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Abstract—Quantum circuit simulations enable researchers to
develop quantum algorithms without the need for a physical
quantum computer. Quantum computing simulators, however,
all suffer from significant memory footprint requirements, which
prevents large circuits from being simulated on classical super-
computers. In this paper, we explore different lossy compression
strategies to substantially shrink quantum circuit tensors in the
QTensor package (a state-of-the-art tensor network quantum
circuit simulator) while ensuring the reconstructed data satisfy
the user-needed fidelity.

Our contribution is fourfold. (1) We propose a series of
optimized pre- and post-processing steps to boost the compression
ratio of tensors with a very limited performance overhead. (2) We
characterize the impact of lossy decompressed data on quantum
circuit simulation results, and leverage the analysis to ensure
the fidelity of reconstructed data. (3) We propose a configurable
compression framework for GPU based on cuSZ and cuSZx, two
state-of-the-art GPU-accelerated lossy compressors, to address
different use-cases: either prioritizing compression ratios or
prioritizing compression speed. (4) We perform a comprehensive
evaluation by running 9 state-of-the-art compressors on an
NVIDIA A100 GPU based on QTensor-generated tensors of
varying sizes. When prioritizing compression ratio, our results
show that our strategies can increase the compression ratio
nearly 10 times compared to using only cuSZ. When prioritizing
throughput, we can perform compression at the comparable
speed as cuSZx while achieving 3-4× higher compression ratios.
Decompressed tensors can be used in QTensor circuit simulation
to yield a final energy result within 1-5% of the true energy
value.

Index Terms—compression, quantum computing, GPU

I. INTRODUCTION

Quantum circuit simulators enable researchers to perform

a series of non-trivial research tasks [1], [2], including ver-

ification of quantum advantage and supremacy claims, veri-

fication of quantum devices, co-design quantum computers,

development of new quantum algorithms, and finding optimal

parameters for variational quantum algorithms. One of the

most advanced methods to simulate quantum circuits is using

tensor networks [3], because it provides a fairly efficient

way to manage and store the data. In this model, quantum

circuits are formed as tensor networks, where nodes and edges

represent tensors and the indices between tensors, respectively.

In this work, we adopt the QTensor [4] package – an open-

source tensor network simulator, which involves two main

steps in its simulation: finding an optimal tensor contraction

sequence and actual contraction (multiplication) of tensors.

The finding of the contraction sequence is done using various

algorithms that treat the tensor network as a graph. The

contraction sequence is a sequence of sets of tensor indices

that are contracted at each contraction step. The actual tensor

network contraction is typically done using a vendor-provided

tensor library like cuTensor from NVIDIA [5].

While the QTensor package improves performance over pre-

vious approaches of tensor network circuit simulation [6], [7],

memory can quickly become a bottleneck in the simulation of

large circuits. QTensor uses the bucket elimination algorithm

[8], which groups tensors into buckets and then contracts

buckets one by one. Each bucket contains tensors that are

indexed by the corresponding tensor index. As the bucket

elimination algorithm advances, tensors can grow too large

to fit in memory. The tensors we examine range from 0.5 GB

to 4 GB, with simulations requiring many such tensors. Larger

circuits require even larger tensors which can strain memory

resources, especially for GPU-based simulations where GPU

memory is on the scale of tens of gigabytes for a single GPU.

For extreme-scale simulations of more complex quantum

circuits, hundreds to thousands of GPUs are required, with

tensor memory requirements becoming exponentially more

demanding.

A straightforward solution to resolve this memory space

issue is using data compression to shrink the memory foot-

print, which, however, faces several key challenges. First of

all, lossless compressors [9]–[12] can guarantee the lossless

nature of the reconstructed data but suffer from very low

compression ratios [13]. In comparison, lossy compressors can

significantly reduce the data size, while the data distortion

introduced during compression may significantly affect the
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analysis results. Second, quantum simulation datasets are fairly

high-dimensional (e.g., 26+ dimensions in a dataset) and the

degree of data similarity is very low along each dimension.

As such, quantum computing simulation datasets are treated

as 1D data arrays, while the existing lossy compressors (such

as SZ [14], ZFP [15]) are designed and optimized for multi-

dimensional datasets so that they suffer very low compression

ratios on quantum computing simulation data compression.

For example, cuSZ [16] and cuSZx [17] with a relative

error of 0.005 can only obtain compression ratios of 30

and 15-20 in the compression of quantum tensor datasets,

respectively. On the other hand, since lossy compressors

typically consist of multiple processing stages, there is an

opportunity to tailor the compression pipeline to 1D datasets.

Moreover, compression ratio (the ratio of raw data size to

compressed data size) and compression/decompression speed

cannot be both optimized together, which forces the definition

of specific performance/compression tradeoffs for different use

cases. Tensor compression can address several important use

cases including: 1) reducing the footprint of large intermediate

tensors during bucket elimination to free space for other

tensors’ contractions, 2) allow for tensor slices to occupy less

memory during sliced contraction, and 3) alleviate storage

costs of tensors generated during a partial contraction.

In this paper, we propose a novel GPU-based lossy compres-

sion framework that can compress floating-point data stored in

quantum circuit tensors with optimized speed, while keeping

the simulation result within a reasonable error bound after

decompression. The compressed data can be decompressed

when the tensors are needed during the computation. The key

contributions are summarized as follows.

• We develop a novel configurable compression framework

based on the characteristics of quantum circuit tensor

datasets generated by QTensor [4]. Each compression

pipeline of the framework is composed of three criti-

cal stages: data pre-processing, data compression, and

data post-processing. The compression framework can

adapt to different use cases in practice: either prioritiz-

ing the compression ratio or maximizing the compres-

sion/decompression throughput.

• We develop a variety of implementation choices for GPU

that compose the lossy compression framework.

• We provide an in-depth analysis of the effects of lossy

compression on quantum circuit simulation results, which

is then leveraged to ensure the reconstructed data fidelity.

• We perform a comprehensive evaluation using an

NVIDIA A100 GPU, which is fed with tensors of varying

size and composition of values, based on up to 9 different

compression strategies and analyze the data compression

ratio, throughput, and resulting errors. Experiments show

that our high-compression ratio compression pipeline

with user-satisfied error-bound settings can yield nearly

a 10× increase in compression ratio over two state-of-

the-arts GPU-accelerated compression frameworks: cuSZ

[16] and cuSZx [17]. When the throughput is prioritized,

our high-speed compression pipeline exhibits comparable

performance while still yielding 3-4× improvement in

compression ratio over cuSZx.

II. BACKGROUND

A. Quantum Circuit Tensors

Quantum circuit simulation usually computes either prob-

ability amplitudes for some quantum state of the system in

question or some integral value that characterizes this state.

The most common value in use is the energy of the system

[4]. The key idea of tensor network-based simulators is to

represent the simulation result as a tensor network. A quantum

gate or state is represented as a tensor, and indices in the tensor

network refer to which index of a bitstring a gate operates on.

It is often useful to view a tensor network as a graph where

tensors are nodes, and tensor indices are edges. If two tensors

have the same index, they are connected by an edge. If an

index is shared by more than two tensors, the graph becomes

a hypergraph. QTensor prefers another notation where nodes

and edges switch places: each node is a tensor index, and

each (hyper-) edge is a tensor, as shown in Fig. 1. To perform

the contraction, QTensor creates a list of buckets where each

bucket has tensors indexed by a common index, i.e. edges of a

particular node. Each contraction step contracts a bucket and

produces a single tensor. A contraction step essentially is a

series of tensor multiplications followed by a summation over

a fixed index. As the bucket elimination algorithm advances,

tensors tend to grow in size, straining the memory resources of

the simulator. Fig. 1 shows how QTensor converts a quantum

circuit to a tensor network and where tensors reside in the

network. In QTensor’s notation, nodes refer to unique indices,

and edges denote a tensor.

Fig. 1: Tensor networks of quantum circuits, typical notation above
and QTensor notation below. sti denotes the state of qubit i at cycle
t. cZ is the tensor corresponding to the cross-connection of s11 & s

1

2.

For QTensor and other simulators, tensors are composed

of complex numbers with floating point values. Tensors with

dimensionality d contain 2d complex numbers, many of which

can be values close to zero. Tensors are often high-dimensional

but can be flattened to one dimension since there is low

data similarity across a dimension. Casting tensors to other

dimensions, such as 2-D or 3-D, does not lead to the increased

similarity between adjacent data points. Fig. 2 illustrates the

data of an example tensor with d = 22 flattened to one

dimension. As seen in the right plot of Fig. 2, there can
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exist a periodicity of data points as well as relative sparsity.

Most values are relatively small in magnitude compared to the

maximum and minimum tensor values. Tensor data also lacks

“smoothness” in that adjacent data points can be drastically

different in value from each other.

Fig. 2: Flattened tensor data with real and imaginary components
plotted, tensor of dimension 22. The left plot shows all data points,
and the right plot shows the first 128 data points.

B. Lossy Compression with (cu)SZ and (cu)SZx

In this work, we adapt two state-of-the-art compressors –

(cu)SZ [18] [19] [14] [16] and (cu)SZx [17] for quantum tensor

data due to their respective high compression ratio and high

GPU speed capabilities. We do not use lossless compressors

because their compression ratios are very low for scientific

datasets. By contrast, lossy compressors incorporate point-

wise error control that guarantees decompressed values are

within the user-defined error-bounded range centered on their

corresponding uncompressed value. Thus, lossy compressors

can achieve higher compression ratios for scientific floating

point data compared to their lossless counterparts. Since cuSZ

and cuSZx are the GPU versions of SZ and SZx, respectively,

we mainly describe SZ and SZx in the following text.

SZ adopts a prediction-based compression model, which

includes three critical stages: (1) data prediction, (2) linear-

scale quantization based on the user-specified error bound,

(3) encoding the quantization code by lossless compression

techniques such as Huffman encoding and dictionary encod-

ing. The core step of SZ is the data prediction because

higher data prediction accuracy can generate a sharper dis-

tribution of quantization codes, leading to higher efficiency

in Huffman/dictionary encoding accordingly. As such, the key

difference between various SZ versions is mainly in the dis-

tinct prediction methods. However, the most recent prediction

methods [14] in SZ, such as dynamic spline interpolation, are

heavily dependent on the high smoothness of the data, which

generally works for multi-dimensional datasets instead of 1D

data arrays. SZ still adopts a very primitive prediction method

– 1D Lorenzo predictor to deal with the 1D data compression,

as illustrated in Fig. 3.

Compared with SZ, SZx is designed for the purpose of

extremely high throughput, so it has no data prediction step

and Huffman/dictionary encoding step, which are the main

bottleneck in SZ. Instead, SZx is composed of two critical

steps: (1) dividing the dataset into equal-sized data chunks

(a.k.a., blocks) and checking whether the data values in each

chunk can be represented by one data value (called constant

Fig. 3: Illustration of SZ: for data point 5, quantization code is set
to 1 based on its prediction and quantization interval (2ǫ)

chunk if yes) or not (named non-constant chunk), as demon-

strated in Fig. 4. (2) compressing the non-constant data chunks

by counting the number of identical leading bytes (a.k.a.,

XOR leading-zero method) and truncating the insignificant

bitplanes based on user-specified error bound. Since all the

involved operations are only bitwise operations, addition, and

subtraction, (cu)SZx is extremely fast in both compression and

decompression: ∼4× as fast as SZ/ZFP on CPU and∼10×
as fast as cuSZ/cuZFP on GPU.

Fig. 4: Illustration of SZx

III. RELATED WORK

There have been many existing generic error-bounded lossy

compressors [15], [17], [18], [20], [21] proposed for the

compression of scientific datasets. ZFP [15] is an orthogonal

transform-based lossy compressor supporting two types of

error controls: absolute error bound and precision mode.

Compared with ZFP, SZ adopts the prediction-based lossy

compression framework, which can better adapt to users’

requirements and datasets as it allows to customize of a partic-

ular data predictor based on the characteristics of the datasets.

FPZIP [20] is another prediction-based lossy compressor that

adopts a different prediction method and a different encoding

strategy. MGARD [21] is a Quantity of Interest (QoI) oriented

lossy compressor, allowing users to specify a linear function

to preserve during the compression. SZx [17] is an error-

bounded lossy compressor designed to address the requirement

of extremely high compression/decompression speed, so it

achieves much lower compression ratios than other compres-

sors such as SZ and ZFP. According to recent studies [17],

[18], [22], SZ is arguably the most efficient error-bounded

lossy compressor, especially for 1D datasets. Thus we mainly

compare our proposed approach with SZ and SZx in our

experiments without loss of generality.
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In addition to the generic compressors, there are also

some specific compression algorithms tailored for particular

applications. PaSTRI is a lossy compressor designed for

quantum chemistry electron repulsion integrals [22]. PaSTRI

divides input data into blocks based on the pre-observed scaled

patterns in the datasets. Unlike quantum chemistry electron

repulsion integrals, however, the QTensor quantum computing

simulation dataset does not have scaled patterns, so PaSTRI

cannot be applied in the QTensor data compression. Shangnan

proposed a lossless compression scheme for a quantum source

and leveraged cross entropy to carry out compression [23]. As

noted previously, lossless compression for scientific floating-

point data typically suffers from very limited compression

ratios, while a fairly high compression ratio is needed in the

QTensor simulation data compression. Wu et al. [24] evaluated

four candidate compression methods for quantum circuit simu-

lation and identified the most effective compression method is

combining XOR leading-zero data reduction and Zstd lossless

compressor [9]. It cannot be applied in our situation because

of the following two factors. On the one hand, Zstd does not

support GPU devices, while we target the modern quantum

computing simulation model on the GPU environment. On

the other, that work targets state vector simulation, which

can require much more memory compared to tensor network

simulation. Tensor networks use at most the same memory as

state vector simulation, but can provide a significant advantage

for favorably structured circuits.

IV. PROBLEM FORMULATION

We formulate the research problem as follows. Given a

tensor dataset T , whose data points’ original values are

denoted as x, our objective is to develop an efficient error-

bounded lossy compressor for the tensor data T , which can

lead to both a high compression ratio and high throughput

with little impact to the quantum circuit simulation results.

Compression ratio (denoted by CR) is defined as the ratio of

the original raw tensor data size to the compressed data size:
|T |
|T ′| , where T ′ denotes the decompressed tensor data; |T | and

|T ′| represent the raw data size and compressed data size of the

tensor, respectively. The compression throughput is defined as
|T |

τC(T ) , where τC(T ) refers to the compression time of the raw

dataset (in seconds). Similarly, the decompression throughput

is defined as
|T |

τD(T ′) , where τD(T ′) denotes the decompression

time in getting the reconstructed data T ′.

Specifically, our error-bounded compressor should address

two important use cases: either maximizing the compression

ratio or maximizing throughput on GPU, which are formulated

as Formula (1) and Formula (2), respectively.

max ( |T |
|T ′| )

s.t. |xi − x′
i
| ≤ ǫ, ∀xi ∈ T

|P (T )− P (T ′)| ≤ 5%, WITH ERROR BOUND ǫ

(1)

max ( |T |
τC(T ) ) and max ( |T |

τD(T ) )

s.t. |xi − x′
i
| ≤ ǫ, ∀xi ∈ T

|P (T )− P (T ′)| ≤ 5%, WITH ERROR BOUND ǫ

(2)

where P () stands for the post hoc analysis function. According

to the QTensor developers, the P function should be the net-

work contraction yielding energy, and the acceptable tolerance

is 5% as suggested by QTensor developers. 5% error is a “good

approximation” number that can be further tuned to suit users’

needs.

V. ALGORITHMIC DESIGN

In this section, we present the key design of our solution.

A. Compression Pipeline

To boost the compressibility of quantum tensor data while

preserving a contraction energy result in a reasonable error

range, we propose a lossy compression framework composed

of varying data pre-processing and post-processing stages for

tensors. These stages leverage tensor sparsity to process data as

well as compensate for the effect on energy value when mod-

ifying tensor data. Fig. 5 outlines the data pipeline integrating

QTensor, SZ/SZx, and our pre-/post-processing stages. Green

boxes indicate QTensor stages, and the orange region includes

compression and decompression. Results from compression

can be stored in memory or on disk. First, a quantum circuit

is formatted to the QTensor tensor network model and fed to

the start of the bucket elimination algorithm. The algorithm is

stopped after n steps, equivalent to eliminating n buckets. At

this point, tensors will have grown to be large and would need

to be compressed to avoid straining memory resources. The

pre-processing stage applies data transformations to tensors

before forwarding the transformed tensors to cuSZ or cuSZx.

Compressed tensors can be stored for later use or decom-

pressed when needed for the bucket elimination algorithm.

After decompression, a post-processing stage prepares tensors

into a format ready for use in the remaining steps of the bucket

elimination algorithm. Lastly, an energy result is calculated

and can be used for circuit analysis. The effect of data

distortions from this pipeline on the energy value and tensor

fidelity is studied in the experimental evaluation.

Fig. 5: Compression/Decompression Pipeline. In this work, we
propose a lossy compression framework for QTensor data.

We design two strategies for pre-processing: a threshold

method and a threshold+grouping method. A post-processing

stage is required only for the threshold+grouping method.

Stages work with a one-dimensional flattened tensor for in-

creased data smoothness and to leverage 1-D data sparsity.

The tensor is decomposed into real and imaginary components,

and each component enters the compression stages separately.

From these algorithmic strategies, many platform-specific

choices compose a framework that can adjust throughput and

compression ratio to the user’s needs.
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B. Threshold Method

Our fundamental idea is to increase the similar-

ity/smoothness between data points by leveraging the intrinsic

nature of quantum circuit tensors without significant loss of

the reconstructed data fidelity. As discussed in Section II, the

lossy compressors (such as cuSZ and cuSZx) strongly depend

on the high smoothness of data, while the quantum circuit

datasets are very spiky (as shown in Fig. 2). In fact, many

tensor values are close to zero, but they are rarely exactly

zero when represented in binary floating-point format. Across

ten tensors ranging in size from 224 to 229 data points, 20-95%

of values are less than 0.1% of the value range. If we increase

the percentage to 1%, 60-90% of values are less than 1% of

the value range for several MaxCut QAOA circuits, and 40-

80% of values are less than 1% of the value range for several

rectangle and Bristlecone lattice random quantum circuits.

Compressors can exploit this sparse-like behavior of tensors

if values are truly zero since the similarity between data

points increases substantially. Another important aspect is that

the contraction process involves many matrix multiplications.

Thus, multiplying tensor values close to zero yield values that

are even closer to zero. Converting a small value to zero will

have little impact on the final energy value. This expectation

forms the basis of our proposed methods and is quantified in

Section VII.

The threshold method applies a filter to all data values

of the input tensor. A threshold value signifies the boundary

between data points that remain the same value in the tensor

and those that are set to zero. If the absolute value of a data

point is less than the threshold value, the data point is set to

zero. Otherwise, the data point remains the same in the tensor.

Formally, the filter F (x) with threshold t is:

F (x) =

{

0 if |x| ≤ t

x else
(3)

Applying F (x) to all data points x ∈ T where T is

the tensor can be easily parallelized since the filter is inde-

pendently applied to each data point. Fig. 6 illustrates the

threshold method implementation, showing data points from a

sample tensor with the range of threshold values highlighted as

“Threshold Width”. F (T ) is the tensor result of the threshold

method and has a length equal to the original tensor. xi

corresponds to the data point value at index i. After applying

the threshold, SZ or SZx compresses F (T ) with no need for

post-processing after decompression. Note that all reads and

writes can be coalesced. Thus the threshold-only approach

provides a low-cost pre-processing stage that can greatly

increase the similarity between data points. For cuSZ and

cuSZx, this similarity translates to more similar quantization

codes and more blocks compressed as their mean only.

C. Threshold+Grouping Method

Using only the threshold method can affect the performance

of cuSZ and cuSZx since many zero values must be loaded

and processed even though these values are insignificant. The

Fig. 6: Threshold and Grouping Methods.

metadata for zero values generated from cuSZ and cuSZx can

negatively impact their compression ratios, thus removing zero

values from the data sent to compression eliminates the need

for compression metadata other than a bitmap (described next).

cuSZx specifically is forced to perform bit representation

compression if only one significant value outside the error

bound exists in a data block of mostly zeros, reducing both

the compression ratio and throughput.

To overcome these limitations, we propose the thresh-

old+grouping method. The threshold+grouping method ex-

tends the threshold method, first applying the filter in Eq.

3 and then storing nonzero data points into a new array,

called the significant value array. A bitmap is introduced to

indicate whether a data point is a significant value or a zero

value. The significant value array is compressed (and later

decompressed) using a lossy compressor. For post-processing,

the decompressed significant value array returns significant

values to their original location in the tensor and assigns a

zero value to all other points.

The threshold+grouping method is illustrated in Fig. 6, with

the two resultant arrays noted at the bottom of the figure.

As with F (T ) from the threshold method, the significant

value array is compressed using the SZ or SZx framework.

The threshold+grouping is carried out as follows: First, the

threshold filter F (x) is applied to each data point x ∈ T

while simultaneously storing in a bitmap b if the value is zero

or nonzero. b[i] is assigned 0 if data point xi with index i

was filtered to zero and 1 if xi is nonzero, or significant.

The resultant tensor F (T ) is fed through a parallel stream

compaction stage where significant values are moved to the

significant value array. Parallel stream compaction is the task

of reducing an input array to an output array containing only

values that satisfy some condition. In this instance, compaction

moves significant values to the output array from the input

array F (T ). The bitmap b for a tensor with dimension d

and number of nonzero values NNZ can occupy ⌈ 2d

8 ⌉ bytes

compared to NNZ × 2d × 4 bytes for a Compressed Sparse

Row (CSR) format, assuming a 32-bit index. CSR would have

a smaller footprint compared to the bitmap if 3.125% of values

are nonzero. However, for a R2R threshold of 1%, 60-90%

of tensor values are zero, thus we opt for a bitmap to store

nonzero value location.

Unlike the threshold method, threshold+grouping requires

a post-processing stage to reconstruct the output array from

the compressed significant value array and bitmap. After de-
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compressing the significant value array using cuSZ or cuSZx,

the bitmap must be decompressed since it is used to reassign

significant values and zeros to their original position in the

tensor. A parallel prefix scan is performed so that in the next

stage, threads can appropriately index the bitmap and output

array to assign values. Lastly, the re-ordering of decompressed

values and zeros to the output tensor is conducted in parallel.

D. Selecting a Threshold Value

The threshold parameter, t in Eq. 3, is a key component of

the proposed compression framework, and it balances limiting

data distortion and boosting compressibility in conjunction

with the compressor error bound. The significant values in a

tensor must remain within a reasonable bound to determine an

energy result from contraction that can still provide meaningful

insight into the quantum circuit simulation. Increasing the

threshold value leads to more zero values and, thus, higher

compression ratios, while decreasing the threshold value re-

duces the error in the final energy result. A lower threshold

value also increases the fidelity of the tensor, ensuring that

a decompressed tensor remains similar to its original form.

Fidelity is defined as follows [25]:

F (or, de) = |〈ψor|ψde〉| (4)

Eq. 4 shows that the inner product of two quantum state

vectors can be used to quantify their similarity. ψor is the

state vector of the original tensor, and ψde is the state vector

of the compressed and then decompressed tensor. F (or, de)
can be in the range of [0, 1] where values closer to 1 indicate

greater similarity between states.

In the experimental evaluation, we explore the impact on

energy value and fidelity of varying t as well as the error

bound ǫ.

VI. PLATFORM-SPECIFIC OPTIMIZATION

Here, we discuss GPU-specific implementation and opti-

mization strategies for threshold+grouping. Recall that the

threshold+grouping method has three main phases: 1) apply

the threshold to the input tensor 2) write the bitmap depending

on if a value is zero or nonzero 3) use parallel stream

compaction to move nonzero values. For phase 2, each thread

handles 32 contiguous elements, writing four bytes of the

bitmap. Shared memory is used as a buffer to enable coalesced

memory accesses while simultaneously avoiding atomics.

A. Parallel Stream Compaction

We recall that the threshold+grouping method requires par-

allel stream compaction to populate the significant value array.

We tested three existing compaction libraries: thrust [26],

cuSPARSE [27], and CUB [28] available through the CUDA

11 Toolkit. CUB performed best with the highest throughput;

thus, we integrated CUB into our final threshold+grouping

implementation. After compaction, the threshold+grouping

method performs lossless compression on the bitmap to reduce

the metadata footprint.

Fig. 7: Compressing the bitmap using a second-level bitmap. The
first-level bitmap is sent through parallel stream compaction to group
significant bytes.

B. Compressing the Bitmap

The bitmap required in the threshold+grouping method

represents a storage overhead. Occupying ⌈ 2d

8 ⌉ bytes, the

bitmap can limit the compression ratio achieved by the thresh-

old+grouping method. One option is to compress the bitmap

using existing GPU-accelerated compressors, such as LZ4

[29], a part of the NVCOMP library [30]. However, these

lossless compressors, including LZ4, are designed to compress

scientific data but yield sub-optimal performance when used to

compress the bitmap (which stores metadata). In an effort to

increase performance while still compressing the bitmap, we

introduce a two-level bitmap compression kernel that leverages

bitmap sparsity to achieve compression.

Fig. 7 illustrates the operation of our proposed two-level

bitmap compression kernel. We note that, on tensor datasets,

many bits of the raw bitmap are zero, resulting in many zero

bytes. Using the same principle of the threshold+grouping

method, we perform grouping on the bitmap’s bytes to create a

second bitmap level. Our implementation exploits memory co-

alescing and high shared memory bandwidth to reduce bitmap

compression latency. Each thread handles 256 consecutive bits

of the bitmap, writing four bytes to represent 32 groups of data

points in the first level. Since each thread is known to handle

32 bytes of the first-level bitmap and four bytes of the second-

level bitmap, no atomics are needed. The second-level bitmap

directs a parallel stream compaction phase with CUB to group

nonzero bytes into a new significant byte array.

Fig. 8: High-level kernel design for integration of threshold+grouping
with cuSZx. Each data block is mapped to a CUDA block. Blue and
green states refer to real and imaginary components, respectively.
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Fig. 9: Pseudocode for threshold+grouping with cuSZx

Fig. 10: Breakdown of a proportion of block states when varying
tensor with dimension d and data block size bs. T indicates the
compression throughput in GB/s, and CR indicates the compression
ratio. States are as follows: s0=All-zero, s1=Constant, s2=Non-
constant grouped, s3=Non-constant

C. Kernel Fusion Optimization for cuSZx

cuSZx categorizes blocks of data points as either constant

or non-constant data blocks and maps data blocks to CUDA

blocks. This framework naturally lends itself to integration

with threshold+grouping since CUDA blocks can process

grouping on a local level. Threshold+grouping as a separate

pre-processing step can introduce additional kernel launch

overhead and redundant memory accesses, limiting compres-

sion throughput. With integration, only a single kernel launch

is needed for compression, and the tensor is loaded into GPU’s

global and shared memory only one time. When integrating

threshold+grouping with cuSZx, we introduce two additional

block states in addition to constant and non-constant data

blocks: all-zero and non-constant grouped.

Fig. 8 shows how states are assigned to each data block and

Fig. 9 shows the corresponding pseudocode for the integrated

kernel with state representing the block state. The all-zero

data block is a constant block where all data points are zero.

The non-constant grouped block indicates a block with less

than half of all values being nonzero and not bounded by

the error bound. Each thread loads one value from the input

tensor for processing (line 5). Since there are few nonzero

values and the block size, blk_size, is small relative to

the overall data size, data_size,(typically 64 to 256 data

points per data block), nonzero values are moved to a new

array, sig_values, and their index within the data block

is stored in array indices (lines 6-8). At most, there are

blk_size atomic operations. The index of a data point with

block size b is log2 b bits, and a local bitmap would be of size

b bits. For s significant values, storing indices requires less

space than a local bitmap when s < b

log
2
b
. After integration,

the compressed tensor data is composed of 1. the median

values of each block (written directly to out) 2. the state

of each block 3. data point values (sig_values written

to global memory out) and local indices (indices written

to global memory out) of non-constant grouped blocks, and

4. bit representation compression (line 19) results for non-

constant blocks (written directly to out). Integration requires

modifying the existing cuSZx kernel to perform nonzero data

point movement and index storage for CUDA blocks handling

a non-constant grouped block, an operation that is relatively

low in performance cost. Shared memory can be exploited

within the kernel to enable coalesced reads and writes for

non-constant grouped blocks.

Selecting a data block size can have a direct impact on

performance since, in this integration, one thread is mapped

to one data point within a block. Fig. 10 shows the effect

of varying block size on tensor compression metrics. Larger

data blocks involve more threads in the grouping and bit

representation compression processes. With larger data blocks,

workload distribution across thread blocks is more even since

there is a greater likelihood that a data block is not an all-

zero or constant block. Thus, the burden of non-constant

block compression is more spread out across the streaming

multiprocessors of the GPU. However, if the block size goes

beyond 256, we note a performance decrease. This is because

blocks that were previously state 0 or state 1 block are now

state 2, and instead of even workload distribution, more blocks

must perform the more time-consuming state 2 grouping

process. Additionally, a block size of 256 allows for byte-

aligned accesses since indices within a block are one complete

byte. Other block sizes must store indices that are greater

than or less than 8 bits which can affect memory access

performance. In an effort to balance high throughput with

a reasonable compression ratio, our experimental evaluation

focuses on the integrated design using a block size of 256.

A similar integration is performed for decompression, where

data blocks with state 2 are expanded using indices and

sig_values.

D. Overall Framework

The implementation choices of threshold and grouping

compose a framework for tensor compression that can adapt
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to the user’s needs. Our framework lets the user find the

best compression ratio and throughput balance to suit their

application. cuSZ and cuSZx can be substituted for each other

and coupled with either threshold, grouping with LZ4, or

grouping with the two-level bitmap. Additionally, the integra-

tion of grouping with cuSZx provides a higher compression

ratio alternative to cuSZx with comparable throughput. In all,

there are nine options on the spectrum of choices, with a high

compression ratio on one end and high throughput on the other.

In the experimental evaluation, we will determine where each

of these choices resides on this spectrum (Fig. 15).

VII. EXPERIMENTAL EVALUATION

We use the Quantum Approximate Optimization Algorithm

(QAOA) for MaxCut [31] to generate circuits for QTensor

simulation. Tensors in QTensor have a dimensionality of d,

corresponding to 2d data points. Table I reports the maximum

size of double-precision tensors, as reported in [32], and the

compression ratio CR needed to store tensors of MaxCut

QAOA on the Nvidia A100 GPU 40 GB global memory.

For the MaxCut input graph, the degree is fixed at 3, N

is the number of vertices, p is the circuit depth, and the

maximum tensor d is the average maximum tensor dimension

of the corresponding N and p. Without compression, Table I

indicates that we can only simulate MaxCut QAOA circuits

with low N and p. If tensor multiplication were to take

place in GPU memory, the required compression ratio would

need to further increase in order to store multiple tensors

in memory. While cuSZ and cuSZx may achieve sufficient

compression ratio for low complexity circuits, such as for

N = 25, p = 5, more complex circuits (e.g. N = 34, p = 5)

require significantly higher compression ratios to compress

tensors.
TABLE I: Circuit Parameter Effect on Tensor Size

N p Max Tensor d Max Tensor Size (GB) CR for one tensor

20 4 24 0.25 0.00625
20 5 29 8 0.2
25 4 25 0.5 0.0125
25 5 36 1024 25.6
34 4 26 1 0.025
34 5 41 32768 819.2

To determine the effectiveness of our proposed methods

as well as determine the relationship between error in ten-

sors and the final energy result, we use tensors from the

MaxCut QAOA circuit with nine varying combinations of

N ∈ [20, 35] and p ∈ [3, 5]. We quantify the “effectiveness”

of each method using two metrics, the compression ratio, and

the throughput, providing the end-user a guideline for the

performance of the tested approaches. The quantum circuit

enters the QTensor pipeline and we extract tensors after a

varying q number of steps. Compression and decompression

are performed on the tensor before resuming the QTensor

contraction algorithm, completing the pipeline. Both threshold

and threshold+grouping methods are implemented in CUDA

11 and are run on an NVIDIA A100 GPU, which features

64 FP32 cores per streaming multiprocessor (SM), 108 SMs,

and a shared memory size of 192 KB per SM. Target tensors

for compression vary in size from 226 to 229 values, or 512

MB to 4 GB, and are generated from QTensor. We collect

the compression/decompression throughput and a compression

ratio of both threshold and threshold+grouping methods when

using cuSZ and cuSZx as base compressors.

Fig. 11: Effect of relative-to-value-range (R2R) threshold and error
on final energy result. Values are energy result error and it is averaged
by applying distortion over all tensors of nine different circuits.

Fig. 12: Effect of relative-to-value-range (R2R) threshold and error
on tensor fidelity. Values are averaged by applying distortion to ten
tensors of varying size and composition.

A. Effect of Error Bound and Threshold on Energy Value

Our distortion analysis seeks to quantify the effect of

lossy compression on both the entire simulation and on a

single tensor from a simulation, and the results for each are

reported in Fig. 11 and Fig. 12, respectively. For both figures,

green regions indicate less error while red regions indicate

high error, and the red bounding box indicates the targeted

region of values for the evaluation. Both the error bound and

threshold are implemented as relative-to-value-range values:

t=rt(maxT−minT ) and ǫ=rǫ(maxT−minT ) for tensor T .

The inputs are thus rt and rǫ for the compression pipeline. In

Fig. 11, three MaxCut QAOA and six random quantum circuits

with relative-to-value-range error and threshold applied to

all tensors are used to generate energy values. They are

compared against the energy value using the original circuit

and the resulting percent error is reported. Since we aim to

limit energy error to 5%, threshold and error are selected as

rt ∈ [0.001, 0.01] and rǫ ∈ [0.001, 0.01] for compression

performance analysis. Increasing rt generally increases the

compression ratio, thus the range [0.001, 0.01] strikes a bal-

ance between high compression ratio and low result error. This

range of rt and rǫ is also suitable for achieving high fidelity

decompressed tensors as seen in Fig. 12. Fidelity values are

rounded to four decimal places and are collected from ten

varying tensors from MaxCut QAOA and random circuits with

rt and rǫ applied using Eq. 4. Fidelity closer to 1 is beneficial

for high accuracy circuit simulations [33] [34].

We found that there were no significant compression ratio or

performance differences across all the methods when varying

rǫ thus the evaluation focuses on varying rt with rǫ = 0.005.
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(a) Compression Ratio

(b) Compression Throughput

(c) Decompression Throughput

Fig. 13: cuSZ-based results. The threshold only is omitted for
throughput plots due to no compression ratio benefit.

B. Pre-processing and Post-processing with cuSZ

Fig. 13a plots the compression ratio of cuSZ coupled

with various strategies. “Grouping+LZ4” refers to using the

grouping method with LZ4 as a compressor for the bitmap.

”Grouping+2L” refers to using the two-level bitmap design

for bitmap compression. The “Base” compressor uses only

cuSZ with no pre-processing, and “Threshold” applies only

to the threshold pre-processing stage. The dimensionality d of

each tensor is listed above each corresponding plot and the

size of the tensor in bytes can be easily calculated as 2d ∗ 16
where 16 is the number of bytes to store a double-precision

floating-point complex number. Input tensors are cast to single-

precision floating-point complex numbers for compatibility

with cuSZ and cuSZx, thus we report compression ratio and

throughput relative to single-precision tensors. LZ4 compres-

sion using the NVCOMP library performs the best for higher

thresholds, scaling linearly with the value of the relative-to-

value-range (R2R) threshold. Since LZ4 is a more refined

general-purpose lossless compressor compared to the two-

level bitmap compressor, it can scale well with an increasing

number of zero values generated from applying the threshold.

The two-level bitmap compression, however, can match or

outperform LZ4’s compression ratio for lower R2R thresholds.

Since lower thresholds lead to more significant values, bytes

representing the bitmap value of eight adjacent data points

can become more dissimilar from each other. This, in turn,

can hurt LZ4’s compression performance while the two-level

bitmap treats all nonzero bytes equally. Beyond implemen-

tation specifics, threshold+grouping generates much higher

compression ratios compared to either the threshold-only or

baseline compressor approaches. Grouping itself reduces the

footprint of a tensor and coupled with cuSZ, significant values

are further compressed leading to increases in compression

ratio from ∼30 for baseline to over 300 for NVCOMP-based

grouping.

Fig. 13b plots the compression throughput of cuSZ using

the same methods as Fig. 13a, omitting the threshold-only

approach since there is no performance or compression ratio

benefit across the varying rt. Fig. 13c plots the decompression

throughput of cuSZ coupled with other methods. Tensors

are compressed and then decompressed, with the appropriate

pre-processing and post-processing stages inserted before and

after cuSZ compression/decompression. Plot conventions are

the same as Fig. 13a. The lowest throughput is achieved by

the grouping method with the NVCOMP backend. We recall

that NVCOMP compressors are tailored to scientific data, not

metadata. The threshold method introduces a small overhead

for applying the threshold and does not lead to a significant

increase in compression ratio over baseline cuSZ. Perform-

ing the best relative to baseline cuSZ, the grouping method

with the two-level bitmap can achieve higher decompression

throughput than cuSZ alone. This is for two main reasons:

1. low pre-processing and post-processing overhead for GPU

and 2. smaller data input for cuSZ. Unlike LZ4, the two-

level bitmap compressor performs only relatively fast GPU

operations such as stream compaction and bit comparison. As

such, the performance overhead of the two-level bitmap is low.

Since cuSZ is only run on the significant values when using

grouping, cuSZ completes decompression faster and performs

closest to baseline for compression. On the A100 GPU, the

throughput of the two-level bitmap with cuSZ approach can

reach nearly 70 GB/s for compression and as high as 400

GB/s for decompression. We explore even faster approaches

next with cuSZx.

C. Pre-processing and Post-processing with cuSZx

Fig. 14a reports the compression ratio of five different

cuSZx-based approaches. “Grouping” refers to the thresh-

old+grouping method, with “+2L” using the two-level bitmap

and “+LZ4” using LZ4 to compress the bitmap. “Integrate”

refers to the integrated approach described in Section VI-C.

“Base” and “Threshold” are the same as Fig. 13a with cuSZx

instead of cuSZ. Grouping methods generate the highest

compression ratios of all the methods, reaching as high as

∼220 compared to ∼20 baseline for tensor with d = 27. This

is in line cuSZ’s results since higher R2R thresholds yield

more zero values, thus decreasing the number of significant
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(a) Compression Ratio

(b) Compression Throughput

(c) Decompression Throughput

Fig. 14: cuSZx-based results. Note that tensor d = 29 did not run for
baseline and integrated due to memory requirements. Both Grouping
lines closely overlap for throughput plots.

values sent through cuSZx. The integrated approach can also

boost the compression ratio over baseline, though with less

significant gains compared to grouping. The plots additionally

indicate that the threshold-only method can also increase the

compression ratio since more constant blocks are generated.

The threshold and grouping methods, when not integrated,

also allow cuSZx to handle larger tensors without exhausting

GPU memory since there are fewer values requiring metadata.

Baseline cuSZx and the integrated method require many inter-

mediate data structures for large tensors, such as for d = 29,

and thus exhaust GPU memory.

Fig. 14b plots the compression throughput of the approaches

used in Fig. 14a with varying R2R threshold. Fig. 14c plots

the decompression throughput. Baseline cuSZx has a com-

pression throughput of 300 to 320 GB/s and a decompression

throughput of 1000 to 1600 GB/s. The best-performing ap-

proach relative to baseline cuSZx is the integrated approach

with a compression throughput of 200 to 260 GB/s and a

decompression throughput of 420 to 1200 GB/s. The integrated

approach is implemented with the fewest kernel launches,

reducing kernel launch overhead, and performs grouping only

at a data block level which leads to few atomic operations.

Additionally, the time-intensive bit representation compression

for non-constant blocks can be offloaded into local grouping

if the block is sufficiently sparse. The threshold-only method

introduces an additional kernel launch which involves reading

all data points and writing all threshold-applied points back to

the global array. This process can lead to lower performance

relative to the integrated approach, which applies the threshold

within the cuSZx kernel. Still, grouping with LZ4 has the

lowest performance due to bitmap compression overhead.

D. Compression Ratio versus Throughput

The proposed pipelines involve a trade-off between com-

pression ratio and throughput, as illustrated in Fig. 15. We

omit the threshold-only approaches since there is no sig-

nificant compression ratio or performance benefit relative

to other approaches. On one end, cuSZ coupled with the

threshold+grouping method can yield very high compression

ratios with lower throughput than cuSZx. cuSZx integrated

with threshold+grouping is limited in its ability to boost tensor

compression ratio over baseline but can perform close to the

speed of baseline cuSZx. These two designs provide users with

the flexibility to choose their priority, utilizing either the high

throughput of the integrated cuSZx pipeline or the high com-

pression ratio of the threshold+grouping cuSZ pipeline, with

additional options between them. When compression is needed

as a post-processing step to store tensors to disk, cuSZ with

threshold+grouping can provide the lowest compressed data

footprint. If intermediate tensors need to be compressed during

simulation, compression can be overlapped with contraction if

the tensors being compressed are not contracted. In this case,

a higher throughput solution, such as cuSZx integrated with

threshold+grouping, can prove to be more valuable.g p g, p

Fig. 15: Spectrum of Throughput versus Compression Ratio with
specific implementation placed according to relative performance

VIII. CONCLUSION AND FUTURE WORK

We design a lossy compression framework for the com-

pression of quantum simulation tensors on GPU. The key

insights based on our experiments with NVIDIA’s A100 GPU

include: (1) The nine compression pipelines (including our

proposed designs) vary in their abilities. (2) Grouping method

can increase the compression ratio of cuSZ from ∼30 to ∼300.

(3) The grouping method increases cuSZx’s compression ratio

from ∼20 to ∼200 while the integrated kernel implementation
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can boost the compression ratio to 150+ with up to 250 GB/s

for compression and 1200 GB/s for decompression, close to

cuSZx’s throughput. (4) The contraction error is limited to

≤5% and ensures that tensor fidelity remains high after de-

compression. With our current design, multi-GPU compression

can be achieved by chunking the tensor and compressing each

chunk on a different GPU. In the future, we will extend this

framework to a more tailored multi-GPU environment as well

as tailor it to other quantum computing simulators that produce

different metrics.
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