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Abstract

During the past few years, distributed acoustic sensing (DAS) has become an invaluable
tool for recording high-fidelity seismic wavefields with great spatiotemporal resolu-
tions. However, the considerable amount of data generated during DAS experiments
limits their distribution with the broader scientific community. Such a bottleneck inher-
ently slows down the pursuit of new scientific discoveries in geosciences. Here, we
introduce PubDAS—the first large-scale open-source repository where several DAS
datasets from multiple experiments are publicly shared. PubDAS currently hosts eight
datasets covering a variety of geological settings (e.g., urban centers, underground
mines, and seafloor), spanning from several days to several years, offering both con-
tinuous and triggered active source recordings, and totaling up to ~ 90 TB of data. This
article describes these datasets, their metadata, and how to access and download them.
Some of these datasets have only been shallowly explored, leaving the door open for
new discoveries in Earth sciences and beyond.
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Introduction

Seismology is an observational science heavily reliant on mas-
sive time-series datasets. Seismologists typically use seismo-
grams to image the Earth’s interior and to understand its
dynamic processes. Depending on the instrument, most seis-
mic sensors measure ground motion in terms of acceleration,
velocity, or displacement. Some instruments are equipped with
one vertical and two orthogonal horizontal channels to char-
acterize the vector components of ground motion. In all cases,
seismometers record the ground motion at a particular place as
a function of time. The perception of how the Earth’s proper-
ties vary across measurement sites is often not characterized,
except in rare experiments utilizing dense arrays.

Global and regional seismic networks provide high-quality
waveforms over a broad range of frequencies. Some networks
have been installed for several decades and have considerably
advanced our knowledge of the Earth’s interior (Lay et al.,
1998; Ritsema et al., 1999; Boué et al., 2013). However, they
suffer from poor scalability, as their deployment, maintenance,
and operation require great and ongoing effort and resources,
particularly in remote areas. In the last decade, we have seen a
shift in seismic instrumentation with the development of
cheap, portable, and stand-alone geophones (Hammond et al.,
2019). Although they provide lower quality measurements,
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seismologists have used them to obtain dense spatial coverage
useful for unraveling the complexity of fault zones, sedimen-
tary basins, or volcanoes (Mordret et al., 2013; Schmandt and
Clayton, 2013; Ben-Zion et al, 2015; Spica et al, 2018;
Castellanos et al., 2020). Overall, we are seeing an acceleration
in the rate of data acquisition and increasingly higher density
measurements, facilitated by advances in autonomous sensors
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(e.g, “nodal seismometers”) and other new techniques
(e.g., Ben-Zion et al, 2015; Sweet et al, 2018). As a result,
the seismic data available for download on the Incorporated
Research Institutions for Seismology Data Management
Center (IRIS-DMC) is growing at an exponential rate (e.g.,
Kong et al, 2019). As of 1 April 2022, the IRIS-DMC hosted
~882 TB (Incorporated Research Institutions for Seismology
[IRIS], 2022), and, following the current trend, we expect it to
double in the next three years. This trend is also observed at other
large seismological data centers such as the Réseau sismologique
et géodésique francais and the GEOForschungsNetz (Quinteros
et al., 2021). Yet, such a trend is expected to accelerate further
due to the rapid emergence of a new seismic measurement
method called distributed acoustic sensing (DAS; Fig. 1).

DAS is a measurement technology that turns fiber-optic
cables into ultradense arrays of sensors measuring real-time
vibrations at a high sampling rate (Hartog, 2017). It measures
high-fidelity wavefields over tens of kilometers—a product that
was previously only possible through industrial seismic experi-
ments. For a given time period, DAS datasets can produce
orders of magnitude more data than traditional passive seismic
experiments. For example, the Fiber-Optic Sacramento Seismic
Array (FOSSA) experiment (Ajo-Franklin et al, 2019)
recorded seven months of continuous wavefield at 500 Hz
every 2 m and over 25 km, and generated close to ~300 TB
of raw and minimally processed secondary data (Fig. lc).
This dataset alone would represent ~34% of the total current
IRIS-DMC database, if it were hosted there. The rapid data
accumulation resulting from the recent DAS experiments
is poised to intensify in the coming years, given the wider
availability and decreasing cost of DAS interrogators
(Lindsey and Martin, 2021). The anticipated petabyte-per-year
influx and the lack of policies in place regarding information
technology and national security requirements (e.g., Federal
Communications Commission, United States Navy) put public
data centers in a challenging position, as they cannot currently
accept large DAS data inflows.
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Figure 1. (a) Time span versus data points per second for all
experiments available in PUbDAS. Some datasets are provided in
full, some have been trimmed, and others have been down-
sampled to keep a reasonable data volume shown in panel (b).
(b) Cumulative data volume for all the datasets available on
PubDAS. (c) Cumulative data volume for all original datasets and
comparison with the data volume available for download from
the Incorporated Research Institutions for Seismology Data
Management Center (IRIS-DMC) (RIS, 2022). Fairbanks,
Fairbanks Permafrost Experiment array; FORESEE, Fiber-Optic foR
Environment SEnsking array; FOSSA, Fiber Optic Seismic Super
Array; LaFarge, LaFarge-Conco Mine array; Stanford 1, Stanford
campus array; Stanford 2, Sandhill Road array; Stanford 3,
Stanford Campus with two interrogator units (IUs); Valencia,
Valencia array. The color version of this figure is available only in
the electronic edition.

Public data centers are the cornerstone of open science.
They strive to share data, knowledge, and information within
the scientific community and the wider public, thereby stimu-
lating scientific research and advancing our understanding of
the world (Ramachandran et al, 2021). Accordingly, many
institutions and even scientific journals have adopted policies
that encourage or require scientists to make data available
through such data centers. Public data within seismology
and applied geophysics is typically disseminated by way of
the IRIS-DMC for the U.S. National Science Foundation
(NSF)-sponsored research or by special repositories main-
tained by other federal sponsors, including the US Department
of Energy with the Energy Data Exchange (U.S. Department of
Energy, 2022a) and Geothermal Data Repository (GDR; U.S.
Department of Energy, 2022b). For research funded outside
of these organizations, no cost-effective options are available
for making datasets in the 10-100 s of TB scale publicly acces-
sible, given the existing financial and structural models of gen-
eral-purpose repositories. The current bottleneck on public
seismic data archives slows the pursuit of exciting scientific dis-
coveries that might be facilitated by existing but inaccessible
Volume 94 « Number 2A .
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DAS datasets. This is further exacerbated by the fact that access
to DAS instrumentation is exclusive to a few research groups
that can either afford to purchase or rent an instrument.
Currently, community instrument pools are considering ave-
nues to support DAS instrument access. Public data archive
infrastructure has yet to be created to match these instrumen-
tation investments.

In this article, we introduce PubDAS—a public repository
presently hosting eight DAS datasets, for a total of ~90 TB. In
the near future, we expect PubDAS to grow and ultimately
migrate toward well-established data centers. However, as it
stands today, PubDAS aims to temporarily help the seismo-
logical community find a home for critical DAS datasets
and hopefully foment discoveries in Earth sciences. The data-
sets cover a variety of geological settings (e.g., urban centers,
underground mines, and seafloor), and some datasets are con-
tinuous, spanning from several days to several years (Fig. la),
whereas others provide triggered active source recordings. We
expect that these datasets will have applications beyond the
purposes for which they were originally recorded.

In the following sections, we first review the working prin-
ciples of DAS and its current fields of application in Earth sci-
ences. We then present the main characteristics of the different
datasets and discuss their metadata. Then, we describe how to
access PubDAS and discuss other DAS datasets already avail-
able online. To conclude, we discuss future steps and envision
the broader impact that PubDAS could have on the geoscience
community.

Overview of the DAS Recording
Systems

DAS systems are a combination of an interrogator unit (IU)
connected to a standard fiber cable (i.e., single mode) and a
data storage unit. While the I'U in its simplest form is an optical
interferometer, the cable serves as both a distributed exten-
sional strain (or strain rate) sensor and a means of transmitting
its own data to the storage unit. The IU probes the cable via
short pulses of laser light and typically measures the Rayleigh
backscattered photons over successive fiber segments. The
zone of the fiber that the pulse averages over is referred to
as a gauge length. When the fiber is stationary, such Rayleigh
backscattering is constant; however, when the fiber is distorted
due to vibrations, the resulting phase shift is quasi-linearly pro-
portional to the changes in path length over the gauges
(Grattan and Sun, 2000). The gauge length defines the spatial
resolution of the measurement, whereas the channel spacing
defines the measurement density. Typically, both the gauge
length and the channel spacing can vary from ~5 to ~40 m
and from ~0.25 to ~20 m, respectively. Channels may overlap
if the gauge length is larger than the channel spacing.
Depending on the manufacturing design, the IU may operate
in the time or the frequency domain and record vibration
information either in terms of strain or strain rate, accordingly.
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Even though the technology is constantly improving, in
some cases approaching the quality of classical inertial sensors
(e.g., geophones) on a point-for-point basis, there are trade-
offs and drawbacks that can interfere with data when selecting
recording parameters. For example, a larger gauge length not
only lowers spatial resolution but may also decrease statistical
uncertainty in measurements over the gauges (Martin, 2018).
In addition, the gauge length has an effect on the amplitude
response by generating zero strain notches at frequencies that
are a multiple of the gauge length (Dean et al., 2017; Jousset
et al., 2018; Lindsey, Rademacher, and Ajo-Franklin, 2020).
Except in special cases, DAS typically has a lower signal-to-
noise ratio (SNR) and a more limited angular sensitivity than
standard geophones (Martin, Lindsey, et al., 2018). In addition,
both the fibers and the cables (one or several fibers are enclosed
in a cable) vary in design, depending on several technical and
logistical requirements (Soga and Luo, 2018). While the optical
fiber composed of coated silica glass controls the light propa-
gation, the cable has an impact on the coupling with the
ground (Daley et al., 2013) and can impact data quality.
These drawbacks are largely compensated by the benefits of
having ultradense time series of permanently installed and
highly resistant seismic sensors in logistically challenging loca-
tions, communicating over large distances, and running on a
single power source (Martin, Lindsey, et al., 2018).

There are many more technical details about DAS measure-
ments and their comparison to standard instruments (e.g.,
Papp et al, 2017; Wang et al., 2018; Spica, Perton, et al,
2020; van den Ende and Ampuero, 2021). In this communica-
tion, we only describe the basic working principle to note that,
depending on the IU and the input parameters, the recorded
data are specific to each experiment. All these parameters and
cable characteristics (when known) should be taken into
account in data processing and interpretation. For an extensive
overview of the working principles of DAS, we refer the reader
to Hartog (2017).

Overview of the Current Fields of
Application in Earth Sciences

The vast majority of seismic recordings with DAS were initially
operated by the energy industry with many pilot experiments
performed in downhole environments (e.g., Mestayer et al.,
2011; Parker et al., 2014; Lellouch, Horne, et al., 2019; Li et al.,
2021). Rapidly, particular attention was paid to repeatable ver-
tical seismic profile imaging (Mateeva et al., 2012; Molenaar
et al., 2012; Daley et al., 2013; Mateeva, Lopez, et al., 2013;
Mateeva, Mestayer, et al., 2013), microseismicity monitoring
during hydraulic fracturing (Bakku, 2015; Karrenbach et al,
2017), and fluid flow monitoring through hydrocarbon pro-
duction (Daley et al., 2013). It is only over the past few years
that experiments started to focus on fibers deployed on the
near surface, with applications designed for shallow seismic
characterization and passive seismology (Zhan, 2020). Since
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then, several applications have demonstrated the consistency
between earthquake waveforms recorded by DAS and conven-
tional seismometers (e.g., Lindsey et al., 2017; Wang et al.,
2018; Ajo-Franklin et al., 2019; Lindsey and Martin, 2021).
Furthermore, the DAS instrument response appears to be
broadband (e.g., Lindsey et al, 2017; Jousset et al, 2018;
Ajo-Franklin et al., 2019; Lindsey, Rademacher, and Ajo-
Franklin, 2020), which opens the door to imaging the Earth
across different scales. For example, Yu et al. (2019) recorded
earthquake’s surface waves down to 200 s.

Among the many different fields of application, DAS has
now been used to characterize geothermal sites (Reinsch et al.,
2015; Lindsey et al., 2017; Zeng et al., 2017; Lancelle et al., 2021),
the inside of the San Andreas fault (Lellouch, Yuan, et al., 2019a,
b), glaciers (Walter et al., 2020; Hudson et al., 2021; Fichtner
et al, 2022), and densely populated urban centers (Lindsey,
Yuan, et al, 2020; Spica, Perton, et al., 2020; Yuan et al,
2020; Shragge et al., 2021; Zhu et al., 2021). It has also shown
promises in the context of various monitoring applications,
notably for detecting earthquakes (Lindsey et al, 2017; Li
and Zhan, 2018; Lellouch, Yuan, et al, 2019a), monitoring land-
slides (Iten, 2012), recording volcanic activity (Currenti et al,
2021; Klaasen et al., 2021; Nishimura et al., 2021; Jousset et al.,
2022), characterizing permafrost thaw (Ajo-Franklin et al, 2017;
Cheng et al., 2022), estimating blasts or explosions (Mellors et al.,
2021; Zhu et al.,, 2021), and recording weather-ground events
(Zhu and Stensrud, 2019; Shen and Zhu, 2021a). DAS record-
ings were also used for ambient noise interferometry (e.g., Zeng
et al., 2017; Martin and Biondi, 2017), offering the possibility to
retrieve repeatable signals (i.e., Rayleigh and Love waves) for
near-surface characterization (Dou et al, 2017; Martin,
Biondi, Karrenbach, and Cole, 2017; Ajo-Franklin et al,
2019) and aquifer monitoring (Rodriguez Tribaldos and Ajo-
Franklin, 2021). In addition, subsea telecommunication fibers
have not only been used to monitor ocean dynamics (Lindsey
et al., 2019; Sladen et al., 2019; Williams et al., 2019, 2022; Viens
and Spica, 2022) but also to detect earthquakes (Lior et al., 2021;
Spica et al., 2022) and acoustic phases (Rivet et al., 2021; Spica
et al., 2022; Ugalde et al., 2022), image the near-shore subsurface
(Spica, Nishida, et al., 2020; Cheng et al, 2021; Williams et al,
2021; Spica et al., 2022; Viens, Perton, et al., 2022), assess
detailed nonlinear ground-motion amplification (Viens, Bonilla,
et al., 2022), or precisely locate the sources of microseisms (Xiao
et al, 2022).

The former nonexhaustive list of studies suggests that DAS
will likely play an important role in seismology and many other
fields in Earth sciences in the near future.

Characteristics of the Repository

PubDAS currently includes eight datasets recorded with differ-
ent instruments and acquisition settings (Fig. 1; Table 1). All
the datasets provide continuous measurements from several
hours to several weeks. Possible gaps in the datasets originate
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from temporal recording issues or were planned as such during
field measurement. Most of the datasets are provided in their
raw original format as direct outputs from their respective IUs.
The two exceptions are the Fiber-Optic foR Environment
SEnsEing (FORESEE) and Valencia arrays, which have been
downsampled to 125 Hz and 250 Hz, respectively, using an
antialiasing low-pass filter. This is the only preprocessing
applied to these datasets. Table 1 summarizes some of the
key features of the datasets.

The Fairbanks Permafrost Experiment array

The Fairbanks Permafrost Experiment array is located outside
of Fairbanks, Alaska, on the Fairbanks Permafrost Experiment
Station, Farmer’s Loop Site, operated by the US Army Corps of
Engineer’s Cold Regions Research and Engineering Laboratory
(Fig. 2). The array consists of a 2D grid of hybrid tactical fiber
cables installed in trenches between 20 and 40 cm depth. The
array was installed to monitor an active heating experiment
where a section of permafrost was thawed using an in-ground
heating system. DAS data were recorded on the array using
both active and passive sources for a period of two months
during the thawing process. The site and heating experiment
are described in (Wagner et al., 2018), whereas the active
source monitoring activities are documented in Ajo-Franklin
et al. (2017) and Cheng et al. (2022). The data available on
PubDAS are for the four road parallel lines (A, B, C, D), each
approximately 180 m in length and traversing the heating
experiment, as well as the five shorter road perpendicular lines
(1,2,3,4,5). The data were recorded using a Silixa iDAS-v2 TU
at 1 kHz and a 1 m spatial sampling with a 10 m gauge length.
Data are saved in native measurement units (proportional to
strain rate). Although both active and passive data were
acquired, the curated PubDAS dataset is for the active experi-
ment, which records sequential shots from a single surface
orbital vibrator (SOV), swept multiple times every evening
to allow for timelapse monitoring of environmental processes.
Geophone data recording the SOV sweeps, useful for decon-
volution, are also archived.

The FORESEE array
The FORESEE array is located in central Pennsylvania in the
Valley and Ridge Appalachians region (Fig. 3). The array con-
sists of a Silixa iDAS-v2 interrogator and a ~5 km long single-
mode dark fiber installed underneath the Pennsylvania State
University campus. The fiber shown in Figure 3 is made of
two individual fibers that were spliced together around channel
1340. The cable sits in a buried concrete conduit at depths
ranging between 1 and 10 m. Continuous strain-rate measure-
ments were performed between 5 April 2019 and 4 October
2022, with a 500 Hz sampling frequency, a 10 m gauge length,
and 2 m channel spacing. The first 2137 channels along the
cable have been accurately located with tap tests. The first-
third of the array (i.e., channels 1-604) is located in a quiet
Volume 94
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TABLE 1

List of the Data Sets Currently Available on PubDAS and Their Main Characteristics

Time
Span Samples per
Name [[V] (Days) Format Second (Hz)
Fairbanks Silixa 59* TDMS 1,000
iDAS-v2
FORESEE Silixa 365 HDF5 125*
iDAS-v2
FOSSA Silixa 7 TDMS 500
iDAS-v2
LaFarge Silixa iDAS 2* SEG-Y 1,000
Stanford-1 ~ OptaSense ODH3 940 SEG-Y 50
Stanford-2 ~ OptaSense ODH3 14 SEG-Y 250
Stanford-3  OptaSense ODH4 6 SEG-Y i
Valencia Febus Optics A1-R 7 HDF5 250*

Volume Gauge Cable Channel

(GB) Length (m) Length (m) Spacing (m) Units
10,441 10 4,000 1 £
29,338 10 4,900 2 £
11,680 10 23,300 2 £

45 10 1,120 1 £
18,908 7.14 2,500 8.16 €
2,887 20 10,200 8.16 £

92 i 2,500 8.16 €
3,213 30.4 50,000 16.8 é

HDF5, Hierarchical Data Formats version 5; IU, interrogator unit; SEG-Y, Society of Exploration Geophysicists “Y"; TDMS, Technical Data Management System; ¢, strain rate; and ¢,

strain. Name abbreviations are the same as in Figure 1.
*Data contain active sources.

This value may vary.

*Dataset is downsampled.

off-campus area, and the rest of the array is located on the
main campus with stronger anthropogenic noise. Zhu et al.
(2021) describe how to calibrate the DAS recordings to particle
velocity using earthquake waveforms from a nearby broadband
seismometer. Throughout the 2.5 yr experiment, the array
recorded a variety of transient signals, including global and
regional earthquakes, thunderquakes (Zhu and Stensrud, 2019;
Hone and Zhu, 2021), and mining blasts (Zhu et al., 2021). In
addition, anthropogenic signals common to urban environ-
ments were also detected, such as cars, footsteps, and live music
events (Shen and Zhu, 2021b). The long duration of the experi-
ment also allows exploration of the effect of seasonal environ-
mental variations, and provides critical information on surface
and subsurface processes.

In PubDAS, data acquired during the first year of the
experiment (i.e., 5 April 2019—14 March 2020) are available.
During this time, the recordings were interrupted several times
due to unexpected power outages, and data files were rewritten
to keep consistency in hdf5 format during preprocessing. The
FORESEE array is the largest dataset on PubDAS, even though
the data have been downsampled from 500 to 125 Hz.

The FOSSA
The FOSSA experiment was conducted on the Sacramento
River flood plain, north, and west of Sacramento, California.
The experiment utilized a 27 km section of dark telecommu-
nications fiber, part of department of energy’s ESnet network,
connecting West Sacramento with the town of Woodland
Volume 94« Number 2A
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(Fig. 4). Data of usable quality were recorded with a Silixa
iDAS-v2 on approximately 23.3 km (11,648 sampling loca-
tions, 2 m spacing). The experimental targets were monitoring
regional seismicity and characterizing near-surface structures
using ambient noise methods. Data were collected between 28
July 2017 and 18 January 2018, at an original sampling rate of
500 Hz, generating a total of 210 TB of raw uncompressed data.
Ajo-Franklin et al. (2019) describe how some sections of the
fiber were mapped using sequential impact tests at the surface
and provide other details about the field installation of the
equipment. As discussed in Rodriguez Tribaldos and Ajo-
Franklin (2021), the cable was largely deployed within a con-
duit buried in the soil at depths of 1-1.5 m. Some sections were
also placed in shallow horizontal boreholes beneath roads and
railway tracks, again in conduit but slightly deeper (3-4 m).
The response of the fiber was also explored through compari-
son to a collocated broadband inertial sensor by Lindsey,
Rademacher, and Ajo-Franklin (2020) for both teleseismic
events and microseism energy.

The fiber used in the FOSSA experiment traverses several dis-
tinct settings of development with different installation and noise
characteristics. The fiber starts in an urban area and continues
into a section of farmland near the Sacramento River. After bend-
ing westward toward Woodland, the fiber follows Interstate 5. In
addition, the cable is sometimes colinear with a heavily used rail
corridor. The surficial aquifer is influenced by both natural pre-
cipitation, irrigation, and river stage, which can influence soil
properties; Rodriguez Tribaldos and Ajo-Franklin (2021) used

Seismological Research Letters 987



64.877°N

Y% Sov

° Heaters

ABCD

64.876°N
Alaska
64.875°N Fairbanks
A
N S0 m
I
147.673°W 147.671°W

Figure 2. Map of the Fairbanks Permafrost Experiment array. The
letters and numbers refer to the line labels. Only the channels at
the end of each line have been tap tested. The inset map shows
the location of the array (gray square) in the state of Alaska,
U.S.A. SOV, surface orbital vibrator.

the dataset to monitor the aquifers using ambient noise interfer-
ometry. The quality and diversity of the wavefield recorded
allowed Nayak et al. (2021) to produce mixed-sensor cross cor-
relation between regional seismometers and strain-rate DAS
recordings. In PubDAS, at present, one week of continuous
raw data that contains a variety of signals, including large tele-
seismic earthquakes, is available for download.

The LaFarge-Conco mine array

The LaFarge-Conco mine is a Limestone and dolomite mine
located in North Aurora, Illinois (Fig. 5; Wang et al., 2017).
The layout consists of north and south sections, which are con-
nected by underground passageways beneath Interstate 88.
This room-and-pillar mine occupies a wedge-shaped footprint
that is approximately 1500 m long x 500 m wide at the I-88
dividing line. The mine includes four levels down to a depth of
about 80 m. Pillars are approximately 20 m on a side and in
height. The rock is blasted from the formation most weekdays
in midafternoon. Rocks are then hauled by truck to the north-
west entrance for processing. Background noise from mine
truck traffic and conveyor belts is observed during the DAS
experiment, except when the mine was cleared for blasting.
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Figure 3. Map of the FORESEE array. The inset map shows the
location of the array (little gray square) in the state of
Pennsylvania, U.S.A.

The DAS array was located in the north section of the first
level of the mine, as shown in Zeng ef al. (2021). A ~1120 m of
tactical fiber-optic cable was laid down over three layers along
an L-shape loop. In loop 1, the cable was secured in a groove
cut in the floor using a pavement saw and then covered with
self-leveling concrete. Two additional loops were placed above
the cemented cable. Loop 2 was placed in the groove and
covered with fine rock powder, and in loop 3 the top strand
was placed without cover. A Silixa iDAS interrogator was
set up in a tent near a pillar a few meters west of the cable
layout. Power was supplied by a generator, but batteries were
used during blasting testing to limit vibrational noise. Several
locations along the DAS cable were tap tested to associate the
DAS channel number with the surface position of the cable
(Zeng et al., 2021). A 23 kg weight providing 208 J of energy
was the seismic source at the lettered stations in Figure 5. In
addition, two mine blasts at distances of about 200 and 450 m
from the DAS array were used to test the feasibility of mon-
itoring stress changes from travel-time changes. The sharpest
P-wave arrivals were recorded by the cemented cable, and the
poorest arrivals were recorded by the loose cable.

Stanford 1—the Stanford campus array
The Stanford campus array in California (Fig. 6) was created
using a fiber cable loosely deployed in an air-filled polyvinyl
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cable length of 10.2 km and a
channel spacing of 8.16 m,
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chloride conduit (~12 cm wide) in the same way other fiber
cables are installed around campus. The fibers were pulled
along these conduits accessible through manholes (small
underground rooms). The coupling between the cable and
the surrounding medium relies exclusively on gravity and fric-
tion when the fiber sits in the conduits. In manholes, the fiber
was zip-tied to a bracket on the side of the wall. In addition,
45 m of fiber was spooled up and strapped to the wall (with a
vertical and horizontal component) at campus drive, and Via
Ortega and south of Allen on Via Pueblo. The fiber location
was calibrated with tap tests as described in detail in (Martin,
Biondi, Cole, and Karrenbach, 2017). Continuous recordings
were acquired using an OptaSense ODH-3 IU at 50 Hz
between 2 September 2016 and 31 March 2019, for a total
of 626 channels. With 940 days available for download, this
dataset offers the longest time span in PubDAS.

Through this experiment, Martin et al. (2017) and Biondi
et al. (2017) showed that the DAS technology can be used to
record seismic data directly from a free-standing telecommu-
nication cable. The data from this array provide a unique
opportunity to monitor long-term variations of the ambient
seismic field generated by natural and anthropological sources
(Huot et al, 2017; Martin, Huot, et al, 2018; Martin and
Biondi, 2018), to analyze hundreds of earthquakes as well as
numerous quarry blast waveforms (Biondi et al, 2017;
Lindsey et al., 2017; Fang et al., 2020), to monitor infrastruc-
ture (Fang et al., 2020), and to image the shallow subsurface in
a populated urban area (Spica, Perton, et al., 2020). This data-
set also enables extensive exploration of the application of
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interrogator. The data volume

write rate was approximately
101 GB/day. Two full weeks of raw data with all 1250 channels
originally sampled at 250 Hz and recorded between 1 and 14
March 2020 are available on PubDAS. About 350 channels
were located along the relatively straight Sandhill Road section
between the quiet portion of the array near Stanford Hospital
(channel 400) and Stanford Linear Accelerator Center (chan-
nel 750). The section of the array between channels 400 and
750 (Fig. 6) provides the highest SNR. The locations of the
channels along this segment were calibrated by driving a dedi-
cated car at a constant velocity at night along the fiber (Yuan
et al., 2020). Lindsey, Yuan, et al. (2020) used this array to
detect hundreds of thousands of individual vehicles and mon-
itor urban activity levels during the early stages of the COVID-
19 pandemic. Yuan et al. (2020) investigated a cost-effective
urban infrastructure monitoring system by combining vehicle
onboard sensing and roadside DAS using this array.

Stanford 3—the Stanford campus array with two
IUs

Stanford 3 was a temporary dual IU experiment on Stanford
campus between 5 and 13 October 2017, using the same
Stanford 1 cable loop. Besides the OptaSense ODH-3 model
that recorded since 2016, this experiment attached an addi-
tional ITU—an OptaSense ODH-4 model that started interrog-
ating using acquisition parameters identical to the ODH-3.
Both the IUs collected data concurrently using the same set-
tings for three days, and then a set of various gauge lengths and
sampling rates were tested on the ODH-4 individually. The
experiment shows better data quality in ODH-4 recordings than
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Figure 5. Map of the LaFarge-Conco Mine array. The numbered
gray areas represent the mine pillars. The inset map shows the
location of the LaFarge-Conco Mine (gray square) in the state of
lllinois, U.S.A.

ODH-3, and the high-quality ODH-4 data were used for hori-
zontal-to-vertical spectral ratio analysis (Spica, Perton, et al,
2020). Three broadband seismometers were contemporaneously
installed in building basements by the U.S. Geological Survey
within the cable loop (U.S. Geological Survey, 2016) and col-
lected ground-motion data for comparison.

The Valencia array

The Valencia-Islalink experiment (Spica et al., 2020) used a
preinstalled telecommunication fiber-optic cable operated by
IslaLink Holding Iberia S.L. and connecting the Spanish pen-
insula to Mallorca Island from Valencia to Palma de Mallorca
(Fig. 7). From 1 to 15 September 2020, a Febus Optics A1-R
interrogator was connected to the Valencia side to sample the
first 50 km of the cable. The cable location provided by the
cable operator indicates that the first 9189 m are on land.
This is easily confirmed by the observation of characteristic
traffic noise in the record sections. According to the
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installation report, the remaining 40,811 m are buried ~1 m
below the Mediterranean seabed. This is also confirmed by
the observation of strong marine gravity waves and the secon-
dary microseism in the record sections (Xiao et al., 2022). Data
were acquired at a sampling frequency of 1000 Hz, with a
gauge length of 30 m and a spatial resolution of 16.8 m, result-
ing in a dense seismic array of 2977 channels. To lower the
repository’s volume, we downsampled the data to 250 Hz using
a tenth-order Chebyshev low-pass filter below 125 Hz. We also
truncated the original hour-long files into 10 min files to facili-
tate download and data handling. The data from 1 to 7
September are continuous and available on PubDAS. The
remaining week was less complete with the presence of numer-
ous recording gaps and was therefore not published.

Metadata
To measure Earth vibrations with DAS, fiber-optic cables
should be fully coupled to the ground. In principle, good cou-
pling with the surrounding medium can be obtained by bury-
ing cables in the ground, and detailed logs of the burial process
should be made available. In practice, cables might not be
locally coupled to the ground (e.g., cables locally hanging along
electricity lines or zip-tied loops in manholes), and coupling
conditions are generally unknown or poorly constrained. In
addition, DAS measurements of a fully coupled cable are
impacted by the cable manufacturing properties. For example,
cables deployed on the ocean floor need to withstand extreme
pressure conditions and are typically heavier with multiple
fiber strands, a steel jacket, and a copper core. This contrasts
with cables laying at the surface of the Earth, which can simply
be protected by a thick plastic jacket, and borehole deploy-
ments, which sometimes include specific components to avoid
fiber breakage during deployment. The design of optical fibers
also controls the sensitivity of the measurement and other
features, such as polarization and attenuation. In addition to
fiber and cable manufacturing properties, information about
potential splicing of the fiber is critical as it can dramatically
increase the attenuation along the fiber. Finally, locating the
precise position of the DAS channels is essential for Earth sci-
ence purposes. Global Positioning System and tap tests (or air-
guns in oceans; Shinohara et al, 2021) are used to locate
channels precisely; however, when working with telecommu-
nication cables, details about the cable deployments are often
uncertain and incomplete or even classified.

Most IUs are patented, and the exact details of their working
principles, optical chains, and running algorithms are not fully
accessible to users. Although all IUs use laser pulses, the physi-
cal properties of such pulses may differ (repetition rate, length,
and shape of the pulses), leading to a different signal (e.g.,
strain, strain rate, and phases) over a broad range of measure-
ment lengths. Moreover, some IUs preprocess raw data on
the fly before writing them to a hard drive, whereas other
IUs simply save the raw data. Depending on the system, some
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0.1°E 0.2°E when the information is
unknown for a given dataset.
For additional details about

metadata files, structure, and

parameters may be adjustable or fixed and imposed (e.g., the
gauge length) by the manufacturing design of the IU. Finally,
IUs can easily be switched, and several IUs can be used on one
single cable.

During an ideal measurement campaign, analysts should
collect both the fiber and associated cable metadata as well
as the IU metadata, including acquisition parameters.
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description of the parameters,
we refer the reader to Mellors
et al. (2022). Although a standardized metadata architecture
offers some structure and coherence among datasets, it does
not provide useful recommendations for the end user to start
processing the data. Therefore, each dataset comes with a com-
plementary “‘README? file that provides more practical infor-
mation about the data, such as which script to use to read the
files, a list of citable references, a link to a license file,
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acknowledgments, or detailed explanation about the various
files (other than DAS) shared in a directory.

Data Formats

In PubDAS, most datasets are shared in their raw formats as if
they were direct outputs of their respective interrogators. The
two exceptions are the Valencia and FORESEE arrays that have
been downsampled. During this preprocessing step, the data
structures have been slightly reorganized by updating sampling
rate parameters, removing blank or unused parameters pro-
vided by the IU, reducing original file length, and so on.

As shown in Table 1, the repository hosts three different file
formats, including Technical Data Management System
(TDMS), Hierarchical Data Formats version 5 (HDF5), and
the Society of Exploration Geophysicists “Y” (SEG-Y) format.
Both TDMS and HDEF5 provide a three-level hierarchical
organization. These file formats are like containers for an
organized collection of objects, offering great flexibility to
accommodate and tune many different recording parameters
for a given DAS experiment. Both TDMS and HDF5 include a
top-level object (e.g., file name or IU serial number) enclosing
an unlimited number of groups that are analogous to a file sys-
tem directory. These groups operate like dictionaries with keys
and values, and can be organized in separated groups or sub-
groups. Each group can contain an unlimited amount of chan-
nels or datasets for TDMS and HDFS5, respectively. These
channels and datasets are array-like collections of data ele-
ments and/or metadata. SEG-Y files are standard, but old file
formats largely used to store and exchange geophysical data
(Hagelund and Levin, 2017). The files are organized as a suc-
cession of headers and a variable number of same-length data
traces. Two headers are required (number of samples per trace
and number of traces) but can only host two bytes, which is
sometimes not enough to represent the large number of sam-
ples and traces found in DAS arrays. Yet, these values can be
backcalculated by knowing other file and experiment param-
eters. However, this workaround makes SEG-Y files noncom-
pliant for large DAS studies, and extra mapping information in
the text header (EBCDIC) is often necessary.

There are numerous open-source libraries allowing users to
read and write TDMS, HDF5, and SEG-Y files. Yet, they are
not all adapted for geophysical processing and, more particu-
larly, for DAS experiments. Depending on the dataset and
associated format, PubDAS users will find interest in using
seismology-specific libraries such as ObsPy and Pyrocko
(Krischer et al., 2015; Heimann et al, 2017) or participate
in the development of DAS-specific libraries like the DAS
Data Analysis Ecosystem (Chambers et al., 2022). Nonetheless,
as they stand today, none of these libraries guarantee a univer-
sal handling of all the PubDAS datasets, requiring users to
work on a case-by-case basis. For this reason, and to offer
an easier jump start for new DAS users, all PubDAS datasets
come with a simple dedicated script allowing users to read a
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given dataset. These scripts are provided in the same folder
hosting each dataset and can be downloaded along with the
data (see the How to Access PubDAS? section).

Because there is no consensus on which data format is the
most suitable and flexible for DAS studies, our goal is to pro-
vide data in their original format to raise awareness of the pros
and cons of each format. By doing so, we hope to extend the
debate to a broader community and boost innovation among
practitioners.

How to Access PubDAS?
PubDAS is hosted by the Advanced Research Computing divi-
sion of the Information and Technology Services at the
University of Michigan (UM). The repository is located on a
cost-optimized, high-capacity, and large-file storage service called
“Locker.” PubDAS is accessible through “Globus,” which is a
nonprofit software-as-a-service provider (Foster, 2011), using
the link provided in Data and Resources. Globus is free, easy
to use, and provides secure and high-performance file transfer
between storage systems (Ananthakrishnan et al., 2015; Chard
et al., 2017). In short, Globus can be seen as a self-service data
portal and point-and-click data management tool that allows
researchers to focus more on science and less on technology.
It is rapidly being adopted by many large institutions across
the globe, such as Amazon webservices, the NSF XSEDE systems,
and many U.S. national laboratories and universities.

Globus facilitates data transfer by handling all the complex
aspects of large-scale transfer. For example, it uses multiple
parallel transmission control protocol (TCP) streams to
achieve high throughput and automatically tunes parameters
to maximize bandwidth usage without interfering with cur-
rent use. Globus also coordinates authentication at source
and destination, while providing automatic fault recovery
and notifying users of completions and problems. Although
Globus cloud-hosted service coordinates data transfers, the
end-user only relies on the Globus Connect Personal software
to enable fast and reliable data transfers between institutional
servers or personal workstations. The Globus Connect
Personal software is available as a lightweight single-user
agent that can be easily deployed on Windows, Mac, and
Linux computers. Globus Connect Server also exists as a mul-
tiuser server available as a native Linux package. Users are also
able to use Globus Python application programming interface
clients for data access and transfer. After downloading and
installing the software, users must register their desired stor-
age as a Globus “endpoint,” which uniquely identifies and
maps the data access interface. The endpoint also includes
metadata such as ownership, name, and other descriptions.
Once the endpoint is set up either on a server or a personal
workstation, end users can download the PubDAS data set of
their choice. A link to a step-by-step guide on “how to log into
Globus and use it to transfer files” is provided in Data and
Resources.
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TABLE 2

Examples of Data Upload and Download Using Globus and Using Different Network Speeds

Origin Destination Files Transferred Bytes Transferred Effective Speed (MB/s) Time

UM CSM 1585 509.02 GB 491.76 17m15s

UM UNAM 2744 5.94 TB 102.73 16h5m5s

IGN UM 1 240.08 GB 29.05 2h15m55s

ERI UM 7389 15.64 TB 90.81 1d23h50m40s
CTC uM 8868 291 TB 21.74 1d13h17m27s
UM Caltech 3241 1.08 TB 163.22 1Th51m8s

Caltech, California Institute of Technology; CSM, Colorado School of Mines; CTC, Cordova Telephone Cooperative; ERI, Earthquake Research Institute; IGN, Instituto Geografico
Nacional; UM, University of Michigan; and UNAM, Universidad Nacional Auténoma de México.

Globus Connect Personal is designed to work automatically
with common firewall settings. However, very strict firewall pol-
icies, that is, the ones that block outbound connections, will hin-
der this behavior. In this case, the end users may have to work
with their network or security administrators to open specific
outbound TCP and User Datagram Protocol ports. A link
explaining how to configure the firewall policy for Globus
Connect Personal is also provided in Data and Resources.

Currently, the UM has 400 GBPS of internet bandwidth,
allowing up to several PB per day of file transfer between multi-
ple devices and multiple locations simultaneously. Of course, the
download of data will critically depend on available end-user
bandwidth. For this reason, when possible, we recommend
the use of an institutional fiber connection rather than a home
internet for dataset retrieval. We have tested the download and
upload speeds for several data sets between institutions. A sum-
mary of our experience is shown in Table 2. These results show
that, even with a low-speed connection (e.g., ~20 MB/s), the
optimization of the data transfer with Globus still provides
performance acceptable for retrieving the test datasets.

Public DAS Data beyond PubDAS

Many researchers and institutions have started to share their
DAS datasets with the scientific community. For example, the
Department of Energy’s GDR hosts two frequently cited DAS
datasets: PoroTomo (University of Wisconsin, 2016) and
FORGE 2C (University of Utah Seismograph Stations, 2022).
Yet, although tens of terabytes of data have already been made
available online, research groups generally publish individual
datasets. The lack of a centralized platform makes it difficult
for the end user to navigate the flow of information and the
complexity of each platform, because every dataset has its
own requirements and its own metadata reporting, and might
not be equally advertised to the broader scientific community.
In an effort to centralize the available datasets online and
acknowledge the work of our peers, we summarize their avail-
ability in Table 3. Only relatively large datasets are reported.
Small data examples shared to support the works published
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in journal publications are not reported. For more information
about these datasets, we invite the reader to refer to the URL’s
provided in Table 3.

Conclusions and Future Steps
This article presents the first large-scale open-source reposi-
tory where several DAS datasets from multiple application
areas are publicly shared. The individual datasets have been
curated and organized to provide more structure to scientists
keen to explore new frontiers in geosciences. All the datasets
have already been tested and explored to some extent, which
resulted in several publications ensuring that the quality of the
recorded signals is sufficient for many seismological applica-
tions. Nonetheless, some datasets have only been explored
superficially, offering tremendous opportunities for new dis-
coveries by other research groups without current DAS data
access. For example, we believe that some of the datasets
can be used to understand the relationship between DAS
and conventional seismometry, to provide further constraints
on fault zones and dynamic environmental changes, and to
develop new tools for urban monitoring. In addition, we hope
that the open-access component of this project will accelerate
progress in seismology and geosciences, and facilitate training,
validation, and performance comparisons. More importantly,
we hope that PubDAS will ease the adoption of best practices
when using DAS data and allow a broader community to take
part in the ongoing efforts to understand the Earth better.
Currently, ~90 TB of DAS data are hosted at the UM, and
there are plans to add new datasets upon the conclusion of
some experiments and publication embargoes. The PubDAS
team has secured support through the end of 2026 and will
continue exploring possibilities to share these data in the long
term. In parallel, we will seek opportunities to collaborate with
more recognized data centers that could host the rapidly
increasing amount of DAS data recorded around the world.
With terabytes of data being collected daily around the
world, seismology is more than ever a data-driven science.
DAS and optical fiber sensing, in general, open a new chapter
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TABLE 3

Nonexhaustive List of Other Distributed Acoustic Sensing (DAS) Datasets Available for Download on Other

Platforms

Approximate
Short Name Volume (GB) Location Time Span (Days) Access
DAS4Microseism 182 Svalbard, Norway 42 doi: 10.18710/VPRD2H
DAS4Whale 37.6 Svalbard, Norway 2 doi: 10.5281/zenodo.5823343
RAPID 26,000 Offshore Pacific City, Oregon 5 URL: piweb.ooirsn.uw.edu/das/
PoroTomo* 81,000 Brady Hot Springs, Nevada 15 doi: 10.15121/1778858
FORGE 2C* i Milford, Utah i URL: tinyurl.com/2p8epnn5
Marcellus* i Morgantown, West Virginia f URL: www.mseel.org/
Garner Valley* 165 California 1 doi: 10.15121/1261941
Levee Workshop* 0.741 Black Hawk, Louisiana 1 doi: 10.17603/ds2-c96x-pg70
Belgium 1.3 Zeebrugge, Belgium 1 doi: 10.22002/D1.1296
Monterey Bay 0.565 Moss Landing, California 4 URL: tinyurl.com/ynab86bc
SAFOD 1.54 San Andreas fault, California f URL: tinyurl.com/yc49swp4
FORESEE 28,670 State College, Pennsylvania 180 URL: tinyurl.com/499mn4pa
*Data contain active sources.
This value may vary or is unknown.
in resolving fine-scale variations of the seismic wavefield that Acknowledgments

were until recently unobservable, making the technology one
of the greatest advances in geophysical instrumentation since
digitization. Along with the recent breakthroughs in high-per-
formance computing and machine and deep learning, DAS is
now offering the big data essential to expand our knowledge of
the physics behind Earth’s heterogeneous interior and surface
processes. We hope that PubDAS will act as a bridge between
scientific communities, and will facilitate the accessibility to a
broader and more diverse body of knowledge.

Data and Resources

The PubDAS Globus endpoint at University of Michigan (UM) is acces-
sible via the link https://app.globus.org/file-manager?origin_id=706e304c-
5def-11ec-9b5c-f9dfblabb183&origin_path=%2F. All users need a Globus
account to access the PubDAS endpoint. Instructions to download and
run Globus Connect Personal are accessible via the link www.globus.
org/globus-connect-personal. Globus Connect Personal basic tutorial is
also available on YouTube via the link www.youtube.com/watch?v=
bpnVcAN9IWY. The step-by-step guide to log in and transfer files with
Globus is accessible via the link docs.globus.org/how-to/get-started/. The
firewall policy for Globus Connect Personal is accessible via the link
docs.globus.org/how-to/configure-firewall-gcp/. The complete Globus
documentation is accessible via the link docs.globus.org/. For any ques-
tions about Globus, please work directly with your Information and
Technology specialists. All websites were last accessed in December 2022.
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