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Abstract New particle formation (NPF) is a global phenomenon that significantly influences climate.

NPF also contributes to haze, with pronounced negative impacts on human health. Theory and observations
both show that nucleation is favored during clean days and inhibited during haze episodes due to a high
pre-existing condensation sink (CS). Here we show that the surprising occurrence of NPF during haze days

in Beijing is associated with a high concentration of sulfuric acid dimers. With both field observations and
model simulations, we demonstrate that downward mixing of sulfur dioxide (SO,) from the residual layer aloft
enhances ground level SO,, which in turn elevates sulfuric acid dimer after rapid SO, oxidation in the polluted
air. Our results address a key gap between the source of SO, and its atmospheric oxidation products during haze
conditions in a megacity, Beijing, providing a missing link in a complete chain describing NPF in the polluted
atmosphere.

Plain Language Summary New particle formation is a global phenomenon with notable effects

on climate and health. Recent studies have argued that atmospheric nucleation during haze episodes with high
aerosol loading should not occur. In spite of this, we have observed intensive nucleation events during haze
episodes in Beijing and found an unexpected high concentration of sulfur dioxide (SO,), along with a decreased
condensation sink (CS) owing to the development of boundary layer. The SO, originates from emissions by

tall stacks outside of Beijing and is subsequently transported downward from the morning residual layer to the
surface, this contributes to peaks of SO, during the day. A decreased loss of sulfuric acid dimer owing to a
decreased CS drives nucleation during haze episodes. As the phenomenon of a later morning SO, peak exactly
coincide with nucleation has been widely reported in eastern China, we highlight the importance of emissions
of SO, from tall smokestacks in atmospheric nucleation events.

1. Introduction

China has made great progress in mitigating fine particulate matter (PM, ) pollution since 2013 as a conse-
quence of clean air policies (Ding et al., 2019; Y. Wang et al., 2020; Zhang et al., 2019; Zheng et al., 2018). For
instance, the average annual PM,  concentration in 338 cities of China was approximately 90 pg/m? in 2013 and
dropped to 32 pg/m? in 2020. However, the level is still unhealthy as suggested by the World Health Organiza-
tion (WHO) annual mean PM, , target of 5 pg/m?®. New particle formation (NPF) during clean days may initiate
haze formation under stagnant weather conditions by providing most of the aerosol surface area as seed for
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haze (Guo et al., 2014). In addition, it is commonly accepted that a high aerosol loading, which results in a high
condensation sink (CS), is the key factor for suppressing nucleation in polluted environments, as newly formed
clusters will be rapidly scavenged by high concentrations of pre-existing aerosol particles (Cai et al., 2017; Guo
et al., 2020; Kulmala et al., 2021). As a consequence, NPF is not expected to happen during haze. In spite of
this, NPF events are frequently observed in Chinese megacities (e.g., Beijing, Shanghai, Nanjing and Guang-
zhou) (Chu et al., 2019; Deng et al., 2020; Qi et al., 2015; Wu et al., 2007; S. Xiao et al., 2015; Yue et al., 2013).
Most of those studies focused on resolving the underling nucleation mechanism in the urban boundary layer.
For example, a nucleation mechanism of sulfuric acid and stabilizing base compound (mainly dimethylamine,
DMA) was proposed based on field measurements in Shanghai and Beijing (Cai et al., 2021; Yan et al., 2021; Yao
et al., 2018), and the mechanism was confirmed in laboratory experiments with a suite of anthropogenic organic
vapors (M. Xiao et al., 2021). A measurement campaign in Barcelona showed sulfuric acid—DMA nucleation
but the involvement of oxygenated organic molecules could not be excluded (Brean et al., 2020). A laboratory
study showed that low volatility organic vapors from vehicle emissions, rather than sulfuric acid, could be the
governing component of NPF in urban Beijing (Guo et al., 2020). As this apparently contradictory literature
shows it is still not known why nucleation can be observed at all under high aerosol loadings. The driving factors
of the variation of vapors involved in nucleation in Beijing remains a challenge.

Diurnal boundary layer ventilation is a classic air pollution phenomenon, and studies indicate that ground-level
pollution can alter the boundary layer dynamics and inhibit dilution (Pet&ji et al., 2016). Primary pollution tends to be
worse at night when the mixing height is low and less severe in the afternoon when the mixing height is high, which is
why the morning rush hour is typically much more pronounced than the evening rush hour in time traces of pollutants
such as elemental carbon and nitrogen oxides (Y. H. Wang et al., 2014). This often extends to new-particle formation
because that same ventilation can dilute overall PM, 5 and thus the CS, reducing the loss rate of vapors associated
with NPF such as sulfuric acid, increasing their steady state concentrations, and so greatly increasing the particle
formation rate, which typically scales as square of the sulfuric acid concentration (Dunne et al., 2016). However,
sulfuric acid and nucleated clusters are both secondary pollutants, formed via chemistry in the atmosphere, and their
concentrations and rates depend on a balance between their production and loss. In this case, mixing from above is
not necessarily just a sink, but instead it can be a source of precursor vapors as well. Here, we report on intensive
new-particle formation events during haze episodes in Beijing driven by vertical sulfur dioxide (SO,) transport from
the nocturnal residual layer (the “left over” portion of the boundary layer from the day before), which makes vertical
mixing as a consequence of boundary layer development a source for both SO, and ultimately for particle formation.

2. Methodology
2.1. Observation Site and Instruments

Our measurements were conducted between 1 March 2018 and 30 April 2018 at the roof top of the university
building at the west campus of Beijing University of Chemical Technology (39.95°N, 116.31°E). The station is
located about 150 m away from the nearest road (Zizhuyuan road) and 500 m away from the West Third Ring
Road, and it is surrounded by commercial properties and residential dwellings representative of an urban envi-
ronment (Liu et al., 2020). The instruments and calculating methods are presented in Supporting Information S1.

2.2. Model Description

Dutch Atmospheric Large-Eddy Simulation (DALES) is a turbulence-resolved model that was originally devel-
oped since 40 years ago (Nieuwstadt & Brost, 1986). Based on the assumption of the Boussinesq approximation,
DALES uses the filtered Navier-Stokes equation to resolve the filtered-scale turbulence and one-and-a-half-order
closure scheme to parameterize the sub-filter-scale motions. DALES is able to simulate the complex boundary-layer
motions in the closed radiation-surface-atmosphere system. The model was used to simulate the vertical transport
of SO, in the study. The detailed settings of the model can be found in supporting information and (Ma et al., 2020).

3. Results and Discussion
3.1. Observed Intensive NPF Events During Haze

Our measurements were conducted in downtown Beijing from 1 March to 30 April 2018 (See Methods); frequent
nucleation events occurred even during haze episodes. A total of 36 out of 61 days were NPF event days, and
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Figure 1. Factors governing observed dependency of particle formation rate J, 5 on sulfuric acid dimer. (a) The observed dependency. The blue bars denote statistics of
particle formation rates at a certain sulfuric acid dimer concentration during non-haze days, while the red bar denotes statistics of particle formation rates at the same
sulfuric acid dimer concentration during haze days. The blue dashed line and red dashed line are fitted according to averaged particle formation rate versus sulfuric
acid dimer concentration. The gray dashed line is a 1:1 slope, indicating a first-order dependence of J, 5 on sulfuric acid dimer. High haze suppresses J, 5 by roughly

a factor of 3 due to decreased particle survival. The definition of haze is based on the concentration of PM, s, a day is defined as a haze day if the hourly PM, ; mass
concentration is larger than 75 pg m~3. Averaged diurnal variation of (b) the ratio of sulfuric acid dimer with condensation sink (CS) (c) sulfur dioxide concentrations
(d) sulfuric acid monomer (e) sulfuric acid dimer (f) CS (g) HONO concentrations separated by different conditions according to the definition of haze and New
particle formation event. The shaded areas denote one standard deviation.

seven of these NPF events occurred during haze episodes (see extend Figure S1 in Supporting Information S1).
Overall, we classify these 36 NPF events into seven haze-NPF and 29 non-haze-NPF events, with a further
12 days during haze episodes without NPF that we classify as haze-non-NPF events.

Figure la presents the relationship between the measured particle formation rate (J, 5) and the measured sulfuric
acid dimer concentration during both haze-NPF and non-haze-NPF periods. J|  is more strongly associated with
the sulfuric acid dimer concentration than with the sulfuric acid monomer concentration (Extended Figure S2 in
Supporting Information S1), and the association is approximately 1:1 in a log-log space (first order) as shown
with the dashed gray line in Figure 1a; this is consistent with other observations during non-haze NPF events
in Beijing and Shanghai (Cai et al., 2021; Yan et al., 2021; Yao et al., 2018). At any given sulfuric acid dimer
concentration, J, 5 is lower during haze-NPF events than during non-haze-NPF events; this is consistent with the
higher CS during haze episodes reducing the survival probability of particles as they grow from dimers to 1.5 nm.
Coagulation scavenging associated with the high CS is the dominant removal pathway for sulfuric acid dimer-
base clusters (Cai et al., 2021). Previous studies have revealed that a sulfuric acid dimer-base cluster is formed
from a sulfuric acid monomer associated with an amine monomer which then quickly stabilizes via addition of
another sulfuric acid monomer (Cai et al., 2021; Petdjd et al., 2011; Yan et al., 2021; Yao et al., 2018). Thus,
the measured sulfuric acid dimer is a charge separated sulfuric acid dimer-base (mainly amine) cluster before
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being detected by the NO;-CI-APi-ToF. During ionization the NOJ serves as a strong base, so the stabilizing
base in the ambient neutral clusters typically evaporates from the cluster before detection (see Method) (Almeida
et al., 2013; Kurtén et al., 2011).

We show the balance of the production and loss of sulfuric acid dimer is the key to understanding nucleation
during haze periods. This is reflected by the ratio of sulfuric acid dimers to the CS plotted in Figure 1b, separated
into the three event classifications. The key feature is a high dimer/CS during NPF, with or without haze, and a
low dimer/CS without NPF. The dimers form from collisions of monomers while they are lost to evaporation, the
condensation (really coagulation) sink and growth toward new particles. Specifically, we can define the “apparent

[SAT®
ka =\ ——= | kco ision
: ( [dimer] I

is the collision rate coefficient of sulfuric acid monomers with each other. We assume a

loss rate coefficient” as below:

The parameter k_ ;..
value of 3 X 1079 cm? molecule ! s~! (Li et al., 2018). For a sulfuric acid monomer concentration of 1 X 107 mole-
cule cm™3 and a dimer concentration of 3 X 105 molecule cm~3, the value of k, is 0.1 s~!. The other sink for
sulfuric acid dimer is coagulation with larger particles (the CS). During the measurements, the CS for sulfuric
acid monomer varied between 0.01 and 0.25 s~, but the CS for the dimers is anticipated to be slower than the
monomer by nearly a half due to the larger cluster size and mass than the sulfuric acid monomer (Tuovinen
et al., 2021). Evaporation is the dominant sink for dimers during clean periods (CS < 0.05 s7!). An increased
effective collision of dimers with larger particles during haze makes coagulation loss of dimer as important
as evaporation loss, which explains the dramatic decrease of dimers during haze seen in Figures 1a and 1b (Cai
et al., 2021).

The corresponding daily profiles of SO,, sulfuric acid monomer, sulfuric acid dimer concentrations and the CS
are shown in Figure 1c—1f, respectively. While these also make sense in the context of the event classifications,
none associates with NPF as profoundly as the dimer/CS relation in Figure 1b. The daytime SO, concentration
during haze-NPF is comparable with that during haze-non-NPF, but the corresponding differences in the sulfu-
ric acid monomer and dimer concentration are significant owing to a lower CS shown in Figure 1f and a higher
atmospheric oxidation capacity in haze-NPF. A major OH source is HONO photolysis, and the HONO concentra-
tion shown in Figure 1g is higher during NPF events, even during the day, than during non-event days. The rapid
photolysis of HONO produces more OH during the haze-NPF days than during haze-non-NPF days; this elevated
OH, along with decreased CS, results in a much higher production rate of sulfuric acid and subsequently sulfuric
acid dimers. The decrease of CS during 9:00-15:00 is owing to the increase of boundary layer height (BLH) as
shown in Figure S3 in Supporting Information S1.

The phenomenon of an SO, peak at noon or in the later morning has been reported over both the North China
Plain and the Yangtze River Delta Region, but the mechanism was attributed to diverse factors and not fully
explored (A J Ding et al., 2013; Huang et al., 2020; Xu et al., 2014; L. Yang et al., 2021). SO, in China is predom-
inately emitted by tall smokestacks of coal burning for steel making and electricity generation (Lu et al., 2010).
The SO, concentration has decreased significantly in Beijing since 2013 as a consequence of the clean air poli-
cies (Y. Wang et al., 2020). In addition, SO, emissions from domestic heating was eliminated in Beijing after 15
March 2018. Therefore, local emissions did not build up ground-level SO, at our station during this measurement
campaign.

3.2. Exemplary Haze-NPF Event

We presented three haze-NPF events described above in Figure 2, Figures S4 and S5 in Supporting Informa-
tion S1, respectively. In particular, the mechanism behind the phenomenon for an exemplary haze-NPF event on
24 March was detailed in Figure 2. Vertical aerosol measurements from a ceilometer shown in in Figure 2a reveal
that air pollutants (mainly aerosols) were concentrated within 300 m above the surface. March 23 was a haze
non-NPF day with a maximum hourly averaged PM, < concentration of about 182 pg/m?. NPF started at around
08:00 (local time) on 24 March, with a PM, , concentration of 188 pg/m® and a corresponding CS of 0.1 s/,
making this a haze NPF day. Measurements of particle formation rates showed low values of 3-27 cm ™3 s~! while

the CS was as high as 0.13 s~! during the early NPF period from 08:00-10:00 in the morning. The surface wind
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Figure 2. Analysis of an exemplary haze-NPF event. (a). Time series of (a) attenuated backscattering coefficient and
boundary layer height (b) particle number concentration distribution from 1 to 2,000 nm (c) particle formation rate J, ,
condensation sink and PM, 5 mass concentration (d) sulfuric acid monomer, dimer and sulfur dioxide concentrations (e)
vertical and horizontal wind speed and wind direction from 23 March to 25 March 2018, the warm colors (positive values)
denote the vertical winds blowing from lower levels to upper levels. These parameters show new particle formation during an
intensive haze day on 24 March 2018.

speed was generally low as shown in Figure 2e. In addition, both PM, ; mass and sulfuric acid dimer concentra-
tions increased rapidly as the NPF proceeded. The maximum concentrations of SO,, sulfuric acid monomer and
dimers were 14.0 ppb, 1.6 X 107 cm~ and 3.9 x 103 cm~3, respectively, which are higher values than previous
reported during nucleation in Beijing and Shanghai (Cai et al., 2021; Deng et al., 2020; Yan et al., 2021; Yao
et al., 2018). These concentrations increased concurrently as NPF proceeded. All these characteristics clearly
show nucleation taking place during a haze event.

3.3. Downward-Mixing of SO, in the Morning From the Residual Layer Aloft

Vertical transport of aerosol and gas vapors from the upper boundary layer contributes to ground-level aerosols
over the continental boundary layer (Chen et al., 2009; Lampilahti et al., 2021; Y. Liu et al., 2021; J. Wang
et al., 2016; Wehner et al., 2010). Frequent occurrences of higher SO, aloft have been reported in Beijing (Du
etal, 2021; S. Yang et al., 2009). Our simultaneous measurement of SO, on a 325-m meteorology tower to the
north of central Beijing shows that the SO, concentration was higher at 280 m than that at 160 m (see Extend
Figure S6 in Supporting Information S1). This is because SO, emissions are predominately from tall smokestacks
with a height of more than 120 m, which then form plumes that dilute and rise with atmospheric processes.
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Figure 3. Comparison of large eddy simulations of vertical sulfur dioxide (SO,) transport with regional observations during
a haze-NPF event between 19:00 23 March 2018 and 19:00 24 March 2018. (a) Modeled and observed SO, on the surface
ground in Beijing. Three simulations have different initial conditions, all with 10 ppb at the surface but with 10, 20 and 40
ppb aloft in the residual layer, as indicated. The red line is the average of the Beijing sub-observation sites. (b) Averages of
daily SO, variation at regional observation sites as indicated, all showing a 10:00 SO, peak similar to the peak in Beijing. A
well-mixed residual layer with a constant 293.22 K is prescribed from 110 to 910 m based on the observation of Ceilometer
CL51 (see extended material) for all three simulations. Only the elevated residual layer simulations reproduce the observed
peak SO, at 10:00, with 2 time and 4 times enhancement bracketing the observations. Noting that with limited information
about vertical profile of SO, and temperature (an inversion layer is always favored during haze), the modeled SO, variation
pattern cannot match exactly with observations on the surface ground.

During the haze event shown in Figure 2, air containing high SO, was trapped in the residual layer after sunset on
23 March as decreased solar heating and increased infrared cooling at the ground drove formation of a nocturnal
boundary layer. We used the DALES model (Heus et al., 2010; Ma et al., 2020) constrained by our measurements
to simulate the vertical distribution of air pollutants during this event. Based on the measured vertical inhomoge-
neous distribution of air pollutants, we initialized the model with SO, enhanced in the residual layer by a factor
of 2—4 compared to the surface. With this initialization, the model reproduced the observed SO, behavior with
a sharp peak near 10:00, as shown in Figure 3. A simulation without the vertical SO, gradient did not reproduce
this behavior. Measurements of SO, at ground level on 24 March at 48 stations in Beijing, Baoding, Handan,
Cangzhou, Datong, Tangshan and Taiyuan all simultaneously showed the SO, concentration peaking at around
10:00 (see Extended Figure S7 in Supporting Information S1), indicating a regional phenomenon. Noting that
high SO, concentrations sustained at ground level after noontime as presented in Figure 1c, which was the time
when the convection mixed layer already well developed and occupied the residue layer. Thus, it is possible that
the SO, during this time period is because the emissions from tall smokestacks mixed downward due to the inten-
sive vertical mixing in the mixed layer.

3.4. The Origin of Air Masses Driving NPF During Haze

With the Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle dispersion model, see Meth-
ods), we further show that air masses coming to Beijing are mainly from south-west with more emissions during
haze non-NPF, while the air masses from north-east and south-west are comparable during haze-NPF. This
demonstrated air masses from south-west during haze non-NPF suppressed NPF owing to a higher CS (see
Extend Figure S8 in Supporting Information S1). This is in line with our surface wind direction measurements
during 06:00-12:00 as presented in Figure S9 in Supporting Information S1. The air masses from the south-west
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Regional SO, transporation

Midnight Sunrise Noon

Figure 4. Schematic picture of new particle formation (NPF) in Beijing. A residual layer forms at sunset, trapping sulfur
dioxide (SO,) aloft over industrial regions with high smokestacks. Transport of SO, from surrounding regions to Beijing in
the residual layer during the night is followed by downward mixing of high SO, air after sunrise during entrainment of the
residual layer and mixing layer growth. NPF is enhanced by sulfuric acid formed from elevated OH and rapid SO, oxidation
despite the high condensation sink.

are usually from megacity areas of the North China Plain, containing high concentrations of SO,, aerosol parti-
cles, other pollutants and water vapor. In addition, the topography of Beijing, with Taihang Mountain to the west
and Yan Mountain to the north (much like Los Angeles), inhibits the horizontal dispersion of air pollutants (An
et al., 2019). As a consequence, air pollutants accumulate, and secondary aerosol formation is enhanced. The air
masses from the north originate in desert areas and contain high concentrations of dust and some other pollutants.
However, low relative humidity and strong winds do not favor secondary aerosol formation, but rather accelerate
vertical mixing of air owing to a higher solar radiation associated surface heating (see Extend Figures S10 and
S11 in Supporting Information S1).

4. Conclusion

In summary, we show that downward mixing of high SO, air from the morning residual layer to the surface is
a key process leading to atmospheric nucleation during haze episodes. The origin of air mass determines the
production and loss of sulfuric acid dimer clusters mediated by the coagulation sink. Overall, sulfuric acid dimers
drive nucleation in Beijing. The whole process is summarized in Figure 4, where high concentrations of SO,
originating from tall smokestacks outside of Beijing and transported by prevailing winds contribute to the haze
event and the high SO, containing air is trapped in the residual layer after sunset. As the sun rises and surface
heating is increased, the nocturnal residual layer is ventilated by vertical mixing and SO, is transported to the
ground level gradually. The SO, and other pollutants on the surface, together with local air pollutants, comprise a
processed chemical cocktail. As the condensation and coagulation of nucleated clusters by pre-existing aerosol
(represented by CS) is less efficient than the production of sulfuric acid dimer clusters, nucleation can take
place. However, if the air masses contain higher loadings of aerosols with more local production of secondary
aerosol matter, nucleation is suppressed. Given the large reductions of emissions in China since 2013, a further
emission reduction from those tall smokestacks is difficult even with the strictest emission standards in the world
(https://www.greenpeace.org/static/planet4-mena-stateless/a372e5fe-so2-report-english.pdf). Meanwhile, China
has articulated a goal to have carbon dioxide emissions peak before 2030 and to achieve carbon neutrality before
2060. Considering that both CO, and SO, are predominantly emitted from coal burning, we suggest that clean
energy with low emissions of both pollutants should be used, as only this with decrease both the frequency of
NPF and the emissions of carbon dioxide. As a consequence, particulate matter pollution, together with global
warming, could be mitigated, with corresponding significant reductions in both local and global environmental
(and human health) damages.
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