acceleration of DEFLATE on the DPU

[23], DPDK ZLIB is 27× faster than ZLIB. This improves

the overall compression throughput of the SZ algorithm by a

factor of 2.34× over the default ZSTD mode on the DPU.

Later, we will refer to this variant of SZ as dpuSZ3.

CPU vs. GPU vs. DPU compression - We now consider

three variants of SZ: (Variant 1) SZ3 targeting host CPU,

(Variant 2) dpuSZ3 targeting the DPU, and (Variant 3) cuSZ

targeting the GPU. With a breakdown of the cost of data

transfers and compression latency for each device, Runway can

decide which variant, thereby which device, to use at runtime.

Figure 6 plots the comparison between directly writing the

data to storage and performing in-transit compression with

each variant. As can be seen, using SZ on the QVAPOR

data object from the Hurricane ISABEL dataset improves the

I/O write latency due to having to write less data. However,

the compression latency of executing on the embedded cores

of the DPU results in an overall slowdown compared to

directly writing with no compression. On the other hand, using

CPU and GPU compression can be beneficial to overall I/O

performance despite the compression overhead.

Based on the data transfer costs between CPU and accel-

erator (GPU or DPU) and the compression latency, a static

resource mapping method would choose the GPU-based cuSZ

variant. However, this mapping decision might not be the best

one if the GPU is being utilized by application code or other

compression tasks. Static resource mapping makes sense when

performing I/O synchronously or when the offload target is not

fully utilized. When performing I/O asynchronously, in-transit

data compression can contend with the computation phase of

the application.

B. Per-region Tuning

Here, we evaluate Runway’s non-uniform compression

scheme where each region is independently tuned instead of

performing uniform compression on the whole data object.

In Figure 7, we show how the entropy for a 3072x3072x32

region of the 3072x3072x3072 Density object in the Miranda

7235

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:23:47 UTC from IEEE Xplore. Restrictions apply.

0 100 200 300 400 500 600
Execution Time (ms)

No Compression
(Variant 0)

SZ3
(Variant 1)

dpuSZ3
(Variant 2)

cuSZ
(Variant 3)I/O

 O
pe

ra
tio

n
Host to Device Compression Device to Host Write

Fig. 6: Comparison of different variants of SZ (X-axis) ex-

ecuted on the testbed using Runway on the QVAPOR data

object from the Hurricane ISABEL dataset. Variant 0 does

not use compression, while variants 1, 2 and 3 perform com-

pression on CPU, DPU and GPU, respectively. A breakdown

of data transfers to and from the device, compression latency,

and write time is indicated by the type of shaded region on

the stacked bar plot.

dataset is not-uniform. This type of entropy in a data object

showcases the benefit for performing non-uniform compres-

sion. In Figure 8, we plot the compression ratios achieved

when performing uniform compression for the data object

vs non-uniform compression for each region. When the en-

tropy varies dramatically within the region, the non-uniform

compression performs about 15% more compressibility. When

the entropy is similar in the region, there is little difference

in overall achieved compression ratio. The main takeaway

from this experiment is that predictors work better locally,

especially when entropy varies dramatically within a region.

This is evident when we skip the lossless stage for SZ with

the SZ BEST SPEED compression mode; there is a 46.5%

improvement in compressibility.

0 10 20 30 40 50 60 70 80 90
Region with dimensions 3072x3072x32

0
10
20

32
-b

it
E

nt
ro

py

Fig. 7: The 32-bit Entropy for each 3072x3072x32 region of

the 3072x3072x3072 Density object in the Miranda dataset.

The x-axis is the region number in the z-dimension.

0 1 2 3 4 5
Region with dimensions 3072x3072x512

10
1

10
2

10
3

C
om

pr
es

si
on

R
at

io 79
.4

4x
93

.7
9x

22
.1

7x
33

.1
1x

6.
11

x
6.

18
x

5.
54

x
5.

57
x

3.
38

x
3.

37
x

3.
32

x
3.

32
x

3.
41

x
3.

38
x

3.
35

x
3.

34
x

6.
46

x
6.

38
x

5.
79

x
5.

66
x

12
6.

41
x

19
3.

87
x

24
.2

4x
45

.3
1x

Compression Mode
SZ_BEST_COMPRESSION, uniform
SZ_BEST_COMPRESSION, non-uniform

SZ_BEST_SPEED, uniform
SZ_BEST_SPEED, non-uniform

Fig. 8: Comparison of uniform compression and non-

uniform compression with SZ on the Miranda dataset.

SZ BEST COMPRESSION optimizes for compression ratio,

while SZ BEST SPEED skips the lossless stage. The Y-axis

(log-scale) shows the compression ratio achieved (also noted

on top of each bar). The X-axis specifies a 3072x3072x512

region of the Density object in the dataset.

We also evaluate how Runway performs at large scale while

comparing it with an existing solution of using HDF5 filters.

Figure 9 shows how I/O scales exponentially and quickly

becomes a bottleneck at larger scale. In this experiment, we

increase the amount of data proportionally to the number of

MPI ranks (i.e., weak scaling). Performing SZ3 compression

in-transit with HDF5 or Runway on the entire data object im-

proves the overall I/O latency dramatically. We also compare

with performing per-region based non-uniform compression

which allows each region to be compressed independently.

Note, the Y-axis is plotted with a log-scale. Per region

compression exposes additional parallelism and relaxes the

error bound for regions that are highly compressible, thus we

observe slightly better latency with non-uniform compression.

At scale, non-uniform mode improves I/O time by around 20%

over uniform mode.

C. Dynamic Resource Mapping

With the experiments in this section, we make a case

for the need to implement dynamic resource mapping when

performing in-transit compression asynchronously. The set of

experiments in Figure 10 show multiple instances of the same

I/O kernel using the same resource to perform SZ compression.

It is clear that device utilization correlates with compression

latency. In some cases when the device utilization is above

a threshold, such as 0.7, the compression latency is 2-3×

slower to perform on the GPU. We rely on the model proposed

in Section III-D to predict the compression latency based on

empirical data obtained in all of these multiple compression

instances.

Figure 11 shows how the model fits with the data obtained

on the testbed GPU. Since this is a 2D projection of a cubic

polynomial model, the prediction line appears to be disjoint.

We plot the same data with a 3D projection in Figure 12a. In

32 64 128 256 512 1024
MPI Ranks

10
3

10
4

10
5

I/O
 T

im
e

(m
s)

15
.4

%

14
.9

%

14
.5

%

14
.6

%

20
.4

%

19
.0

%

Compression Time Write Time

HDF5 HDF5+
SZ3 Filter

Runway+SZ3
Uniform

Runway+SZ3
Non-uniform

Fig. 9: Comparison of scalability of Runway at large scale on

Perlmutter when performing in-transit SZ3 compression on the

Pressure data object from the S3D dataset. The total I/O time

is shown on the Y-axis (log-scale), and the number of MPI

ranks is shown on the X-axis. The stacked bar plot shows how

much time is spent on SZ3 compression and in performing the

write operation. On top of each bar, we show the percentage

improvement for non-uniform mode over uniform mode.

8236

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:23:47 UTC from IEEE Xplore. Restrictions apply.

2 4 6 8 10 12 14 16 18 20 22
of QCLOUD-IO

0

1
M

ax
 C

P
U

 U
til

.

2 4 6 8 10 12 14 16 18 20 22
of QMCPACK-IO

0

1

M
ax

 C
P

U
 U

til
.

2 4 6 8 10 12 14 16 18 20 22
of QRAIN-IO

0

1

M
ax

 C
P

U
 U

til
.

2 4 6 8 10 12 14 16 18 20 22
of nyx-temperature-IO

0

1

M
ax

 C
P

U
 U

til
.

1.00

1.25

C
om

pr
es

si
on

Ti
m

e
(s

)

10.0

12.5

C
om

pr
es

si
on

Ti
m

e
(s

)

1.50

1.75

C
om

pr
es

si
on

Ti
m

e
(s

)

6

7

C
om

pr
es

si
on

Ti
m

e
(s

)

(a) SZ on Testbed

2 4 6 8 10 12 14 16 18 20 22
of QCLOUD-IO

0

1

M
ax

 C
P

U
 U

til
.

2 4 6 8 10 12 14 16 18 20 22
of QMCPACK-IO

0

1

M
ax

 C
P

U
 U

til
.

2 4 6 8 10 12 14 16 18 20 22
of QRAIN-IO

0

1

M
ax

 C
P

U
 U

til
.

2 4 6 8 10 12 14 16 18 20 22
of nyx-temperature-IO

0

1

M
ax

 C
P

U
 U

til
.

0.5

0.6

0.7

C
om

pr
es

si
on

Ti
m

e
(s

)

4.5

5.0

C
om

pr
es

si
on

Ti
m

e
(s

)

0.6

0.8

C
om

pr
es

si
on

Ti
m

e
(s

)

3.00

3.25

C
om

pr
es

si
on

Ti
m

e
(s

)

(b) SZ on Perlmutter

2 4 6 8 10 12
of QCLOUD-IO

0

1

M
ax

 G
P

U
 U

til
.

2 4 6 8 10 12
of QMCPACK-IO

0

1

M
ax

 G
P

U
 U

til
.

2 4 6 8 10 12
of QRAIN-IO

0

1

M
ax

 G
P

U
 U

til
.

2 4 6 8
of nyx-temperature-IO

0

1

M
ax

 G
P

U
 U

til
.

40

50

C
om

pr
es

si
on

Ti
m

e
(m

s)

50

75

C
om

pr
es

si
on

Ti
m

e
(m

s)

10

20

C
om

pr
es

si
on

Ti
m

e
(m

s)

40

50

C
om

pr
es

si
on

Ti
m

e
(m

s)

(c) cuSZ on Testbed

2 4 6 8 10
of QCLOUD-IO

0

1

M
ax

 G
P

U
 U

til
.

2 4 6 8 10
of QMCPACK-IO

0

1

M
ax

 G
P

U
 U

til
.

2 4 6 8 10
of QRAIN-IO

0

1

M
ax

 G
P

U
 U

til
.

2 4 6 8 10
of nyx-temperature-IO

0

1

M
ax

 G
P

U
 U

til
.

20

30

C
om

pr
es

si
on

Ti
m

e
(m

s)

20

25

C
om

pr
es

si
on

Ti
m

e
(m

s)

5

10

15

C
om

pr
es

si
on

Ti
m

e
(m

s)

30

40

C
om

pr
es

si
on

Ti
m

e
(m

s)

(d) cuSZ on Perlmutter

Fig. 10: Each plot measures how the processing unit utilization (left Y-axis, indicated as bars) and SZ compression latency

(right Y-axis, indicated as points) scales when increasing the number of I/O kernel instances (X-axis). For each point, we plot

the range of compression latency measured for all instances.

the 3D projection, we do not color code each data point with

the type of data object being compressed as we did in Figure

11. In Figure 12, we plot the prediction estimated with our

empirical cost model as a surface plot, which varies with the

device utilization and data size for each data object. Each data

point represented as a circle on the plot indicates a separate

I/O call with in-transit compression enabled.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Max GPU Utilization

0

50

100

150

200

E
xe

cu
tio

n
Ti

m
e

(m
s) QCLOUD QMCPACK QRAIN QVAPOR NYX

Fig. 11: Changes in SZ compression time (Y-axis) based on

the GPU utilization (X-axis). The dashed line is our prediction

based on all past measurements done on the GPU on the

testbed system. This is a 2D projection of GPU utilization

and data size (not shown). Each data object from all the runs

are highlighted are color-coded.

The correlation for device utilization, data object size, and

compression latency is adequate for the GPU device utilization

with a r2 = 0.6 and r2 = 0.5 on the A30 and A100, respec-

tively. For the CPU utilization, the correlation is very strong

with a r2 = 0.96 and r2 = 0.99, on the Intel Xeon and AMD

Epyc, respectively. Since the GPU performs compression very

fast compared to that on CPU, especially for smaller data

sizes (few milliseconds), the observed performance variability

is higher compared to the CPU correlation. This is a limitation

of using nvidia-smi which supports a polling interval of 1 ms or

above to monitor the GPU utilization. In practice, data sizes for

real world applications will be much larger, so the variability

would be less with the same GPU utilization monitor.

Furthermore, the model can be used to predict the compres-

sion latency even when a different compute kernel is running

concurrently, such as BBP-π. In Figure 13, we run together

an in-transit SZ compression of QVAPOR-IO data object and

compute BBP-π algorithm. The prediction model indicates the

compression latency roughly doubles after 0.7 GPU utilization.

Our dynamic resource mapping scheme takes advantage of

this modeling to determine which device to utilize to reduce

contention.

When performing asynchronous I/O, the DPU can be a

better offload target when the host CPU and GPU are busy.

In Figure 14, we demonstrate three different scenarios: (1)

QVAPOR-IO performing an in-transit SZ compression while

co-running a CPU version of BBP-π; (2) QVAPOR-IO per-

forming an in-transit cuSZ compression while co-running a

GPU version of BBP-π; (3) QVAPOR-IO performing an in-

transit dpuSZ compression while co-running both a CPU and

GPU version of BBP-π. When we increase the workload on

the CPU and GPU (compute more digits of BBP-π), we see a

speedup by offloading compression to the DPU. At 64k digits

of π, the overall application time is 9% faster.

9237

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:23:47 UTC from IEEE Xplore. Restrictions apply.

Max GPU Util.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Data
 Size

 (M
B)

100
200

300
400

500
600

C
om

pr
es

si
on

 T
im

e
(m

s)

20
40
60
80
100
120
140
160

(a) GPU (A30) on testbed. r2 is 0.6.

Max GPU Util.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Data

 Size
 (M

B)

100
200

300
400

500
600

C
om

pr
es

si
on

 T
im

e
(m

s)

10

20

30

40

50

(b) GPU (A100) on Perlmutter. r2 is 0.5.

Max CPU Util.

0.5 0.6 0.7 0.8 0.9 1.0 Data Size (MB)
100 200 300 400 500 600

C
om

pr
es

si
on

 T
im

e
(s

)

0

2

4

6

8

10

12

14

(c) CPU (Intel Xeon) on testbed. r2 is 0.96.

Max CPU Util.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Data Size (MB)
100 200 300 400 500 600

C
om

pr
es

si
on

 T
im

e
(s

)

1

2

3

4

5

(d) CPU (AMD Epyc) on Perlmutter. r2 is 0.99.

Fig. 12: Comparison of correlation among our prediction model, device utilization, and data size of each data object (X-axis

and Y-axis) with the SZ compression latency on the vertical Z-axis. Each I/O with in-transit compression is plotted as a circle

in each plots. The prediction is plotted as a surface plot in the 3D projection.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Max GPU Utilization

0

50

100

150

200

C
om

pr
es

si
on

Ti
m

e
(m

s)

Fig. 13: Multiple workloads (QVAPOR-IO and BBP-π) shar-

ing same resource (A30 GPU). We vary the BBP-π duration

to vary the GPU utilization (X-axis). We show how increasing

the GPU utilization will increase the compression latency (Y-

axis). The predicted time based on our prediction is shown as

a dotted line.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce Runway, a client-server I/O

runtime capable of in-transit data transformation and analysis.

With Runway, we explore the benefits of offloading in-transit

compression to two accelerators: GPU and DPU. We introduce

a cost model to determine the target resource for a data

transformation task dynamically based on runtime parameters.

We evaluate our cost model with extensive experiments on

real-world scientific datasets. Our evaluation and analysis

have highlighted the need to implement a dynamic resource

mapping scheme while performing in-transit data compression

asynchronously. Finally, we explore per-region compression,

which exposes additional parallelism and improves latency.

In future, we plan to evaluate Runway on workflow-based

science applications that use the data object abstraction to save

simulation state for checkpointing or visualization.

VII. ACKNOWLEDGEMENTS

This manuscript has been authored by authors at North

Carolina State University supported under National Science

Foundation’s award CNS-1812727. This research was partially

supported by The Ohio State University under a subcontract

(GR130303), which was supported by the U.S. Department

of Energy (DOE), Office of Science, Office of Advanced

Scientific Computing Research (ASCR) under contract number

DE-AC02-05CH11231 with LBNL. This research also used

resources of the National Energy Research Scientific Comput-

ing Center, a DOE Office of Science User Facility supported

by the Office of Science of the U.S. Department of Energy

under Contract No. DE-AC02-05CH11231 and the resources

of the Oak Ridge Leadership Computing Facility at the Oak

Ridge National Laboratory, which is supported by the Office

of Science of the U.S. Department of Energy under Contract

No. DE-AC05-00OR22725.

10238

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:23:47 UTC from IEEE Xplore. Restrictions apply.

4096 8192 16384
BBP- on CPU

0

2000

4000

6000

To
ta

l T
im

e
(m

s)

4096 8192 16384 32768 65536
BBP- on GPU

0

200

400

600

800

1000

To
ta

l T
im

e
(m

s)

Compression Device
CPU GPU DPU

4096, 12288 4096, 28672 4096, 61440
BBP- on {CPU, GPU}

0

200

400

600

800

1000

To
ta

l T
im

e
(m

s)

Fig. 14: We compare the total time for performing an in-transit SZ compression asynchronously for QVAPOR-IO dataset while

performing an BBP-π computation. The x-axis shows which device computes BBP-π and number of digits. The legend on top

of the figure shows which device performs the in-transit compression.

REFERENCES

[1] M. Folk et al., ªAn overview of the HDF5 technology suite and its
applications,º in EDBT/ICDT, 2011, pp. 36±47.

[2] Q. Liu et al., ªHello ADIOS: the challenges and lessons of developing
leadership class I/O frameworks,º Concurrency and Computation:

Practice and Experience, vol. 26, no. 7, pp. 1453±1473, 2014, ISSN:
1532-0634.

[3] W. Zhang et al., ªAmrex: Block-structured adaptive mesh refinement
for multiphysics applications,º The International Journal of High

Performance Computing Applications, vol. 35, no. 6, pp. 508±526,
2021. DOI: 10.1177/10943420211022811. [Online]. Available: https:
//doi.org/10.1177/10943420211022811.

[4] L. Logan et al., ªPmemcpy: A simple, lightweight, and portable
i/o library for storing data in persistent memory,º in 2021 IEEE

International Conference on Cluster Computing (CLUSTER), 2021,
pp. 664±670. DOI: 10.1109/Cluster48925.2021.00098.

[5] S. Jin et al., ªImproving prediction-based lossy compression dra-
matically via ratio-quality modeling,º The 38th IEEE International

Conference on Data Engineering (ICDE 2022), [Online]. Available:
https://par.nsf.gov/biblio/10319819.

[6] J. Ravi et al., ªGpu direct i/o with hdf5,º in 2020 IEEE/ACM Fifth

International Parallel Data Systems Workshop (PDSW), 2020, pp. 28±
33. DOI: 10.1109/PDSW51947.2020.00010.

[7] I. Burstein, ªNvidia data center processing unit (dpu) architecture,º
in 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1±20. DOI:
10.1109/HCS52781.2021.9567066.

[8] H. Tang et al., ªToward scalable and asynchronous object-centric
data management for hpc,º in 2018 18th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2018,
pp. 113±122. DOI: 10.1109/CCGRID.2018.00026.

[9] H. Tang et al., ªParallel query service for object-centric data manage-
ment systems,º in 2020 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), 2020, pp. 406±415.
DOI: 10.1109/IPDPSW50202.2020.00076.

[10] H. Tang et al., ªTransparent Asynchronous Parallel I/O using Back-
ground Threads,º IEEE Transactions on Parallel and Distributed

Systems, 2021.
[11] L. C. V. Real et al., ªUser-defined functions for HDF5,º CoRR,

vol. abs/2109.11709, 2021. arXiv: 2109.11709. [Online]. Available:
https://arxiv.org/abs/2109.11709.

[12] J. Diffenderfer et al., ªError analysis of zfp compression for floating-
point data,º SIAM Journal on Scientific Computing, vol. 41, no. 3,
A1867±A1898, 2019. DOI: 10 .1137/18M1168832. [Online]. Avail-
able: https://doi.org/10.1137/18M1168832.

[13] J. Tian et al., ªCusz: An efficient gpu-based error-bounded lossy com-
pression framework for scientific data,º in Proceedings of the ACM

International Conference on Parallel Architectures and Compilation

Techniques, ser. PACT ’20, Virtual Event, GA, USA: Association for
Computing Machinery, 2020, pp. 3±15, ISBN: 9781450380751. DOI:
10.1145/3410463.3414624. [Online]. Available: https://doi.org/10.
1145/3410463.3414624.

[14] D. Krasowska et al., ªExploring lossy compressibility through sta-
tistical correlations of scientific datasets,º in 2021 7th International

Workshop on Data Analysis and Reduction for Big Scientific Data

(DRBSD-7), 2021, pp. 47±53. DOI: 10.1109/DRBSD754563.2021.
00011.

[15] R. Underwood et al., ªOptzconfig: Efficient parallel optimization of
lossy compression configuration,º IEEE Transactions on Parallel and

Distributed Systems, vol. 33, no. 12, pp. 3505±3519, 2022. DOI: 10.
1109/TPDS.2022.3154096.

[16] X. Liang et al., ªToward feature-preserving vector field compression,º
IEEE Transactions on Visualization and Computer Graphics, pp. 1±
16, 2022. DOI: 10.1109/TVCG.2022.3214821.

[17] J. Soumagne et al., ªAdvancing rpc for data services at exascale,º
IEEE Data Eng. Bull., vol. 43, pp. 23±34, 2020.

[18] NERSC, Perlmutter, NERSC, 2022. [Online]. Available: https://www.
nersc.org/systems/perlmutter.

[19] K. Zhao et al., ªSdrbench: Scientific data reduction benchmark for
lossy compressors,º in 2020 IEEE International Conference on Big

Data (Big Data), Los Alamitos, CA, USA: IEEE Computer Society,
Dec. 2020, pp. 2716±2724. DOI: 10 . 1109 / BigData50022 . 2020 .
9378449. [Online]. Available: https : / /doi . ieeecomputersociety.org /
10.1109/BigData50022.2020.9378449.

[20] X. Liang et al., ªSz3: A modular framework for composing
prediction-based error-bounded lossy compressors,º IEEE Transac-

tions on Big Data, pp. 1±14, 2022. DOI: 10.1109/TBDATA.2022.
3201176.

[21] Zstd, 2015. [Online]. Available: https: / /github.com/facebook/zstd/
releases.

[22] D. H. Bailey, ªThe bbp algorithm for pi,º Sep. 2006. DOI: 10.2172/
983322. [Online]. Available: https://www.osti.gov/biblio/983322.

[23] Intel DPDK, Data plane development kit project page, 2022. [Online].
Available: https://www.dpdk.org.

11239

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:23:47 UTC from IEEE Xplore. Restrictions apply.

