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A Novel Tropical Geometry-Based Interpretable
Machine Learning Method: Pilot Application to
Delivery of Advanced Heart Failure Therapies

Heming Yao , Harm Derksen, Jessica R. Golbus, Justin Zhang, Keith D. Aaronson ,
Jonathan Gryak, and Kayvan Najarian

Abstract—A model’s interpretability is essential to many
practical applications such as clinical decision support
systems. In this article, a novel interpretable machine learn-
ing method is presented, which can model the relationship
between input variables and responses in humanly under-
standable rules. The method is built by applying tropical
geometry to fuzzy inference systems, wherein variable en-
coding functions and salient rules can be discovered by
supervised learning. Experiments using synthetic datasets
were conducted to demonstrate the performance and ca-
pacity of the proposed algorithm in classification and rule
discovery. Furthermore, we present a pilot application in
identifying heart failure patients that are eligible for ad-
vanced therapies as proof of principle. From our results on
this particular application, the proposed network achieves
the highest F1 score. The network is capable of learning
rules that can be interpreted and used by clinical providers.
In addition, existing fuzzy domain knowledge can be easily
transferred into the network and facilitate model training. In
our application, with the existing knowledge, the F1 score
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was improved by over 5%. The characteristics of the pro-
posed network make it promising in applications requiring
model reliability and justification.

Index Terms—Artificial intelligence, explainable machine
learning, interpretable machine learning.

I. INTRODUCTION

A
RTIFICIAL intelligence (AI) and machine learning (ML)

have been increasingly applied to healthcare problems [1].

Previous studies investigated AI in disease diagnosis, treatment

effectiveness prediction, and outcome prediction [2], [3], [4].

Several studies have shown that AI performs as well as or better

than humans [5]. With a lower cost, AI-based decision support

systems have the potential to improve patient management.

Despite tremendous progress in the field of AI-based clinical

decision support systems, there are significant challenges that

prevent the widespread use of these methods in sensitive appli-

cations. While traditional models such as linear models provide

accessible reasoning, they are less capable of achieving high

performance on complicated problems. In contrast, ML models

with higher complexity, can yield good metrics on experimental

datasets. However, these “black box” models lack transparency

and justification of their recommendations, making them much

less likely to be trusted in clinical applications. Moreover, many

popular ML methods, such as deep learning, utilize a large num-

ber of parameters, thus requiring large training datasets to avoid

overfitting the data. However, in many clinical applications,

collecting large annotated training datasets may be costly or even

impossible. As such, there is a clear need for an interpretable ML

model that can reliably model data using relatively small training

sets. In addition, in healthcare applications, there exist many

invaluable heuristics derived from domain knowledge expertise,

often in the form of approximate rules that are used by human

experts. In the majority of existing AI/ML models, there is no

clear mechanism to leverage such approximate knowledge for

model formation or training.

The goal of this study is to solve the aforementioned limi-

tations in the field of AI with an application as proof of prin-

ciple. An interpretable ML algorithm is proposed to produce a

transparent classification model and leverage existing domain

knowledge to improve model reliability. The proposed network
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is built upon tropical geometry and fuzzy inference systems [6],

[7], [8], [9]. Tropical geometry is a piecewise-linear version of

conventional algebraic geometry. In the proposed network, the

encoding functions and the aggregation operators in classical

fuzzy inference networks were reformulated by introducing

tropical geometry, which enables adaptive fuzzy subspace divi-

sion and rule discovery. Two synthetic datasets and one practical

application in clinical decision support as a pilot evaluation

were investigated to demonstrate the capabilities of the proposed

model.

The pilot application used in this study is to identify heart

failure (HF) patients that are eligible for advanced therapies.

HF afflicts 6.5 million Americans 20 and older, with its preva-

lence projected to increase annually [10], [11]. Treatment of

these patients remains limited by medical therapies and, for

those with advanced HF, by organ availability. The appropriate

delivery of advanced therapies, heart transplantation (HT) or

mechanical circulatory support (MCS) implantation, to patients

with end-stage HF is highly nuanced and requires expertise from

advanced HF cardiologists. Due to the high prevalence of HF, the

majority of patients are managed by primary care physicians or

cardiologists, who lack training in the management of patients

with advanced diseases, such as determining the appropriate

time to deliver HF advanced therapies. There are some existing

HF risk models by logistic regression but have limited accuracy

for individual patients due to the limitation in capturing multidi-

mensional relationships [12]. Thus, there is a need for AI-based

tools that can systematically identify patients warranting refer-

rals to an advanced HF cardiologist for consideration of HT or

MCS implantation in ambulatory settings. In this application, we

built a clinical decision-making model capable of differentiating

patients eligible for HF advanced therapies from those too well,

too sick, or otherwise ineligible for advanced therapies.

Our contributions in this study can be summarized as follows:

1) A novel interpretable ML algorithm was proposed, whose

resulting recommendations are transparent to users such

as clinicians and patients. The model can produce hu-

manly understandable rules, enabling new clinical knowl-

edge discovery. The proposed network was validated

using synthetic data with ground truth reasoning and a

dataset from patients with HF. The experimental results

show that the network has the capability to extract hid-

den rules from datasets and achieved comparable perfor-

mance with other ML models.

2) With the proposed algorithm, approximate domain

knowledge can be directly incorporated into model train-

ing to improve the model’s performance and reduce the

need for a large training set. It makes the proposed al-

gorithm particularly appropriate for clinical applications.

From our results, initializing a network with existing ap-

proximate knowledge can improve the model’s accuracy.

3) The proposed algorithm was successfully used to identify

HF patients eligible for advanced therapies, a highly

sensitive application in medicine. From our results, the

proposed algorithm achieved the highest F1 value. The

rules from the trained network were visualized and vali-

dated qualitatively by cardiologists. This pilot application

is presented as proof of principle to demonstrate the

capabilities of the proposed algorithm in solving real-

world clinical problems.

II. RELATED WORK

A. Interpretable ML Models

In this work, we define “interpretability” as being with the fol-

lowing two properties (A) the ability to explain predictions; and

(B) the ability to explain how a model works (i.e., intelligence).

The property (A) makes the model capable of providing justifi-

cation for its decision. The justification is critical for high-stakes

decision-making in sensitive applications such as medicine and

also is the key to building trust. The property (B) is an addition

to (A), which requires the mechanism by which the model works

are understandable to humans. Property (B) makes it possible to

directly integrate existing human knowledge into the model. It

is also critical for trouble-shooting when a model does not work

as expected. In addition, if the training data does not represent

the distribution of data in the deployment environment, a model

with property (B) allows the user’s manual intervention [13].

Post-hoc interpretation methods are dedicated to explaining

predictions from “black box” ML models (property A). For

example, LIME [14] is a popular method that explains the indi-

vidual predictions of any classifier by learning local surrogate

models from the target “black box” model. SHAP [15] is another

commonly used method that computes the contribution of each

feature to individual predictions for interpretability. However,

explanations from post-hoc methods may not be faithful [16]

and they have limited capacity in elucidating how to further

improve the model.

For property (B), we need to address how a model functions

internally by its structure. The simplest examples are linear

models, but these may fail whenever the relationships between

features and responses are non-linear. Decision trees are an-

other class of transparent models that can capture interactions

among different features. However, the structure of the decision

tree is highly dependent on feature selection for each split.

Generalized additive models are extended linear models that

can capture non-linear relationships between the individual or

pairwise features and responses [17]. They have been success-

fully used in practical applications [18] but are less capable of

modeling in high-dimensional feature interactions. Another type

of transparent model is a fuzzy inference model, which models

the relationship between features and responses by constructing

compositional rules [6]. In fuzzy inference models, knowledge

is represented in the format of fuzziness of antecedents, con-

sequents, and relations. As rules closely approximate human

logic in decision-making, and fuzziness often exists in practical

applications and especially in healthcare, the proposed network

in this study is designed to leverage fuzzy inference systems.

B. Fuzzy Inference System

Previous studies have shown that fuzzy inference systems

can be used for non-linear system approximation and rule iden-

tification [8], [9]. A wide spectrum of fuzzy inference systems

utilizes the Takagi-Sugeno (TS) inference model [7], whereby

a complete rough partition of the input space is generated and
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Fig. 1. An overview of the proposed network. The proposed network consists of an input layer, encoding module, rule module, and inference
module. The nomenclatures we used in the diagram are described in Section III.

an input-output relation is formed for each subspace. Adaptive

Network-based Fuzzy Inference System (ANFIS) [19] is a

hybrid of a feed-forward neural network and fuzzy inference

system with supervised learning capability that can be used to

update the input-output relation in each subspace. ANFIS has

been successfully applied in multiple applications [20], [21]. In

our previous work [22], an adaptive fuzzy inference network was

developed with a genetic algorithm to identify patients eligible

for advanced therapies. From our results, the network achieved

good classification performance and provided transparent rules.

However, the designs of the TS model and ANFIS pose

challenges in practical complex applications where the number

of input variables is relatively large as this results in exponential

growth in the number of subspaces. To handle this problem, a

flexible k-d tree [23] and quadtree [24] have been adopted for

input space partition but with challenges in assigning under-

standable terms to membership functions using these methods.

Unlike previous methods, we introduce tropical geometry into

the fuzzy inference system, which allows the reformulation

of the membership functions and aggregation operators. As a

result, the shape of the membership functions and aggrega-

tion operators do not need to be pre-defined, and they can be

optimized during the training process. In addition, instead of

using a complete partition of the input space and modeling the

relationship between every individual subspace and the output,

we proposed a “network” structure. In this “network” structure,

a fixed number of subspaces are constructed by combinations of

concepts. More importantly, the construction of those subspaces

can be updated by optimizing the connection weights. With such

a design, an end-to-end network can adaptively and iteratively

discover subspaces related to each class using gradient-based

back-propagation.

III. METHOD

A. Overview of the Proposed Work

In this study, we designed an end-to-end interpretable classi-

fier shown in Fig. 1. It takes tabular data as input and outputs

the predicted class. The proposed network has three major com-

ponents: an encoding module, a rule module, and an inference

module. Firstly, every input variable is encoded into humanly

understandable fuzzy concepts in the encoding module. Then

a number of fuzzy subspaces are constructed as combinations

of fuzzy concepts by attention and connection matrices A and

M. Given a specific data sample, the firing strength of each

rule can be calculated. Finally, with the inference matrix W and

the firing strength of each rule, the probabilities of the sample

belonging to each class are calculated in the inference module.

During the training process, parameters used for input encoding,

matrices A, M, and W are optimized by gradient-based back-

propagation. After the network is trained, those parameters can

be analyzed to visualize the learned fuzzy subspaces. The fuzzy

subspaces mimic human logic and can be presented as “rules”.

Those rules can be used to justify the model’s prediction.

As the proposed network mimics human logic, not only can

rules be extracted from the trained model, but also existing

knowledge can be integrated/transferred into the model. We

performed experiments to investigate whether initializing the

network with existing domain knowledge improves the model’s

performance.

B. Encoding Module

The input variables can be ordinal, continuous, or categorical.

Ordinal and continuous variables are encoded into multiple

fuzzy sets. Unlike with crisp sets, for which membership is

binary, for fuzzy sets, a membership value in [0,1] will be

assigned to a variable’s observed value for a given fuzzy set,

indicating the confidence of that value belonging to the set.

Fuzzy set membership approximates the fuzzy concept used by

human experts during decision-making. For example, given the

heart rate of a patient, the clinician may describe it as a “low”

/ “medium” / “high” heart rate. “Low”, “medium”, and “high”

are the fuzzy concepts used in clinical problems. In this study,

we encoded ordinal/continuous variables into these three con-

cepts. With an ordinal/continuous variable xi, the membership
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functions l(xi),m(xi), h(xi) for “low”, “medium”, and “high”

concepts are defined as

fǫ1(xi) = ǫ1 log(1 + exp(xi/ǫ1)), (1a)

l(xi) = fǫ1

(
ai,2 − xi

ai,2 − ai,1

)
− fǫ1

(
ai,1 − xi

ai,2 − ai,1

)
, (1b)

m(xi) = fǫ1

(
xi − ai,1
ai,2 − ai,1

)
− fǫ1

(
xi − ai,2
ai,2 − ai,1

)

− fǫ1

(
ai,3 − xi

ai,4 − ai,3

)
+ fǫ1

(
ai,4 − xi

ai,4 − ai,3

)
− 1,

(1c)

h(xi) = fǫ1

(
xi − ai,3
ai,4 − ai,3

)
− fǫ1

(
xi − ai,4
ai,4 − ai,3

)
, (1d)

where ai,1 < ai,2 < ai,3 < ai,4 and are trainable. With 0 <
ǫ1 < 1, the membership functions are differentiable, with their

smoothness modulated by ǫ1. As limǫ1→0 fǫ1(x) = max(0, x),
when ǫ1 approaches 0, the membership functions in (1) are close

to trapezoidal membership functions or triangular membership

functions (if ai,2 is close to ai,3).

Using the defined membership functions, xi will be

encoded as membership values in three fuzzy concepts:

l(xi),m(xi), h(xi). In this study, we used three concepts -

“low”, “medium”, and “high” - as they are commonly used in

healthcare applications. The above formulations can be easily

extended to a higher number of concepts.

Categorical variables are represented via a one-hot encoding

directly and no fuzzy concepts are used. We denote Lj as the

number of levels of a categorical variable xj . In this study, xj

is encoded into l1(xj), l2(xj), . . . , lLj
(xj), where only one of

them has a value of 1 and all others are 0.

C. Rule Module

The rule module consists of two layers in the proposed archi-

tecture. In this module, the firing strength of a number of rules

(fuzzy subspaces) are calculated for the classification task and

denoted as r1, . . . , rK in Fig. 1, where K is the total number of

rules.

1) The First Layer: The first layer of the rule module selects

the most relevant concept from each variable with respect to

each rule using an attention matrix A. A is the partitioned

matrix formed by concatenating submatrices A1,A2, . . . ,AH ,

where Ah is the attention submatrix for the input variable xh

and H = I + J is the total number of input variables, with I
and J the total number of ordinal/continuous and categorical

variables, respectively. For an ordinal/continuous variablexi, the

submatrix Ai with entries Ai,m,n has dimension 3×K, where

3 is the number of fuzzy concepts used in this study and K is the

number of rules in the network. For a categorical variable xj ,

the submatrix Aj with entries Aj,m,n has dimension Lj ×K.

Thus, the attention matrixA has dimension (3I +
∑

j Lj)×K.

For an ordinal/continuous variable xi, the entry Ai,1,k in the

attention matrix represents the contribution of xi being “low” to

rulek (and similarly,Ai,2,k forxi being “medium” andAi,3,k for

xi being “high”). Entries in the attention matrix are all trainable

and constrained to [0, 1] by the hyperbolic tangent activation

function. A higher value in A indicates a higher contribution.

As shown in Fig. 1, for an input variable xi, the corresponding

output from the first layer of the rule module is x̃i, a vector of

length K. x̃i,k, the kth element of x̃i, is the firing strength of xi

involved in kth rule.

For an ordinal/continuous variable xi and categorical variable

xj , x̃i,k, and x̃j,k are calculated as:

x̃i,k = Ai,1,kl(xi) +Ai,2,km(xi) +Ai,3,kh(xi), (2a)

x̃j,k =

Lj∑

d=1

Aj,d,kld(xj) (2b)

respectively.

2) The Second Layer: The second layer of the rule module

calculates rule firing strength by a connection matrix M of

dimension H ×K. The kth rule is constructed as a combination

of x̃1,k, . . . , x̃H,k from the previous layer. An entry Mi,k in

the connection matrix M denotes the contribution of xi to the

kth rule. Entries in the connection matrix are all trainable and

constrained to [0, 1] the hyperbolic tangent activation function,

and a higher value indicates a higher contribution. In this layer,

we define a parametrized T-norm to calculate rk, the firing

strength of the kth rule.

With 0 < ǫ2 < 1, let gǫ2 : [0,∞) → [0,∞) and its inverse

function g−1
ǫ2

be defined as

gǫ2(x) =
ǫ2

1− ǫ2

(
1− x

ǫ2−1

ǫ2

)
, (3a)

g−1
ǫ2

(z) =

(
1−

1− ǫ2
ǫ2

z

) ǫ2
ǫ2−1

. (3b)

The parametrized T-norm on two inputs is defined as

Tǫ2(x, y) = g−1
ǫ2

(gǫ2(x) + gǫ2(y))

=
(
x

ǫ2−1

ǫ2 + y
ǫ2−1

ǫ2 − 1
) ǫ2

ǫ2−1

,
(4)

which has the following asymptotic behavior:

lim
ǫ2→1

Tǫ2(x, y) = xy, (5a)

lim
ǫ2→0

Tǫ2(x, y) = min(x, y), (5b)

which means that the defined T-norm can be modulated between

product and min by ǫ2.

Using this definition of the T-norm, rk is calculated by apply-

ing the T-norm to multiple inputs:

rk = Tǫ2

(
x̃
M1,k

1,k , x̃
M2,k

2,k , . . . , x̃
MH,k

H,k

)

= g−1
ǫ2

(
H∑

i=1

gǫ2(x̃
Mi,k

i,k )

)

=

(
H∑

i=1

x̃
Mi,k ·

ǫ2−1

ǫ2

i,k −H + 1

) ǫ2
ǫ2−1

.

(6)
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In (6), entries in the connection matrix M are used as expo-

nents. Taking the example of x̃
M1,k

1,k , a lower M1,k (closer to 0)

means x̃
M1,k

1,k is closer to 1, consequently it contributes less to rk
with the proposed T-norm. Thus, a lower value in M indicates

a lower contribution to the rule firing strength, and vice versa.

With the rule module, the number of rule sub-spaces that can

be encoded in the network is roughly P (F )N , where N is the

number of variables, F is the number of fuzzy concepts (in this

study, F = 3), and P (·) denotes the number of permutations.

The high complexity of the proposed method makes it capable

of modeling complicated classification problems.

D. Inference Module

Let C denote the number of classes in the classification task.

The inference layer has C nodes, one for each class, that are

fully connected to the rule layer nodes. The firing strength of

each node oc is calculated using the rule firing strengths with

an inference matrix W of dimension K × C. An entry Wj,c

denotes the contribution of the kth rule to the cth class. Entries

in the inference matrix are all trainable and positive. A higher

value indicates a higher contribution. In this layer, we define a

parametrized T-conorm to calculate oc.

The parametrized T-conorm on two inputs is written as

Qǫ3(x, y) =
(
x

1

ǫ3 + y
1

ǫ3

)ǫ3
, (7)

where 0 < ǫ3 < 1. This T-conorm has the following asymptotic

behavior:

lim
ǫ3→1

Qǫ3(x, y) = x+ y, (8a)

lim
ǫ3→0

Qǫ3(x, y) = max(x, y), (8b)

which means that the defined T-conorm can be modulated be-

tween addition and max by ǫ3.

Using this definition of the T-conorm, oc is calculated by

applying the T-conorm to multiple inputs:

oc = Qǫ3 (W1,cr1,W2,cr2, . . . ,WK,crK)

=

(
K∑

k=1

(Wk,crk)
1

ǫ3

)ǫ3

.
(9)

After the calculation of o1, o2, . . . , oC , a softmax activation

function is applied to generate probabilities p1, p2, . . . , pC of

being in each class, which are all in [0, 1] with
∑C

c=1 pc = 1.

As
∑C

c=1 pc = 1, we can set the number of “valid” nodes in

the inference module to C − 1 to avoid ambiguity in rule repre-

sentation. For example, when performing binary classification

W:,0 can be set to 0 so that the model will only learn subspaces

related to the positive class.

E. Network Interpretation

The proposed network can both extract rules and inject rules

in a way that humans can understand. The entries in the attention

matrix A and connection matrix M represent the contribution

of individual concepts and individual variables to each rule.

The entries in the inference matrix W gives the contribution

of individual rules to each class.

WithA andM, a contribution matrixS can be constructed that

expresses the contribution of individual concepts to each rule in

the model. The matrixS is a partition matrix formed by concate-

nating submatrices S1,S2, . . . ,SH . For an ordinal/continuous

variable xi, the corresponding submatrix Si has dimension

3×K and for a categorical variable xj , Sj has dimension

Lj ×K. The entries Si,d,k of Si and Sj,d,k of Sj are calculated

as

Si,d,k = Ai,d,k ×Mi,k, d ∈ {1, 2, 3}, (10a)

Sj,d,k = Aj,d,k ×Mj,k, d ∈ {1, . . . , Lj}, (10b)

respectively, where k ∈ {1, . . . ,K}. The entry Si,d,k is the

contribution of the dth concept of xi to the kth rule. S:,:,k

encodes the construction of the kth rule, while Wk,: captures

the relationship between classes and the kth rule.

The following is a toy example demonstrating how rules are

represented in the network. Given a dataset with four contin-

uous input variable x1, x2, x3, x4 and a binary response (nega-

tive/positive),A,M,W are trained andS can be calculated. Let

us assume that in the contribution matrixS,S1,1,1, S2,3,1, S2,2,2,

and S3,1,2 are close to 1, with all other entries close to 0. In the

inference matrix W, W1,2 and W2,2 are close to 1 while W1,1

and W2,1 are close to 0. From the given S and W, we can

summarize two rules from the trained network as: (1) IF x1 is

low and x2 is high, THEN the sample is positive; (2) IF x2 is

medium and x3 is low, THEN the sample is positive.

The above two rules are represented in (S:,:,1,W1,:) and

(S:,:,2,W2,:), respectively. The definitions of “low”, “medium”

and “high” concepts can be extracted from the parameters in the

encoding module. The extracted rules mimic human logic. They

can be used to justify the network’s decisions and contribute to

knowledge discovery.

In practice, the trained model may have some redundant rules,

which means the representation of several rules are identical.

For example, both Rule 1 and Rule 2 show that when x1 is

low, x2 is high, then the sample is positive. From the current

method formulation, this scenario can exist without harming

the classifier’s performance. However, in practice, a model that

provides a small set of humanly understandable rules is favorable

as it can be more easily used to provide guidance and reasoning

to decision-makers. In this study, the correlations between each

pair of rules are calculated. The correlation will be minimized

during the training process. In addition, rules with high correla-

tion and concepts with smaller contribution values are removed

for rule visualization. The thresholds are chosen empirically.

F. Model Training and Network Initialization

The proposed network is trained by back-propagation with

an Adam optimizer. A regular cross-entropy loss losscs is

calculated to train the classification model. Additionally, an

ℓ1 norm-based regularization term lossℓ1 is added to the loss

function to favor rules with a smaller number of concepts,

which are more feasible to use in practice. In addition, the

correlation among encoded rules is calculated as a loss term
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losscorr to avoid extracting redundant rules. The loss function

can be written as:

losstotal = lossce + λ1lossℓ1 + λ2losscorr, (11a)

lossl1 = ‖vec(A)‖1 + ‖vec(M)‖1 , (11b)

losscorr =

H−1∑

i=1

H∑

j=i+1

vec(S:,:,i)vec(S:,:,j) (11c)

where λ1 and λ2 control the magnitude of the ℓ1 norm-based

regularization term and correlation based regularization term,

respectively. vec(·) denotes the vectorization of a matrix.

In this study, for simplicity, ǫ1, ǫ2, ǫ3 are constrained to be

equal. They are initialized as 0.99 at the beginning of training

and are gradually reduced with the number of training steps. The

scheduling of the ǫ values can be written as

ǫ = max(ǫmin, ǫ · γ
training_steps), (12)

where γ is the decay rate that can be tuned as a hyperparameter.

From our preliminary analysis, γ = 0.99 usually is a good

choice. ǫmin is another hyperparameter, whose optimal value

varies with different applications. The hyperparameter tuning

strategy will be discussed in the next section. Our experiments

show that starting with ǫ = 0.99 and reducing ǫ improves model

optimization (as discussed in Section V-A).

Before model training, trainable parameters will be randomly

initialized. To improve performance, especially when the size

of the training dataset is small, practical rules from domain

knowledge can be used to initialize the network. Revisiting the

toy example in Section III-E, if the extracted rules were instead

previously known within the application domain, the matrices

A,M, and W in the network could then be initialized as:
� A: A1,1,1, A2,3,1, A2,2,2, A3,1,2 have a higher value and

other entries in A:,:,1 and A:,:,2 have a lower value;
� M: M1,1,M2,1,M2,2,M3,2 have a higher value and other

entries in M:,1 and M:,2 have a lower value;
� W: W1,2,W2,2 have a high value and W1,1,W2,1 have a

low value;
� Other entries in A, M, and W are randomly initialized.

IV. DATASETS AND EXPERIMENTAL SETTINGS

A. Synthetic Datasets

Two synthetic datasets were built by simulating features with

fixed distributions and rules to generate responses. The ground

truth rules from the synthetic datasets can be used to assess

a method’s capability in extracting humanly understandable

knowledge from the data and modeling the relationship be-

tween inputs and responses. In addition, with ground truth rules,

synthetic datasets can be used to assess whether the proposed

method can benefit from existing knowledge.

For each dataset, a 10-fold cross-validation was used for per-

formance evaluation. In each iteration, the dataset was randomly

split into the training set (64%), validation set (16%), and test

set (20%).

1) Synthetic Dataset 1: Eight input variables were simu-

lated as: x1 ∼ N (0, 2), x2 ∼ N (5, 3), x3 ∼ N (−1, 5), x4 ∼

N (1, 2),x5 ∼ N (−2, 1),x6 ∼ Bernoulli(0.5),x7 ∼ N (0, 1),
x8 ∼ N (0, 1). If any of the following rules apply to one obser-

vation, then this observation is positive and otherwise negative:
� Rule A: x2 < 3.8 and x3 > −2 and x6 = 1;
� Rule B: x2 > 6.3 and x3 > −2 and x6 = 1;
� Rule C: x1 < 1 and x4 > 2 and x6 = 0;
� Rule D: x3 > 0 and x5 > −1 and x6 = 0;
� Rule E: x1 < 1 and x5 > −1.5 and x6 = 0.

Additionally, random noise sampled from N (0, 0.01) are

added to input variables. From the above rules we can readily

observe that the response of one observation doesn’t rely on x7

and x8. x7 and x8 are used as irrelevant variables to assess the

model’s resilience to redundant features.

2) Synthetic Dataset 2: Nine input variables were simu-

lated as: x1 ∼ N (0, 2), x2 ∼ N (5, 3), x3 ∼ N (−1, 5), x4 ∼
N (1, 2), x5 ∼ N (−2, 1), x6 ∼ N (−1, 4.4), x7 ∼ N (0, 1.2),
x8 ∼ N (0, 1), x9 ∼ N (0, 1). The sample is positive if (x1 +
0.5x2 + x3)

2/(1 + ex6 + 2x7) < 1.

In this dataset, a highly non-linear function is used to assign

the response. Though such a relationship between input variables

and responses rarely exists for clinical applications, this dataset

is used to determine if the proposed network can still achieve

good performance by approximating the complicated relation as

simple rules.

B. Heart Failure Dataset

A HF dataset is created to train a classification model that

identifies patients eligible for advanced therapies. Two cohorts

were used in this study.

1) REVIVAL Cohort: The REVIVAL (Registry Evaluation

of Vital Information for VADs in Ambulatory Life) registry

contains information on 400 patients with advanced systolic HF

from 21 US medical centers [25]. As part of the registry, patients

were evaluated at up to 6 pre-specified time points over a 2-year

period and underwent relevant examinations. At each time point,

investigators were asked to record whether the participant had

been evaluated for HT or LVAD and the result of that evaluation.

For purposes of this analysis, study participants were labeled

at each time point as appropriate (positive) or not appropriate

(negative) for advanced therapies.

2) INTERMACS Cohort: The INTERMACS (Interagency

Registry for Mechanically Assisted Circulatory Support) reg-

istry is a North American registry of adults who received an

FDA approved durable MCS device for the management of

advanced HF [26], [27], [28]. The registry includes clinical

data on all adults ≥ 19 years of age who received a device at

one of 170 active INTERMACS centers. The registry includes

information on patient demographics, clinical data before and at

the time of MCS implantation, and clinical outcomes up to one

year post-MCS implantation or until HT. For this analysis, data

was extracted at the time of LVAD implantation and patients

classified as “appropriate for advanced therapies.”

3) Combined Dataset and Variable Selection: Patients from

the two cohorts were combined to form a larger dataset. HF clini-

cians selected 22 variables used in clinical practice which were in

both datasets and which have strong associations with advanced
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TABLE I
DATA SPLIT ON THE HEART FAILURE DATASET†. VALUES ARE PRESENTED AS

AVERAGE NUMBER OF SAMPLES (AVERAGE NUMBER OF PATIENTS)

HF. These include heart rate, systolic blood pressure (SYSBP),

sodium concentration, albumin concentration, uric acid concen-

tration, total distance walked in 6 minutes (DISTWLK), gait

speed during a 15 feet walk test, left ventricular dimension in

diastole (LVDEM), left ventricular ejection fraction (EF), mitral

regurgitation (MITRGRG), lymphocyte percentage (LYMPH),

total cholesterol (TCH), hemoglobin (HGB), age, sex, comor-

bidity index, glomerular filtration rate (GFR), pulse pressure,

treatment with cardiac resynchronization therapy (AR), need

for temporary MCS device, treatment with guideline directed

medical therapy (GDMT) for heart failure, and peak oxygen

consumption during a maximal cardiopulmonary exercise test

(pVO2). Appendix A provides more details of the clinical vari-

ables.

4) Clinical Rules: To facilitate model training, we assembled

a panel of five HF and transplant cardiologists, all from different

institutions. Two cardiologists were first asked to generate a set

of clinical rules using the aforementioned variables. These were

then collated and distributed to three additional cardiologists for

review and additional rules were added as indicated, creating a

final set of consensus rules. For this demonstration study, rules

were simplified as follows:
� Rule A: EF is low, and pVO2 is low;
� Rule B: EF is low, and DISTWLK is low;
� Rule C: Age is high, EF is low, and SYSBP is low;
� Rule D: EF is low, and MITRGRG is high;
� Rule E: EF is low, and the GDMT is low;

C. Experimental Settings

For synthetic datasets, 10-fold cross-validation was used to

evaluate model performance. For the heart failure dataset, to

better evaluate the model’s generalizability on external dataset,

the training set includes all samples from the INTERMACS

registry and 80% of the negative samples from the REVIVAL

registry. The remaining negative samples and all positive sam-

ples from the REVIVAL registry were equally and randomly

split into the validation and test sets. The proposed data split

was randomly repeated 10 times to evaluate the model. For one

repetition, samples from the same patient will only exist in one

set. The average number of patients and samples in subsets are

presented in Table I. The rationale of the proposed data split

strategy on the heart failure dataset is presented in Appendix B.

TABLE II
PERFORMANCE OF THE PROPOSED MODEL ON SYNTHETIC DATASET 1 WITH

N = 400 USING 10-FOLD CROSS-VALIDATION

A random search algorithm was applied using the training

set and validation set for hyperparameter tuning, including the

number of rules K, learning rate, batch size, λ1, λ2, and ǫmin.

The model trained with the optimal combinations of hyperpa-

rameters was then evaluated on the test set. The performance

of the proposed network will be presented as the average and

standard deviation (std) from 10 iterations.

For comparison, several popular “black box” machine learn-

ing algorithms were chosen, including random forest, SVM, and

XGBoost. In addition, several interpretable models were chosen

including logistic regression, fuzzy inference classifier [29],

XGBoost-based decision tree [30], GAMI-Net [31], and Ex-

plainable Boosting Machine (EBM) [32]. Those models have

the same hyper-parameter tuning process and model evaluation

as the proposed algorithm. Class weights are used when the

dataset is unbalanced.

Accuracy, recall, precision, F1, and area under the ROC curve

(AUC) were calculated to evaluate the performance of the trained

classifiers.

V. RESULTS AND DISCUSSION

A. Synthetic Dataset 1 (N = 400)

Let N denote the number of observations in a given dataset.

Several experiments were performed with differently sized sim-

ulated datasets. In this section, we discuss the performance of

the proposed method on synthetic dataset 1 when N = 400.

The first experiment starts with N = 400. The percentage

of positive samples is 34.25%, and the percentages of samples

with Rule A, Rule B, Rule C, Rule D, Rule E are 8.25%, 7.50%,

9.00%, 2.00%, and 10.75%, respectively.

Table II depicts the performance of the proposed algorithm

with different ǫmin on the test sets from 10-fold cross-validation.

We can observe that model training benefited from decreasing

ǫmin from 0.8 to 0.2, but the performance of the trained model

decreased when ǫmin was decreased to 0.1. We also evaluated

the model with a fixed ǫ, rather than gradually decreasing it

from 0.99. While fixing ǫ at 0.8 leads to comparable performance

with the model using ǫmin = 0.8, the performance of the models
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TABLE III
PERFORMANCE OF ML METHODS ON SYNTHETIC DATASET 1 WITH N = 400 USING 10-FOLD CROSS-VALIDATION

Fig. 2. Interpretation of a trained model on synthetic dataset 1 with N = 400. (a) Visualization of four rules contributing to the positive class, which
are summarized from the trained model. Rules are visualized in individual columns with each row corresponding to concept. For example, “x1_low”
means “the value of x1 is low”. The contribution of individual concepts to individual rules are shown in color. (b) Membership functions for “low”,
“medium”, and “high” concepts of x1, x2, x3, and x4 in the encoding module, respectively.

with a smaller fixed ǫ value decreased significantly. Our results

show the effectiveness of the algorithm that gradually decreases

ǫ during the training. Using this dataset, the proposed network

with a reasonable degree of piecewise linearity has a better

performance.

Table III describes the performance of the proposed method

where ǫmin was tuned on the validation set in each iteration.

The performance of the proposed network is compared with

that of other machine learning algorithms. From Table III, we

can see that the proposed network achieved significantly better

performance than other interpretable models and had compara-

ble performance to the XGBoost model, which is the best among

the other established machine learning algorithms.

To examine the proposed network’s ability to learn rules from

the dataset, we summarized rules contributing to the positive

class from a trained network. Those rules are visualized in

Fig. 2(a). Comparing the learned rules with rules in Section IV-

A1, we can observe that Rule 1 corresponds to Rule C; Rule 2

corresponds to a union of Rule A and Rule B; Rule 3 corresponds

to Rule E; and Rule 4 is closest to Rule D. Membership functions

of the variables involved in Rule 1 and Rule 2 are visualized

in Fig. 2(b) and we can observe a great match. For example,

the membership value of x2 to the “low” concept is high when

x2 smaller than 3.7 and the membership value of x2 to the

“high” concept is high when x2 is larger than 6.2. Simple

thresholds were used to construct synthetic dataset 1, and for

this reason, the fuzzy regions in the membership functions are

very narrow. From the interpretation in Fig. 2, the trained model

learned the majority of rules used to construct the dataset. Rule

4 is close to Rule D but with two additional concepts that are

misidentified as related to the class. This may be due to only

2.00% of samples in the dataset being consistent with Rule D,

making it more challenging to learn from the data. In addition,

from Fig. 2(a), concepts from x7 and x8 are not shown because

their significance to learned rules is too low. This demonstrates

that the proposed network can identify and exclude irrelevant

variables.

B. Synthetic Dataset 1 (N = 50)

In the second experiment, we used synthetic dataset 1 with

N = 50. The percentage of positive samples is 42.00%, and the

percentages of samples with Rules A-E are 14.00%, 14.00%,

4.00%, 4.00%, and 12.00%, respectively. In this experiment,

we investigated the performance of the proposed network with

a small training set and if initiating the network with existing

knowledge would enable the model to learn more accurate rules.

Limited training data is a common issue in medical applications,

which may result from the small patient population or tedious

/ expensive annotation collection. Considering that domain
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TABLE IV
PERFORMANCE OF ML METHODS ON THE SYNTHETIC DATASET 1 WITH N = 50 USING 10-FOLD CROSS-VALIDATION

knowledge usually exists in the medical field, this experiment is

to demonstrate that the proposed method can do well when the

training set is small.

Table IV has three blocks, presenting the performance of

the proposed networks, established interpretable ML methods,

and established black-box ML methods on synthetic dataset 1

(N = 50), respectively. The first block shows the performance of

the proposed network without and with existing knowledge. The

performance of the proposed network with random initialization

is shown in the first row of the first block, followed by the perfor-

mance of the proposed network initialized with existing knowl-

edge (rules). Rules A through E are fully correct as described in

Section IV-A1 while Rules F through H are partially correct. In

practical applications, it is very rare that the ground truth rule is

available. As such, in this experiment, we only initializedA,M,

and W, while the parameters in the membership functions were

randomly initialized. In addition, to investigate whether inexact

domain knowledge can facilitate model training, we proposed

the following three rules and assumed they lead to a positive

class:
� Rule F: x2 is “low” and x6 = 1;
� Rule G: x1 is “low” and x5 is “low” and x6 = 0;
� Rule H: x1 is “low” and x5 is “high” and x6 = 0 and x7

is “high”;

Rule F, G, and H are only partially correct. Compared with

ground truth Rule A, the “high” concept of x3 is missing in Rule

F. In Rule G, x5 should be “high” rather than “low” as in Rule

E. In Rule H, “high” concept of x7 is actually irrelevant to the

class.

From Table IV, we first observe that because of the reduction

in the size of the training set, performance decreased. Still,

XGBoost achieves the best performance, and the proposed net-

work with random initialization has a comparable performance

to XGBoost. Second, we observe that the improvement can

be achieved when the network was initialized with Rules A

through E. Third, the model’s performance increased when it

was initialized with partially correct rules. This indicates that

existing domain knowledge can help with model training even

when the rules are vague and/or inexact.

Fig. 3. Interpretation of a trained model on synthetic dataset 2 with
N = 400.

C. Synthetic Dataset 2 (N = 400)

The responses in synthetic dataset 1 were constructed by

rules, where a rule-based or tree-based machine learning

algorithm may be more favorable. Therefore, responses in

synthetic dataset 2 were built from a non-linear function to

further explore the capacity of the proposed network in function

approximation. A performance comparison of different ML

models is presented in Table V. From the table, we can see

that SVM achieved the best performance. The performance of

the proposed network is lower than SVM but comparable with

other machine learning algorithms.

Rules extracted from the trained proposed network are pre-

sented in Fig. 3. We see that these rules capture meaningful

information. Observations in this dataset were annotated as

positive if (x1 + 0.5x2 + x3)
2/(1 + ex6 + 2x7) < 1. Rule 1

shows that “high” levels of x6 and x7 lead to the positive class.

In this dataset, x1, x2, and x3 were simulated as: x1 ∼ N (0, 2),
x2 ∼ N (5, 3), and x3 ∼ N (−1, 5). As such, a “high” x1 and
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TABLE V
PERFORMANCE OF ML METHODS ON THE SYNTHETIC DATASET 2 WITH N = 400 USING 10-FOLD CROSS-VALIDATION

TABLE VI
PERFORMANCE OF ML METHODS ON THE TEST SET OF THE HEART FAILURE DATASET FROM 10 REPETITIONS

“low” x3 can lead (x1 + 0.5x2 + x3)
2 to a small value. A “low”

or “medium” x1 and “medium” x3 is another combination that

can lead (x1 + 0.5x2 + x3)
2 to a small value. As expected,

Rules 4 and 5 unite concepts from x1 and x3. From this analysis,

we observe that the proposed network can learn simple rules in

a format that humans can understand from a dataset that was

constructed with a complicated non-linear function.

D. Heart Failure Dataset

We applied the proposed network to identify patients that are

eligible for advanced therapies. Table VI presents the perfor-

mance of the proposed method and other techniques. In this

particular application, we want to have a model that is less

likely to miss patients that are eligible for advanced therapies, yet

provides a reasonably high probability that referred patients will

subsequently be deemed appropriate for an advanced therapy. F1

score is the best evaluation metric because the balance between

recall and precision is important, and the dataset is unbalanced.

From Table VI, initializing the network with existing knowl-

edge can greatly improve the model’s performance. The pro-

posed method had the highest AUC and F1 score compared

with other interpretable learning approaches. Compared with

“black-box” methods, the proposed method without existing

knowledge achieved a comparable F1 score and AUC. With

existing knowledge, the proposed method had the highest F1

score and a comparable AUC. We also found that “black-box”

methods have higher generalization errors (more than 20% in

F1 score) between the validation set and test set. In contrast, the

proposed method had a significantly smaller generalization error

(less than 5% in F1 score). Notably, integrating existing domain

knowledge can not only improve the classification performance

but also further reduce the generalization error.

Fig. 4(a) shows the learned rules of the trained model initial-

ized with existing knowledge. The learnt membership functions

of the continuous / ordinal variables with high contribution are

shown in Fig. 4(b). The learned rules were compared with man-

ually curated rules and presented to clinicians for a qualitative

review. Concepts that exist in the manually curated rules such as

“low” EF, “low” pVO2, “low” DISTWLK, “high” MITRGRG

were also captured by the proposed method. These learned

rules approximated those provided by heart failure cardiologists

though in unique combinations and with additional learned

features. All of the rules from heart failure cardiologists included

a reduced ejection fraction and an objective marker of significant

functional limitations, most often by cardiopulmonary exercise

testing. As seen in Fig. 4, almost all rules learned by the model

included ejection fraction as well as a second variable denoting

a patient’s functional tolerance, either by cardiopulmonary exer-

cise testing, 6-minute walk distance, or by gait speed. Notably,

while gait speed is an objective and valid measure of functional

capacity, it was not included in any of the provided rules and

thus represents learned knowledge.

VI. CONCLUSION

In this study, we proposed a novel machine learning model

that is transparent and interpretable. The proposed network was

tested on both synthetic datasets and a real-world dataset. Our

experimental results show that (1) the model can learn hidden

rules from the dataset and represent them in a way that humans

understand; and (2) initializing the network with approximate
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Fig. 4. Interpretation of a trained model on the heart failure dataset. (a) Rule visualization; (b) Trained membership functions for continuous/ordinal
variables involved in the rules shown in (a).

domain knowledge can effectively improve model performance,

especially when the size of the training set is limited. Notably, the

proposed network shows significantly improved generalizability

when identifying patients with heart failure who would benefit

from advanced therapies. The proposed algorithm is promising

in building multiple other clinical (and non-clinical) decision-

making applications.

The proposed algorithm is optimized by stochastic gradient

descent and the ǫs are reduced gradually during the training

process. As a result, it takes a longer time in model training. For

general applications where the interpretability is not critical,

we still think existing machine learning algorithms such as

XGBoost, random forest, and SVM are good choices as they can

achieve good classification accuracy and are computationally

efficient. However, for sensitive applications, e.g., medicine, the

proposed method has its unique strengths as discussed above.

Its capability in rule extraction and representation improves the

model’s transparency and transferability. It also has the potential

to help the discovery of knowledge.

For the heart failure application, limitations exist in dataset

size and patient population distribution. In the INTERMACS

dataset, half of the data samples are from patients in critical

conditions, and we don’t have information on medication intol-

erance. In this study, the heart failure application is presented as

proof of principle. The proposed method has multiple potential

uses in other important and sensitive clinical applications outside

of HF care, such as patient classification, outcome prediction,

treatment efficiency estimation, and disease grade classification.

APPENDIX A
VARIABLES IN THE HEART FAILURE DATASET

Definition of GDMT: Yes, if the patient has been on >2

categories of the appropriate evidenced-based heart failure

medications: (1) ACE inhibitor or Angiotensin receptor blocker

or sacubitril/valsartan (LCZ); (2) Beta-blocker; (3) Aldosterone

antagonist. In this study, patients not on these therapies were

assumed to have contraindication or intolerance.

Definition of the ordinal EF score: 1: 20≥EF ≥29; 2: 30≥
EF≥39; 3: 40≥EF≥49; 4: EF≥50.

The distribution of continuous/ordinal variables in the heart

failure dataset is shown in Table VII.

APPENDIX B
DATA SPLIT ON THE HEART FAILURE APPLICATION

Two registries were used in the HF application. While the

INTERMACS registry has more severe heart failure cases,

the REVIVAL registry was specifically designed to evaluate

an ambulatory population. In the INTERMACS dataset, the

distribution of INTERMACS levels 1–2 (critical), 3 (stable),

4–7 (ambulatory) are 45.0%, 37.4%, 17.6%, respectively; in

REVIVAL dataset, the distribution of INTERMACS levels 1–2

(critical), 3 (stable), 4–7 (ambulatory) are 0.1%, 1.3%, 98.6%,

respectively. The REVIVAL registry was specifically designed

to evaluate an ambulatory population [25].

Thus, the REVIVAL dataset serves as a more challenging

dataset for distinguishing the positive samples from negative

samples. And it can be used to validate the possibility of using

this tool to streamline referrals from primary and secondary care

to specialized HF centers. Since the REVIVAL dataset has a

limited number of positive samples, we introduced the INTER-

MACS databases in the method development - it enriches the

severe heart failure cases and includes more patient variability.

To better train and validate the ML algorithms, we proposed

a data split strategy that only included data samples from the

REVIVAL registry in the validation set and test set (shown in

Table I).
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TABLE VII
DISTRIBUTION OF THE CONTINUOUS/ORDINAL VARIABLES
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