2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS) | 979-8-3503-3766-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/IPDPS54959.2023.00081

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

GPU-Accelerated Error-Bounded Compression
Framework for Quantum Circuit Simulations

Milan Shah Xiaodong Yu Sheng Di Danylo Lykov
North Carolina State University Argonne National Laboratory Argonne National Laboratory Argonne National Laboratory
Argonne National Laboratory Lemont, IL, USA Lemont, IL, USA University of Chicago
Raleigh, NC, USA xyu@anl.gov sdil @anl.gov Lemont, IL, USA
mkshah5 @ncsu.edu dlykov@anl.gov
Yuri Alexeev Michela Becchi Franck Cappello
Argonne National Laboratory North Carolina State University Argonne National Laboratory
Lemont, IL, USA Raleigh, NC, USA Lemont, IL, USA
yuri@alcf.anl.gov mbecchi @ncsu.edu cappello@mcs.anl.gov
Abstract—Quantum circuit simulations enable researchers to circuits are formed as tensor networks, where nodes and edges

develop quantum algorithms without the need for a physical  represent tensors and the indices between tensors, respectively.
quantum computer. Quantum computing simulators, however, In this work, we adopt the QTensor [4] package — an open-
all suffer from significant memory footprint requirements, which ¢ ’ twork simulat hich invol ¢ .

prevents large circuits from being simulated on classical super- source' f;nsor ne W.OI‘ 51m1'1 ator, w I,C mnvolves two mgm
computers. In this paper, we explore different lossy compression steps in its simulation: finding an optimal tensor contraction
strategies to substantially shrink quantum circuit tensors in the sequence and actual contraction (multiplication) of tensors.
QTensor package (a state-of-the-art tensor network quantum The finding of the contraction sequence is done using various
circuit simulator) while ensuring the reconstructed data satisfy algorithms that treat the tensor network as a graph. The

the user-needed fidelity. . . .
Our contribution is fourfold. (1) We propose a series of contraction sequence is a sequence of sets of tensor indices

optimized pre- and post-processing steps to boost the compression that are contracted at each contraction step. The actual tensor
ratio of tensors with a very limited performance overhead. (2) We network contraction is typically done using a vendor-provided
characterize the impact of lossy decompressed data on quantum tensor library like cuTensor from NVIDIA [5].

circuit simulation results, and leverage the analysis to ensure While the QTensor package improves performance over pre-

the fidelity of reconstructed data. (3) We propose a configurable . L .
compression framework for GPU based on cuSZ and cuSZx, two vious approaches of tensor network circuit simulation [6], [7],

state-of-the-art GPU-accelerated lossy compressors, to address memory can quickly become a bottleneck in the simulation of
different use-cases: either prioritizing compression ratios or large circuits. QTensor uses the bucket elimination algorithm
prioritizing compression speed. (4) We perform a comprehensive [8], which groups tensors into buckets and then contracts
le\IvslIlll;lItXm A})go r(‘;g‘;}n%age dSt?)t:()(g:;‘lelﬁ;?)l;t-gecﬁ:;g::(iS()tZ;sg:s i::;_ buckets one by one. Each bucket contains tensors that are
varying sizes. When prioritizing compression ratio, our results indexed by the corresponding tensor index. As the bucket
show that our strategies can increase the compression ratio  climination algorithm advances, tensors can grow too large
nearly 10 times compared to using only cuSZ. When prioritizing to fit in memory. The tensors we examine range from 0.5 GB
throughput, we can perform compression at the comparable o 4 GB, with simulations requiring many such tensors. Larger
speed as cuSZx while achieving 3-4x higher compression ratios. circuits require even larger tensors which can strain memory

Decompressed tensors can be used in QTensor circuit simulation . . .
to yield a final energy result within 1-5% of the true energy resources, especially for GPU-based simulations where GPU

value. memory is on the scale of tens of gigabytes for a single GPU.
Index Terms—compression, quantum computing, GPU For extreme-scale simulations of more complex quantum
circuits, hundreds to thousands of GPUs are required, with
L. INTRODUCTION tensor memory requirements becoming exponentially more

Quantum circuit simulators enable researchers to perform demanding.
a series of non-trivial research tasks [1], [2], including ver- A straightforward solution to resolve this memory space
ification of quantum advantage and supremacy claims, veri- issue is using data compression to shrink the memory foot-
fication of quantum devices, co-design quantum computers, print, which, however, faces several key challenges. First of

development of new quantum algorithms, and finding optimal all, lossless compressors [9]-[12] can guarantee the lossless
parameters for variational quantum algorithms. One of the nature of the reconstructed data but suffer from very low
most advanced methods to simulate quantum circuits is using compression ratios [13]. In comparison, lossy compressors can
tensor networks [3], because it provides a fairly efficient significantly reduce the data size, while the data distortion
way to manage and store the data. In this model, quantum introduced during compression may significantly affect the

1530-2075/23/$31.00 ©2023 IEEE 757
DOI 10.1109/IPDPS54959.2023.00081
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:59:22 UTC from IEEE Xplore. Restrictions apply.



analysis results. Second, quantum simulation datasets are fairly
high-dimensional (e.g., 26+ dimensions in a dataset) and the
degree of data similarity is very low along each dimension.
As such, quantum computing simulation datasets are treated
as 1D data arrays, while the existing lossy compressors (such
as SZ [14], ZFP [15]) are designed and optimized for multi-
dimensional datasets so that they suffer very low compression
ratios on quantum computing simulation data compression.
For example, cuSZ [16] and cuSZx [17] with a relative
error of 0.005 can only obtain compression ratios of 30
and 15-20 in the compression of quantum tensor datasets,
respectively. On the other hand, since lossy compressors
typically consist of multiple processing stages, there is an
opportunity to tailor the compression pipeline to 1D datasets.
Moreover, compression ratio (the ratio of raw data size to
compressed data size) and compression/decompression speed
cannot be both optimized together, which forces the definition
of specific performance/compression tradeoffs for different use
cases. Tensor compression can address several important use
cases including: 1) reducing the footprint of large intermediate
tensors during bucket elimination to free space for other
tensors’ contractions, 2) allow for tensor slices to occupy less
memory during sliced contraction, and 3) alleviate storage
costs of tensors generated during a partial contraction.

In this paper, we propose a novel GPU-based lossy compres-
sion framework that can compress floating-point data stored in
quantum circuit tensors with optimized speed, while keeping
the simulation result within a reasonable error bound after
decompression. The compressed data can be decompressed
when the tensors are needed during the computation. The key
contributions are summarized as follows.

« We develop a novel configurable compression framework
based on the characteristics of quantum circuit tensor
datasets generated by QTensor [4]. Each compression
pipeline of the framework is composed of three criti-
cal stages: data pre-processing, data compression, and
data post-processing. The compression framework can
adapt to different use cases in practice: either prioritiz-
ing the compression ratio or maximizing the compres-
sion/decompression throughput.

We develop a variety of implementation choices for GPU
that compose the lossy compression framework.

We provide an in-depth analysis of the effects of lossy
compression on quantum circuit simulation results, which
is then leveraged to ensure the reconstructed data fidelity.
We perform a comprehensive evaluation using an
NVIDIA A100 GPU, which is fed with tensors of varying
size and composition of values, based on up to 9 different
compression strategies and analyze the data compression
ratio, throughput, and resulting errors. Experiments show
that our high-compression ratio compression pipeline
with user-satisfied error-bound settings can yield nearly
a 10x increase in compression ratio over two state-of-
the-arts GPU-accelerated compression frameworks: cuSZ
[16] and cuSZx [17]. When the throughput is prioritized,

758

our high-speed compression pipeline exhibits comparable
performance while still yielding 3-4x improvement in
compression ratio over cuSZx.

II. BACKGROUND
A. Quantum Circuit Tensors

Quantum circuit simulation usually computes either prob-
ability amplitudes for some quantum state of the system in
question or some integral value that characterizes this state.
The most common value in use is the energy of the system
[4]. The key idea of tensor network-based simulators is to
represent the simulation result as a tensor network. A quantum
gate or state is represented as a tensor, and indices in the tensor
network refer to which index of a bitstring a gate operates on.
It is often useful to view a tensor network as a graph where
tensors are nodes, and tensor indices are edges. If two tensors
have the same index, they are connected by an edge. If an
index is shared by more than two tensors, the graph becomes
a hypergraph. QTensor prefers another notation where nodes
and edges switch places: each node is a tensor index, and
each (hyper-) edge is a tensor, as shown in Fig. 1. To perform
the contraction, QTensor creates a list of buckets where each
bucket has tensors indexed by a common index, i.e. edges of a
particular node. Each contraction step contracts a bucket and
produces a single tensor. A contraction step essentially is a
series of tensor multiplications followed by a summation over
a fixed index. As the bucket elimination algorithm advances,
tensors tend to grow in size, straining the memory resources of
the simulator. Fig. 1 shows how QTensor converts a quantum
circuit to a tensor network and where tensors reside in the
network. In QTensor’s notation, nodes refer to unique indices,
and edges denote a tensor.

0

2
S S -
x| =+~ G GO — N0 =
2 0 a2
N S s g
(2 = G - ¢ —— [0 %
/ VN
Gate Tensor\ {J”
oG @ C & g
Sl il ol ]
=3
|cZ ;
G G H

Fig. 1: Tensor networks of quantum circuits, typical notation above
and QTensor notation below. s¢ denotes the state of qubit ¢ at cycle
t. cZ is the tensor corresponding to the cross-connection of si & s3.

For QTensor and other simulators, tensors are composed
of complex numbers with floating point values. Tensors with
dimensionality d contain 2¢ complex numbers, many of which
can be values close to zero. Tensors are often high-dimensional
but can be flattened to one dimension since there is low
data similarity across a dimension. Casting tensors to other
dimensions, such as 2-D or 3-D, does not lead to the increased
similarity between adjacent data points. Fig. 2 illustrates the
data of an example tensor with d = 22 flattened to one
dimension. As seen in the right plot of Fig. 2, there can

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:59:22 UTC from IEEE Xplore. Restrictions apply.



exist a periodicity of data points as well as relative sparsity.
Most values are relatively small in magnitude compared to the
maximum and minimum tensor values. Tensor data also lacks
“smoothness” in that adjacent data points can be drastically
different in value from each other.

0.002 — Real 0.002 — Real
— Imaginary — Imaginary
0.001 0.001
(0] [0]
=) =
£0.000 £0.000
-0.001 -0.001
-0.002 -0.002
0 2e6 4e6 0 20 40 60
Data points Data points

Fig. 2: Flattened tensor data with real and imaginary components
plotted, tensor of dimension 22. The left plot shows all data points,
and the right plot shows the first 128 data points.

B. Lossy Compression with (cu)SZ and (cu)SZx

In this work, we adapt two state-of-the-art compressors —
(cu)SZ [18] [19] [14] [16] and (cu)SZx [17] for quantum tensor
data due to their respective high compression ratio and high
GPU speed capabilities. We do not use lossless compressors
because their compression ratios are very low for scientific
datasets. By contrast, lossy compressors incorporate point-
wise error control that guarantees decompressed values are
within the user-defined error-bounded range centered on their
corresponding uncompressed value. Thus, lossy compressors
can achieve higher compression ratios for scientific floating
point data compared to their lossless counterparts. Since cuSZ
and cuSZx are the GPU versions of SZ and SZx, respectively,
we mainly describe SZ and SZx in the following text.

SZ adopts a prediction-based compression model, which
includes three critical stages: (1) data prediction, (2) linear-
scale quantization based on the user-specified error bound,
(3) encoding the quantization code by lossless compression
techniques such as Huffman encoding and dictionary encod-
ing. The core step of SZ is the data prediction because
higher data prediction accuracy can generate a sharper dis-
tribution of quantization codes, leading to higher efficiency
in Huffman/dictionary encoding accordingly. As such, the key
difference between various SZ versions is mainly in the dis-
tinct prediction methods. However, the most recent prediction
methods [14] in SZ, such as dynamic spline interpolation, are
heavily dependent on the high smoothness of the data, which
generally works for multi-dimensional datasets instead of 1D
data arrays. SZ still adopts a very primitive prediction method
— 1D Lorenzo predictor to deal with the 1D data compression,
as illustrated in Fig. 3.

Compared with SZ, SZx is designed for the purpose of
extremely high throughput, so it has no data prediction step
and Huffman/dictionary encoding step, which are the main
bottleneck in SZ. Instead, SZx is composed of two critical
steps: (1) dividing the dataset into equal-sized data chunks
(ak.a., blocks) and checking whether the data values in each
chunk can be represented by one data value (called constant

759

40 T
»n 35 o
$£30 Actual 3
25 1D Lorenzo Prediction o
© 20 using only previous value 1 & L
a Jg Previous N \I IR
5 o ° o o | [ Quantization O
o
0
0 1 2 3 4 5 6 7 8 9 10
Data points

Fig. 3: Illustration of SZ: for data point 5, quantization code is set
to 1 based on its prediction and quantization interval (2¢)

chunk if yes) or not (named non-constant chunk), as demon-
strated in Fig. 4. (2) compressing the non-constant data chunks
by counting the number of identical leading bytes (a.k.a.,
XOR leading-zero method) and truncating the insignificant
bitplanes based on user-specified error bound. Since all the
involved operations are only bitwise operations, addition, and
subtraction, (cu)SZx is extremely fast in both compression and
decompression: ~4x as fast as SZ/ZFP on CPU and-10x
as fast as cuSZ/cuZFP on GPU.

Constant chunk (if the Non-constant chunk (if

. the value range > 2¢): uge
49 va_Iue LS 2 e XOR leading-zero methad
40 middle value of range to A bit & tion't T
2 35 represent all values 22m :'esr:r;(lzlav';:ecs)
=30 (e denotes the error bound) { —— IRECSS Al NEILCS ey o—
T 25 5
«© 20 T :
8 o :
315 * :
10 O — === o
5 s
0 :
0 1 2 3 4 5 6 7 8 g 10

Data points
Fig. 4: Illustration of SZx

III. RELATED WORK

There have been many existing generic error-bounded lossy
compressors [15], [17], [18], [20], [21] proposed for the
compression of scientific datasets. ZFP [15] is an orthogonal
transform-based lossy compressor supporting two types of
error controls: absolute error bound and precision mode.
Compared with ZFP, SZ adopts the prediction-based lossy
compression framework, which can better adapt to users’
requirements and datasets as it allows to customize of a partic-
ular data predictor based on the characteristics of the datasets.
FPZIP [20] is another prediction-based lossy compressor that
adopts a different prediction method and a different encoding
strategy. MGARD [21] is a Quantity of Interest (Qol) oriented
lossy compressor, allowing users to specify a linear function
to preserve during the compression. SZx [17] is an error-
bounded lossy compressor designed to address the requirement
of extremely high compression/decompression speed, so it
achieves much lower compression ratios than other compres-
sors such as SZ and ZFP. According to recent studies [17],
[18], [22], SZ is arguably the most efficient error-bounded
lossy compressor, especially for 1D datasets. Thus we mainly
compare our proposed approach with SZ and SZx in our
experiments without loss of generality.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:59:22 UTC from IEEE Xplore. Restrictions apply.



In addition to the generic compressors, there are also
some specific compression algorithms tailored for particular
applications. PaSTRI is a lossy compressor designed for
quantum chemistry electron repulsion integrals [22]. PaSTRI
divides input data into blocks based on the pre-observed scaled
patterns in the datasets. Unlike quantum chemistry electron
repulsion integrals, however, the QTensor quantum computing
simulation dataset does not have scaled patterns, so PaSTRI
cannot be applied in the QTensor data compression. Shangnan
proposed a lossless compression scheme for a quantum source
and leveraged cross entropy to carry out compression [23]. As
noted previously, lossless compression for scientific floating-
point data typically suffers from very limited compression
ratios, while a fairly high compression ratio is needed in the
QTensor simulation data compression. Wu et al. [24] evaluated
four candidate compression methods for quantum circuit simu-
lation and identified the most effective compression method is
combining XOR leading-zero data reduction and Zstd lossless
compressor [9]. It cannot be applied in our situation because
of the following two factors. On the one hand, Zstd does not
support GPU devices, while we target the modern quantum
computing simulation model on the GPU environment. On
the other, that work targets state vector simulation, which
can require much more memory compared to tensor network
simulation. Tensor networks use at most the same memory as
state vector simulation, but can provide a significant advantage
for favorably structured circuits.

IV. PROBLEM FORMULATION

We formulate the research problem as follows. Given a
tensor dataset 7', whose data points’ original values are
denoted as x, our objective is to develop an efficient error-
bounded lossy compressor for the tensor data 7', which can
lead to both a high compression ratio and high throughput
with little impact to the quantum circuit simulation results.
Compression ratio (denoted by CR) is defined as the ratio of
the original raw tensor data size to the compressed data size:
‘lTl,l, where T” denotes the decompressed tensor data; |T'| and
|T| represent the raw data size and compressed data size of the
tensor, respectively. The compression throughput is defined as
TC‘:€|T) , where 7¢(T") refers to the compression time of the raw
dataset (in seconds). Similarly, the decompression throughput
is defined as %, where 7p (T") denotes the decompression
time in getting the reconstructed data 7.

Specifically, our error-bounded compressor should address
two important use cases: either maximizing the compression
ratio or maximizing throughput on GPU, which are formulated
as Formula (1) and Formula (2), respectively.

171
max ( \T’I)
st. |z —al| <eVx; €T ey
|P(T) — P(T")| < 5%, WITH ERROR BOUND ¢
T T
max(mli(lT)) and max(%)
st. |z —ai| <eVx; €T @)
|P(T) — P(T")| < 5%, WITH ERROR BOUND ¢

760

where P() stands for the post hoc analysis function. According
to the QTensor developers, the P function should be the net-
work contraction yielding energy, and the acceptable tolerance
is 5% as suggested by QTensor developers. 5% error is a “good
approximation” number that can be further tuned to suit users’
needs.

V. ALGORITHMIC DESIGN

In this section, we present the key design of our solution.

A. Compression Pipeline

To boost the compressibility of quantum tensor data while
preserving a contraction energy result in a reasonable error
range, we propose a lossy compression framework composed
of varying data pre-processing and post-processing stages for
tensors. These stages leverage tensor sparsity to process data as
well as compensate for the effect on energy value when mod-
ifying tensor data. Fig. 5 outlines the data pipeline integrating
QTensor, SZ/SZx, and our pre-/post-processing stages. Green
boxes indicate QTensor stages, and the orange region includes
compression and decompression. Results from compression
can be stored in memory or on disk. First, a quantum circuit
is formatted to the QTensor tensor network model and fed to
the start of the bucket elimination algorithm. The algorithm is
stopped after n steps, equivalent to eliminating n buckets. At
this point, tensors will have grown to be large and would need
to be compressed to avoid straining memory resources. The
pre-processing stage applies data transformations to tensors
before forwarding the transformed tensors to cuSZ or cuSZx.
Compressed tensors can be stored for later use or decom-
pressed when needed for the bucket elimination algorithm.
After decompression, a post-processing stage prepares tensors
into a format ready for use in the remaining steps of the bucket
elimination algorithm. Lastly, an energy result is calculated
and can be used for circuit analysis. The effect of data
distortions from this pipeline on the energy value and tensor
fidelity is studied in the experimental evaluation.

Begin Stop bucket Finish
bucket :> elimination :> r:r(r)gs::s(i’n F;rc;posedin :> bucket
elimination at n steps prep 9 || postprocessing elimination
Quantum S2/SZx SZ/SZx Final energy
Circuit compression | | decompression value
~> ar
l Memory/disk l

Fig. 5: Compression/Decompression Pipeline. In this work, we
propose a lossy compression framework for QTensor data.

We design two strategies for pre-processing: a threshold
method and a threshold+grouping method. A post-processing
stage is required only for the threshold+grouping method.
Stages work with a one-dimensional flattened tensor for in-
creased data smoothness and to leverage 1-D data sparsity.
The tensor is decomposed into real and imaginary components,
and each component enters the compression stages separately.
From these algorithmic strategies, many platform-specific
choices compose a framework that can adjust throughput and
compression ratio to the user’s needs.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:59:22 UTC from IEEE Xplore. Restrictions apply.



B. Threshold Method

Our fundamental idea is to increase the similar-
ity/smoothness between data points by leveraging the intrinsic
nature of quantum circuit tensors without significant loss of
the reconstructed data fidelity. As discussed in Section II, the
lossy compressors (such as cuSZ and cuSZx) strongly depend
on the high smoothness of data, while the quantum circuit
datasets are very spiky (as shown in Fig. 2). In fact, many
tensor values are close to zero, but they are rarely exactly
zero when represented in binary floating-point format. Across
ten tensors ranging in size from 224 to 22° data points, 20-95%
of values are less than 0.1% of the value range. If we increase
the percentage to 1%, 60-90% of values are less than 1% of
the value range for several MaxCut QAOA circuits, and 40-
80% of values are less than 1% of the value range for several
rectangle and Bristlecone lattice random quantum circuits.
Compressors can exploit this sparse-like behavior of tensors
if values are truly zero since the similarity between data
points increases substantially. Another important aspect is that
the contraction process involves many matrix multiplications.
Thus, multiplying tensor values close to zero yield values that
are even closer to zero. Converting a small value to zero will
have little impact on the final energy value. This expectation
forms the basis of our proposed methods and is quantified in
Section VIIL.

The threshold method applies a filter to all data values
of the input tensor. A threshold value signifies the boundary
between data points that remain the same value in the tensor
and those that are set to zero. If the absolute value of a data
point is less than the threshold value, the data point is set to
zero. Otherwise, the data point remains the same in the tensor.
Formally, the filter F'(z) with threshold ¢ is:

F(m)—{

Applying F(z) to all data points z € T where T is
the tensor can be easily parallelized since the filter is inde-
pendently applied to each data point. Fig. 6 illustrates the
threshold method implementation, showing data points from a
sample tensor with the range of threshold values highlighted as
“Threshold Width”. F(T') is the tensor result of the threshold
method and has a length equal to the original tensor. x;
corresponds to the data point value at index 7. After applying
the threshold, SZ or SZx compresses F'(T') with no need for
post-processing after decompression. Note that all reads and
writes can be coalesced. Thus the threshold-only approach
provides a low-cost pre-processing stage that can greatly
increase the similarity between data points. For cuSZ and
cuSZx, this similarity translates to more similar quantization
codes and more blocks compressed as their mean only.

if x| <t
else

3

C. Threshold+Grouping Method

Using only the threshold method can affect the performance
of cuSZ and cuSZx since many zero values must be loaded
and processed even though these values are insignificant. The

761

0.002

Significant Values

3
3 ooot

l,

0.000 c

M A J
10 2 30 )

50

'{-Thrcshold Width=2t
} Significant Values

0 60

Data Point

Threshold: Xo ¥3 0 ©0 0 x5 © 0 F(M)e——

. Significant Value Array * =
Grouping:
11 0 0 0 1

Fig. 6: Threshold and Grouping Methods.

Compressed with lossless

0 0 Bitmap «—

compressor

metadata for zero values generated from cuSZ and cuSZx can
negatively impact their compression ratios, thus removing zero
values from the data sent to compression eliminates the need
for compression metadata other than a bitmap (described next).
cuSZx specifically is forced to perform bit representation
compression if only one significant value outside the error
bound exists in a data block of mostly zeros, reducing both
the compression ratio and throughput.

To overcome these limitations, we propose the thresh-
old+grouping method. The threshold+grouping method ex-
tends the threshold method, first applying the filter in Eq.
3 and then storing nonzero data points into a new array,
called the significant value array. A bitmap is introduced to
indicate whether a data point is a significant value or a zero
value. The significant value array is compressed (and later
decompressed) using a lossy compressor. For post-processing,
the decompressed significant value array returns significant
values to their original location in the tensor and assigns a
zero value to all other points.

The threshold+grouping method is illustrated in Fig. 6, with
the two resultant arrays noted at the bottom of the figure.
As with F(T) from the threshold method, the significant
value array is compressed using the SZ or SZx framework.
The threshold+grouping is carried out as follows: First, the
threshold filter F'(z) is applied to each data point z € T
while simultaneously storing in a bitmap b if the value is zero
or nonzero. b[i] is assigned O if data point x; with index ¢
was filtered to zero and 1 if x; is nonzero, or significant.
The resultant tensor F(T') is fed through a parallel stream
compaction stage where significant values are moved to the
significant value array. Parallel stream compaction is the task
of reducing an input array to an output array containing only
values that satisfy some condition. In this instance, compaction
moves significant values to the output array from the input
array F(T). The bitmap b for a tensor with dimension d
and number of nonzero values NNZ can occupy [%1 bytes
compared to NNZ x 2% x 4 bytes for a Compressed Sparse
Row (CSR) format, assuming a 32-bit index. CSR would have
a smaller footprint compared to the bitmap if 3.125% of values
are nonzero. However, for a R2R threshold of 1%, 60-90%
of tensor values are zero, thus we opt for a bitmap to store
nonzero value location.

Unlike the threshold method, threshold+grouping requires
a post-processing stage to reconstruct the output array from
the compressed significant value array and bitmap. After de-

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:59:22 UTC from IEEE Xplore. Restrictions apply.



compressing the significant value array using cuSZ or cuSZx,
the bitmap must be decompressed since it is used to reassign
significant values and zeros to their original position in the
tensor. A parallel prefix scan is performed so that in the next
stage, threads can appropriately index the bitmap and output
array to assign values. Lastly, the re-ordering of decompressed
values and zeros to the output tensor is conducted in parallel.

D. Selecting a Threshold Value

The threshold parameter, ¢ in Eq. 3, is a key component of
the proposed compression framework, and it balances limiting
data distortion and boosting compressibility in conjunction
with the compressor error bound. The significant values in a
tensor must remain within a reasonable bound to determine an
energy result from contraction that can still provide meaningful
insight into the quantum circuit simulation. Increasing the
threshold value leads to more zero values and, thus, higher
compression ratios, while decreasing the threshold value re-
duces the error in the final energy result. A lower threshold
value also increases the fidelity of the tensor, ensuring that
a decompressed tensor remains similar to its original form.
Fidelity is defined as follows [25]:

F(or,de) = [(Yor|tde)| 4

Eq. 4 shows that the inner product of two quantum state
vectors can be used to quantify their similarity. ¢, is the
state vector of the original tensor, and 4. is the state vector
of the compressed and then decompressed tensor. F'(or, de)
can be in the range of [0, 1] where values closer to 1 indicate
greater similarity between states.

In the experimental evaluation, we explore the impact on
energy value and fidelity of varying ¢ as well as the error
bound e.

VI. PLATFORM-SPECIFIC OPTIMIZATION

Here, we discuss GPU-specific implementation and opti-
mization strategies for threshold+grouping. Recall that the
threshold+grouping method has three main phases: 1) apply
the threshold to the input tensor 2) write the bitmap depending
on if a value is zero or nonzero 3) use parallel stream
compaction to move nonzero values. For phase 2, each thread
handles 32 contiguous elements, writing four bytes of the
bitmap. Shared memory is used as a buffer to enable coalesced
memory accesses while simultaneously avoiding atomics.

A. Parallel Stream Compaction

We recall that the threshold+grouping method requires par-
allel stream compaction to populate the significant value array.
We tested three existing compaction libraries: thrust [26],
cuSPARSE [27], and CUB [28] available through the CUDA
11 Toolkit. CUB performed best with the highest throughput;
thus, we integrated CUB into our final threshold+grouping
implementation. After compaction, the threshold+grouping
method performs lossless compression on the bitmap to reduce
the metadata footprint.

762

[00ooJoolooloolozoolzol. | | | | | | | |
: | 1. Load bitmap chunk from global to
shared memory

¥ A—
b ——
=

|

|

I

H i |

: |

v v v
J

} !
[ ] ] T [ ]
k Y

:

N P 2. Group bits into bytes and if a byte is
nonzero, store value 1, else store value 0

3. Write output array back to global
memory

Fig. 7: Compressing the bitmap using a second-level bitmap. The
first-level bitmap is sent through parallel stream compaction to group
significant bytes.

B. Compressing the Bitmap

The bitmap required in the thresh01d+gr01nllping method
represents a storage overhead. Occupying [%1 bytes, the
bitmap can limit the compression ratio achieved by the thresh-
old+grouping method. One option is to compress the bitmap
using existing GPU-accelerated compressors, such as LZ4
[29], a part of the NVCOMP library [30]. However, these
lossless compressors, including LZ4, are designed to compress
scientific data but yield sub-optimal performance when used to
compress the bitmap (which stores metadata). In an effort to
increase performance while still compressing the bitmap, we
introduce a two-level bitmap compression kernel that leverages
bitmap sparsity to achieve compression.

Fig. 7 illustrates the operation of our proposed two-level
bitmap compression kernel. We note that, on tensor datasets,
many bits of the raw bitmap are zero, resulting in many zero
bytes. Using the same principle of the threshold+grouping
method, we perform grouping on the bitmap’s bytes to create a
second bitmap level. Our implementation exploits memory co-
alescing and high shared memory bandwidth to reduce bitmap
compression latency. Each thread handles 256 consecutive bits
of the bitmap, writing four bytes to represent 32 groups of data
points in the first level. Since each thread is known to handle
32 bytes of the first-level bitmap and four bytes of the second-
level bitmap, no atomics are needed. The second-level bitmap
directs a parallel stream compaction phase with CUB to group
nonzero bytes into a new significant byte array.

SO S1 S2
SO S2 S2

i

S= —= a o
1
1

S3 SO S3
S3 S0 S3

SO S2
S0 S2

0.002

1
1
1
I Error Bound
1
1

S
3 0001

fm - ——— -

—
1 I 1
10 ' 20! 30!
Data Point
S0: All-zero block — Only store 0
S1: Constant block — Only store median
S2: Non-constant grouped — Store significant values and index in block
S3: Non-constant — Perform bit representation compression

0.000 E

1
0 ! 4 50 60

Fig. 8: High-level kernel design for integration of threshold+grouping
with cuSZx. Each data block is mapped to a CUDA block. Blue and
green states refer to real and imaginary components, respectively.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:59:22 UTC from IEEE Xplore. Restrictions apply.



Integrated Kernel

Compress<<<>>>(data, blk_size, threshold, error, out):
_ shared__ float sig_values[blk_size]
__shared__ uint8_t indices[blk_size]
__shared__ int sig_ind = 0
int state;
float value = data[tid+bid*blksize]
if abs(value) > threshold:

sig_values[sig_ind] = atomicAdd(sig_ind,
indices[sig_ind] = tid
// Determine if all points are within error
__syncthreads ()
if sig_ind == 0:
else if isConstant:
else if sig_ind < blk_size/2:
else:
__syncthreads ()
if state == 2:

// Rest of grouping; Write sig_values,sig_ind,indices to out

state == 3:

// Bit Representation Compression

Host Call

LA WN R

1)

©

range

(=
o

//
//
//
//

All zeros

Constant
Non-constant group
Non-constant

state
state
state
state

HRBERERP

©Na oA WN
[
wn ko

if

-
©

1 numBlks = data_size/blk_size
2 numThds= blk_size
3 Compress<<<numBlks,numThds>>>(data,blk_size, threshold, error,out)

Fig. 9: Pseudocode for threshold+grouping with cuSZx

. bs=128 bs=256 bs=512

T=1568.5, CR=42.1 T=181.1,CR=64.6 T=180.5, CR=86.9 T=137.1, CR=90.9

0 s0
s1 87% %gg s181% i‘.’/i 89 st 7% iﬁ o 10% 52
- s2
s2 S0

T=158.6, CR=44.3 T=181.3, CR=71.3 T=182.6, CR=101.8 T=167.4, CR=112.4

1 s0 65% s0
St 75% *o s3 ’ % s3
s2 52

T=175.4, CR=43.8 T=161.0, CR=40.9

27

1 65%

d=

28

0 s1

s181% <3
s2

T=171.9, CR=38.9

s1 87% %gg
S.

T=144.0, CR=31.2

s1

29

47% 6%
s3

1550 45%*°

1B st gy, A%
s3

s G V 3 v 3
s2

s2 52 >

Fig. 10: Breakdown of a proportion of block states when varying
tensor with dimension d and data block size bs. T indicates the
compression throughput in GB/s, and C'R indicates the compression
ratio. States are as follows: sO=All-zero, s1=Constant, s2=Non-
constant grouped, s3=Non-constant

C. Kernel Fusion Optimization for cuSZx

cuSZx categorizes blocks of data points as either constant
or non-constant data blocks and maps data blocks to CUDA
blocks. This framework naturally lends itself to integration
with threshold+grouping since CUDA blocks can process
grouping on a local level. Threshold+grouping as a separate
pre-processing step can introduce additional kernel launch
overhead and redundant memory accesses, limiting compres-
sion throughput. With integration, only a single kernel launch
is needed for compression, and the tensor is loaded into GPU’s
global and shared memory only one time. When integrating
threshold+grouping with cuSZx, we introduce two additional
block states in addition to constant and non-constant data
blocks: all-zero and non-constant grouped.

Fig. 8 shows how states are assigned to each data block and
Fig. 9 shows the corresponding pseudocode for the integrated
kernel with state representing the block state. The all-zero

763

data block is a constant block where all data points are zero.
The non-constant grouped block indicates a block with less
than half of all values being nonzero and not bounded by
the error bound. Each thread loads one value from the input
tensor for processing (line 5). Since there are few nonzero
values and the block size, blk_size, is small relative to
the overall data size, data_size,(typically 64 to 256 data
points per data block), nonzero values are moved to a new
array, sig_values, and their index within the data block
is stored in array indices (lines 6-8). At most, there are
blk_size atomic operations. The index of a data point with
block size b is log, b bits, and a local bitmap would be of size
b bits. For s significant values, storing indices requires less
space than a local bitmap when s < ﬁ. After integration,
the compressed tensor data is composed of 1. the median
values of each block (written directly to out) 2. the state
of each block 3. data point values (sig_values written
to global memory out) and local indices (indices written
to global memory out) of non-constant grouped blocks, and
4. bit representation compression (line 19) results for non-
constant blocks (written directly to out). Integration requires
modifying the existing cuSZx kernel to perform nonzero data
point movement and index storage for CUDA blocks handling
a non-constant grouped block, an operation that is relatively
low in performance cost. Shared memory can be exploited
within the kernel to enable coalesced reads and writes for
non-constant grouped blocks.

Selecting a data block size can have a direct impact on
performance since, in this integration, one thread is mapped
to one data point within a block. Fig. 10 shows the effect
of varying block size on tensor compression metrics. Larger
data blocks involve more threads in the grouping and bit
representation compression processes. With larger data blocks,
workload distribution across thread blocks is more even since
there is a greater likelihood that a data block is not an all-
zero or constant block. Thus, the burden of non-constant
block compression is more spread out across the streaming
multiprocessors of the GPU. However, if the block size goes
beyond 256, we note a performance decrease. This is because
blocks that were previously state O or state 1 block are now
state 2, and instead of even workload distribution, more blocks
must perform the more time-consuming state 2 grouping
process. Additionally, a block size of 256 allows for byte-
aligned accesses since indices within a block are one complete
byte. Other block sizes must store indices that are greater
than or less than 8 bits which can affect memory access
performance. In an effort to balance high throughput with
a reasonable compression ratio, our experimental evaluation
focuses on the integrated design using a block size of 256.
A similar integration is performed for decompression, where
data blocks with state 2 are expanded using indices and
sig_values.

D. Overall Framework

The implementation choices of threshold and grouping
compose a framework for tensor compression that can adapt

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:59:22 UTC from IEEE Xplore. Restrictions apply.



to the user’s needs. Our framework lets the user find the
best compression ratio and throughput balance to suit their
application. cuSZ and cuSZx can be substituted for each other
and coupled with either threshold, grouping with LZ4, or
grouping with the two-level bitmap. Additionally, the integra-
tion of grouping with cuSZx provides a higher compression
ratio alternative to cuSZx with comparable throughput. In all,
there are nine options on the spectrum of choices, with a high
compression ratio on one end and high throughput on the other.
In the experimental evaluation, we will determine where each
of these choices resides on this spectrum (Fig. 15).

VII. EXPERIMENTAL EVALUATION

We use the Quantum Approximate Optimization Algorithm
(QAOA) for MaxCut [31] to generate circuits for QTensor
simulation. Tensors in QTensor have a dimensionality of d,
corresponding to 2¢ data points. Table I reports the maximum
size of double-precision tensors, as reported in [32], and the
compression ratio CR needed to store tensors of MaxCut
QAOA on the Nvidia A100 GPU 40 GB global memory.
For the MaxCut input graph, the degree is fixed at 3, N
is the number of vertices, p is the circuit depth, and the
maximum tensor d is the average maximum tensor dimension
of the corresponding N and p. Without compression, Table I
indicates that we can only simulate MaxCut QAOA circuits
with low N and p. If tensor multiplication were to take
place in GPU memory, the required compression ratio would
need to further increase in order to store multiple tensors
in memory. While cuSZ and cuSZx may achieve sufficient
compression ratio for low complexity circuits, such as for
N = 25,p = 5, more complex circuits (e.g. N = 34,p = 5)
require significantly higher compression ratios to compress

tensors.
TABLE I: Circuit Parameter Effect on Tensor Size

N p Max Tensor d  Max Tensor Size (GB)  CR for one tensor
20 4 24 0.25 0.00625

20 5 29 8 0.2

25 4 25 0.5 0.0125

25 5 36 1024 25.6

34 4 26 1 0.025

34 5 41 32768 819.2

To determine the effectiveness of our proposed methods
as well as determine the relationship between error in ten-
sors and the final energy result, we use tensors from the
MaxCut QAOA circuit with nine varying combinations of
N € ]20,35] and p € [3,5]. We quantify the “effectiveness”
of each method using two metrics, the compression ratio, and
the throughput, providing the end-user a guideline for the
performance of the tested approaches. The quantum circuit
enters the QTensor pipeline and we extract tensors after a
varying ¢ number of steps. Compression and decompression
are performed on the tensor before resuming the QTensor
contraction algorithm, completing the pipeline. Both threshold
and threshold+grouping methods are implemented in CUDA
11 and are run on an NVIDIA A100 GPU, which features
64 FP32 cores per streaming multiprocessor (SM), 108 SMs,

764

and a shared memory size of 192 KB per SM. Target tensors
for compression vary in size from 226 to 22° values, or 512
MB to 4 GB, and are generated from QTensor. We collect
the compression/decompression throughput and a compression
ratio of both threshold and threshold+grouping methods when
using cuSZ and cuSZx as base compressors.

Energy Error Threshold (R2R)
> 025 [ 01 | 005 0.01 0005 | 0001 | 0.0005 [ 0.0001
025] 895%  968%  856%  90.9%  934%  127.1% 1296% 40.0%
01| 854%  502%  272% 110%  268%  225%  199%  223%
5 005 87.6%  454%  316% 10.3% 17.8%  282%  200%  143%
5 0.01| 86.6% 40.4% 19.5% 2.5% 3.6% 5.1% 32% 1.4%
] 0.005| 87.1% 36.2% 16.3% 3.4% 3.0% 1.5% 0.8% 0.9%
2 0001 87.1%  393%  17.8% 24% 0.9% 1.9% 0.3% 0.7%
0.0005|  87.2% 38.7% 17.8% 1.8% 2.3% 0.5% 0.8% 0.8%
0.0001 7 87.0% 382% 16.9% 0.9% 0.2% 1.5% 0.4% 02%

Fig. 11: Effect of relative-to-value-range (R2R) threshold and error
on final energy result. Values are energy result error and it is averaged
by applying distortion over all tensors of nine different circuits.

— Threshold (R2R)
2 025 | o1 [ 005 [ o001 [ 0005 | 0001 | 0.0005 | 0.0001
025] 06927 | 09278 09709 ~ 08234 07361 06967  0.6872  0.7047
01] 07436 09871 09903 09695 09468 09468 09379 09367
5 005] 07491 | 09888 = 09961 09914 09892 09874 09854 09835
4 001] 07517 09913 09972 | 0994 09995 09995 | 0.9995  0.9994
] 0005| 07516 09918 09970 | 09997 09999 09998 | 0.9998  0.9998
& 0001 07516 09916 09970 | 0998 10000 10000 | 1.0000  1.0000
00005] 07516 09915 09970 ~ 0.998 10000 10000  1.0000  1.0000
00001 07516 09915 09970 09998 10000 10000  1.0000 10000
Fig. 12: Effect of relative-to-value-range (R2R) threshold and error

on tensor fidelity. Values are averaged by applying distortion to ten
tensors of varying size and composition.

A. Effect of Error Bound and Threshold on Energy Value

Our distortion analysis seeks to quantify the effect of
lossy compression on both the entire simulation and on a
single tensor from a simulation, and the results for each are
reported in Fig. 11 and Fig. 12, respectively. For both figures,
green regions indicate less error while red regions indicate
high error, and the red bounding box indicates the targeted
region of values for the evaluation. Both the error bound and
threshold are implemented as relative-to-value-range values:
t=ri;(maxT—minT) and e=r.(maxT—minT) for tensor 7.
The inputs are thus r; and r. for the compression pipeline. In
Fig. 11, three MaxCut QAOA and six random quantum circuits
with relative-to-value-range error and threshold applied to
all tensors are used to generate energy values. They are
compared against the energy value using the original circuit
and the resulting percent error is reported. Since we aim to
limit energy error to 5%, threshold and error are selected as
ry € [0.001,0.01] and . € [0.001,0.01] for compression
performance analysis. Increasing r; generally increases the
compression ratio, thus the range [0.001,0.01] strikes a bal-
ance between high compression ratio and low result error. This
range of r; and r. is also suitable for achieving high fidelity
decompressed tensors as seen in Fig. 12. Fidelity values are
rounded to four decimal places and are collected from ten
varying tensors from MaxCut QAOA and random circuits with
r¢ and 7. applied using Eq. 4. Fidelity closer to 1 is beneficial
for high accuracy circuit simulations [33] [34].

We found that there were no significant compression ratio or
performance differences across all the methods when varying
r. thus the evaluation focuses on varying 7, with r. = 0.005.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:59:22 UTC from IEEE Xplore. Restrictions apply.



d=26 d=27 d=28 d=29
300 — Grouping+2L
— -+ Grouping+LZ4
S 20 Base
& —— Threshold /
.S 200 7
7]
8 150
S
§
3 100
50
0.005 0.010 0.005 0.010 0.005 0.010 0.005 0.010
R2R Threshold R2R Threshold R2R Threshold R2R Threshold
(a) Compression Ratio
d=26 d=27 d=28 d=29
100 == Grouping+2L — 1 —
— -+ Grouping+LZ4 - = = =
@ 80— Base
s} = o = o
2
= 60
5
2 = = = 4
£
2 /
3 0 g —
= 7 =
20 —r— _ =
0.005 0.010 0.005 0.010 0.005 0.010 0.005 0.010
R2R Threshold R2R Threshold R2R Threshold R2R Threshold
(b) Compression Throughput
d=26 d=27 d=28 d=29
400
—— Grouping+2L
— -+ Grouping+LZ4
» 300—  Base
o}
g /\
3 200 /_—/_
<
=)
E
<
£ 100

0.005 0.010
R2R Threshold

0.005 0.010
R2R Threshold

0.005 0.010
R2R Threshold

0.005 0.010
R2R Threshold
(¢) Decompression Throughput
Fig. 13: cuSZ-based results. The threshold only is omitted for
throughput plots due to no compression ratio benefit.

B. Pre-processing and Post-processing with cuSZ

Fig. 13a plots the compression ratio of cuSZ coupled
with various strategies. “Grouping+LZ4” refers to using the
grouping method with LZ4 as a compressor for the bitmap.
”Grouping+2L” refers to using the two-level bitmap design
for bitmap compression. The “Base” compressor uses only
cuSZ with no pre-processing, and “Threshold” applies only
to the threshold pre-processing stage. The dimensionality d of
each tensor is listed above each corresponding plot and the
size of the tensor in bytes can be easily calculated as 2¢ x 16
where 16 is the number of bytes to store a double-precision
floating-point complex number. Input tensors are cast to single-
precision floating-point complex numbers for compatibility
with cuSZ and cuSZx, thus we report compression ratio and
throughput relative to single-precision tensors. LZ4 compres-
sion using the NVCOMP library performs the best for higher
thresholds, scaling linearly with the value of the relative-to-
value-range (R2R) threshold. Since LZ4 is a more refined
general-purpose lossless compressor compared to the two-
level bitmap compressor, it can scale well with an increasing
number of zero values generated from applying the threshold.

765

The two-level bitmap compression, however, can match or
outperform LZ4’s compression ratio for lower R2R thresholds.
Since lower thresholds lead to more significant values, bytes
representing the bitmap value of eight adjacent data points
can become more dissimilar from each other. This, in turn,
can hurt LZ4’s compression performance while the two-level
bitmap treats all nonzero bytes equally. Beyond implemen-
tation specifics, threshold+grouping generates much higher
compression ratios compared to either the threshold-only or
baseline compressor approaches. Grouping itself reduces the
footprint of a tensor and coupled with cuSZ, significant values
are further compressed leading to increases in compression
ratio from ~30 for baseline to over 300 for NVCOMP-based
grouping.

Fig. 13b plots the compression throughput of cuSZ using
the same methods as Fig. 13a, omitting the threshold-only
approach since there is no performance or compression ratio
benefit across the varying r;. Fig. 13c plots the decompression
throughput of cuSZ coupled with other methods. Tensors
are compressed and then decompressed, with the appropriate
pre-processing and post-processing stages inserted before and
after cuSZ compression/decompression. Plot conventions are
the same as Fig. 13a. The lowest throughput is achieved by
the grouping method with the NVCOMP backend. We recall
that NVCOMP compressors are tailored to scientific data, not
metadata. The threshold method introduces a small overhead
for applying the threshold and does not lead to a significant
increase in compression ratio over baseline cuSZ. Perform-
ing the best relative to baseline cuSZ, the grouping method
with the two-level bitmap can achieve higher decompression
throughput than cuSZ alone. This is for two main reasons:
1. low pre-processing and post-processing overhead for GPU
and 2. smaller data input for cuSZ. Unlike LZ4, the two-
level bitmap compressor performs only relatively fast GPU
operations such as stream compaction and bit comparison. As
such, the performance overhead of the two-level bitmap is low.
Since cuSZ is only run on the significant values when using
grouping, cuSZ completes decompression faster and performs
closest to baseline for compression. On the A100 GPU, the
throughput of the two-level bitmap with cuSZ approach can
reach nearly 70 GB/s for compression and as high as 400
GB/s for decompression. We explore even faster approaches
next with cuSZx.

C. Pre-processing and Post-processing with cuSZx

Fig. 14a reports the compression ratio of five different
cuSZx-based approaches. “Grouping” refers to the thresh-
old+grouping method, with “+2L” using the two-level bitmap
and “+LZA4” using LZ4 to compress the bitmap. “Integrate”
refers to the integrated approach described in Section VI-C.
“Base” and “Threshold” are the same as Fig. 13a with cuSZx
instead of cuSZ. Grouping methods generate the highest
compression ratios of all the methods, reaching as high as
~220 compared to ~20 baseline for tensor with d = 27. This
is in line cuSZ’s results since higher R2R thresholds yield
more zero values, thus decreasing the number of significant

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:59:22 UTC from IEEE Xplore. Restrictions apply.



d=26

d=27

d=28 d=29

—— Grouping+2L

= Grouping+LZ4
Base

200

4

Integrated
Threshold .4

Compression Ratio

0.005 0.010
R2R Threshold

0.005 0.010
R2R Threshold

0.005 0.010
R2R Threshold

0.005 0.010
R2R Threshold

(a) Compression Ratio

d=26 d=27 d=28 d=29
g — — — | S S
GO e
% — -Groliping+2L
= 200 —.. Grouping+LZ4
3 -
2 150 Base
S e Integrated
© 100 —=— Threshold
£ == _e——— o ——
= — - — P
50 //’ ,// // ,_7.4-—-—'—'
% - -~
0 A S =
0.005 0.010 0.005 0.010 0.005 0.010 0.005 0.010
R2R Threshold R2R Threshold R2R Threshold R2R Threshold
(b) Compression Throughput
d=26 d=27 d=28 d=29
1500 —— Grouping+2L e =————
— -+ Grouping+LZ4
120 Base
51000 """ Integrated
= T luesNol | [ B
B 750 e
% =
B 500 Sl Nl —_—N ///
= = | £ N
250 e —— 54

0.005 0.010
R2R Threshold

0.005 0.010
R2R Threshold

0.005 0.010
R2R Threshold

0005 0010
R2R Threshold
(¢) Decompression Throughput

Fig. 14: cuSZx-based results. Note that tensor d = 29 did not run for
baseline and integrated due to memory requirements. Both Grouping
lines closely overlap for throughput plots.

values sent through cuSZx. The integrated approach can also
boost the compression ratio over baseline, though with less
significant gains compared to grouping. The plots additionally
indicate that the threshold-only method can also increase the
compression ratio since more constant blocks are generated.
The threshold and grouping methods, when not integrated,
also allow cuSZx to handle larger tensors without exhausting
GPU memory since there are fewer values requiring metadata.
Baseline cuSZx and the integrated method require many inter-
mediate data structures for large tensors, such as for d = 29,
and thus exhaust GPU memory.

Fig. 14b plots the compression throughput of the approaches
used in Fig. 14a with varying R2R threshold. Fig. 14c plots
the decompression throughput. Baseline cuSZx has a com-
pression throughput of 300 to 320 GB/s and a decompression
throughput of 1000 to 1600 GB/s. The best-performing ap-
proach relative to baseline cuSZx is the integrated approach
with a compression throughput of 200 to 260 GB/s and a
decompression throughput of 420 to 1200 GB/s. The integrated
approach is implemented with the fewest kernel launches,

766

reducing kernel launch overhead, and performs grouping only
at a data block level which leads to few atomic operations.
Additionally, the time-intensive bit representation compression
for non-constant blocks can be offloaded into local grouping
if the block is sufficiently sparse. The threshold-only method
introduces an additional kernel launch which involves reading
all data points and writing all threshold-applied points back to
the global array. This process can lead to lower performance
relative to the integrated approach, which applies the threshold
within the cuSZx kernel. Still, grouping with LZ4 has the
lowest performance due to bitmap compression overhead.

D. Compression Ratio versus Throughput

The proposed pipelines involve a trade-off between com-
pression ratio and throughput, as illustrated in Fig. 15. We
omit the threshold-only approaches since there is no sig-
nificant compression ratio or performance benefit relative
to other approaches. On one end, cuSZ coupled with the
threshold+grouping method can yield very high compression
ratios with lower throughput than cuSZx. cuSZx integrated
with threshold+grouping is limited in its ability to boost tensor
compression ratio over baseline but can perform close to the
speed of baseline cuSZx. These two designs provide users with
the flexibility to choose their priority, utilizing either the high
throughput of the integrated cuSZx pipeline or the high com-
pression ratio of the threshold+grouping cuSZ pipeline, with
additional options between them. When compression is needed
as a post-processing step to store tensors to disk, cuSZ with
threshold+grouping can provide the lowest compressed data
footprint. If intermediate tensors need to be compressed during
simulation, compression can be overlapped with contraction if
the tensors being compressed are not contracted. In this case,
a higher throughput solution, such as cuSZx integrated with
threshold+grouping, can prove to be more valuable.

Compression Ratio
15-25 20-75 25-35 25-160 25-200 25-200 25-300
cuSZx+ cuSZx+ | cuSZx+ | cuSZ+T | cuSZ+T
ac T+G+2L | T+G+N +G+2L +G+N
275-325 200250  S50-100  25-50 25-50 20-75 5-45
Throughput (GB/s)
T: Threshold G: Grouping 2L: Two-Level

N: NVCOMP-based LZ4

Fig. 15: Spectrum of Throughput versus Compression Ratio with
specific implementation placed according to relative performance

I: Integrated

VIII. CONCLUSION AND FUTURE WORK

We design a lossy compression framework for the com-
pression of quantum simulation tensors on GPU. The key
insights based on our experiments with NVIDIA’s A100 GPU
include: (1) The nine compression pipelines (including our
proposed designs) vary in their abilities. (2) Grouping method
can increase the compression ratio of cuSZ from ~30 to ~300.
(3) The grouping method increases cuSZx’s compression ratio
from ~20 to ~200 while the integrated kernel implementation

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:59:22 UTC from IEEE Xplore. Restrictions apply.



can boost the compression ratio to 150+ with up to 250 GB/s
for compression and 1200 GB/s for decompression, close to
cuSZx’s throughput. (4) The contraction error is limited to
<5% and ensures that tensor fidelity remains high after de-
compression. With our current design, multi-GPU compression
can be achieved by chunking the tensor and compressing each
chunk on a different GPU. In the future, we will extend this
framework to a more tailored multi-GPU environment as well
as tailor it to other quantum computing simulators that produce
different metrics.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (ECP), Project Number: 17-SC-20-SC, a collaborative
effort of two DOE organizations — the Office of Science and
the National Nuclear Security Administration, responsible for
the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system
engineering and early testbed platforms, to support the nation’s
exascale computing imperative. The material was supported
by the U.S. Department of Energy, Office of Science, Ad-
vanced Scientific Computing Research (ASCR), under con-
tract DE-AC02-06CH11357, and supported by the National
Science Foundation under Grant OAC-2003709 and OAC-
2104023. We acknowledge the computing resources provided
on ThetaGPU and JLSE (operated by Argonne Leadership
Computing Facility). At NC State, the project was supported
through subcontract DE-AC02-06CH11357 and National Sci-
ence Foundation’s award CNS-1812727.

REFERENCES
[17 J. Preskill, “Quantum computing and the entanglement frontier,” 2012.
[Online]. Available: https://arxiv.org/abs/1203.5813
A. W. Harrow and A. Montanaro, “Quantum computational supremacy,”
Nature, vol. 549, no. 7671, pp. 203-209, sep 2017.
I. L. Markov and Y. Shi, “Simulating quantum computation by contract-
ing tensor networks,” SIAM Journal on Computing, vol. 38, no. 3, pp.
963-981, jan 2008.
R. Schutski, D. Lykov, and I. Oseledets, “Adaptive algorithm for
quantum circuit simulation,” Phys. Rev. A, vol. 101, p. 042335, Apr
2020.
D. Lykov, A. Chen, H. Chen, K. Keipert, Z. Zhang, T. Gibbs, and
Y. Alexeev, “Performance evaluation and acceleration of the qtensor
quantum circuit simulator on gpus,” in 2021 IEEE/ACM 2nd QCS
Workshop, 2021, pp. 27-34.
D. Lykov and Y. Alexeev,
in tensor network simulations,”
https://arxiv.org/abs/2106.15740
D. Lykov and et al., “Tensor network quantum simulator with step-
dependent parallelization,” 2020.
R. Dechter, “Bucket elimination: A unifying framework for reasoning,”
Artificial Intelligence, vol. 113, no. 1-2, pp. 41-85, Sep. 1999.
Y. Collet, “Zstandard — real-time data compression algorithm,”
http://facebook.github.io/zstd/, 2015.
Zlib, https://www.zlib.net/, online.
BlosC compressor, http://blosc.org/, online.
M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed compressor
for double-precision floating-point data,” IEEE Transactions on Com-
puters, vol. 58, no. 1, pp. 18-31, Jan 2009.
K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
“Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE), 2021, pp. 1643-1654.

[4]

[5]

“Importance
2021.

of diagonal gates
[Online].  Available:

767

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]
[30]
[31]

[32]

[33]

[34]

S. Di and F. Cappello, “Fast error-bounded lossy hpc data compression
with sz,” in 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2016, pp. 730-739.

P. Lindstrom, “Fixed-rate compressed floating-point arrays,” [EEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674-2683, 2014.

J. Tian and et al, “cusz: An efficient gpu-based error-bounded lossy
compression framework for scientific data,” ser. PACT ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 3—15.

X. Yu and et al., “Ultrafast error-bounded lossy compression for scien-
tific datasets,” ser. HPDC ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 159-171.

X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in IEEE Big Data, 2018, pp. 438-447.

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in IEEE IPDPS, 2017, pp. 1129—
1139.

P. G. Lindstrom et al, “Fpzip,” Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2017.

M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the univariate
case,” Computing and Visualization in Science, vol. 19, no. 5, pp. 65-76,
2018.

A. M. Gok, S. Di, Y. Alexeev, D. Tao, V. Mironov, X. Liang, and
F. Cappello, “Pastri: Error-bounded lossy compression for two-electron
integrals in quantum chemistry,” in 2018 IEEE International Conference
on Cluster Computing (CLUSTER), 2018, pp. 1-11.

Z. Shangnan, “Quantum data compression and quantum cross entropy,”’
2021. [Online]. Available: https://arxiv.org/abs/2106.13823

X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using data
compression,” ser. ACM SC ’19, 2019.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition, 10th ed. ~ USA: Cambridge
University Press, 2011.

Thrust, https://docs.nvidia.com/cuda/thrust/index.html, online.
cuSPARSE, https://docs.nvidia.com/cuda/cusparse/index.html, online.
CUB, https://docs.nvidia.com/cuda/cub/index.html, online.

LZA4, https://1z4.github.io/1z4/, online.

NVCOMP, https://developer.nvidia.com/nvcomp, online.

E. Farhi and A. W. Harrow, “Quantum supremacy through the quantum
approximate optimization algorithm,” 2016. [Online]. Available:
https://arxiv.org/abs/1602.07674

A. Galda, X. Liu, D. Lykov, Y. Alexeev, and I. Safro, “Transferability
of optimal qaoa parameters between random graphs,” 2021. [Online].
Available: https://arxiv.org/abs/2106.07531

I. L. Markov, A. Fatima, S. V. Isakov, and S. Boixo, “Quantum
supremacy is both closer and farther than it appears,” 2018. [Online].
Available: https://arxiv.org/abs/1807.10749

B. Villalonga, D. Lyakh, S. Boixo, H. Neven, T. S. Humble, R. Biswas,
E. G. Rieffel, A. Ho, and S. Mandra , “Establishing the quantum
supremacy frontier with a 281 pflop/s simulation,” Quantum Science
and Technology, vol. 5, no. 3, p. 034003, apr 2020.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 01,2023 at 14:59:22 UTC from IEEE Xplore. Restrictions apply.



