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BACKGROUND: Systems level barriers to heart failure (HF) care limit access to HF advanced therapies

(heart transplantation, left ventricular assist devices). There is a need for automated systems that can

help clinicians ensure patients with HF are evaluated for HF advanced therapies at the appropriate time

to optimize outcomes.

METHODS: We performed a retrospective study using the REVIVAL (Registry Evaluation of Vital

Information for VADs in Ambulatory Life) and INTERMACS (Interagency Registry for Mechanically

Assisted Circulatory Support) registries. We developed a novel machine learning model based on prin-

ciples of tropical geometry and fuzzy logic that can accommodate clinician knowledge and provide rec-

ommendations regarding need for advanced therapies evaluations that are accessible to end-users.

RESULTS: The model was trained and validated using data from 4,694 HF patients. When initiated with

clinical knowledge from HF and transplant cardiologists, the model achieved an F1 score of 43.8%,

recall of 51.1%, and precision of 46.9%. The model achieved comparable performance compared with

other commonly used machine learning models. Importantly, our model was 1 of only 3 models provid-

ing transparent and parsimonious clinical rules, significantly outperforming the other 2 models. Eleven

clinical rules were extracted from the model which can be leveraged in clinical practice.

CONCLUSIONS: A machine learning model capable of accepting clinical knowledge and making

accessible recommendations was trained to identify patients with advanced HF. While this model
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was developed for HF care, the methodology has multiple potential uses in other important clinical

applications.
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Heart failure (HF) is expected to affect greater than 8-

million US adults by 2030 with high disease-associated

morbidity and mortality.1-4 Heart transplantation and dura-

ble mechanical circulatory support (MCS) devices such as

left ventricular assist devices (LVADs), also called HF

advanced therapies, offer selected New York Heart Associ-

ation (NYHA) class IV patients the best opportunity for

long-term survival with improved quality of life.5,6 While a

supply-demand mismatch does not exist for durable LVAD

therapy, for heart transplantation there remains a significant

mismatch due to limited donor heart availability. Further-

more, there is a risk of mortal and highly morbid complica-

tions with both heart transplantation and LVAD

implantation 6-8 Premature heart transplantation and LVAD

implantation thus exposes patients to potentially unneces-

sary adverse outcomes though delayed delivery places

patients at risk for clinical deterioration and poor out-

comes.9 There is thus a tension between premature and

delayed delivery of HF advanced therapies.

In the current healthcare environment, the timing of

advanced therapies is largely determined by HF and trans-

plant cardiologists, who typically rely on both evidence-

based practice and on clinical heuristics to determine the

optimal time to deliver such therapies.10-12 Heuristics, how-

ever, are error-prone and the available risk models have

limited effectiveness for individual patients.13 Furthermore,

given the high prevalence of HF in the population, the

majority of patients are managed by primary care clinicians

or by general cardiologists who lack training in heart trans-

plantation and MCS. Under recognition of illness severity

by such clinicians may lead to delayed referral to an HF

and transplant cardiologist over which time patients may

develop complications precluding advanced therapies.

While a number of HF risk models are available, these have

limited accuracy for individual patients.13-15 This arises, in

part, due to their failure to capture multidimensional rela-

tionships, a limitation of traditional logistic regression mod-

els, and derivation from unrepresentative populations,

which are often younger with mild-moderate disease. Addi-

tionally, while treatment timing is of critical importance

given competing risks, none of the available scores effec-

tively assist clinicians with treatment selection at the bed-

side. There is thus a critical need for algorithms that can be

deployed systematically in a health system’s electronic

medical record that are capable of identifying patients in

need of and potentially eligible for advanced HF therapies.

Such a system could be used to prompt general clinicians to

refer these patients to an HF and transplant cardiologist to

initiate a comprehensive advanced therapies evaluation.

Herein, we describe our process for developing and vali-

dating a novel machine learning designed to identify

patients with advanced HF warranting evaluation for heart

transplantation and durable LVAD implantation. Unlike

other machine-learning models which are often opaque and

cannot provide the rationale underlying their recommenda-

tions, we report on an interpretable model capable of (1)

leveraging clinical knowledge, (2) learning new clinical

rules, and (3) providing transparent and accessible recom-

mendations which can be reviewed for validity.16 We used

clinical knowledge from HF and transplant cardiologists to

initialize and then train the model using clinical data from

the REVIVAL (Registry Evaluation of Vital Information

for VADs in Ambulatory Life)17 and INTERMACS (Inter-

agency Registry for Mechanically Assisted Circulatory

Support) registries.9,18-20 We demonstrate herein the mod-

el’s capabilities not only for HF care but also for other simi-

larly sensitive clinical applications in medicine.

Methods

The REVIVAL registry

The REVIVAL registry contains information on 400 patients with

advanced systolic HF from 21 US medical centers and has been

previously described.17 As part of the registry, patients were eval-

uated at up to 6 pre-specified time points over a 2-year period at

which time they underwent physical examinations, medication

review, functional assessments, and laboratory testing and com-

pleted general (EuroQol-5D-5L) and disease-specific (Kansas City

Cardiomyopathy Questionnaire [KCCQ]) questionnaires. At each

time point, investigators were asked to record whether the partici-

pant had been evaluated for heart transplantation or LVAD and

the result of that evaluation. Death, heart transplantation, and dura-

ble MCS implantation were study end-points with no additional fol-

low-up. For purposes of this analysis, study participants were

labeled at each time point as (1) “positive” cases, defined as those

who were felt to have advanced HF warranting heart transplanta-

tion/LVAD evaluation or (2) “negative” cases, defined as those too

well for heart transplantation or LVAD. While a subset of patients

labeled as “positive” cases had medical or psychosocial contraindi-

cations to advanced therapies, the focus of this model is on identify-

ing patients whose HF is severe enough to warrant a formal

advanced therapies evaluation by a HF and transplant cardiologist.

As such, these patients were included amongst the positive cases.

The INTERMACS registry

INTERMACS was established as a joint effort of the National

Heart, Lung, and Blood Institute, FDA, Centers for Medicare and

Medicaid Services, clinicians, scientists, and industry representa-

tives for the purpose of advancing our understanding of durable

MCS device therapy.9,18-20 The INTERMACS registry is a North

American registry of data for adults who received an FDA-

approved MCS device for HF at 1 of 170 active INTERMACS
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centers. The registry includes information on patient demo-

graphics; clinical data including medications, functional status,

disease-specific (KCCQ) and general (EQ-5D-3L) quality of life

questionnaires, and laboratory values; and clinical outcomes up to

1-year post-MCS implantation or until heart transplantation. We

used INTERMACS data from June 27, 2006 through July 26,

2017. For this analysis, data were only extracted at the time of

LVAD implantation and all patients were classified as “positive”

(i.e., having advanced HF).

Combined dataset

In this study, we combined data from the REVIVAL and INTER-

MACS registries to train and validate the classification model. We

excluded samples with more than 5 missing values in selected var-

iables (discussed in Variable selection). The combined dataset

includes 4,434 positive cases from 4,406 patients and 1,190 nega-

tive cases from 332 patients; of these 86 (1.9%) positive samples

from 58 patients and 1,190 (100%) negative samples from 332

patients are from the REVIVAL registry. The training set includes

all samples from the INTERMACS registry and 80% of the nega-

tive samples from the REVIVAL registry. The remaining negative

samples and all positive samples from the REVIVAL registry

were equally and randomly split into the validation and test sets.

This data split was proposed to better evaluate the model’s gener-

alizability. In the REVIVAL dataset, multiple samples may be

from the same patient at different time points. To avoid informa-

tion leakage in model development, samples from the same patient

were in the same validation/test set. In this study, the data split

was repeated 10 times for both model development and validation.

The average number of samples and patients in the training, vali-

dation, and test sets are shown in Table 1.

Variable selection

For this analysis, we chose to focus on select variables with strong

associations with advanced HF as described in Tables S1 and S2,

many of which are used in routine clinical care. We excluded

NYHA classification score and INTERMACS profile scores for

model building given the relatively subjective and deterministic

nature of these assessments.

Approximate rules from advanced HF and

transplant cardiologists

We assembled a panel of 5 HF and transplant cardiologists, none

of whom were from Michigan Medicine. We first asked 2 HF and

transplant cardiologists to generate a set of clinical rules for identi-

fying patients with advanced HF, using only those variables in the

aforementioned datasets. We collated those rules and distributed

them to 3 additional HF and transplant cardiologists, allowing them

to add additional rules as appropriate. We then used them to initial-

ize our model. For this study, given its “proof of concept” nature

and relatively limited number of variables, we chose to initiate the

model with simplified versions of the rules (supplemental methods).

An interpretable machine learning algorithm

We applied our end-to-end tropical geometry-based interpretable

machine learning method16 to identify patients with advanced HF.

The structure of our machine learning method is shown in Figure

S1(a), where the inputs are values of selected variables from the

target patient, and the output is a recommendation regarding

advanced therapies eligibility. There are 3 core modules in the

proposed method: encoding, rule, and inference modules (Figure

S1(a)). The edges connecting nodes represent trainable parameters

to be optimized during the training phase. All 3 modules are inte-

gral for building the interpretable machine learning algorithm.

With this method, observations of selected clinical variables

are encoded into humanly understandable fuzzy concepts in the

encoding layer. For example, a heart rate can be encoded into 3

concepts: “low,” “medium,” and “high,” roughly. In the proposed

method, the fuzzy models are designed to match the way humans

perceive variables and the approximate logical relationships

amongst them. Instead of assigning an observation of 1 variable to

a single concept through predefined thresholds, the method learns

fuzzy membership functions during model training. In the encod-

ing module, membership values, ranging from 0 to 1, are calcu-

lated by learned membership functions and then those values are

used for the following modules. Figure 1 shows an example of the

learned membership functions encoding distance on a 6-minute

walk test (DISTWLK).

After observations are encoded into concepts, compositional

rules for patient classification are built based on combinations of

concepts. These compositional rules are constructed by parameters

in the rule module and inference module. The parameters are then

optimized during model training. An example of a compositional

rule can be written as:

IF the patient has a low level of x1 AND a high level of x2,
THEN the patient is “positive.”

As we demonstrated in prior work, our method can success-

fully extract hidden rules from a dataset.16 In addition, the afore-

mentioned rules from HF and transplant cardiologists were used to

initialize the network and facilitate model training. As rules from

the trained model can capture redundant concepts, we created an

algorithm capable of summarizing the most representative rules

from single or multiple trained models. The algorithm is summa-

rized in Figure S1(b) and in the supplemental methods. In this

study, we repeated the training process 10 times to avoid bias

from data splitting and to improve the robustness of rule extrac-

tion. The proposed rule summarization algorithm was applied to

Table 1 Average Numbers of Samples in the Training, Validation, and Test Sets From 10 Repetitions

Training set Validation set Test set

Positive samples in REVIVAL 0 § 0 43 § 3 (29) 44 § 3 (29)

Negative samples in REVIVAL 947 § 8 (234) 115 § 6 (49) 128 § 9 (52)

Samples in INTERMACS 4348 § 0 (4348) 0 0

Total 5295 § 8 (4582) 158 § 6 (78) 172 § 10 (81)

The dataset was split patient-wise so the number of samples in each repetition may vary. Positive samples refer to patients with advanced HF while

negative samples refer to patients who were deemed too well for HF advanced therapies. Data is presented as mean samples§ standard deviation (number

of patients).
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the 10 trained models. Additional information on the proposed

interpretable machine learning model is presented in Supplemen-

tary material Section II − A. For comparison, existing machine

learning algorithms were implemented and validated on the same

dataset (Supplementary material Section II − B, Table S3).

Machine learning model evaluation

We calculated accuracy ((true positive + true negative)/(all

positives + all negatives); precision (true positives/(true

positives + false positives)); recall (true positives/(true

positives + false negatives)); and F1, the harmonic mean of precision

and recall (2 �
recall � precision
recall þ precision

) values. Paired t-tests were performed

for bivariate comparisons across models.

Generalization gaps were calculated as the differences between

metrics on the validation and test sets. A higher generalization gap

indicates greater overfitting. Considering the trade-off between

model interpretability and performance, we evaluated whether

each trained machine learning model is transparent. In this study,

a model is transparent only if the model can explain its predictions

in a way understood by humans. We also evaluated each model’s

ability to generate a parsimonious set of rules, or a set of rules that

is limited or succinct. In clinical application, a model that provides

a small set of humanly understandable rules is favorable as it can

be used to provide guidance and reasoning to decision-makers.

Recommendations delivered in the form of interpretable and parsi-

monious rules are critical for high-stakes decision-making in sen-

sitive applications such as medicine and also key to trust-building.

Results

Classification performance on the dataset

Patient characteristics are shown in Table 2. Table 3

presents our model’s classification performance and that of

other existing machine learning techniques with all values

reflecting the average classification over 10 repetitions on

the test set. The proposed method without domain knowl-

edge achieved an F1 score of 40.4%. The integration of

clinical rules further improved model performance with an

F1 score of 43.8%. When compared to other existing

machine learning models our proposed model achieved sig-

nificantly better performance than other methods capable of

providing transparent and parsimonious rules. In addition,

our proposed model achieved comparable performance

with other commonly used black-box machine learning

models.

We also investigated the generalization gaps between the

validation and test sets for our model, EBM, random forest,

support vector machine (SVM), and XGBoost. Table S4

presents different models’ performances on the validation

set. Compared to existing machine learning models, our

model achieved good performance on this dataset and had

significantly smaller generalization gaps (Figure 2).

Finally, we evaluated the models based on their transpar-

ency and their ability to provide a parsimonious set of rules

that can be interpreted and used by clinicians (Table 3).

Our model was 1 of only 3 models providing both transpar-

ency and clinical rules, outperforming the other 2 models

(Decision Tree, Fuzzy Inference Classifier) with superior

F1 and recall values.

Evaluation of the extracted rules

Figure 3 shows eleven representative rules extracted from

our trained model. Rules are presented in individual col-

umns with rows corresponding to individual concepts. The

first column represents the first representative rule. The

color indicates the contribution of individual concepts to

each compositional rule with darker colors denoting a

greater contribution of that concept to the corresponding

rule. For example, Rule 1 can be written as:

IF ALB is low, AND EF is low, AND pVO2 is low or

medium, AND KCCQ1HRY is low or medium, THEN

evaluate for heart transplantation/MCS

In practice, the model would identify patients appropri-

ate for an advanced therapies evaluation based on those 11

rules and the degree to which patients’ clinical characteris-

tics match each rule. Specification of the individual rules,

however, allows clinicians to understand which rules were

used to identify patients and thereby the clinical character-

istics that lead to the recommendation for an advanced ther-

apies evaluation. It also allows for knowledge to be gained.

For example, had it not been previously known, the afore-

mentioned rule would teach clinicians that a low peak VO2

is an important indicator of advanced HF.

Discussion

Herein we present a transparent machine learning model

capable of identifying patients with advanced HF warrant-

ing evaluation for LVAD and/or heart transplantation.

Firstly, amongst the 3 methods capable of providing trans-

parent and parsimonious rules, our proposed method

achieved significantly better performance with the highest

F1-score. Thus, our model is more likely to recommend

that patients be evaluated for advanced therapies, yet pro-

vides a reasonably high probability that referred patients

will subsequently be deemed appropriate for an advanced

therapy. Arguably in such a scenario, recall, or sensitivity,

is most important as failure to recommend an advanced

therapies evaluation has significant implications for dis-

ease-associated morbidity and mortality. Additionally, as

Figure 1 Optimized membership functions to encode distance

on a 6-minute walk test (DISTWLK) into 3 concepts.
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evidenced by its high F1 score, our model has balanced

recall and precision, avoiding a scenario in which there

would be excess referrals of patients who do not need

advanced therapies and thereby overwhelming subspecialist

resources. Second, our model achieved comparable perfor-

mance with other machine learning models with higher

complexity but less interpretability, significantly outper-

forming other transparent models.

Our model has multiple strengths compared to other

machine learning models and as such would lend itself to

other clinical applications in medicine. First, our model can

be initiated with clinical knowledge. In a wide spectrum of

applications, there exist invaluable heuristics and domain

expertise. The majority of machine learning models, how-

ever, have no mechanism by which to leverage such knowl-

edge for model formation and training. Second, the model

captures and then refines the inherent imprecision in clinical

decision-making.21 For example, patients are often evalu-

ated for advanced therapies when their functional capacity

is severely reduced, typically defined by a low 6-minute

walk distance or reduced peak VO2 on a cardiopulmonary

exercise test. Rather than requiring specific cutoffs, the

model can accommodate the recommendation from clini-

cians that a “low” peak VO2 may identify patients eligible

Table 2 Demographic and Clinical Characteristics of Patients in the INTERMACS and REVIVAL Registries

REVIVAL REVIVAL INTERMACS

“Positive”

(n = 86)

“Negative”

(n = 1289)

“Positive”

(n = 4348)

Age (years), mean 61.9 (9.7) 59.1 (11.9) 57.6 (12.6)

Sex, n (%) 29 (33.7%) 343 (26.9%) 902 (20.7%)

NYHA class, n (%)

I 0 (0%) 63 (4.9%) 108 (2.5%)

II 4 (4.7%) 506 (39.7%) 26 (0.6%)

IIIA 47 (54.7%) 587 (46.1%) 800 (18.4%)

IIIB 20 (23.3%) 29 (2.3%) 3414 (78.5%)

IV 15 (17.4%) 86 (6.7%) 0 (0%)

Missing 0 (0.0%) 2 (0.2%) 0 (0%)

INTERMACS profile, n (%)

1 0 (0%) 0 (0%) 269 (6.2%)

2 0 (0%) 1 (0.1%) 1416 (32.6%)

3 14 (16.3%) 3 (0.2%) 1842 (42.4%)

4 23 (26.7%) 64 (5.0%) 699 (16.1%)

5 21 (24.4%) 197 (15.5%) 85 (2.0%)

6 21 (24.4%) 403 (31.7%) 22 (0.5%)

7 7 (8.1%) 604 (47.5%) 15 (0.3%)

Heart rate (bpm), mean 76.3 (13.3) 74.9 (12.3) 87.2 (16.6)

SBP (mmHg), mean 98.8 (10.8) 110.5 (15.9) 106.9 (15.4)

Continuous variables are presented as mean (standard deviation) and categorical variables as count (percentage) for each level.

NYHA, New York Heart Association; SBP, systolic blood pressure.

Table 3 Classification Performance of Machine Learning Models on Test Datasets

Model Accuracy (%) Recall (%) Precision (%) F1 (%) p-value

Transparent /

Parsimonious

rules

Our Model 77.5 (75.7-79.3) 51.1 (44.5-57.7) 46.9 (43.8-50.0) 43.8 (40.8-46.8) N/A Yes, Yes

Logistic Regression 80.9 (79.3-82.5) 30.9 (26.4-35.4) 53.8 (48.0-59.6) 34.8 (30.4-39.2) 0.005 Yes, No

Naı̈ve Bayes 22.3 (20.6-24.0) 88.6 (86.1-91.1) 18.9 (18.0-19.8) 28.5 (27.2-29.8) <0.001 Yes, No

Decision Tree 75.1 (72.9-77.3) 44.8 (39.0-50.6) 40.2 (34.9-45.5) 36.1 (33.1-39.1) 0.042 Yes, Yes

Fuzzy Inference Classifier 80.4 (79.2-81.6) 3.3 (-0.7-7.3) 29.9 (2.3-57.5) 5.0 (-1.1-11.1) <0.001 Yes, Yes

Explainable Boosting

Machine

81.0 (79.6-82.4) 48.3 (44.0-52.6) 52.8 (49.3-56.3) 45.7 (42.6-48.8) 0.45 Yes, No

Random

Forest

80.4 (78.4-82.4) 58.4 (53.3-63.5) 51.2 (47.2-55.2) 49.7 (46.2-53.2) 0.08 No, No

XGBoost 81.7 (80.2-83.2) 43.0 (38.1-47.9) 55.4 (51.1-59.7) 43.7 (39.9-47.5) 0.32 No, No

Support Vector Machine 76.1 (72.4-79.8) 43.1 (36.8-49.4) 43.8 (36.2-51.4) 37.4 (33.7-41.1) 0.20 No, No

The results are averaged over 10 repetitions. Presented as mean (95% confidence interval). p-value refers to the statistical significance for the F1 score

from our proposed model compared to other commonly used methods.
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for advanced therapies. As such, the model does not dichot-

omize inherently gray variables.

Finally, the model is transparent, meaning that it pro-

vides justification for its recommendations. Decision-mak-

ers in sensitive applications such as medicine, of which

advanced HF is just one example, are less likely to trust rec-

ommendations in which no clear justification is provided to

support a recommendation. Many commonly used machine

learning models, including families of neural networks and

SVMs, are amongst the “black box” models whose usages

in clinical practice have been limited by a lack of transpar-

ency. While more traditional models such as regression

trees provide such capabilities, they do not provide a set of

rules to explain the logical relations and interactions

between variables, rules that can be effectively communi-

cated to clinicians. In addition, some models, such as ran-

dom forest, list a very large number of rules, ranging from

hundreds to thousands, limiting their utility for decision

making. Our model overcomes these limitations by provid-

ing a clear rationale for recommendations. Thus, clinicians

can inspect the rules and identify any potential fallacies in

the recommendations, allowing them to update the model

in near real-time. This will increase clinicians’ confidence

in the model and allow for serial improvement in perfor-

mance. Furthermore, by representing the rationale for rec-

ommendations, the model enables the extraction of new

clinical knowledge which can subsequently be applied in

practice.

In addition to the strengths of the model itself, our study

has multiple strengths. We used data from the INTER-

MACS and REVIVAL registries with data collected pre-

dominantly as part of real-world clinical practice. As such,

there is missingness and imprecision in the data similar to

real-world settings. The data was also collected from

patients at multiple clinical centers with the INTERMACS

registry including data on patients from all North American

centers implanting FDA-approved LVADs. Our dataset

thus captures clinical information on a diversity of patients

and reflects varying clinician practice patterns with respect

to advanced therapies. Second, the clinical rules used to ini-

tiate the model were created by 5 HF and transplant cardiol-

ogists, each from a different academic medical center. As

such, these rules capture a plurality of perspectives. Finally,

we removed subjective variables such as NYHA and

INTERMACS classifications from the model. While this

reduced model performance, we viewed these variables as

subjective and deterministic as the decision to initiate an

advanced therapies evaluation is determined, in part, by cli-

nician perception of illness severity. Thus, the presented

model was derived from more objective markers of illness

severity.

Our study does have limitations. First, the REVIVAL

dataset is relatively small with only 400 patients, only a

subset of whom went on to receive advanced therapies. As

such there was a relatively limited number of “positive”

case examples by which to train the model. To overcome

this limitation, we combined cases from the REVIVAL and

the INTERMACS datasets. Differences between these data-

sets included those related to variable measurement as well

as to illness severity, with patients in the INTERMACS reg-

istry generally having more severe HF. This also led to the

majority of patients receiving an advanced therapy, which

is not the case for the majority of HF patients in practice.

The data split was selected, however, so as to retain the

greatest number of positive samples from the REVIVAL

registry in the test dataset, which more closely mirrors the

real-world setting in terms of advanced therapies delivery,

and to then retain only REVIVAL cases in the validation

set for algorithm optimization. Second, follow-up in the

REVIVAL dataset was terminated at the time of LVAD

implantation or heart transplantation. In order to mirror the

REVIVAL dataset, post-LVAD and heart transplantation

outcomes from the INTERMACS dataset were not included

in the model. As such, the model was trained to identify

patients warranting evaluation for advanced therapies

though does not identify patients most likely to benefit

from advanced therapies given the lack of data on post-

heart transplantation and LVAD outcomes. Finally, we

trained and validated the model using variables already

known to be associated with HF severity. While we limited

the number of variables in this study, future studies can use

an expanded set of variables including those not previously

known to be associated with HF, increasing our ability to

learn clinical relationships from the model.

In conclusion, while HF advanced therapies have the

potential to improve survival and quality of life, our ability

to screen a population to identify appropriate candidates

and deliver optimally timed therapies is limited. Herein, we

Figure 2 Generalization gaps between the validation sets and test sets.
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present a novel machine learning model capable of identify-

ing patients with advanced HF warranting evaluation for

heart transplantation and/or LVAD. We applied the model

to the REVIVAL and INTERMACS registries and demon-

strated that the model outperforms commonly used machine

learning models and provides transparent and accessible

recommendations that can inform clinician decision mak-

ing. Such a model has multiple potential uses in other

important and similarly sensitive clinical applications out-

side of HF care.
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