2022 IEEE 40th International Conference on Computer Design (ICCD) | 978-1-6654-6186-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICCD56317.2022.00089

2022 IEEE 40th International Conference on Computer Design (ICCD)

Area Efficient Asynchronous Circuits for Side
Channel Attack Mitigation

Dallas A. Phillips
Dept. of ECE
University of Cincinnati
Cincinnati, OH, USA
phillda@mail.uc.edu

Pingxiugi Chen
Dept. of ECE
University of Cincinnati
Cincinnati, OH, USA
chenpS@mail.uc.edu

John M. Emmert
Dept. of ECE
University of Cincinnati
Cincinnati, OH, USA
john.emmert@uc.edu

Abstract—Synchronous sequential or clocked digital circuits
are susceptible to synchronized side channel attacks (SCAs). By
distributing (in time) data processing, one method used to mitigate
or defend against SCAs is clockless, asynchronous circuit design.
A problem often associated with clockless, asynchronous circuit
design methods, like Null Convention Logic (NCL), is the large
area for logically equivalent circuits. Typical asynchronous
circuits are 2.5 to 3.5x the size of their synchronous sequential
counterparts. This work develops a data-path design methodology
based on a library of unique hybrid cells (part conventional and
part NCL). The new hybrid method has shown a significant
reduction in transistor count for asynchronous circuits. It results
in logically equivalent asynchronous circuits with only an average
transistor count increase of 6% while maintaining distributed (in
time) processing advantages. The method, hybrid gate description,
and comparison for several benchmark circuits are presented.

Keywords—asynchronous, data-path, null convention logic,
NCL, side channel attacks, SCAs, systems-on-a-chip, SOC

I. INTRODUCTION

Side channel attacks (SCAs) are leveraged to indirectly leak
private or sensitive information from integrated circuits (ICs).
Clocked, synchronous sequential circuits are especially
susceptible due to predictable or timed data processing [1]. In
addition, susceptibility to SCAs can be enhanced through the
addition of Trojan circuitry added by untrusted agents or
entities during the fabrication process [2][3]. Whether Trojan
circuitry is present or not, information leakage is highly
dependent on timing and clocked data processing.

Most fabricated designs are synchronous in nature and often
require a global clock signal so that data simultaneously arrives
at the inputs of combinational processing blocks. Whether a
Trojan circuit is present or not, the synchronized power draw of
the (often) large combinational processing blocks is the primary
contributor to successful SCAs. Asynchronous circuits, which
can be completely clockless, provide one approach to
mitigating power based SCAs [4]. One way to implement
asynchronous circuits is through null convention logic (NCL)
gates. Null Convention Logic is a symbolically complete logic
which expresses processes completely in terms of the logic
itself and inherently and conveniently expresses asynchronous
digital circuits [5][6]. Null Convention Logic gates are dual-rail

This work was supported by the NSF Center for Hardware and Embedded
Systems Security and Trust under Grant 1916722.

2576-6996/22/$31.00 ©2022 IEEE
DOI 10.1109/ICCD56317.2022.00089

565

1. Behavioral Synthesis

|

2. Critical Delay Path
Determinations

|

-
3. Hybrid Gate Insertion

|

4. Asynchronous
Handshake FF Insertion

5. Asynchronous
Controlled, Boolean
Latch Insertion

Fig. 1. Flow chart for reduced sized asynchronous NCL circuit generation.

with two separate wires for each signal. One wire represents
logic ‘0’ and the other logic ‘/.” Fant and Brandt showed that
with asynchronous registers and NCL logic gates, a complete
delay-insensitive design can be constructed [6]. One big
drawback of NCL asynchronous designs is the large area
overhead required for logically equivalent asynchronous circuit
implementations. Most fully asynchronous equivalent NCL
circuits are 2.5 to 3.5x the size of their standard counterparts. In
addition, most designers are not trained to design NCL
asynchronous circuits. This work presents a hybrid approach to
quickly implement asynchronous circuits using standard
synchronous sequential designs. The hybrid approach does not
require expertise in asynchronous or NCL design, and it has
shown significant area reduction for equivalent NCL designs.

As shown in Fig. 1, the approach to generate asynchronous
NCL circuits with low area overhead (on average only 6%
transistor count increase) has five basic steps: 1) Generate or
synthesize a digital circuit composed of standard cell Boolean
gates, 2) determine the critical or longest delay path through
each synchronized (clocked), combinational subcircuit block,
3) replace Boolean gates in each of the longest delay paths with
their hybrid asynchronous equivalent gates, 4) replace flip-
flops that drive the asynchronous NCL inputs of the hybrid
gates with their NCL asynchronous equivalents, and 5) replace
the remaining flip-flops with low overhead latches controlled

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 01,2023 at 15:02:35 UTC from IEEE Xplore. Restrictions apply.

by NCL asynchronous handshaking. The key to the overall
approach is based on determining the longest delay or critical
path in the circuit, and then replacing its (and only its) gates
with hybrid “conventional to asynchronous NCL” logic gates.
The hybrid conventional/NCL logic gates are designed using
techniques from both synchronous and asynchronous circuit
design, and an important requirement of the hybrid gates is that
no additional delay is added to its Boolean inputs. In previous
approaches, signal conditioning added additional processing
delays to combinational inputs. The additional input delays led
to changes in the longest or critical paths, thereby reducing the
reliability of the resulting asynchronous circuit. The rest of this
paper is organized as follows. Section II describes relevant
background to the reasoning behind the hybrid data-path
approach. Section III describes determination of and
requirements for data-path insertion, section IV describes the
hybrid gate insertion, and section V describes the hybrid
conventional/NCL logic gates. Section VI evaluates the
approach, and section VII concludes.

II. BACKGROUND

Background in three primary areas is relevant to the work
presented: A) SCAs and mitigation through asynchronous
circuit design, B) NCL asynchronous circuit design, and C)
asynchronous circuit area reduction through data-path cell
replacement.

A. Side Channel Attacks

One way to describe a Trojan circuit is an extra circuit that
is added by the manufacturer (unbeknownst to the designer)
during the IC fabrication process. Trojan circuits can be used to
provide legitimate feedback to the manufacturer on their
manufacturing process; however, they can also be used to
indirectly leak secret, sensitive, or private information during
regular operation of the IC. Several types of Trojan circuits have
been developed that require minimal overhead and are very
difficult for designers to detect either during normal IC testing
or (low probability) IC reverse engineering [2]. One specific
example of a Trojan circuit used for SCAs is a Malicious Off-
Chip Leakage Enabled Side-Channel (MOLES) integrated
circuit shown in Fig. 2 [3]. The MOLES circuit has very little
overhead, which makes it very difficult to detect. The MOLES
circuit consists of XOR gates, a pseudorandom number
generator (PRNG), and some capacitive loads. The PRNG can
either be a single linear shift feedback register or an existing
PRNG already located on the IC. The entire MOLES circuit can
use just a few hundred out of a multi-million transistor IC, and
power consumed by the MOLES circuit shows up as noise
during normal IC testing. An untrusted agent can use this extra
hardware with a large collection of electromagnetic or transient
power readings to decipher secret keys [3]. Power spikes caused
by combinational digital switching during every clock cycle, can
be collected over long periods of time. Reverse engineering
through spread spectrum techniques is used to detect secret keys,
K = kikeks...kn, stored in IC firmware. Machine learning can
accelerate the process, making it so less data is needed to
decipher the secret keys.

In general, SCAs make use of indirect measures to exploit
either existing or added Trojan circuitry to obtain secret, private,

566

PRNG

k; k;

v I Y

Fig. 2. Trojan MOLES circuit for secret key, K = kikaks. ..ka, detection.

or sensitive information. Trojan circuits are not required, but
they can increase the susceptibility of a circuit to SCAs. Side
channel attacks can leverage temperature variations,
electromagnetic radiation, power usage, or other measurable
characteristics during regular IC operation. Asynchronous
circuits, that distribute processing (in time), have been shown to
reduce the susceptibility of ICs to SCAs [4].

B. Asynchronous Null Convention Logic

There are different types of asynchronous design techniques
ranging from locally clocked to clockless, and each type has its
own advantages and disadvantages relative to SCAs [5-9]. One
type of clockless logic circuit is based on NCL [5][6]. NCL
circuits work well for data flow designs because the data flows
through the networks in waves. A data wave is only processed
when all incoming data is available, making it self-timed. Since
data is only processed when available, no timing assumptions
are required, and this attribute guarantees data sequencing and
correct data arrival at the receiver under varying gate, process,
and wire delays. NCL data, logic, and control signals use a
multi-rail encoding scheme. One rail represents the logic ‘1’
value and one rail the logic *0’ value. For example, a signal A
has a logic ‘1’ wire, A1, and a logic ‘0” wire, A0.

Asynchronous NCL circuits are implemented using
threshold gates with hysteresis [6][7]. Threshold gates have two
or more inputs and a single output, and most are denoted by
THmn, where the output of the gate is asserted (Set) if the gate
has a valid ‘DATA’ value on m (threshold) of its # inputs; i.e.
when its threshold is met, its output is asserted. The output stays
asserted (hysteresis) until all inputs have transitioned back to
‘NULL’ in the reset phase. Fig. 3 shows a generic THmn gate
symbol. It should be noted that besides being clockless, NCL
asynchronous circuits offer advantages to SCA avoidance that
include distributed in time (unsynchronized) and low power
consumption. For implementation purposes, DATA is typically
set to Vdd and NULL to Vss.

Asynchronous circuits implemented with NCL THmn gates
are particularly good at mitigating potential data leak from ICs
and help prevent SCAs [8][9]. Since synchronous circuits are all
clocked simultaneously, it is simpler for an untrusted agent to
reverse engineer information from indirect measurements taken
from the IC. However, Brandt and Fant showed the downside to
NCL gates, despite all the security benefits, is the area required
to implement an equivalent asynchronous version of a standard
circuit [6]. Fig. 4 shows an example 2-input NAND gate and its
equivalent NCL implementation. The standard 2-input NAND
gate requires four metal oxide semi-conductor (MOS) field
effect transistors (FETs) while the logically equivalent
asynchronous NCL version requires 14 FETs. In general,
equivalent NCL combinational circuits are between 2.5 and 3.5x

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 01,2023 at 15:02:35 UTC from IEEE Xplore. Restrictions apply.

I
b . m VA
1,

Fig. 3. Example THmn threshold gate symbol with » inputs and threshold m.

P [=

Z1

1
1
1
]
1
1
! 20
B I B —
1 B0
1
1
i
I B B0
1
44 B4 5 T 7 70 A0 7 Z1
1
1
4 Poad 404 1)
1
B | Bl
|
: TH22 THI2
i
NAND2 E NCL NAND2

Fig. 4. Example standard and NCL equivalent combinational NAND gate.

the size of their standard logic equivalent circuits. The area
increase can be prohibitive due to costs.

C. Conversion: Synchronous to Asynchronous Circuits

Due to area overhead, the cost of asynchronous versions of
standard circuits can be prohibitively expensive. Several efforts
have sought to reduce the area overhead of asynchronous
circuits [10-14]. One approach to create asynchronous circuits
is to replace all or part of the gates in the standard circuit with
their asynchronous equivalent gates. Methods like those from
Brej, Branover, and Semba allow designers to apply
asynchronous techniques and advantages without having to
specifically design asynchronous circuits [10-12]. These
approaches were created to convert synchronous netlists to
asynchronous circuits for the purpose of adding security to
designs. Semba and Saito compared the conversion on both the
register transfer level (RTL) as well as gate-level. The results
showed that RTL conversion was on average 11.3% better for
energy consumption [11]. However, Branover, Kol, and
Ginosar found that area growth for an asynchronous circuit can
be over 200% (4x), with more area growth occurring for smaller
synchronous designs [12]. They used Synopsys to synthesize a
synchronous version. Post-synthesis, they converted it to its
asynchronous equivalent. It was significant because it enabled
a simple transition from traditional designs and standard
synthesis tools rather than having to redesign a new software
tool specifically for asynchronous designs.

A popular approach to reduce area was to replace one or
more of the standard Boolean circuit’s critical or longest paths
with their equivalent asynchronous paths. While Brej,
Branover, and Semba all converted the entire synchronous
netlist into an asynchronous one [10-12], both Park and Xia use

567

the idea of converting only longest timing paths to dual-rail
gates by matching existing standard library components to dual-
rail equivalent gates [13][14]. Fig. 5 shows an example longest
path.

A problem with these techniques results in two possible
outcomes, both of which are suboptimal. To interface standard
Boolean logic gates with their asynchronous NCL counterparts
requires conversion between standard single rail Boolean
signals and dual-rail NCL signals. Converting NCL gate output
signals to standard Boolean input signals is trivial. Fig. 6 shows
an example where the logic ‘1’ NCL output wire, 41, is used to
connect to a standard Boolean signal, 4, that can be used as a
standard gate input.

On the other hand, the conversion of a Boolean signal to its
dual-rail equivalent requires signal conditioning circuitry. In
Fig. 6, the B2NCL block asserts a ‘1’ or Vdd value on the A1
or A0 NCL input wire depending on the logic value of Boolean
input signal 4. While the B2NCL circuitry is not complicated,
it does add delay to the arrival time of the input signal driving
the standard Boolean logic gate. As shown in Fig. 7, the
additional input delay caused by signal conditioning circuitry
when NCL gates are used to replace standard Boolean gates in
a critical path can result in a modified or different longest
critical path.

Two approaches, both suboptimal, were used to address the
longest path issue described above. Instead of only replacing
the Boolean gates in the longest path with their NCL equivalent
gates, all the gates driving any Boolean gate in the longest path
were replaced. As shown in Fig. 8, even for a lone longest path,
significant numbers of Boolean gates are replaced. Conversion
still results in a significant area increase.

The other approach was to modify the new longest path.
While this results in lower area overhead, it still requires
additional analysis, and due to its iterative nature, is difficult to
implement. The hybrid gates, presented below, include all
required signal conditioning, and since they don’t increase
combinational input delay, the only requirement is to replace
Boolean gates in the single longest combinational path.

III. CRITICAL OR LONGEST DATA-PATH

To reliably implement the approach for asynchronous
circuit generation, it is important to determine the critical or
longest delay paths through all combinational subcircuit blocks.
This can be accomplished using standard commercial-off-the-
shelf synthesis tools that perform static timing analysis, or it can
be accomplished using an O(Nelog(N)) breadth first search. To
make it compatible with most commercially available tools, a
tool that 1) parses a structural Verilog netlist, 2) writes it to a
hyper-graph, 3) determines the critical delay combinational
paths, 4) replaces the standard Boolean gates in the critical path
with their hybrid gate equivalents, and 5) writes back out a
modified, structural Verilog netlist, is optimal. For the data
presented here, commercial tools were used to determine the
critical Boolean paths (similar to Fig. 9), and to identify the
Boolean cells for replacement by their equivalent hybrid gates.

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 01,2023 at 15:02:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Example of longest delay combinational data-path.

NCL 2 Boolean
1
Al !
.
A ! A
A0 1
i

Boolean 2 NCL
1
1

A > B2ncL

AR

Fig. 6. Dual-rail NCL and Boolean signal conversion.

Fig. 8. Data-path replacement of all cells driving any critical path gates.

568

Fig. 9. Hybrid gate replacement of only Boolean critical path cells.

IV. HYBRID GATE INSERTION

To attain a significant area reduction for an equivalent
asynchronous NCL combinational circuit (on the order of only
a 5-10% area increase instead of 2.5 to 3.5x area increase), a
minimum number of Boolean combinational gates should be
replaced with their, hybrid counterparts. To achieve this, only
Boolean gates in the longest or critical delay path of a
synchronized combinational block of logic should be replaced
with their hybrid counterparts. Given that a static timing
analysis tool has determined the list of Boolean gates in the
critical or longest delay path, for a reliable asynchronous circuit
the following assertion must be made:

e Replacing Boolean logic gates in the critical path with
hybrid equivalent gates must not change the critical path.

A result of this assertion is:

e All non-critical path (standard Boolean) signal values
arrive at critical path hybrid gate inputs before the critical
path asynchronous NCL signals.

The hybrid gates have two types of inputs: Standard
Boolean and a dual-rail asynchronous NCL inputs. Since the
hybrid gate is creating an asynchronous path through the
combinational block, it only has a dual-rail asynchronous
output. Except for rare cases, like certain combinational block
inputs, the hybrid gate is only required to have a single dual-rail
NCL input, and the rest of the inputs will be standard Boolean.
To make sure the assertion is adhered to, the hybrid gates must
require no external signal conditioning on its inputs and hybrid
gate design must guarantee signal propagation delay through
the hybrid gate is > the delay through the Boolean gate it is
replacing. This is usually not an issue since the hybrid gates
have at least two levels of transistor delay and additional delay
can be added by carefully sizing the transistors, but it should be
verified before fabrication or implementation.

V. HYBRID GATES

Data-path solutions to asynchronous area reduction have
been investigated in the past [10-12]. The drawback has been
the added input delays associated with signal conditioning. To
address this delay, signal conditioning has been included in the

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 01,2023 at 15:02:35 UTC from IEEE Xplore. Restrictions apply.

new hybrid cells themselves. A hybrid gate can be directly
inserted into a critical path. Its single, dual-rail NCL input
directly interfaces to the NCL output of the previous hybrid gate
in the critical delay path (if it is the first gate in the path, its
NCL input is fed by an NCL register cell). Its other (non-NCL)
Boolean inputs are driven by the outputs of non-critical path
Boolean gates. The single NCL output of the hybrid gate drives
the NCL input of the next hybrid gate in the critical delay path.

To describe the hybrid gate design process, first compare a
standard Boolean gate implementation (Fig. 10) to a fully NCL
gate implementation (Fig. 11). The Boolean OR2 gate in Fig.
10 has two Boolean input signals, 4 and B, and a single Boolean
output signal, Z. Each signal in Fig. 10 can have a Boolean
value of logic ‘1’ or ‘0.” The NCL OR2 gate in Fig. 11 has two
dual-rail input signals, 4 (41 and 40 wires) and B (B1 and B0
wires), and one dual-rail output signal, Z (Z1 and Z0 wires).
Each dual-rail signal has two wires, a logic ‘1’ and logic ‘0,
which must be driven by two sub-circuits. The biggest
difference for the NCL OR2 in Fig. 11 is that a DATA (Vdd)
value applied to either wire (logic ‘1’ wire or ‘0’ wire) asserts
its logic value. In other words, a Vdd applied to the logic ‘1’
wire implies the NCL signal has a logic ‘1’ on it, and a Vdd
applied to the logic ‘0’ wire implies a logic ‘0’ value on the
NCL signal. A hybrid gate that must support both single rail
Boolean inputs and asynchronous dual-rail NCL input and
output. The general design flow for hybrid gate Boolean inputs
is shown in Fig 12.

The difficult part of the design of a hybrid gate is handling
a Boolean logic ‘0’ input. Since the hybrid gate output is a dual-
rail NCL output signal, a logic ‘0’ value is represented by a Vdd
voltage level on the logic ‘0’ wire. So, hybrid gates need to
process Boolean logic ‘0’ inputs and generate Vdd voltage
levels on NCL logic ‘0’ output wires. Traditional CMOS gate
design does not work because it requires inverting logic ‘0’
Boolean signal values, and the extra inversion can change the
circuit critical path. To handle this, unconventional, weak
transistor design is leveraged. Fig. 13 shows an example OR2
hybrid gate designed using the flowchart in Fig. 12. Other
hybrid gates can be designed using this generic approach.

For the OR2 hybrid gate in Fig. 13, there are three critical
cases to analyze: 4=‘1"=7Z=‘1B=1"=7Z=°1,’and 4 =
B=°0"= Z="0." It is assumed that the 4 input is the dual-rail,
asynchronous NCL input, B is a Boolean combinational input,
and Z is the dual-rail, asynchronous NCL output.

For the 4 = ‘1’ case, output Z should become a logic ‘1’
regardless of the value on the Boolean input, B. In
asynchronous NCL, this corresponds to a DATA (Vdd) on the
logic ‘1 wire, Z1, and a NULL (Vss) on the logic ‘0° wire, Z0.
Since the NCL input signal 4 is in the critical path, the dual-rail
NCL wire A1 will become Vdd after the arrival of the value on
Boolean input B (which is a don’t care for this case). Since A1
becomes Vdd, according to NCL convention, 40 will remain
Vss. In Fig. 13 with A1 =Vdd, Z1 will be Set to Vdd, and with
A0 = Vss, Z0 will stay at Vss. Further, Z1 will remain Vdd
(hysteresis) until 41 is Reset to Vss.

569

Fig. 10. Standard combinational OR2 gate design.

Al
A0 A
Bl Z0
B0

Bl 4, I>OZ_=21 BH 2
A1 51 40
{ B0
Set Z=

Fig. 11. Fully asynchronous NCL_OR2 combinational gate design.
°

Boolean
value to Set Z to <0’
DATA/Vdd (or pull =
Zb down to
Vss) =
L]
Use weak pFET(s) for
hybrid gate Boolean
input(s) to the Set Z to
DATA/Vdd (pull Zb
down to Vss) network

l

Add additional weak
nFET(s) to the “Hold” Z
= NULL/VSS output
network

Q0

a
Use strong nFET(s) for

hybrid gate Boolean
input(s) to the Set Z to
DATA/Vdd (pull Zb
down to Vss) network

Fig. 12. Hybrid gate design flow.

For the B = ‘1’ case, output Z should go to a logic ‘1’
regardless of the value that the NCL input signal 4 eventually
becomes. In the new data-path approach, B becomes ‘1,” and
then either 41 or 40 will become DATA (Vdd), while the other
remains NULL (Vss). In the circuit shown in Fig. 13, if A1 =
Vdd (40 = Vss), the logic ‘1’ output wire, Z1, will become Vdd,
and the logic ‘0’ output wire, Z0, will be Vss. Else if 40 = Vdd

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 01,2023 at 15:02:35 UTC from IEEE Xplore. Restrictions apply.

Al

zZ1
z0

HoldZ=
NULL/Vss

Fig. 13. Hybrid data-path replacement OR2 with built-in signal conditioning.

(41 = Vss), the logic ‘1’ output wire, Z1, will become Vdd, and
the logic ‘0’ output wire, Z0, will remain Vss. So, the logic ‘1’
output wire, Z1, is Set regardless of the value signal 4 becomes.
Further, Z1 will remain Vdd until 4 is Reset (41 = A0 = Vss).

It should be noted that for both the previous cases, the
Boolean input is either a logic ‘1’ or a don’t care. For the final
case, where the Boolean signal has a controlling value of 0,
the pFET design flow in Fig. 12 comes into play.

For the A = B = ‘0’ case of the OR2 example in Fig. 13, the
output should eventually become a logic ‘0.” For NCL, both A1
and A0 are initialized to NULL (Vss). In the example OR2
circuit (Fig. 13), these NULL values force Z1 = Z0 = Vss
regardless of the value on Boolean input B. Based on the data-
path assertions, B becomes ‘0’ before A4 is asserted. With B =
0,” when A0 is asserted = Vdd (41 still = Vss), Z1 will remain
Vss, however, Zb in the Z0 subcircuit will be pulled down
through the weak B pFET, and Z0 will become Vdd. So, the
logic ‘0’ output wire, Z0, is Set. Further, Z0 will remain Set to
Vdd until 4 is Reset (41 = A0 = Vss).

To satisfy the assertion in section IV, the propagational
delay of a replacement hybrid gate must be > the delay of the
replaced Boolean gate. Given the assertion is true, it can be
safely assumed that all Boolean combinational signal values
arrive before the NCL dual-rail signal values. To guarantee the
assertion, designers can carefully control hybrid gate transistor
sizing. One simple approach is to start with standard
proportional transistor widths for the nMOS and pMOS
transistors in the hybrid gates and performing spice simulations
to compare propagation delays between the Boolean logic gates
and their hybrid replacements. The widths of the hybrid gate
transistors can be adjusted to increase the hybrid propagation
delay (delay between NCL dual-rail input change and
corresponding dual-rail output change) to a percent difference
that guarantees reliable operation for the envelop of a particular
target technology fabrication node.

For comparison purposes, Table I below shows the relative
transistor count for a set of standard Boolean logic gates, fully
NCL asynchronous equivalent logic gates, and the critical path
hybrid replacement gates. It should be noted these are the gates

570

TABLE L. BOOLEAN, NCL, AND HYBRID GATE COMPARISON
Transistor Count
Std Boolean | Semi-static NCL Hybrid
nand2 4 14 17
nand3 6 18 20
nand4 8 22 23
nand5 14 36 40
nor2 4 14 17
and2 6 14 17
and3 8 18 20
and4 10 22 23
or2 6 14 17
or3 8 18 20
ord 10 22 23
xor2 12 24 22

required for comparison of the benchmark circuits analyzed
below in Table II. More details are found in [15][16].

VI. EVALUATION AND ANALYSIS

A set of benchmark circuits (including circuits from the
literature and circuits from common signal processing and
cyber physical system (CPS) applications) was used to compare
transistor counts of several standard Boolean, fully
asynchronous, and hybrid circuits [17]. Since the method is
applied to the combinational blocks of logic in synchronous
sequential systems, only combinational circuits are evaluated.
First, a completely asynchronous version of each benchmark
circuit was generated by replacing the standard Boolean gates
and signals with their dual-rail, semi-static NCL equivalents.
To implement the hybrid version of each benchmark circuit, the
Cadence Genus static timing analysis tool was used to
determine the critical path through each of the combinational
Boolean circuits. Then the transistor level library of hybrid,
Boolean to NCL interface gates (shown in Table I above) was
used to replace the standard Boolean gates in the critical paths.

The average number of MOS FETs per standard Boolean
benchmark circuit was 5,438, and the number of transistors (#
FETs) and percent increase (Tran Inc) for each version of the
individual benchmark circuits is shown below in Table II. For
the fully asynchronous NCL semi-static version of the
benchmark circuits, the average number of transistors was
13,433 or 2.47x the size of the Boolean circuit. In contrast, for
the asynchronous hybrid version, the average number of
transistors was only 5,787 or 1.06x the number in the Boolean
circuit for an average increase of only 6%. Based on the data
from Table II, larger circuits seem to benefit more than smaller
ones; however, more data is needed to verify this trend. Future
work and analysis includes applying the technique to complete
synchronous sequential systems, and then, quantifying any
improvement in digital noise floor for SOC applications and
SCA protection for security applications.

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 01,2023 at 15:02:35 UTC from IEEE Xplore. Restrictions apply.

TABLE II. BENCHMARK CIRCUIT COMPARISON
Transistor Count Comparison
Std Boolean Semi-static NCL Hybrid Circuit
FETs # FETs Tran Inc | # FETs Tran Inc
c432 826 1894 229 % 1008 22 %
c499 1796 3564 198 % 1904 6%
c880 1802 4324 240 % 2037 13 %
cl1355 2276 6892 303 % 2556 12 %
c1908 3330 7402 222 % 3628 9%
c2670 5008 10382 207 % 5169 3%
c3540 7194 14980 208 % 7518 5%
c5315 11332 22676 200 % 11700 3%
c6288 10112 33376 330 % 11031 9%
c7552 15624 32108 206 % 15939 2%
WTM4 468 1120 239 % 609 30 %
WTMI12 876 2040 233 % 1309 49 %
RISCV 10048 33868 337 % 10826 8%

VII. CONCLUSIONS

Area overhead has been a major hurdle to the practicality of
asynchronous circuits for both Systems-on-a-Chip (SOC) and
security and trust applications. The improved data-path method
presented here is based on replacing standard Boolean logic
gates in combinational logic critical delay paths with special
hybrid logic gates. The hybrid logic gates have a dual-rail,
asynchronous NCL input; one or more standard logic Boolean
inputs; and a dual-rail, asynchronous NCL output. A key
advantage of the hybrid gates is that all signal conditioning
required to convert standard Boolean inputs to asynchronous
inputs is included within the hybrid gate, so no additional signal
conditioning is required. This trait, along with controlled delay,
guarantees that the critical path will remain intact when the
hybrid gates are inserted. The method can be applied by
nonexperts in asynchronous circuit design using standard state-
of-the-art industry synthesis tools. Most important, the resulting
hybrid circuits retain the advantages of asynchronous circuit
processing (distributed in time processing) with an average
transistor increase of only 6% for the circuits tested here. Future
work includes fabricating and testing a library of hybrid cells,
taping out example circuits, and implementation of both SOC
and CPS applications to quantify improvement to both noise
mitigation as well as SCA protection.

571

(1]

[2]
B3]

(4]

(3]

(6]

(7

(8]

]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in CRYPTO
1999, LNCS, M. Wiener Ed., vol. 1666, Springer, Heidelberg, 1999, pp.
388-397.

M. Tehranipoor and F. Koushanfar, “A survey of HW Trojan taxonomy
and detection.” in JEEE Des. Test Comput., vol. 27,2010, pp. 10-25.

L. Lin, W. Burleson, and C. Parr, “MOLES: malicious off-chip leakage
enabled by side-channels,” in Proc. IEEE/ACM International Conference
on CAD (ICCAD), Nov. 2009, pp. 117-122.

S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor,
“Improving smart card security using self-time circuits,” in Proc. 8" IEEE
Int. Symp. on Asynchronous Circuits and Systems, Silver Spring, MD,
2002, pp. 211-218.

R. Sridhar, “Asynchronous design techniques,” in Proc. 5th Annual IEEE
International ASIC Conference, Sep. 1992, pp. 296-300.

K. M. Fant and S. A. Brandt, “Null convention logic: a complete and
consistent logic for asynchronous digital circuit synthesis,” Proc. IEEE
Int. Conf. on Application Specific Systems, Architectures and Processors,
Aug. 1996, pp. 261-273.

S. M. Nowick and M. Singh, “Asynchronous design—part 1: overview
and recent advances,” in /[EEE Des. Test, vol. 32, no. 3, Jun. 2015, pp. 5-
18.

J. J. A. Fournier, S. Moore, H. Li, and R. Mullins, and G. Taylor,
“Security evaluation of asynchronous circuits,” in CHES 2003, LNCS,
vol. 2779, Springer, Berlin, Heidelberg, 2003, pp. 137-151.

J. Wu, “Null convention logic applications of asynchronous design in
nanotechnology and cryptographic security,” Ph.D. dissertation, Missouri
S&T, 2012.

C. F. Brej, “An automatic synchronous to asynchronous circuit
convertor,” in Proc. 11th UK Asynchronous Forum, Dec. 2001.

S. Semba and H. Saito, “Comparison of RTL conversion and GL
conversion from synchronous circuits to asynchronous circuits,” in Proc.
IEEE International Symposium on Circuits and Systems (ISCAS), 2019,
pp. 1-4.

A. Branover, R. Kol, and R. Ginosar, “Asynchronous design by
conversion: converting synchronous circuits into asynchronous ones,” in
Proc. Des., Automation and Test in Europe Conference and Exhibition,
vol. 2, Feb. 2004, pp. 870-875.

H. Park and T. Kim, “Synthesizing asynchronous circuits toward practical
use,” in Proc. IEEE Comp. Soc. Annual Symp. on VLSI (ISVLSI), Jul.
2016, pp. 47-52.

Z. Xia, S. Ishihara, M. Hariyama and M. Kameyama, “Dual-rail/single-
rail hybrid logic design for high-performance asynchronous circuit,”
Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2012, pp. 3017-
3020.

D. Phillips, P. Chen, and J. M. Emmert, “Data-path cells for NCL
asynchronous circuit area reduction,” Proc. IEEE Nationtal Aerospace &
Electronics Conference (NAECON), Aug. 2021.

J. M. Emmert, “Area efficient asynchronous circuit generator,” U.S.
Patent Appl. 2022/63346711, May 2022.

F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational
benchmark circuits,” Proc. IEEE Int. Symp. Circuits and Systems, May
1985, pp. 695-698.

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 01,2023 at 15:02:35 UTC from IEEE Xplore. Restrictions apply.

