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The majority of long-duration (>2 s) gamma-ray bursts (GRBs) arise from 
the collapse of massive stars, with a small proportion created from the 
merger of compact objects. Most of these systems form via standard 
stellar evolution pathways. However, a fraction of GRBs may result from 
dynamical interactions in dense environments. These channels could 
also contribute substantially to the samples of compact object mergers 
detected as gravitational wave sources. Here we report the case of GRB 
191019A, a long GRB (a duration of T90 = 64.4 ± 4.5 s), which we pinpoint 
close (⪅100 pc projected) to the nucleus of an ancient (>1 Gyr old) host 
galaxy at z = 0.248. The lack of evidence for star formation and deep limits 
on any supernova emission disfavour a massive star origin. The most likely 
route for progenitor formation is via dynamical interactions in the dense 
nucleus of the host. The progenitor, in this case, could be a compact object 
merger. These may form in dense nuclear clusters or originate in a gaseous 
disc around the supermassive black hole. Identifying, to the best of our 
knowledge, a first example of a dynamically produced GRB demonstrates 
the role that such bursts may have in probing dense environments and 
constraining dynamical fractions in gravitational wave populations.

Routes to stellar death
The evolution of most stars in the Universe is dominated by their stel-
lar or binary evolution. However, for a small fraction in dense envi-
ronments additional many-body interactions enable new channels 
to the formation of exotic stellar systems. These systems include the 

formation of compact object binaries whose subsequent merger cre-
ates high frequency gravitational wave sources as well as, in some cases, 
gamma-ray bursts1–3. In addition to many-body interactions, capture 
processes in gas rich discs around supermassive black holes can also 
create such binaries4.
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Telescope (HST) at 30 and 184 days. None of these images reveal any 
evidence for transient emission to limits of typically g > 24, r > 23.5, 
z > 22 (Fig. 4).

If the merging compact objects include a neutron star or white 
dwarf, then the merger can also yield luminous electromagnetic 
radiation. The identification of a short gamma-ray burst (GRB)5 and a 
kilonova6–10 with the gravitational-wave-detected binary neutron-star 
merger GW170817 secured the connection of mergers with short 
GRBs. While long GRBs are generally thought to arise from extreme 
core-collapse supernovae11–13, recent evidence suggests that a sub-
set also form via the mergers of compact objects14–16.

The supernova-less GRB 191019A
GRB 191019A was detected by the Neil Gehrels Swift Observatory 
(hereafter Swift) at 15:12:33 UT on 19 October 201917. The burst is char-
acterized by a fast rise and slower decay with additional variability 
superimposed (Fig. 1). The duration is measured to be T90 = 64.4 ± 4.5 s 
(ref. 18), which is hence classified as a long GRB. The burst is relatively 
soft with a power-law photon index of Γ = 2.25 ± 0.05. Its fluence is  
S = (1.00 ± 0.03) × 10−7 erg cm−2 (15–150 keV)18.

Spacecraft constraints prevented a prompt slew by Swift, and 
observations with the X-ray telescope (XRT) and the ultraviolet and 
optical telescope (UVOT) began 52 minutes after the burst. These 
revealed an X-ray and a UV afterglow19. We obtained optical observa-
tions of the field with the Nordic Optical Telescope (NOT) beginning 
4.52 hours after the burst20. Comparison with later epochs reveals a faint 
afterglow positionally consistent with the nucleus of the host galaxy 
visible in each of the g, r, i and z bands (Fig. 2). Spectroscopy obtained 
with the NOT on 19 October 2019, and confirmed with the Gemini South 
telescope on 1 December 2019, found a redshift of z = 0.248 based on 
several absorption lines, including Ca H, Ca K and the hydrogen Balmer 
series (Fig. 3). The standard star-forming emission lines are notably 
absent from these spectra, which suggests an old galaxy.

Following these observations, we obtained deep imaging in the 
g, r and z bands from the NOT and the Gemini South telescope from 2 
to 73 days after the burst and optical imaging with the Hubble Space 
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Fig. 1 | The gamma-ray properties of GRB 191019A. a, The gamma-ray light 
curve of GRB 191019A as observed by the Swift BAT. The burst consists of a single 
emission episode, with additional intrinsic variability. The burst begins with a 
short spike, but it is neither especially hard, nor separated from the bulk of the 
emission. The lower panel shows the hardness ratio between the count rates (S) 
in the 50–100 keV and 15–25 keV bands, which demonstrates some degree of 
spectral softening, with the initial peak being the hardest emission episode.  

b, The location of GRB 191019A on the hardness–duration plane. The background 
red points represent bursts from the Swift BAT catalog95, while GRB 191019A 
is indicated with the dark blue circle. Also marked are the locations of bursts 
identified as short + extended emission (EE) based on the duration of their 
initial pulse complex (IPC) and extended emission separately. The properties 
of GRB 191019A are comparable with the properties of the extended emission 
component in other bursts.
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Fig. 2 | Optical images of the afterglow of GRB 191019A and its host galaxy. 
a, The i-band afterglow discovery image from the NOT. b, The result of a point 
spread function (PSF)-matched image subtraction with an image taken on  
29 October 2019. A residual is clearly visible at the centre of the galaxy.  
c, The field as observed by the HST in April 2020, matched to the NOT images.  
d, A zoomed-in region around the host galaxy of GRB 191019A as seen with 
the HST (as indicated with the cyan box in panel c. The ellipses indicate the 2σ 
uncertainty regions for the optical afterglow on the host as inferred from the 
NOT g (cyan), r (green), i (yellow) and z (magenta). The location of the afterglow 
is consistent with the nucleus of the host galaxy with a projected offset, based on 
the i-band measurement, of rproj = 78 ± 109 pc.
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The non-detection of optical light between 2 and 70 days places 
stringent limits on any associated supernova to levels ~20 times fainter 
than SN 1998bw (Fig. 4; see also Methods). In fact, the deepest r-band 
(or F606W) limits reach absolute magnitudes of M ≈ −16. This is com-
parable to the faint end of the core-collapse supernova distribution 
and fainter than any known stripped-envelope event found in the large 
sample from the Zwicky Transient Factory21. It is also fainter than opti-
cally selected tidal disruption events (TDEs)22,23. The limiting luminosity 
is comparable with the peak luminosity of kilonovae. However, our 
observations probe much longer timescales than those of kilonovae, 
such that we could not rule out events similar to AT2017gfo24,25. The 
lack of a supernova detection cannot readily be ascribed to dust extinc-
tion since the spectral energy distribution of the afterglow constrains 
this to be small (V-band extinction of AV = 0.06 ± 0.05; Methods). This 
makes GRB 191019A a member of sub-class of long GRBs without asso-
ciated supernova emission. Of the GRBs at z < 0.3 with optical after-
glows where supernova emission should be readily visible, and heavy 
extinction cannot render supernova emission undetectable, there are 
a total of four of these events (including GRB 191019A). In two of these  
(GRB 060614 and GRB 211211A), a kilonova has been observed14–16,26,27, 
while GRB 060505 has also been suggested to arise from a compact 
object merger. The most economical hypothesis for the origin of GRB 
191019A is that it belongs to the same population and is created from 
a compact object merger.

Combining HST ultraviolet (UV) observations with our spectros-
copy and archival imaging, we fit the available photometric and spec-
troscopic data with the stellar population inference code Prospector 
(Fig. 3 and Methods). The results favour an old stellar population for 
the host, with the majority of stellar mass forming greater than 1 Gyr 
ago and little ongoing star formation (0.06 ± 0.03M⊙ yr−1). The stellar 
mass itself is found to be ≈3 × 1010M⊙.

Astrometry with our early NOT observations places the location 
of GRB 191019A within ~100 pc of the host galaxy nucleus. This location 
could indicate an origin associated with the supermassive black hole 
which resides there, with scaling relations implying a black hole with a 
mass of a few ×107M⊙ (ref. 28). However, the timescales for the emission 
are too short for either variability in an active galactic nucleus (AGN) 

or a TDE (Supplementary Information). Instead, the burst most likely 
arises from a stellar progenitor. The lack of a supernova and the loca-
tion in an old population rule out a massive star. Instead, it appears that  
GRB 191019A belongs to the population of apparently long GRBs 
formed from compact object mergers14–16. Its energy release and after-
glow luminosity are consistent with this group of GRBs (Supplementary 
Information).

However, the nuclear location of the GRB on its host galaxy dif-
fers from compact object merger expectations. Systems formed via 
standard stellar evolution channels involve two supernovae; at each 
supernova, the combination of natal kicks and those induced from 
mass loss frequently gives the binary a substantial (50–500 km s−1) 
systemic velocity. Furthermore, compact binary systems typically 
have long lifetimes before merger, which allows them to move far from 
their birth sites. Indeed, no short GRB with sub-arcsecond localization 
is consistent with the nucleus of its host galaxy29.

A dynamical origin for GRB 191019A
We suggest that the binary which created GRB 191019A formed via 
dynamical interactions in the dense nucleus of its host galaxy. Dynamical  
channels for compact object formation may be due to many-body 
interactions in dense stellar systems such as globular clusters1,30 or 
nuclear star clusters in galaxies3,31. Alternatively, they may also form 
at a markedly enhanced rate in the gaseous discs that surround super-
massive black holes4,32.

The host galaxy of GRB 191019A appears similar to those that 
preferentially host TDEs, with a very compact core and Balmer absorp-
tion lines. The Lick indices for Hδ in absorption and Hα in emission are 
1.54

+1.44

−0.74

 and 2.51+1.81
−2.51

, respectively, and are consistent with those of the 
TDE population which makes up only ~2% of Sloan Digital Sky Survey 
galaxies but 75% of the TDE hosts33. The TDE rate effectively measures 
the stellar interaction rate close to the black hole. Scattering events 
are responsible for placing stars on paths that cross closer than the 
tidal radius for the star around the supermassive black hole.  
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Fig. 3 | The optical spectrum of the host galaxy of GRB 191019A as observed 

with the NOT. The spectrum shows no emission lines associated with star 
formation (the expected locations of strong emission lines are marked with grey 
bands and telluric absorption is in pink). There is weak evidence for emission 
from [N ii] (6,584 Å). The locations of prominent absorption features from 
which the redshift is determined are marked with dashed lines. Also shown are 
the results of a Prospector fit to the stellar spectrum (for example, omitting any 
emission lines). Any lines would appear in the residuals.
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the light curves of ref. 96. The right-hand panel shows histograms of the peak 
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(TDEs) found by the Zwicky Transient Factory (ZTF)21,23. Also shown are the 
faintest and fastest evolving TDE iPTF16fnl22,73, AT2018kzr, which is suggested 
to form via a black hole–white dwarf merger41, and AT2017gfo, associated with 
GW170817 (ref. 25). Our optical observations reach a depth where we would have 
expected to observe the vast majority of supernovae or TDEs. However, we do not 
have sensitivity to detect kilonovae such as AT2017gfo. SGRB, short GRB.
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The preference for TDEs in galaxies of certain types is related directly 
to their dense stellar environments and interaction rates34. So, at face 
value, the host galaxy of GRB 191019A may have a dynamical interaction 
rate one to two orders of magnitude larger than typical galaxies.

Considering these effects and the (uncertain) intrinsic ratios of 
dynamical to field binaries35, we estimate that the number of dynami-
cal mergers is typically two orders of magnitude higher than the field 
merger rate in locations such as that of GRB 191019A (see the detailed 
explanation within the Supplementary Information). This implies that 
it is most likely that GRB 191019A was created dynamically. However, 
there are considerable uncertainties, and reasonable assumptions 
could yield much lower ratios, although they would typically still sug-
gest that a dynamical channel is the most likely. If GRB 191019A results 
from a dynamically formed compact object merger, then it may arise 
from several possible merger products, including neutron star–neu-
tron star, neutron star–black hole, neutron star–white dwarf and black 
hole–white dwarf. The nature of the merger product and its location 
(for example, stellar cluster versus gas disc) should have a direct impact 
on the observed properties of the burst, particularly concerning dura-
tion, spectral hardness and energetics.

In the case of neutron star–neutron star or neutron star–black 
hole systems, one may wonder why no apparent short (<2 s) spike is 
observed in the prompt light curve, as in short GRBs with extended 
emission. The detection of the kilonova in GRB 211211A demonstrates 
that such a short spike is not necessarily required, although GRB 211211A 
appears to show other similarities to extended emission bursts36. 
However, GRB 191019A may arise from a similar population where 
the contrast between ‘spike’ and ‘extended’ emission is smaller37, or 
the extended emission is beamed with a larger opening angle than 
the initial spike and is unseen in this case38,39. Alternatively, mergers 
involving white dwarfs have longer timescales naturally40, and such an 
event is also possible here. Indeed, interactions in dense clusters tend 
to leave the more massive components in binaries, so black hole–neu-
tron star or black hole–white dwarf mergers may be favoured30. White 
dwarf-containing systems should yield rapid, relatively faint transients, 
with one event, AT2018kzr41,42, suggested to arise from the merger of 
a white dwarf with a black hole. Our observations are not sufficiently 
sensitive to constrain the presence of such a signal in GRB 191019A.

Alternatively, the nuclear location also allows compact object 
mergers within a disc around the supermassive black hole, although 
there is no strong evidence for AGN activity in the host (Methods). In 
these discs, the compact object binaries are frequently formed by ‘gas 
capture’ mergers, which can substantially enhance the rate, despite 
the relatively small number of stars within the disc32. In this scenario, 
the long duration may well be expected, even for an intrinsically short 
engine. The higher densities within the disc cause the external shock 
to form and slow much closer to the progenitor than in bursts with a 
normal interstellar medium density. This extra baryon loading may 
effectively choke the jet43,44 for very high densities. However, the effect 
of this interaction effect smears out the prompt emission over an 
extended period. A very recent and explicit prediction of compact 
object mergers within discs is that intrinsically short–hard GRBs should 
become longer and softer45, with a notable hard–soft evolution. This is 
exactly what is seen in GRB 191019A.

It is relevant to consider whether similar events exist within the 
GRB population but have been hitherto unrecognized. The vast major-
ity of long-GRB hosts are star-forming galaxies and, where searches are 
possible, usually show the signatures of broad-lined type Ic supernovae. 
There is a small population of long bursts with deep limits on any super-
nova signatures46,47. Some of these have already been classified as short 
GRBs with extended emission48; however, there are additional bursts 
which bear further scrutiny. GRB 111005A49 was localized only via its 
radio afterglow but has deep limits on associated supernova emission. 
It lies in a local galaxy at only 55 Mpc and is also close to the nucleus. It 
could well have arisen from a compact object merger as suggested by 

ref. 50 and its location raises the prospect of dynamical formation. GRB 
050219A does not have a sub-arcsecond localization, but is likely to be 
associated with a post-starburst galaxy whose properties are similar to 
the host of GRB 191019A51. Finally, there are several long GRBs whose 
locations are consistent with their host nucleus52, although most of 
these are in star-forming hosts and are likely to have arisen from mas-
sive star collapse. Overall, the observational evidence suggests that, at 
most, a few per cent of the observed (long and short) GRB population 
forms via dynamical channels and that most of the observed systems 
arise via stellar (binary) evolution.

Identifying a likely dynamically produced GRB offers some of the 
first evidence for forming stellar-mass compact objects via dynamical 
channels in galactic nuclei. The mergers of such systems have received 
significant attention as a possible explanation for a fraction of the 
observed gravitational-wave population, particularly with regard to 
more massive black holes which can be formed via successive merg-
ers53. The gamma-ray bright population of mergers may be dwarfed 
by those that do not emit such high-energy flashes. In particular, very 
high densities within gaseous discs can result in the choking of any 
GRB-like emission43, and black hole–black hole mergers are generally 
expected to be electromagnetically dark. GRBs in dense galactic nuclei 
therefore offer a unique new route for probing exotic compact object 
formation channels.

Methods
Swift observations
Burst Alert Telescope. Burst Alert Telescope (BAT) data were down-
loaded from the UK Swift Science Data Centre (UKSSDC54,55). Reduction 
was performed via batgrbproduct v.2.48 from the High Energy Astro-
physics software package (HEAsoft v.6.28 (ref. 56)). We extract 
count-rate light curves in four energy bands, 15–25 keV, 25–50 keV, 
50–100 keV and 100–150 keV, using the batbinevt routine with 64 ms 
time bins. Spectral lag in the T90 interval is calculated with the Python 
routine signal.correlate from the scipy package57. The time-lag is taken 
to be the value corresponding to the peak of the correlation coefficient 
and the confidence interval is 2/√n − d, where n is the size of the data 
array and d is the measured lag58.

To obtain the hardness ratios presented in Fig. 1, BAT spec-
tra in the energy range 15–150 keV were extracted with batbinevt. 
Spectra were produced for the duration of the initial pulse complex  
(Fig. 1), and from the end of the initial pulse complex to T90 (marked 
‘EE’ in Fig. 1), following the definitions of these epochs in refs. 37,48,59 
for GRBs 080503, 060614 and 050724, respectively. Spectra were 
then fit in xspec v.12.11.1 with an absorbed power-law model of the 
form cflux*tbabs*ztbabs*pow60, where cflux is used to measure the 
time-averaged flux in the 25–50 keV and 50–100 keV bands in each 
spectrum. Absorption in the Milky Way is fixed to the values derived 
in ref. 61, while flux, photon index and redshifted absorption are free 
parameters.

XRT. XRT data for light curves and spectral parameters are taken 
directly from the UKSSDC54,55.

UVOT. The Swift/UVOT began observations of the field of GRB 191019A 
3,294 s after the Swift/BAT trigger. The source counts used a region of 
5 arcsec radius, shrinking to 3 arcsec when the count rate drops below 
0.5 cps. These count rates were then corrected to 5 arcsec using the 
tabulated curve of growth. Background counts were extracted using 
three circular regions of radius 15 arcsec located in source-free regions. 
The count rates were obtained using the Swift tools uvotevtlc and uvot-
source, respectively. At late times, the light curves are contaminated 
by the underlying host galaxy. To estimate the contamination, for each 
filter, we combined the late-time exposures (beyond 107 s) until the end 
of observations. We extracted the count rate in the late combined expo-
sures using the same 3 arcsec and 5 arcsec radii apertures, aperture 
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correcting where appropriate. These were subtracted from the source 
count rates. The count rates were converted to magnitudes using the 
UVOT photometric zero points62,63. To improve the signal-to-noise ratio, 
the count rates in each filter were binned using Δt/t = 0.2.

NOT
We obtained multiple epochs of observation of GRB 191019A with 
the NOT and the Alhambra Faint Object Spectrograph and Camera 
(ALFOSC) imaging spectrograph. Our first night’s observations were 
obtained in the g, r, i and z bands, beginning 0.19 days after the burst. 
Images were reduced using standard procedures. To search for tran-
sient emission we undertook PSF-matched image subtraction64. This 
revealed a clear transient source in the first epoch in all four bands. 
Further observations were obtained at 2.4, 3.2, 10.2, 34 and 245 days. 
However, these observations did not reveal any transient emission.  
A full log of imaging observations is shown in Supplementary Table 1.

In addition to imaging observations, we also obtained a spectrum 
of GRB 191019A on 19 October 2019, approximately 6 hours after the 
GRB. The spectrum was processed through IRAF for flat-fielding, wave-
length and flux calibration.

Gemini South
We obtained observations of GRB 191019A from the Gemini South 
Observatory using the Gemini Multi-Object Spectrograph (GMOS). 
Imaging observations were obtained in the g, r and z bands at eight 
epochs between 11 and 70 days after the burst, with the primary aim 
of detecting and characterizing any associated supernova. Data were 
bias subtracted, flat-field corrected and combined via the Gemini IRAF 
package. To determine any transient contribution, we use two different  
approaches. The first is image subtractions which we attempted via 
the HOTPANTS code. These images reveal no evidence of transient 
emission. However, because of the compact nature of the host galaxy 
core, not all epochs yielded clean subtractions. Therefore, to deter-
mine limits across all epochs, we utilized the more straightforward 
approach of direct photometry in large (3 arcsec) apertures. There is 
no evidence for any variation in the galaxy with the root mean square 
between the different epochs corresponding to 1.3% in g, 1.0% in r and 
1.5% in z. This suggests no variation in the source across the 11–70-day 
period of observations. To obtain limits for individual epochs, we set 
the host galaxy value as the mean of all epochs and subtract this from 
each epoch to obtain measured fluxes at each observation. These 
values are tabulated in Supplementary Table 1 and are plotted as 3σ 
upper limits in Fig. 4. Photometric calibration is performed against 
stars in the Panoramic Survey Telescope and Rapid Response System 
(Pan-STARRS) survey.

HST observations
We observed GRB 191019A with the HST at two epochs on 19 November 
2019 and 24 April 2020. At each epoch, we obtained imaging observa-
tions in the F606W (exposure times of 180 s and 680 s, respectively) 
filter and grism spectroscopy with G800L. We reduced the imaging with 
the Astrodrizzle software, and subtracted the first epoch from the sec-
ond. Such an analysis is complicated because in the first epoch the first 
image was short (180 s). Subsequently, multiple cosmic rays are pre-
sent that cannot be removed by the addition of multiple images. This 
complicates direct photometry of the galaxy. However, subtraction of 
the two epochs of imaging reveals no evidence of any transient emis-
sion at the burst location. Inserting artificial stars suggests that these 
would be readily visible should they be brighter than F606W > 23.5 AB.

In addition to these observations, we also obtained UV observa-
tions in F225W and F275W with exposure times of 2,200 s. The data 
were reduced via Astrodrizzle and aligned to our NOT and Gemini 
observations. The host galaxy is well detected in both filters and 
appears extended. The resulting photometry is shown in Supple-
mentary Table 3.

Astrometry
We performed astrometry between the images taken with the NOT on 
19 October 2019 and that with the HST on 24 April 2020. We chose 20 
compact sources in common to each image and derived a map between 
the two sets of pixel coordinates via the IRAF task geomap in each of the 
g, r, i and z bands. The resulting uncertainties arise from the astromet-
ric fit and the uncertainty in the centroid of the afterglow in the NOT 
subtracted images. We estimate the centroid error to be 0.3 Advanced 
Camera for Surveys (ACS) pixels (appropriate for a signal to noise ratio 
(S/N) = 30 detection of the source with a seeing of ~1.0 arcsec). This is 
typically smaller than the error from the astrometric fit. The result-
ing positions are shown in Fig. 2. We find offsets of δx(g) = 0.44 ± 0.82, 
δy(g) = 0.03 ± 1.21, δx(r) = 0.43 ± 0.50, δy(r) = 1.48 ± 0.54, δx(i) = 0.30 ± 0.41, 
δy(i) = 0.27 ± 0.41, δx(z) = 0.85 ± 0.91 and δy(z) = −0.68 ± 0.87. We con-
clude that the source is consistent with the nucleus of the host galaxy 
at a projected offset (based on the i-band astrometry (best S/N)) of 
r = 0.020 ± 0.029 arcsec or 78 ± 109 pc at z = 0.248.

Chance alignment
It is relevant to consider the probability of chance alignment of a 
given position with a galaxy. The location of GRB 191019A, so close to 
the nucleus of a relatively bright (r ≈ 19) galaxy, leads to an extremely 
small chance probability. Formally, following65, the probability of 
lying within 0.04 arcsec of such a host galaxy is ~10−6. Therefore, even 
considering the ~1,000 long GRBs observed by Swift, the likelihood 
of a chance alignment of GRB 191019A with the nucleus of this galaxy 
is minimal.

The chance alignment above refers to the probability that the 
host galaxy is wrongly assigned. However, another relevant align-
ment is to consider whether the projected offset is consistent with 
the physical offset. That is, whether the burst truly is nuclear or 
whether it appearing only in projection with the host nucleus. No 
sub-arcsecond localized short GRBs lie at smaller projected offsets 
from their hosts than GRB 191019A29. Indeed, the solid angle for 
kicked events to have essentially radial kicks along our line of sight 
is minimal. At the same time, the chances of random orbits crossing 
within this distance of the nucleus are also low. This is also in keeping 
with the predicted offsets of compact object mergers in population 
synthesis65–68, where less than 0.1–1% of mergers are typically within 
70 pc of the host nucleus.

The situation is quite different for long GRBs and these bursts arise 
from such small offsets ~5% of the time52,69,70. Indeed, for a progenitor 
which traces the stellar population of the host galaxy (no kicks), we may 
expect the chance alignment probability to be equal to the fraction 
of the total host light contained within the pixel hosting the event52. 
In the case of GRB 191019A, the central pixel has ~3% of the total light. 
However, the host galaxy of GRB 191019A is different from long-GRB 
host galaxies, which are typically blue, highly star-forming systems, 
unlike the red, quiescent host of GRB 191019A.

The zero extinction required for the afterglow could be indicative 
of a projection in front of any extinguishing material, especially as the 
galaxy has a relatively high inclination angle (~70 degrees). However, 
the SED fit to the galaxy suggests relatively little dust AV = 0.19 ± 0.08 
globally. In quiescent galaxies such as the host of GRB 191019A, there is 
on average much less dust and extinction than in star-forming systems  
by factors of ~50 at the same stellar mass71. Indeed, the hosts of TDEs 
(which, as noted, are very similar to the host of GRB 191019A) do 
not show significant extinction. Several of these events are edge-on 
and robustly have low extinction (for example, ASASSN-14ae with 
AV = 0.15 ± 0.15 (ref. 72) and iPTF16fnl with colour excess, E(B-V) < 0.05 
(ref. 73)). The demographics of these TDE hosts show an almost uni-
form distribution in inclination angle74. Although there is a geometric 
preference for edge-on systems (that is, more systems are viewed 
edge-on than face-on), this suggests that the extinction effects are 
generally modest.
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Afterglow properties
Light curve. The X-ray light curve parameters, obtained from the 
UKSSDC, show that the X-ray afterglow can be modelled by a single 
power-law with index α

1

= 1.27

+0.17

−0.15

. Alternatively, a broken power-law 
with α

1

= −0.14

+0.54

−0.16

, α
2

= 1.6

+0.5

−0.4

 and a break time of t
b

= (5.9

+4.2

−1.8

) × 10

3 s 
also provides a good fit, although not statistically required (chance 
improvement probability of 4.5% or ~2σ).

To place the X-ray (and early gamma-ray data) in context with the 
overall Swift population, we retrieve from the Swift Burst Analyser75 
the gamma-ray and X-ray light curves of all Swift GRBs detected up 
until 9 October 2022. We select all GRBs with at least two detections 
by BAT and XRT each and a measured redshift with an accuracy of less 
than or equal to 0.1. In total, our sample consists of 356 long and 39 
short GRBs. We processed their light curve data and moved them to 
their rest-frames following ref. 76. Supplementary Fig.1 shows the 
parameter space occupied by the long (left) and short (right) GRBs as 
a density plot and the BAT + XRT light curve of 191019A in blue. In both 
plots, we also display the light curves of GRB 050219A and 211211A (in 
red) and, in the right-hand panel, also highlight the short GRBs with 
extended emission77.

The X-ray light curve of GRB 191019A is poorly sampled, but its 
evolution in luminosity space is consistent with the population of 
short GRBs with extended emission (Supplementary Fig. 1), while being 
far less consistent with the long-GRB population. This offers further  
support of the interpretation of GRB 191019A as belonging to the popu-
lation of GRBs created via compact object mergers.

Spectral energy distribution and extinction. A straightforward way 
to explain the non-detection of any supernova emission would be to 
invoke dust extinction. To explain the non-detection of the supernova 
in our observations would require AV > 3 mag. However, the afterglow 
in this case would also be subject to extinction and would be red.  
The detection in the UVW2 UV filter offers a strong indication that  
the extinction is low.

To quantify limits on the extinction, we fit the resulting X-ray–
UV–optical spectral energy distribution (SED) with an obscured 
power-law model following the method of ref. 78. This allows either a 
single power-law or a cooling break between the X-ray and UV-optical 
regime and considers the impact of obscuration in both the soft X-ray 
and UV-optical regimes. This joint fit shows a single power-law slope 
between the X-ray and the optical and provides a measurement of 
AV = 0.06 ± 0.05, which confirms low extinction.

Host galaxy properties
The host galaxy is morphologically smooth and centrally concentrated 
(Supplementary Fig. 4). We determine the surface brightness pro-
file via fitting elliptical isophotes to the late-time HST observations. 
The peak surface brightness is ~16.5 mag arcsec−2, which is almost a  
magnitude brighter than, for example, the central surface bright-
ness of the very luminous host of the short GRB 050509B (at z = 0.22, 
which is a similar redshift). The surface brightness profile constitutes 
a near-point-like source with lower surface brightness extended emis-
sion. Its 20%, 50% and 80% light radii are 0.09 arcsec, 0.27 arcsec and 
0.75 arcsec. Notably, its concentration index r20/r80 is extreme com-
pared with most samples of galaxies79, but comparable to those of TDE 
hosts (Supplementary Fig. 5). Some of this light could arise from an 
AGN. However, we cannot confirm this without any AGN-like emission 
lines in the optical spectrum of the source. A weak [N ii] line is apparent 
in both the NOT and Gemini spectra. The absence of oxygen or hydro-
gen emission lines may favour a more AGN-like set of line ratios, but 
such an interpretation is inconclusive. A late-time observation with 
the Swift XRT suggests an upper limit on the 0.3–10 keV X-ray flux (FX) 
of FX < 3 × 10−14 erg s−1 cm−2 or a luminosity of LX < 6 × 1042 erg s−1. This 
rules out X-ray luminous AGNs, but not fainter examples. Finally, the 
colours in the Wide-field Infrared Survey Explorer (WISE) catalogue 

of W1 − W2 = 0.25 ± 0.12 lie far from the expected colours of AGNs in 
these bands (W1 − W2 > 0.8).

We fit the optical NOT/Alhambra Faint Object Spectrograph and 
Camera spectrum and broader-band photometry of the host galaxy 
with Prospector80,81, which is a stellar population modelling infer-
ence code. Prospector samples each property parameter space with 
a nested sampling fitting routine, dynesty82, and produces model 
spectral energy distributions with FSPS and Python-fsps83,84. We apply 
a Milky Way extinction law85, Chabrier IMF86 and a non-parametric star 
formation history (SFH) to the fit. We choose a non-parametric SFH 
model to more accurately determine when the majority of stars formed 
in the history of the galaxy, and thus when the progenitor was likely 
to have been formed. However, we note that most stellar population 
modelling to date uses a parametric SFH that tends to result in lower 
stellar masses and stellar population ages. We use a non-parametric 
SFH with seven age bins; the first two are between 0 Myr and 30 Myr 
and between 30 Myr and 100 Myr, and the final five are log-spaced from 
100 Myr to the age of the universe at GRB 191019A’s redshift (z = 0.248, 
tuniv ≈ 10.78 Gyr). We further apply a mass-metallicity relation87, to 
sample realistic masses and stellar metallicities, and a dust 2:1 ratio 
between the old and young stellar populations88–90. We fit the model 
spectral continuum with a tenth-order Chebyshev polynomial and 
include a nebular emission model with gas-phase metallicity and a 
gas-ionization parameter in the fit to measure spectral line strengths. 
Since the host may also contain an AGN, we also add two AGN compo-
nents, which dictate the mid-IR optical depth and the fraction of AGN 
luminosity in the galaxy.

We find that the host of GRB 191019A has a stellar population age 
of 4.34+0.88

−0.47

 Gyr (median and 1σ), stellar mass with log(M/M
⊙

) = 10.57

+0.02

−0.01

 
and current-day star formation rate (SFR) of 0.06+0.08

−0.03

M

⊙

 yr−1, and thus 
is currently a quiescent galaxy, given the specific star formation rate 
(sSFR) and redshift. From a limit of the Hα flux, we determine an Hα 
SFR < 0.12

+0.07

−0.06

M

⊙

 yr−1. We report the SFH and mass formation history 
of the host in terms of the lookback time (tlookback), and show the subse-
quent histories in Supplementary Fig. 3. We find that the majority of 
stellar mass and stars formed at tlookback ≳ 1 Gyr, with a steep decline in 
mass and star formation to the present-day, and that ~99% of the stellar 
mass was assembled greater than 1 Gyr before the merger (Supplemen-
tary Fig. 3, right). Thus, the progenitor of GRB 191019A has a higher 
a priori probability of forming greater than 1 Gyr ago, making it unlikely 
to originate from a young stellar progenitor.

As an independent check of the absence of emission lines in 
the host galaxy of GRB 191019A, we also fit the NOT spectrum with 
penalized pixel fitting pPXF91, where we fit only the stellar compo-
nent and no emission lines following ref. 92. As with our Prospector 
fitting, the resulting residuals provide no evidence for emission 
features.

Comparison with short- and long-GRB host galaxies. We compare 
the stellar mass and star formation of long93 and short94 host galaxies 
with those of GRB 191019A (Supplementary Fig. 6). The long GRBs 
overwhelmingly favour actively star-forming hosts, with high specific 
SFRs. In contrast, the short GRBs span a wide range of SFRs including a 
fraction in quiescent systems.

There are two long-GRB host galaxies which stand out from 
the apparent trend. One is the host of GRB 191019A. The other is 
the host of GRB 050219A51. This burst is only localized via its X-ray 
afterglow, but has a comparable redshift to GRB 191019A and similar 
energetics (isotropic energy release (Eiso) ≈ 1051 erg). With an X-ray 
position only, it is not possible to accurately determine whether 
the burst is nuclear. However, it also lies in a galaxy showing Balmer 
absorption lines but little evidence for star formation. Rossi et al.51 
also classify it as a post-starburst system. The similarities with GRB 
191019A are striking, and we consider it to be a possible example of 
a similar event.
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Data availability
The majority of data generated or analysed during this study are 
included in this published article (and its supplementary informa-
tion files). Gamma-ray and X-ray data from Swift may be downloaded 
from the UK Swift Science Data Centre at https://www.swift.ac.uk/. 
HST data are associated with programmes 16051 and 16458 and can be 
downloaded from https://archive.stsci.edu. Gemini data are associated 
with programmes GS-2019B-DD-106 and GS-2019B-FT-209 and can be 
retrieved from https://archive.gemini.edu. NOT data can be obtained 
via https://www.not.iac.es/observing/forms/fitsarchive/.

Code availability
The Prospector stellar population modelling code is available at 
https://github.com/bd-j/prospector. The IRAF and Python scripts 
necessary for HST data reduction can be obtained via astroconda and 
IRAF (including the relevant Gemini IRAF packages) from http://www.
gemini.edu/observing/phase-iii/understanding-and-processing-data/
data-processing-software/gemini-iraf-general.
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