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Abstract—A model’s interpretability is essential to many
practical applications such as clinical decision support
systems. In this article, a novel interpretable machine learn-
ing method is presented, which can model the relationship
between input variables and responses in humanly under-
standable rules. The method is built by applying tropical
geometry to fuzzy inference systems, wherein variable en-
coding functions and salient rules can be discovered by
supervised learning. Experiments using synthetic datasets
were conducted to demonstrate the performance and ca-
pacity of the proposed algorithm in classification and rule
discovery. Furthermore, we present a pilot application in
identifying heart failure patients that are eligible for ad-
vanced therapies as proof of principle. From our results on
this particular application, the proposed network achieves
the highest F1 score. The network is capable of learning
rules that can be interpreted and used by clinical providers.
In addition, existing fuzzy domain knowledge can be easily
transferred into the network and facilitate model training. In
our application, with the existing knowledge, the F1 score
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was improved by over 5%. The characteristics of the pro-
posed network make it promising in applications requiring
model reliability and justification.

Index Terms—Atrtificial intelligence, explainable machine
learning, interpretable machine learning.

[. INTRODUCTION

RTIFICIAL intelligence (Al) and machine learning (ML)

have been increasingly applied to healthcare problems [1].
Previous studies investigated Al in disease diagnosis, treatment
effectiveness prediction, and outcome prediction [2], [3], [4].
Several studies have shown that Al performs as well as or better
than humans [5]. With a lower cost, Al-based decision support
systems have the potential to improve patient management.

Despite tremendous progress in the field of Al-based clinical
decision support systems, there are significant challenges that
prevent the widespread use of these methods in sensitive appli-
cations. While traditional models such as linear models provide
accessible reasoning, they are less capable of achieving high
performance on complicated problems. In contrast, ML models
with higher complexity, can yield good metrics on experimental
datasets. However, these “black box” models lack transparency
and justification of their recommendations, making them much
less likely to be trusted in clinical applications. Moreover, many
popular ML methods, such as deep learning, utilize a large num-
ber of parameters, thus requiring large training datasets to avoid
overfitting the data. However, in many clinical applications,
collecting large annotated training datasets may be costly or even
impossible. As such, there is a clear need for an interpretable ML
model that can reliably model data using relatively small training
sets. In addition, in healthcare applications, there exist many
invaluable heuristics derived from domain knowledge expertise,
often in the form of approximate rules that are used by human
experts. In the majority of existing AI/ML models, there is no
clear mechanism to leverage such approximate knowledge for
model formation or training.

The goal of this study is to solve the aforementioned limi-
tations in the field of Al with an application as proof of prin-
ciple. An interpretable ML algorithm is proposed to produce a
transparent classification model and leverage existing domain
knowledge to improve model reliability. The proposed network
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is built upon tropical geometry and fuzzy inference systems [6],
[71, [8], [9]. Tropical geometry is a piecewise-linear version of
conventional algebraic geometry. In the proposed network, the
encoding functions and the aggregation operators in classical
fuzzy inference networks were reformulated by introducing
tropical geometry, which enables adaptive fuzzy subspace divi-
sion and rule discovery. Two synthetic datasets and one practical
application in clinical decision support as a pilot evaluation
were investigated to demonstrate the capabilities of the proposed
model.

The pilot application used in this study is to identify heart
failure (HF) patients that are eligible for advanced therapies.
HF afflicts 6.5 million Americans 20 and older, with its preva-
lence projected to increase annually [10], [11]. Treatment of
these patients remains limited by medical therapies and, for
those with advanced HF, by organ availability. The appropriate
delivery of advanced therapies, heart transplantation (HT) or
mechanical circulatory support (MCS) implantation, to patients
with end-stage HF is highly nuanced and requires expertise from
advanced HF cardiologists. Due to the high prevalence of HF, the
majority of patients are managed by primary care physicians or
cardiologists, who lack training in the management of patients
with advanced diseases, such as determining the appropriate
time to deliver HF advanced therapies. There are some existing
HF risk models by logistic regression but have limited accuracy
for individual patients due to the limitation in capturing multidi-
mensional relationships [12]. Thus, there is a need for Al-based
tools that can systematically identify patients warranting refer-
rals to an advanced HF cardiologist for consideration of HT or
MCS implantation in ambulatory settings. In this application, we
built a clinical decision-making model capable of differentiating
patients eligible for HF advanced therapies from those too well,
too sick, or otherwise ineligible for advanced therapies.

Our contributions in this study can be summarized as follows:

1) Anovelinterpretable ML algorithm was proposed, whose
resulting recommendations are transparent to users such
as clinicians and patients. The model can produce hu-
manly understandable rules, enabling new clinical knowl-
edge discovery. The proposed network was validated
using synthetic data with ground truth reasoning and a
dataset from patients with HF. The experimental results
show that the network has the capability to extract hid-
den rules from datasets and achieved comparable perfor-
mance with other ML models.

2) With the proposed algorithm, approximate domain
knowledge can be directly incorporated into model train-
ing to improve the model’s performance and reduce the
need for a large training set. It makes the proposed al-
gorithm particularly appropriate for clinical applications.
From our results, initializing a network with existing ap-
proximate knowledge can improve the model’s accuracy.

3) The proposed algorithm was successfully used to identify
HF patients eligible for advanced therapies, a highly
sensitive application in medicine. From our results, the
proposed algorithm achieved the highest F1 value. The
rules from the trained network were visualized and vali-
dated qualitatively by cardiologists. This pilot application
is presented as proof of principle to demonstrate the

capabilities of the proposed algorithm in solving real-
world clinical problems.

Il. RELATED WORK
A. Interpretable ML Models

In this work, we define “interpretability” as being with the fol-
lowing two properties (A) the ability to explain predictions; and
(B) the ability to explain how a model works (i.e., intelligence).
The property (A) makes the model capable of providing justifi-
cation for its decision. The justification is critical for high-stakes
decision-making in sensitive applications such as medicine and
also is the key to building trust. The property (B) is an addition
to (A), which requires the mechanism by which the model works
are understandable to humans. Property (B) makes it possible to
directly integrate existing human knowledge into the model. It
is also critical for trouble-shooting when a model does not work
as expected. In addition, if the training data does not represent
the distribution of data in the deployment environment, a model
with property (B) allows the user’s manual intervention [13].

Post-hoc interpretation methods are dedicated to explaining
predictions from “black box” ML models (property A). For
example, LIME [14] is a popular method that explains the indi-
vidual predictions of any classifier by learning local surrogate
models from the target “black box” model. SHAP [15] is another
commonly used method that computes the contribution of each
feature to individual predictions for interpretability. However,
explanations from post-hoc methods may not be faithful [16]
and they have limited capacity in elucidating how to further
improve the model.

For property (B), we need to address how a model functions
internally by its structure. The simplest examples are linear
models, but these may fail whenever the relationships between
features and responses are non-linear. Decision trees are an-
other class of transparent models that can capture interactions
among different features. However, the structure of the decision
tree is highly dependent on feature selection for each split.
Generalized additive models are extended linear models that
can capture non-linear relationships between the individual or
pairwise features and responses [17]. They have been success-
fully used in practical applications [18] but are less capable of
modeling in high-dimensional feature interactions. Another type
of transparent model is a fuzzy inference model, which models
the relationship between features and responses by constructing
compositional rules [6]. In fuzzy inference models, knowledge
is represented in the format of fuzziness of antecedents, con-
sequents, and relations. As rules closely approximate human
logic in decision-making, and fuzziness often exists in practical
applications and especially in healthcare, the proposed network
in this study is designed to leverage fuzzy inference systems.

B. Fuzzy Inference System

Previous studies have shown that fuzzy inference systems
can be used for non-linear system approximation and rule iden-
tification [8], [9]. A wide spectrum of fuzzy inference systems
utilizes the Takagi-Sugeno (TS) inference model [7], whereby
a complete rough partition of the input space is generated and
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An overview of the proposed network. The proposed network consists of an input layer, encoding module, rule module, and inference

module. The nomenclatures we used in the diagram are described in Section Ill.

an input-output relation is formed for each subspace. Adaptive
Network-based Fuzzy Inference System (ANFIS) [19] is a
hybrid of a feed-forward neural network and fuzzy inference
system with supervised learning capability that can be used to
update the input-output relation in each subspace. ANFIS has
been successfully applied in multiple applications [20], [21]. In
our previous work [22], an adaptive fuzzy inference network was
developed with a genetic algorithm to identify patients eligible
for advanced therapies. From our results, the network achieved
good classification performance and provided transparent rules.

However, the designs of the TS model and ANFIS pose
challenges in practical complex applications where the number
of input variables is relatively large as this results in exponential
growth in the number of subspaces. To handle this problem, a
flexible k-d tree [23] and quadtree [24] have been adopted for
input space partition but with challenges in assigning under-
standable terms to membership functions using these methods.
Unlike previous methods, we introduce tropical geometry into
the fuzzy inference system, which allows the reformulation
of the membership functions and aggregation operators. As a
result, the shape of the membership functions and aggrega-
tion operators do not need to be pre-defined, and they can be
optimized during the training process. In addition, instead of
using a complete partition of the input space and modeling the
relationship between every individual subspace and the output,
we proposed a “network” structure. In this “network” structure,
a fixed number of subspaces are constructed by combinations of
concepts. More importantly, the construction of those subspaces
can be updated by optimizing the connection weights. With such
a design, an end-to-end network can adaptively and iteratively
discover subspaces related to each class using gradient-based
back-propagation.

Ill. METHOD

A. Overview of the Proposed Work

In this study, we designed an end-to-end interpretable classi-
fier shown in Fig. 1. It takes tabular data as input and outputs

the predicted class. The proposed network has three major com-
ponents: an encoding module, a rule module, and an inference
module. Firstly, every input variable is encoded into humanly
understandable fuzzy concepts in the encoding module. Then
a number of fuzzy subspaces are constructed as combinations
of fuzzy concepts by attention and connection matrices A and
M. Given a specific data sample, the firing strength of each
rule can be calculated. Finally, with the inference matrix W and
the firing strength of each rule, the probabilities of the sample
belonging to each class are calculated in the inference module.
During the training process, parameters used for input encoding,
matrices A, M, and W are optimized by gradient-based back-
propagation. After the network is trained, those parameters can
be analyzed to visualize the learned fuzzy subspaces. The fuzzy
subspaces mimic human logic and can be presented as “rules”.
Those rules can be used to justify the model’s prediction.

As the proposed network mimics human logic, not only can
rules be extracted from the trained model, but also existing
knowledge can be integrated/transferred into the model. We
performed experiments to investigate whether initializing the
network with existing domain knowledge improves the model’s
performance.

B. Encoding Module

The input variables can be ordinal, continuous, or categorical.
Ordinal and continuous variables are encoded into multiple
fuzzy sets. Unlike with crisp sets, for which membership is
binary, for fuzzy sets, a membership value in [0,1] will be
assigned to a variable’s observed value for a given fuzzy set,
indicating the confidence of that value belonging to the set.
Fuzzy set membership approximates the fuzzy concept used by
human experts during decision-making. For example, given the
heart rate of a patient, the clinician may describe it as a “low”
/ “medium” / “high” heart rate. “Low”, “medium”, and “high”
are the fuzzy concepts used in clinical problems. In this study,
we encoded ordinal/continuous variables into these three con-
cepts. With an ordinal/continuous variable z;, the membership
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functions I(x;), m(x;), h(x;) for “low”,
concepts are defined as

fer(wi) = e log(1 + exp(z;/e1)), (1a)
a; 2 — X; alv, — Ty
zi) = fe, (2) — fe <1) , (b
A2 — Q41 Qg2 — Q4,1
Ti — Q41 Ti — Q5.2
m(xz;) = fe, () — fe ()
Gj2 — Q5.1 Aj2 — Q4.1
;3 — Ty Qi 4 — Ty
_fel ( ,3 i ) +f61 ( 7,4 ) _ 1’
Aj,4 — 5.3 Qj,4 — 5,3

h(zi) = o, (W’) — I <x_“> . (d)

Qi 4 — Qi3 Aj4— Qi3

medium”, and “high”

where a;1 < a;2 < a;3 < a;4 and are trainable. With 0 <
€1 < 1, the membership functions are differentiable, with their
smoothness modulated by €. As lim¢, ¢ f¢, (x) = max(0, z),
when €; approaches 0, the membership functions in (1) are close
to trapezoidal membership functions or triangular membership
functions (if a; 2 is close to a; 3).

Using the defined membership functions, x; will be
encoded as membership values in three fuzzy concepts:
U(x;), m(x;), h(x;). In this study, we used three concepts -
“low”, “medium”, and “high” - as they are commonly used in
healthcare applications. The above formulations can be easily
extended to a higher number of concepts.

Categorical variables are represented via a one-hot encoding
directly and no fuzzy concepts are used. We denote L; as the
number of levels of a categorical variable x;. In this study, z;
is encoded into Iy (x;),l2(z;), ..., I, (x;), where only one of
them has a value of 1 and all others are 0.

C. Rule Module

The rule module consists of two layers in the proposed archi-
tecture. In this module, the firing strength of a number of rules
(fuzzy subspaces) are calculated for the classification task and
denoted as 71, . .., rx in Fig. 1, where K is the total number of
rules.

1) The First Layer: The first layer of the rule module selects
the most relevant concept from each variable with respect to
each rule using an attention matrix A. A is the partitioned
matrix formed by concatenating submatrices A1, Ao, ..., Ay,
where Ay, is the attention submatrix for the input variable xp,
and H = I + J is the total number of input variables, with
and J the total number of ordinal/continuous and categorical
variables, respectively. For an ordinal/continuous variable x,, the
submatrix A; with entries A; ,, ,, has dimension 3 x K, where
3 is the number of fuzzy concepts used in this study and K is the
number of rules in the network. For a categorical variable x;,
the submatrix A; with entries A, ,, , has dimension L; x K.
Thus, the attention matrix A has dimension (31 + >, L;) x K.

For an ordinal/continuous variable x;, the entry A; ; ; in the
attention matrix represents the contribution of x; being “low” to
rule k (and similarly, A; 5 j, for z; being “medium” and A; 3 j, for
x; being “high”). Entries in the attention matrix are all trainable

and constrained to [0, 1] by the hyperbolic tangent activation
function. A higher value in A indicates a higher contribution.
As shown in Fig. 1, for an input variable x;, the corresponding
output from the first layer of the rule module is Z;, a vector of
length K. z; 1, the k" element of Z;, is the firing strength of z;
involved in k*" rule.

For an ordinal/continuous variable x; and categorical variable
Zj, Tj . and T j, are calculated as:

Tip = Ai1pl(zi) + Ajoem(a;) + A 3 :h(z)), (2a)
L,

Tjp = ZAj,d,kld(xj) (2b)
d=1

respectively.

2) The Second Layer: The second layer of the rule module
calculates rule firing strength by a connection matrix M of
dimension H x K. The k'" rule is constructed as a combination
of T1,...,TH, from the previous layer. An entry M, ; in
the connection matrix M denotes the contribution of x; to the
k" rule. Entries in the connection matrix are all trainable and
constrained to [0, 1] the hyperbolic tangent activation function,
and a higher value indicates a higher contribution. In this layer,
we define a parametrized T-norm to calculate 7y, the firing
strength of the £*" rule.

With 0 < €3 < 1, let g, : [0,00) — [0,00) and its inverse
function ¢! be defined as

€9 eg—1
. = 1—x ) , 3
ga() = 7o (1w Ga)
1 =T
95, (2) = (1 - == z) : (3b)
€2
The parametrized T-norm on two inputs is defined as
Tey(2,Y) = 9, (9ex(2) + 9ex ()
eg-1 eg-1 5;1 (€]
:(x‘2 +y <2 —1) ,
which has the following asymptotic behavior:
lim T¢, (z,y) = xy, (5a)
624)1
lim T, (x,y) = min(x, y), (5b)

62*}0

which means that the defined T-norm can be modulated between
product and min by e,.

Using this definition of the T-norm, r, is calculated by apply-
ing the T-norm to multiple inputs:

~My . ~Ma2 ~Mp i
T =Tg, (:Ulk o g s Ty,

H
-1 ~Afi k
e (zmi,kv >)
i=1 (©)
H M, k'ez,l a1
- Z@k ? -HA+1L :
=1
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In (6), entries in the connection matrix M are used as expo-
. ~M
nents. Taking the example of Z; ', a lower M j, (closer to 0)

means %iw,ik is closer to 1, consequently it contributes less to 7,
with the proposed T-norm. Thus, a lower value in M indicates
a lower contribution to the rule firing strength, and vice versa.

With the rule module, the number of rule sub-spaces that can
be encoded in the network is roughly P(F)¥, where N is the
number of variables, F' is the number of fuzzy concepts (in this
study, F' = 3), and P(-) denotes the number of permutations.
The high complexity of the proposed method makes it capable
of modeling complicated classification problems.

D. Inference Module

Let C denote the number of classes in the classification task.
The inference layer has C' nodes, one for each class, that are
fully connected to the rule layer nodes. The firing strength of
each node o, is calculated using the rule firing strengths with
an inference matrix W of dimension K x C. An entry W; .
denotes the contribution of the k" rule to the c!” class. Entries
in the inference matrix are all trainable and positive. A higher
value indicates a higher contribution. In this layer, we define a
parametrized T-conorm to calculate o..

The parametrized T-conorm on two inputs is written as

Quiay) = (a7 +47) ", ™

where 0 < e3 < 1. This T-conorm has the following asymptotic
behavior:

gngmw)=x+% (8a)

lim Q.,(z,y) = max(z,y), (8b)
e3—0
which means that the defined T-conorm can be modulated be-
tween addition and max by e3.

Using this definition of the T-conorm, o, is calculated by
applying the T-conorm to multiple inputs:

0c = Qey Wi er1, Waera,...,Wk k)
K 2\ 9)
= Z(Wk,crk) E
=1

After the calculation of 01,09, ...,0c, a softmax activation
function is applied to generate probabilities p1,po,...,pc of
being in each class, which are all in [0, 1] with chzl e = 1.

As chzl pe = 1, we can set the number of “valid” nodes in
the inference module to C' — 1 to avoid ambiguity in rule repre-
sentation. For example, when performing binary classification
W. o can be set to 0 so that the model will only learn subspaces
related to the positive class.

E. Network Interpretation

The proposed network can both extract rules and inject rules
in a way that humans can understand. The entries in the attention
matrix A and connection matrix M represent the contribution
of individual concepts and individual variables to each rule.

The entries in the inference matrix W gives the contribution
of individual rules to each class.

With A and M, a contribution matrix S can be constructed that
expresses the contribution of individual concepts to each rule in
the model. The matrix S is a partition matrix formed by concate-
nating submatrices S1,So,...,Sy. For an ordinal/continuous
variable x;, the corresponding submatrix S; has dimension
3 x K and for a categorical variable x;, S; has dimension
L; x K.Theentries S; q,1, of S; and S; 4 1, of S; are calculated

as
Sidke = Aiar X My, de{l,2,3},

de{l,...,L;},

(10a)

Sidr = Ajar x Mg, (10b)

respectively, where k € {1,...,K}. The entry S; 4 is the
contribution of the d'" concept of z; to the k' rule. S. .\
encodes the construction of the k! rule, while Wy, captures
the relationship between classes and the k" rule.

The following is a toy example demonstrating how rules are
represented in the network. Given a dataset with four contin-
uous input variable x1, x2, x3, x4 and a binary response (nega-
tive/positive), A, M, W are trained and S can be calculated. Let
us assume that in the contribution matrix S, S7 1,1,.52,3,1, 52,22,
and S3 ;1 2 are close to 1, with all other entries close to 0. In the
inference matrix W, W 5 and W» o are close to 1 while W7 4
and Wy are close to 0. From the given S and W, we can
summarize two rules from the trained network as: (1) IF x is
low and x5 is high, THEN the sample is positive; (2) IF x5 is
medium and x3 is low, THEN the sample is positive.

The above two rules are represented in (S.. 1, W;,.) and
(S.,: 2, Wa.), respectively. The definitions of “low”, “medium”
and “high” concepts can be extracted from the parameters in the
encoding module. The extracted rules mimic human logic. They
can be used to justify the network’s decisions and contribute to
knowledge discovery.

In practice, the trained model may have some redundant rules,
which means the representation of several rules are identical.
For example, both Rule 1 and Rule 2 show that when z; is
low, x5 is high, then the sample is positive. From the current
method formulation, this scenario can exist without harming
the classifier’s performance. However, in practice, a model that
provides a small set of humanly understandable rules is favorable
as it can be more easily used to provide guidance and reasoning
to decision-makers. In this study, the correlations between each
pair of rules are calculated. The correlation will be minimized
during the training process. In addition, rules with high correla-
tion and concepts with smaller contribution values are removed
for rule visualization. The thresholds are chosen empirically.

F. Model Training and Network Initialization

The proposed network is trained by back-propagation with
an Adam optimizer. A regular cross-entropy loss [0SS.s 1S
calculated to train the classification model. Additionally, an
£1 norm-based regularization term [oss,, is added to the loss
function to favor rules with a smaller number of concepts,
which are more feasible to use in practice. In addition, the
correlation among encoded rules is calculated as a loss term
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loss¢orr to avoid extracting redundant rules. The loss function
can be written as:

losStotal = 108Sce + A1lossy, + Aalosscorr, (11a)

loss;p = |Jvec(A)]|; + [[vec(M)]|; , (11b)
H-1 H

108Scorr = Z Z vec(S. . ;)vec(S. . ;) (11¢c)

i=1 j=i+1

where A and A5 control the magnitude of the /1 norm-based
regularization term and correlation based regularization term,
respectively. vec(+) denotes the vectorization of a matrix.

In this study, for simplicity, €1, €2, €3 are constrained to be
equal. They are initialized as 0.99 at the beginning of training
and are gradually reduced with the number of training steps. The
scheduling of the € values can be written as

tralnlng_steps) ; ( 1 2)
where 7 is the decay rate that can be tuned as a hyperparameter.
From our preliminary analysis, v = 0.99 usually is a good
choice. €niy 1S another hyperparameter, whose optimal value
varies with different applications. The hyperparameter tuning
strategy will be discussed in the next section. Our experiments
show that starting with € = 0.99 and reducing e improves model
optimization (as discussed in Section V-A).

Before model training, trainable parameters will be randomly
initialized. To improve performance, especially when the size
of the training dataset is small, practical rules from domain
knowledge can be used to initialize the network. Revisiting the
toy example in Section III-E, if the extracted rules were instead
previously known within the application domain, the matrices
A M, and W in the network could then be initialized as:

® A: Aj11,A231,A222,A31,2 have a higher value and
other entries in A. . ; and A. . > have a lower value;

e M: M 1, Ms 1, Ms o, Ms o have a higher value and other
entries in M. ; and M. 5 have a lower value;

* W: Wi 2, Wa s have a high value and W, 1, W5 1 have a
low value;

e Other entries in A, M, and W are randomly initialized.

€ = max(€min, € - Y

IV. DATASETS AND EXPERIMENTAL SETTINGS
A. Synthetic Datasets

Two synthetic datasets were built by simulating features with
fixed distributions and rules to generate responses. The ground
truth rules from the synthetic datasets can be used to assess
a method’s capability in extracting humanly understandable
knowledge from the data and modeling the relationship be-
tween inputs and responses. In addition, with ground truth rules,
synthetic datasets can be used to assess whether the proposed
method can benefit from existing knowledge.

For each dataset, a 10-fold cross-validation was used for per-
formance evaluation. In each iteration, the dataset was randomly
split into the training set (64%), validation set (16%), and test
set (20%).

1) Synthetic Dataset 1: Eight input variables were simu-
lated as: z1 ~ N(0, 2), zo ~ N(5, 3), 23 ~ N (—1, 5), x4 ~

N(1, 2),z5 ~ N (=2, 1), 26 ~ Bernoulli(0.5), z7 ~ N(0, 1),
xg ~ N(0, 1). If any of the following rules apply to one obser-
vation, then this observation is positive and otherwise negative:

® Rule A: 29 < 3.8and z3 > —2 and x¢ = 1;

e Rule B: 25 > 6.3 and x3 > —2 and x¢g = 1;

e Rule C: z1 < 1and x4 > 2 and zg = 0;

® Rule D: 23 > Oand x5 > —1 and z¢ = 0;

e RuleE: z; < land x5 > —1.5and xg = 0.

Additionally, random noise sampled from N (0, 0.01) are
added to input variables. From the above rules we can readily
observe that the response of one observation doesn’t rely on x7
and xg. 7 and xg are used as irrelevant variables to assess the
model’s resilience to redundant features.

2) Synthetic Dataset 2: Nine input variables were simu-
lated as: 21 ~ N (0, 2), z2 ~ N (5, 3), 3 ~ N(—1, 5), x4 ~
N(1,2), 25 ~ N (=2, 1), 26 ~ N(—1, 4.4), 7 ~ N (0, 1.2),
xg ~ N (0, 1), g ~ N (0, 1). The sample is positive if (z; +
0.5x9 + IC3)2/(1 + e®s 21’7) < 1.

In this dataset, a highly non-linear function is used to assign
the response. Though such arelationship between input variables
and responses rarely exists for clinical applications, this dataset
is used to determine if the proposed network can still achieve
good performance by approximating the complicated relation as
simple rules.

B. Heart Failure Dataset

A HF dataset is created to train a classification model that
identifies patients eligible for advanced therapies. Two cohorts
were used in this study.

1) REVIVAL Cohort: The REVIVAL (Registry Evaluation
of Vital Information for VADs in Ambulatory Life) registry
contains information on 400 patients with advanced systolic HF
from 21 US medical centers [25]. As part of the registry, patients
were evaluated at up to 6 pre-specified time points over a 2-year
period and underwent relevant examinations. At each time point,
investigators were asked to record whether the participant had
been evaluated for HT or LVAD and the result of that evaluation.
For purposes of this analysis, study participants were labeled
at each time point as appropriate (positive) or not appropriate
(negative) for advanced therapies.

2) INTERMACS Cohort: The INTERMACS (Interagency
Registry for Mechanically Assisted Circulatory Support) reg-
istry is a North American registry of adults who received an
FDA approved durable MCS device for the management of
advanced HF [26], [27], [28]. The registry includes clinical
data on all adults > 19 years of age who received a device at
one of 170 active INTERMACS centers. The registry includes
information on patient demographics, clinical data before and at
the time of MCS implantation, and clinical outcomes up to one
year post-MCS implantation or until HT. For this analysis, data
was extracted at the time of LVAD implantation and patients
classified as “appropriate for advanced therapies.”

3) Combined Dataset and Variable Selection: Patients from
the two cohorts were combined to form a larger dataset. HF clini-
cians selected 22 variables used in clinical practice which were in
both datasets and which have strong associations with advanced
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TABLE |
DATA SPLIT ON THE HEART FAILURE DATASET'. VALUES ARE PRESENTED AS
AVERAGE NUMBER OF SAMPLES (AVERAGE NUMBER OF PATIENTS)

Training set  Validation set ~ Test set
REVIVAL
with advanced therapy 00 46 31) >0 3
REVIVAL
wio advanced therapy 782 (228) 176 (52) 181 (54)
INTERMACS 7781 (7781) 0 (0) 0 (0)

FThe distribution of patient INTERMACS level and the the rationale of
the proposed data split strategy are presented in Appendix B.

HF. These include heart rate, systolic blood pressure (SYSBP),
sodium concentration, albumin concentration, uric acid concen-
tration, total distance walked in 6 minutes (DISTWLK), gait
speed during a 15 feet walk test, left ventricular dimension in
diastole (LVDEM), left ventricular ejection fraction (EF), mitral
regurgitation (MITRGRG), lymphocyte percentage (LYMPH),
total cholesterol (TCH), hemoglobin (HGB), age, sex, comor-
bidity index, glomerular filtration rate (GFR), pulse pressure,
treatment with cardiac resynchronization therapy (AR), need
for temporary MCS device, treatment with guideline directed
medical therapy (GDMT) for heart failure, and peak oxygen
consumption during a maximal cardiopulmonary exercise test
(pVO2). Appendix A provides more details of the clinical vari-
ables.

4) Clinical Rules: To facilitate model training, we assembled
apanel of five HF and transplant cardiologists, all from different
institutions. Two cardiologists were first asked to generate a set
of clinical rules using the aforementioned variables. These were
then collated and distributed to three additional cardiologists for
review and additional rules were added as indicated, creating a
final set of consensus rules. For this demonstration study, rules
were simplified as follows:

e Rule A: EF is low, and pVO2 is low;

Rule B: EF is low, and DISTWLK is low;

Rule C: Age is high, EF is low, and SYSBP is low;
Rule D: EF is low, and MITRGRG is high;

Rule E: EF is low, and the GDMT is low;

C. Experimental Settings

For synthetic datasets, 10-fold cross-validation was used to
evaluate model performance. For the heart failure dataset, to
better evaluate the model’s generalizability on external dataset,
the training set includes all samples from the INTERMACS
registry and 80% of the negative samples from the REVIVAL
registry. The remaining negative samples and all positive sam-
ples from the REVIVAL registry were equally and randomly
split into the validation and test sets. The proposed data split
was randomly repeated 10 times to evaluate the model. For one
repetition, samples from the same patient will only exist in one
set. The average number of patients and samples in subsets are
presented in Table I. The rationale of the proposed data split
strategy on the heart failure dataset is presented in Appendix B.

TABLE Il
PERFORMANCE OF THE PROPOSED MODEL ON SYNTHETIC DATASET 1 WITH
N = 400 USING 10-FOLD CROSS-VALIDATION

Model Accuracy Recall Precision F1 AUC

. _og 055 0.911 0955 0883  0.986
min = 0. 0025  (0.073)  (0.038)  (0.040) (0.016)
0.959 0004 0972 0888 0991

emin =04 1030)  (0.073)  (0.035)  (0.048) (0.010)
o, 0% 0919 0968 0892 0992
min = 0. 0.026)  (0.087)  (0.039)  (0.045)  (0.008)
Frede—0g 0966 0903 0964 0886 0978
0.023)  (0.083)  (0.019)  (0.037) (0.019)

ed e o4 00% 0.867 0048 0857 0964
400400 (0.086)  (0.056)  (0.064) (0.024)
Fxede—0o 0786 0519 0803 0558 0819
0.041)  (0.190)  (0.109)  (0.132) (0.117)

For the first three rows, € was initialized to 0.99 and was gradually reduced
to €min during training. For the last three rows, the value of € was fixed.

A random search algorithm was applied using the training
set and validation set for hyperparameter tuning, including the
number of rules K, learning rate, batch size, 11, A2, and €,y
The model trained with the optimal combinations of hyperpa-
rameters was then evaluated on the test set. The performance
of the proposed network will be presented as the average and
standard deviation (std) from 10 iterations.

For comparison, several popular “black box” machine learn-
ing algorithms were chosen, including random forest, SVM, and
XGBoost. In addition, several interpretable models were chosen
including logistic regression, fuzzy inference classifier [29],
XGBoost-based decision tree [30], GAMI-Net [31], and Ex-
plainable Boosting Machine (EBM) [32]. Those models have
the same hyper-parameter tuning process and model evaluation
as the proposed algorithm. Class weights are used when the
dataset is unbalanced.

Accuracy, recall, precision, F1, and area under the ROC curve
(AUC) were calculated to evaluate the performance of the trained
classifiers.

V. RESULTS AND DISCUSSION
A. Synthetic Dataset 1 (N = 400)

Let NV denote the number of observations in a given dataset.
Several experiments were performed with differently sized sim-
ulated datasets. In this section, we discuss the performance of
the proposed method on synthetic dataset 1 when N = 400.

The first experiment starts with NV = 400. The percentage
of positive samples is 34.25%, and the percentages of samples
with Rule A, Rule B, Rule C, Rule D, Rule E are 8.25%, 7.50%,
9.00%, 2.00%, and 10.75%, respectively.

Table II depicts the performance of the proposed algorithm
with different €,,,;,, on the test sets from 10-fold cross-validation.
We can observe that model training benefited from decreasing
€min from 0.8 to 0.2, but the performance of the trained model
decreased when €,,;, was decreased to 0.1. We also evaluated
the model with a fixed ¢, rather than gradually decreasing it
from 0.99. While fixing e at 0.8 leads to comparable performance
with the model using €,,,;,, = 0.8, the performance of the models
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TABLE IlI
PERFORMANCE OF ML METHODS ON SYNTHETIC DATASET 1 WITH N = 400 USING 10-FOLD CROSS-VALIDATION
Model Accuracy Recall Precision Fl1 AUC Transparent
Proposed 0.960 (0.023)  0.933 (0.054)  0.953 (0.060)  0.893 (0.032)  0.994 (0.005) Yes
Logistic Regression 0.724 (0.029)  0.344 (0.078)  0.692 (0.098) 0.413 (0.070)  0.701 (0.065) Yes
Fuzzy Inference Classifier 0.680 (0.036)  0.456 (0.102)  0.540 (0.076)  0.441 (0.071)  0.668 (0.056) Yes
XGBoost-based Decision Tree  0.904 (0.053)  0.814 (0.145)  0.894 (0.066)  0.798 (0.094)  0.956 (0.040) Yes
EBM 0.835 (0.027)  0.678 (0.060)  0.807 (0.060)  0.688 (0.045) 0.924 (0.018) Yes
GAMI-Net 0.754 (0.063)  0.474 (0.193)  0.637 (0.133)  0.497 (0.123)  0.748 (0.058) Yes
Random Forest 0.924 (0.015)  0.826 (0.062)  0.944 (0.037) 0.832 (0.028)  0.981 (0.006) No
XGBoost 0.977 (0.013)  0.959 (0.031) 0.975 (0.028) 0.919 (0.020) 0.996 (0.003) No
SVM 0.821 (0.038)  0.641 (0.076)  0.796 (0.077)  0.661 (0.061)  0.897 (0.026) No
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Fig. 2. Interpretation of a trained model on synthetic dataset 1 with N = 400. (a) Visualization of four rules contributing to the positive class, which

are summarized from the trained model. Rules are visualized in individual columns with each row corresponding to concept. For example, “x1_low”
means “the value of z; is low”. The contribution of individual concepts to individual rules are shown in color. (b) Membership functions for “low”,
“medium”, and “high” concepts of z1, z2, z3, and x4 in the encoding module, respectively.

with a smaller fixed e value decreased significantly. Our results
show the effectiveness of the algorithm that gradually decreases
€ during the training. Using this dataset, the proposed network
with a reasonable degree of piecewise linearity has a better
performance.

Table III describes the performance of the proposed method
where €,,,;, was tuned on the validation set in each iteration.
The performance of the proposed network is compared with
that of other machine learning algorithms. From Table III, we
can see that the proposed network achieved significantly better
performance than other interpretable models and had compara-
ble performance to the XGBoost model, which is the best among
the other established machine learning algorithms.

To examine the proposed network’s ability to learn rules from
the dataset, we summarized rules contributing to the positive
class from a trained network. Those rules are visualized in
Fig. 2(a). Comparing the learned rules with rules in Section I'V-
Al, we can observe that Rule 1 corresponds to Rule C; Rule 2
corresponds to aunion of Rule A and Rule B; Rule 3 corresponds
to Rule E; and Rule 4 is closest to Rule D. Membership functions
of the variables involved in Rule 1 and Rule 2 are visualized
in Fig. 2(b) and we can observe a great match. For example,
the membership value of x5 to the “low” concept is high when
xo smaller than 3.7 and the membership value of x5 to the
“high” concept is high when z5 is larger than 6.2. Simple

thresholds were used to construct synthetic dataset 1, and for
this reason, the fuzzy regions in the membership functions are
very narrow. From the interpretation in Fig. 2, the trained model
learned the majority of rules used to construct the dataset. Rule
4 is close to Rule D but with two additional concepts that are
misidentified as related to the class. This may be due to only
2.00% of samples in the dataset being consistent with Rule D,
making it more challenging to learn from the data. In addition,
from Fig. 2(a), concepts from x7 and xg are not shown because
their significance to learned rules is too low. This demonstrates
that the proposed network can identify and exclude irrelevant
variables.

B. Synthetic Dataset 1 (N = 50)

In the second experiment, we used synthetic dataset 1 with
N = 50. The percentage of positive samples is 42.00%, and the
percentages of samples with Rules A-E are 14.00%, 14.00%,
4.00%, 4.00%, and 12.00%, respectively. In this experiment,
we investigated the performance of the proposed network with
a small training set and if initiating the network with existing
knowledge would enable the model to learn more accurate rules.
Limited training data is a common issue in medical applications,
which may result from the small patient population or tedious
/ expensive annotation collection. Considering that domain
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TABLE IV
PERFORMANCE OF ML METHODS ON THE SYNTHETIC DATASET 1 WITH N = 50 USING 10-FOLD CROSS-VALIDATION

Model

Accuracy

Recall

Precision

Fl1

AUC

Transparent

Proposed (None)
Proposed (Rule A)
Proposed (Rule B)
Proposed (Rule C)
Proposed (Rule D)
Proposed (Rule E)

Proposed (Rule F, partially correct)
Proposed (Rule G, partially correct)
Proposed (Rule H, partially correct)

0.640 (0.143)
0.670 (0.110)
0.670 (0.135)
0.690 (0.104)
0.730 (0.142)
0.700 (0.190)
0.680 (0.183)
0.700 (0.210)
0.750 (0.112)

0.550 (0.292)
0.575 (0.275)
0.600 (0.255)
0.625 (0.202)
0.675 (0.251)
0.600 (0.229)
0.600 (0.200)
0.625 (0.280)
0.575 (0.195)

0.518 (0.249)
0.543 (0.238)
0.646 (0.211)
0.658 (0.197)
0.658 (0.282)
0.710 (0.259)
0.665 (0.278)
0.605 (0.308)
0.775 (0.197)

0.473 (0.236)
0.504 (0.223)
0.535 (0.170)
0.566 (0.129)
0.607 (0.225)
0.573 (0.202)
0.565 (0.196)
0.566 (0.276)
0.593 (0.176)

0.688 (0.213)
0.710 (0.188)
0.658 (0.183)
0.698 (0.158)
0.710 (0.194)
0.740 (0.191)
0.688 (0.206)
0.652 (0.213)
0.740 (0.152)

Logistic Regression
Fuzzy Inference Classifier
XGBoost-based Decision Tree
EBM
GAMI-Net

0.610 (0.145)
0.520 (0.117)
0.530 (0.174)
0.650 (0.120)
0.610 (0.145)

0.425 (0.275)
0.525 (0.208)
0.375 (0.256)
0.500 (0.224)
0.300 (0.245)

0.512 (0.339)
0.416 (0.120)
0.343 (0.247)
0.562 (0.260)
0.525 (0.202)

0.395 (0.236)
0.413 (0.146)
0.318 (0.230)
0.469 (0.192)
0.315 (0.223)

0.583 (0.181)
0.550 (0.103)
0.548 (0.183)
0.670 (0.151)
0.595 (0.110)

Random Forest
XGBoost
SVM

0.650 (0.081)
0.650 (0.186)
0.580 (0.075)

0.475 (0.236)
0.600 (0.300)
0.125 (0.230)

0.580 (0.275)
0.591 (0.275)
0.250 (0.403)

0.450 (0.176)
0.521 (0.238)
0.130 (0.204)

0.619 (0.168)
0.675 (0.187)
0.521 (0.173)

knowledge usually exists in the medical field, this experiment is
to demonstrate that the proposed method can do well when the
training set is small.

Table IV has three blocks, presenting the performance of
the proposed networks, established interpretable ML methods,
and established black-box ML methods on synthetic dataset 1
(N = 50), respectively. The first block shows the performance of
the proposed network without and with existing knowledge. The
performance of the proposed network with random initialization
is shown in the first row of the first block, followed by the perfor-
mance of the proposed network initialized with existing knowl-
edge (rules). Rules A through E are fully correct as described in
Section IV-A1 while Rules F through H are partially correct. In
practical applications, it is very rare that the ground truth rule is
available. As such, in this experiment, we only initialized A, M,
and W, while the parameters in the membership functions were
randomly initialized. In addition, to investigate whether inexact
domain knowledge can facilitate model training, we proposed
the following three rules and assumed they lead to a positive
class:

e Rule F: x5 is “low” and zg = 1;

e Rule G: x; is “low” and x5 is “low” and g = 0;

e Rule H: z; is “low” and z5 is “high” and x¢ = 0 and 7
is “high”;

Rule F, G, and H are only partially correct. Compared with
ground truth Rule A, the “high” concept of x3 is missing in Rule
F. In Rule G, z5 should be “high” rather than “low” as in Rule
E. In Rule H, “high” concept of z7 is actually irrelevant to the
class.

From Table IV, we first observe that because of the reduction
in the size of the training set, performance decreased. Still,
XGBoost achieves the best performance, and the proposed net-
work with random initialization has a comparable performance
to XGBoost. Second, we observe that the improvement can
be achieved when the network was initialized with Rules A
through E. Third, the model’s performance increased when it
was initialized with partially correct rules. This indicates that
existing domain knowledge can help with model training even
when the rules are vague and/or inexact.
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Interpretation of a trained model on synthetic dataset 2 with

C. Synthetic Dataset 2 (N = 400)

The responses in synthetic dataset 1 were constructed by
rules, where a rule-based or tree-based machine learning
algorithm may be more favorable. Therefore, responses in
synthetic dataset 2 were built from a non-linear function to
further explore the capacity of the proposed network in function
approximation. A performance comparison of different ML
models is presented in Table V. From the table, we can see
that SVM achieved the best performance. The performance of
the proposed network is lower than SVM but comparable with
other machine learning algorithms.

Rules extracted from the trained proposed network are pre-
sented in Fig. 3. We see that these rules capture meaningful
information. Observations in this dataset were annotated as
positive if (z1 + 0.5x5 + 23)?/(1 + €*¢ + 227) < 1. Rule 1
shows that “high” levels of x4 and =7 lead to the positive class.
In this dataset, 1, T2, and z3 were simulated as: x1 ~ A(0, 2),
xo ~ N (5, 3), and x5 ~ N (-1, 5). As such, a “high” z; and
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TABLE V
PERFORMANCE OF ML METHODS ON THE SYNTHETIC DATASET 2 WITH N = 400 USING 10-FOLD CROSS-VALIDATION

Model Accuracy Recall Precision F1 AUC Transparent
Proposed 0.714 (0.041)  0.738 (0.067)  0.693 (0.062)  0.657 (0.045)  0.801 (0.040) Yes
Logistic Regression 0.746 (0.046)  0.703 (0.084)  0.738 (0.053)  0.671 (0.058)  0.774 (0.073) Yes
Fuzzy Inference Classifier 0.654 (0.048)  0.408 (0.090)  0.721 (0.076)  0.475 (0.084)  0.761 (0.037) Yes
XGBoost-based Decision Tree  0.722 (0.096)  0.617 (0.108)  0.493 (0.105)  0.521 (0.124)  0.745 (0.057) Yes
EBM 0.736 (0.028)  0.686 (0.047)  0.731 (0.044)  0.660 (0.028)  0.826 (0.042) Yes
GAMI-Net 0.749 (0.039)  0.697 (0.056)  0.747 (0.058)  0.673 (0.016)  0.805 (0.016) Yes
Random Forest 0.734 (0.040)  0.692 (0.030)  0.726 (0.058)  0.660 (0.034)  0.827 (0.035) No
XGBoost 0.734 (0.043)  0.705 (0.072)  0.714 (0.043)  0.662 (0.054)  0.837 (0.033) No
SVM 0.781 (0.074)  0.741 (0.077)  0.780 (0.094)  0.712 (0.079) 0.871 (0.066) No

TABLE VI
PERFORMANCE OF ML METHODS ON THE TEST SET OF THE HEART FAILURE DATASET FROM 10 REPETITIONS

Model Accuracy Recall Precision F1 AUC Transparent
Proposed (None) 0.735 (0.047)  0.500 (0.069)  0.384 (0.059) 0.386 (0.047)  0.730 (0.042) Yes
Proposed (with existing rules)  0.718 (0.035)  0.645 (0.125)  0.410 (0.045)  0.452 (0.043)  0.753 (0.025) Yes
Logistic Regression 0.773 (0.022)  0.285 (0.084)  0.459 (0.089)  0.297 (0.079)  0.719 (0.049) Yes
Fuzzy Inference Classifier 0.506 (0.124)  0.788 (0.151)  0.298 (0.080)  0.358 (0.054)  0.707 (0.071) Yes
XGBoost-based Decision Tree  0.719 (0.018)  0.430 (0.055)  0.395 (0.032)  0.369 (0.031)  0.715 (0.039) Yes
EBM 0.752 (0.010)  0.444 (0.071)  0.455 (0.033)  0.402 (0.042)  0.737 (0.036) Yes
GAMI-Net 0.719 (0.020)  0.347 (0.093)  0.490 (0.045)  0.355 (0.059) 0.701 (0.014) Yes
Random Forest 0.759 (0.041)  0.590 (0.088)  0.458 (0.047)  0.448 (0.051)  0.801 (0.042) No
XGBoost 0.764 (0.021)  0.444 (0.080)  0.455 (0.065)  0.402 (0.065)  0.756 (0.048) No
SVM 0.746 (0.040)  0.447 (0.086) 0.438 (0.080)  0.381 (0.029)  0.710 (0.048) No

“low” w3 canlead (x1 + 0.579 + 23)? to a small value. A “low”
or “medium” z; and “medium” 3 is another combination that
can lead (x; + 0.5x5 + 23)? to a small value. As expected,
Rules 4 and 5 unite concepts from x; and x3. From this analysis,
we observe that the proposed network can learn simple rules in
a format that humans can understand from a dataset that was
constructed with a complicated non-linear function.

D. Heart Failure Dataset

We applied the proposed network to identify patients that are
eligible for advanced therapies. Table VI presents the perfor-
mance of the proposed method and other techniques. In this
particular application, we want to have a model that is less
likely to miss patients that are eligible for advanced therapies, yet
provides a reasonably high probability that referred patients will
subsequently be deemed appropriate for an advanced therapy. F1
score is the best evaluation metric because the balance between
recall and precision is important, and the dataset is unbalanced.

From Table VI, initializing the network with existing knowl-
edge can greatly improve the model’s performance. The pro-
posed method had the highest AUC and F1 score compared
with other interpretable learning approaches. Compared with
“black-box” methods, the proposed method without existing
knowledge achieved a comparable F1 score and AUC. With
existing knowledge, the proposed method had the highest F1
score and a comparable AUC. We also found that “black-box”
methods have higher generalization errors (more than 20% in
F1 score) between the validation set and test set. In contrast, the
proposed method had a significantly smaller generalization error
(less than 5% in F1 score). Notably, integrating existing domain

knowledge can not only improve the classification performance
but also further reduce the generalization error.

Fig. 4(a) shows the learned rules of the trained model initial-
ized with existing knowledge. The learnt membership functions
of the continuous / ordinal variables with high contribution are
shown in Fig. 4(b). The learned rules were compared with man-
ually curated rules and presented to clinicians for a qualitative
review. Concepts that exist in the manually curated rules such as
“low” EF, “low” pVO2, “low” DISTWLK, “high” MITRGRG
were also captured by the proposed method. These learned
rules approximated those provided by heart failure cardiologists
though in unique combinations and with additional learned
features. All of the rules from heart failure cardiologists included
areduced ejection fraction and an objective marker of significant
functional limitations, most often by cardiopulmonary exercise
testing. As seen in Fig. 4, almost all rules learned by the model
included ejection fraction as well as a second variable denoting
a patient’s functional tolerance, either by cardiopulmonary exer-
cise testing, 6-minute walk distance, or by gait speed. Notably,
while gait speed is an objective and valid measure of functional
capacity, it was not included in any of the provided rules and
thus represents learned knowledge.

VI. CONCLUSION

In this study, we proposed a novel machine learning model
that is transparent and interpretable. The proposed network was
tested on both synthetic datasets and a real-world dataset. Our
experimental results show that (1) the model can learn hidden
rules from the dataset and represent them in a way that humans
understand; and (2) initializing the network with approximate
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Fig. 4.
variables involved in the rules shown in (a).

domain knowledge can effectively improve model performance,
especially when the size of the training set is limited. Notably, the
proposed network shows significantly improved generalizability
when identifying patients with heart failure who would benefit
from advanced therapies. The proposed algorithm is promising
in building multiple other clinical (and non-clinical) decision-
making applications.

The proposed algorithm is optimized by stochastic gradient
descent and the es are reduced gradually during the training
process. As a result, it takes a longer time in model training. For
general applications where the interpretability is not critical,
we still think existing machine learning algorithms such as
XGBoost, random forest, and SVM are good choices as they can
achieve good classification accuracy and are computationally
efficient. However, for sensitive applications, e.g., medicine, the
proposed method has its unique strengths as discussed above.
Its capability in rule extraction and representation improves the
model’s transparency and transferability. It also has the potential
to help the discovery of knowledge.

For the heart failure application, limitations exist in dataset
size and patient population distribution. In the INTERMACS
dataset, half of the data samples are from patients in critical
conditions, and we don’t have information on medication intol-
erance. In this study, the heart failure application is presented as
proof of principle. The proposed method has multiple potential
uses in other important and sensitive clinical applications outside
of HF care, such as patient classification, outcome prediction,
treatment efficiency estimation, and disease grade classification.

APPENDIX A
VARIABLES IN THE HEART FAILURE DATASET

Definition of GDMT: Yes, if the patient has been on >2
categories of the appropriate evidenced-based heart failure
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Interpretation of a trained model on the heart failure dataset. (a) Rule visualization; (b) Trained membership functions for continuous/ordinal

medications: (1) ACE inhibitor or Angiotensin receptor blocker
or sacubitril/valsartan (LCZ); (2) Beta-blocker; (3) Aldosterone
antagonist. In this study, patients not on these therapies were
assumed to have contraindication or intolerance.

Definition of the ordinal EF score: 1: 20>EF >29; 2: 30>
EF>39; 3: 40>EF>49; 4. EF>50.

The distribution of continuous/ordinal variables in the heart
failure dataset is shown in Table VII.

APPENDIX B
DATA SPLIT ON THE HEART FAILURE APPLICATION

Two registries were used in the HF application. While the
INTERMACS registry has more severe heart failure cases,
the REVIVAL registry was specifically designed to evaluate
an ambulatory population. In the INTERMACS dataset, the
distribution of INTERMACS levels 1-2 (critical), 3 (stable),
4-7 (ambulatory) are 45.0%, 37.4%, 17.6%, respectively; in
REVIVAL dataset, the distribution of INTERMACS levels 1-2
(critical), 3 (stable), 4—7 (ambulatory) are 0.1%, 1.3%, 98.6%,
respectively. The REVIVAL registry was specifically designed
to evaluate an ambulatory population [25].

Thus, the REVIVAL dataset serves as a more challenging
dataset for distinguishing the positive samples from negative
samples. And it can be used to validate the possibility of using
this tool to streamline referrals from primary and secondary care
to specialized HF centers. Since the REVIVAL dataset has a
limited number of positive samples, we introduced the INTER-
MACS databases in the method development - it enriches the
severe heart failure cases and includes more patient variability.

To better train and validate the ML algorithms, we proposed
a data split strategy that only included data samples from the
REVIVAL registry in the validation set and test set (shown in
Table I).
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