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KEYWORDS: BACKGROUND: Systems level barriers to heart failure (HF) care limit access to HF advanced therapies
(heart transplantation, left ventricular assist devices). There is a need for automated systems that can
help clinicians ensure patients with HF are evaluated for HF advanced therapies at the appropriate time
to optimize outcomes.

METHODS: We performed a retrospective study using the REVIVAL (Registry Evaluation of Vital
Information for VADs in Ambulatory Life) and INTERMACS (Interagency Registry for Mechanically
Assisted Circulatory Support) registries. We developed a novel machine learning model based on prin-
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Tk e e pase: ciples of tropical geometry and fuzzy logic that can accommodate clinician knowledge and provide rec-
doriee ommendations regarding need for advanced therapies evaluations that are accessible to end-users.

RESULTS: The model was trained and validated using data from 4,694 HF patients. When initiated with
clinical knowledge from HF and transplant cardiologists, the model achieved an F1 score of 43.8%,
recall of 51.1%, and precision of 46.9%. The model achieved comparable performance compared with
other commonly used machine learning models. Importantly, our model was 1 of only 3 models provid-
ing transparent and parsimonious clinical rules, significantly outperforming the other 2 models. Eleven
clinical rules were extracted from the model which can be leveraged in clinical practice.

CONCLUSIONS: A machine learning model capable of accepting clinical knowledge and making
accessible recommendations was trained to identify patients with advanced HF. While this model
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was developed for HF care, the methodology has multiple potential uses in other important clinical

applications.
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Heart failure (HF) is expected to affect greater than 8-
million US adults by 2030 with high disease-associated
morbidity and mortality.'* Heart transplantation and dura-
ble mechanical circulatory support (MCS) devices such as
left ventricular assist devices (LVADs), also called HF
advanced therapies, offer selected New York Heart Associ-
ation (NYHA) class IV patients the best opportunity for
long-term survival with improved quality of life.”® While a
supply-demand mismatch does not exist for durable LVAD
therapy, for heart transplantation there remains a significant
mismatch due to limited donor heart availability. Further-
more, there is a risk of mortal and highly morbid complica-
tions with both heart transplantation and LVAD
implantation ®® Premature heart transplantation and LVAD
implantation thus exposes patients to potentially unneces-
sary adverse outcomes though delayed delivery places
patients at risk for clinical deterioration and poor out-
comes.” There is thus a tension between premature and
delayed delivery of HF advanced therapies.

In the current healthcare environment, the timing of
advanced therapies is largely determined by HF and trans-
plant cardiologists, who typically rely on both evidence-
based practice and on clinical heuristics to determine the
optimal time to deliver such therapies.'""'? Heuristics, how-
ever, are error-prone and the available risk models have
limited effectiveness for individual patients. 13 Furthermore,
given the high prevalence of HF in the population, the
majority of patients are managed by primary care clinicians
or by general cardiologists who lack training in heart trans-
plantation and MCS. Under recognition of illness severity
by such clinicians may lead to delayed referral to an HF
and transplant cardiologist over which time patients may
develop complications precluding advanced therapies.
‘While a number of HF risk models are available, these have
limited accuracy for individual patients.'*”'> This arises, in
part, due to their failure to capture multidimensional rela-
tionships, a limitation of traditional logistic regression mod-
els, and derivation from unrepresentative populations,
which are often younger with mild-moderate disease. Addi-
tionally, while treatment timing is of critical importance
given competing risks, none of the available scores effec-
tively assist clinicians with treatment selection at the bed-
side. There is thus a critical need for algorithms that can be
deployed systematically in a health system’s electronic
medical record that are capable of identifying patients in
need of and potentially eligible for advanced HF therapies.
Such a system could be used to prompt general clinicians to
refer these patients to an HF and transplant cardiologist to
initiate a comprehensive advanced therapies evaluation.

Herein, we describe our process for developing and vali-
dating a novel machine learning designed to identify

patients with advanced HF warranting evaluation for heart
transplantation and durable LVAD implantation. Unlike
other machine-learning models which are often opaque and
cannot provide the rationale underlying their recommenda-
tions, we report on an interpretable model capable of (1)
leveraging clinical knowledge, (2) learning new clinical
rules, and (3) providing transparent and accessible recom-
mendations which can be reviewed for validity.'® We used
clinical knowledge from HF and transplant cardiologists to
initialize and then train the model using clinical data from
the REVIVAL (Registry Evaluation of Vital Information
for VADs in Ambulatory Life)'” and INTERMACS (Inter-
agency Registry for Mechanically Assisted Circulatory
Support) registries.””'**’ We demonstrate herein the mod-
el’s capabilities not only for HF care but also for other simi-
larly sensitive clinical applications in medicine.

Methods
The REVIVAL registry

The REVIVAL registry contains information on 400 patients with
advanced systolic HF from 21 US medical centers and has been
previously described.'” As part of the registry, patients were eval-
uated at up to 6 pre-specified time points over a 2-year period at
which time they underwent physical examinations, medication
review, functional assessments, and laboratory testing and com-
pleted general (EuroQol-5D-5L) and disease-specific (Kansas City
Cardiomyopathy Questionnaire [KCCQ]) questionnaires. At each
time point, investigators were asked to record whether the partici-
pant had been evaluated for heart transplantation or LVAD and
the result of that evaluation. Death, heart transplantation, and dura-
ble MCS implantation were study end-points with no additional fol-
low-up. For purposes of this analysis, study participants were
labeled at each time point as (1) “positive” cases, defined as those
who were felt to have advanced HF warranting heart transplanta-
tion/LVAD evaluation or (2) “negative” cases, defined as those too
well for heart transplantation or LVAD. While a subset of patients
labeled as “positive” cases had medical or psychosocial contraindi-
cations to advanced therapies, the focus of this model is on identify-
ing patients whose HF is severe enough to warrant a formal
advanced therapies evaluation by a HF and transplant cardiologist.
As such, these patients were included amongst the positive cases.

The INTERMACS registry

INTERMACS was established as a joint effort of the National
Heart, Lung, and Blood Institute, FDA, Centers for Medicare and
Medicaid Services, clinicians, scientists, and industry representa-
tives for the purpose of advancing our understanding of durable
MCS device therapy.”'®?° The INTERMACS registry is a North
American registry of data for adults who received an FDA-
approved MCS device for HF at 1 of 170 active INTERMACS
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centers. The registry includes information on patient demo-
graphics; clinical data including medications, functional status,
disease-specific (KCCQ) and general (EQ-5D-3L) quality of life
questionnaires, and laboratory values; and clinical outcomes up to
1-year post-MCS implantation or until heart transplantation. We
used INTERMACS data from June 27, 2006 through July 26,
2017. For this analysis, data were only extracted at the time of
LVAD implantation and all patients were classified as “positive”
(i.e., having advanced HF).

Combined dataset

In this study, we combined data from the REVIVAL and INTER-
MACS registries to train and validate the classification model. We
excluded samples with more than 5 missing values in selected var-
iables (discussed in Variable selection). The combined dataset
includes 4,434 positive cases from 4,406 patients and 1,190 nega-
tive cases from 332 patients; of these 86 (1.9%) positive samples
from 58 patients and 1,190 (100%) negative samples from 332
patients are from the REVIVAL registry. The training set includes
all samples from the INTERMACS registry and 80% of the nega-
tive samples from the REVIVAL registry. The remaining negative
samples and all positive samples from the REVIVAL registry
were equally and randomly split into the validation and test sets.
This data split was proposed to better evaluate the model’s gener-
alizability. In the REVIVAL dataset, multiple samples may be
from the same patient at different time points. To avoid informa-
tion leakage in model development, samples from the same patient
were in the same validation/test set. In this study, the data split
was repeated 10 times for both model development and validation.
The average number of samples and patients in the training, vali-
dation, and test sets are shown in Table 1.

Variable selection

For this analysis, we chose to focus on select variables with strong
associations with advanced HF as described in Tables S1 and S2,
many of which are used in routine clinical care. We excluded
NYHA classification score and INTERMACS profile scores for
model building given the relatively subjective and deterministic
nature of these assessments.

Approximate rules from advanced HF and
transplant cardiologists

We assembled a panel of 5 HF and transplant cardiologists, none
of whom were from Michigan Medicine. We first asked 2 HF and
transplant cardiologists to generate a set of clinical rules for identi-
fying patients with advanced HF, using only those variables in the
aforementioned datasets. We collated those rules and distributed

them to 3 additional HF and transplant cardiologists, allowing them
to add additional rules as appropriate. We then used them to initial-
ize our model. For this study, given its “proof of concept” nature
and relatively limited number of variables, we chose to initiate the
model with simplified versions of the rules (supplemental methods).

An interpretable machine learning algorithm

We applied our end-to-end tropical geometry-based interpretable
machine learning method ' to identify patients with advanced HF.
The structure of our machine learning method is shown in Figure
S1(a), where the inputs are values of selected variables from the
target patient, and the output is a recommendation regarding
advanced therapies eligibility. There are 3 core modules in the
proposed method: encoding, rule, and inference modules (Figure
S1(a)). The edges connecting nodes represent trainable parameters
to be optimized during the training phase. All 3 modules are inte-
gral for building the interpretable machine learning algorithm.

With this method, observations of selected clinical variables
are encoded into humanly understandable fuzzy concepts in the
encoding layer. For example, a heart rate can be encoded into 3
concepts: “low,” “medium,” and “high,” roughly. In the proposed
method, the fuzzy models are designed to match the way humans
perceive variables and the approximate logical relationships
amongst them. Instead of assigning an observation of 1 variable to
a single concept through predefined thresholds, the method learns
fuzzy membership functions during model training. In the encod-
ing module, membership values, ranging from O to 1, are calcu-
lated by learned membership functions and then those values are
used for the following modules. Figure 1 shows an example of the
learned membership functions encoding distance on a 6-minute
walk test (DISTWLK).

After observations are encoded into concepts, compositional
rules for patient classification are built based on combinations of
concepts. These compositional rules are constructed by parameters
in the rule module and inference module. The parameters are then
optimized during model training. An example of a compositional
rule can be written as:

IF the patient has a low level of X; AND a high level of x;,
THEN the patient is “positive.”

As we demonstrated in prior work, our method can success-
fully extract hidden rules from a dataset.'® In addition, the afore-
mentioned rules from HF and transplant cardiologists were used to
initialize the network and facilitate model training. As rules from
the trained model can capture redundant concepts, we created an
algorithm capable of summarizing the most representative rules
from single or multiple trained models. The algorithm is summa-
rized in Figure S1(b) and in the supplemental methods. In this
study, we repeated the training process 10 times to avoid bias
from data splitting and to improve the robustness of rule extrac-
tion. The proposed rule summarization algorithm was applied to

Table 1  Average Numbers of Samples in the Training, Validation, and Test Sets From 10 Repetitions

Training set Validation set Test set
Positive samples in REVIVAL 0+0 43 £ 3 (29) 44 £ 3 (29)
Negative samples in REVIVAL 947 £ 8 (234) 115 + 6 (49) 128 + 9 (52)
Samples in INTERMACS 4348 £ 0 (4348) 0 0
Total 5295 + 8 (4582) 158 + 6 (78) 172 + 10 (81)

The dataset was split patient-wise so the number of samples in each repetition may vary. Positive samples refer to patients with advanced HF while
negative samples refer to patients who were deemed too well for HF advanced therapies. Data is presented as mean samples + standard deviation (number

of patients).



1784 The Journal of Heart and Lung Transplantation, Vol 41, No 12, December 2022

1.0
s
208
b
206 Low
G Medium
@ 0.4 —— High
Q
§o02
=
0.0 S
280 285 290 295 300 305
DISTWLK
Figure 1 Optimized membership functions to encode distance

on a 6-minute walk test (DISTWLK) into 3 concepts.

the 10 trained models. Additional information on the proposed
interpretable machine learning model is presented in Supplemen-
tary material Section II — A. For comparison, existing machine
learning algorithms were implemented and validated on the same
dataset (Supplementary material Section II — B, Table S3).

Machine learning model evaluation

We calculated accuracy ((true positive + true negative)/(all
positives + all negatives); precision (true positives/(true
positives + false positives)); recall (true positives/(true
positives + false neic?’atives)); and F1, the harmonic mean of precision
and recall (2 ® %) values. Paired t-tests were performed
for bivariate comparisons across models.

Generalization gaps were calculated as the differences between
metrics on the validation and test sets. A higher generalization gap
indicates greater overfitting. Considering the trade-off between
model interpretability and performance, we evaluated whether
each trained machine learning model is transparent. In this study,
a model is transparent only if the model can explain its predictions
in a way understood by humans. We also evaluated each model’s
ability to generate a parsimonious set of rules, or a set of rules that
is limited or succinct. In clinical application, a model that provides
a small set of humanly understandable rules is favorable as it can
be used to provide guidance and reasoning to decision-makers.
Recommendations delivered in the form of interpretable and parsi-
monious rules are critical for high-stakes decision-making in sen-
sitive applications such as medicine and also key to trust-building.

Results

Classification performance on the dataset

Patient characteristics are shown in Table 2. Table 3
presents our model’s classification performance and that of
other existing machine learning techniques with all values
reflecting the average classification over 10 repetitions on
the test set. The proposed method without domain knowl-
edge achieved an F1 score of 40.4%. The integration of
clinical rules further improved model performance with an
F1 score of 43.8%. When compared to other existing
machine learning models our proposed model achieved sig-
nificantly better performance than other methods capable of
providing transparent and parsimonious rules. In addition,
our proposed model achieved comparable performance
with other commonly used black-box machine learning
models.

We also investigated the generalization gaps between the
validation and test sets for our model, EBM, random forest,
support vector machine (SVM), and XGBoost. Table S4
presents different models’ performances on the validation
set. Compared to existing machine learning models, our
model achieved good performance on this dataset and had
significantly smaller generalization gaps (Figure 2).

Finally, we evaluated the models based on their transpar-
ency and their ability to provide a parsimonious set of rules
that can be interpreted and used by clinicians (Table 3).
Our model was 1 of only 3 models providing both transpar-
ency and clinical rules, outperforming the other 2 models
(Decision Tree, Fuzzy Inference Classifier) with superior
F1 and recall values.

Evaluation of the extracted rules

Figure 3 shows eleven representative rules extracted from
our trained model. Rules are presented in individual col-
umns with rows corresponding to individual concepts. The
first column represents the first representative rule. The
color indicates the contribution of individual concepts to
each compositional rule with darker colors denoting a
greater contribution of that concept to the corresponding
rule. For example, Rule 1 can be written as:

IF ALB is low, AND EF is low, AND pVO?2 is low or
medium, AND KCCQIHRY is low or medium, THEN
evaluate for heart transplantation/MCS

In practice, the model would identify patients appropri-
ate for an advanced therapies evaluation based on those 11
rules and the degree to which patients’ clinical characteris-
tics match each rule. Specification of the individual rules,
however, allows clinicians to understand which rules were
used to identify patients and thereby the clinical character-
istics that lead to the recommendation for an advanced ther-
apies evaluation. It also allows for knowledge to be gained.
For example, had it not been previously known, the afore-
mentioned rule would teach clinicians that a low peak VO2
is an important indicator of advanced HF.

Discussion

Herein we present a transparent machine learning model
capable of identifying patients with advanced HF warrant-
ing evaluation for LVAD and/or heart transplantation.
Firstly, amongst the 3 methods capable of providing trans-
parent and parsimonious rules, our proposed method
achieved significantly better performance with the highest
Fl-score. Thus, our model is more likely to recommend
that patients be evaluated for advanced therapies, yet pro-
vides a reasonably high probability that referred patients
will subsequently be deemed appropriate for an advanced
therapy. Arguably in such a scenario, recall, or sensitivity,
is most important as failure to recommend an advanced
therapies evaluation has significant implications for dis-
ease-associated morbidity and mortality. Additionally, as
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Table 2 Demographic and Clinical Characteristics of Patients in the INTERMACS and REVIVAL Registries
REVIVAL REVIVAL INTERMACS
“Positive” “Negative” “Positive”
(n = 86) (n=1289) (n = 4348)
Age (years), mean 61.9 (9.7) 59.1 (11.9) 57.6 (12.6)

Sex, n (%)
NYHA class, n (%)

29 (33.7%)

I 0 (0%)
II 4 (4.7%)
IIIA 47 (54.7%)
I1IB 20 (23.3%)
v 15 (17.4%)
Missing 0 (0.0%)
INTERMACS profile, n (%)
1 0 (0%)
2 0 (0%)
3 14 (16.3%)
4 23 (26.7%)
5 21 (24.4%)
6 21 (24.4%)
7 7 (8.1%)
Heart rate (bpm), mean 76.3 (13.3)
SBP (mmHg), mean 98.8 (10.8)

343 (26.9%)

63 (4.9%)
506 (39.7%)
587 (46.1%)

29 (2.3%)

86 (6.7%)

2 (0.2%)

0 (0%)

1(0.1%)

3 (0.2%)

64 (5.0%)
197 (15.5%)
403 (31.7%)
604 (47.5%)
74.9 (12.3)
110.5 (15.9)

902 (20.7%)

108 (2.5%)
26 (0.6%)
800 (18.4%)
3414 (78.5%)
0 (0%)

0 (0%)

269 (6.2%)
1416 (32.6%)
1842 (42.4%)
699 (16.1%)

85 (2.0%)

22 (0.5%)

15 (0.3%)
87.2 (16.6)
106.9 (15.4)

Continuous variables are presented as mean (standard deviation) and categorical variables as count (percentage) for each level.
NYHA, New York Heart Association; SBP, systolic blood pressure.

evidenced by its high F1 score, our model has balanced
recall and precision, avoiding a scenario in which there
would be excess referrals of patients who do not need
advanced therapies and thereby overwhelming subspecialist
resources. Second, our model achieved comparable perfor-
mance with other machine learning models with higher
complexity but less interpretability, significantly outper-
forming other transparent models.

Our model has multiple strengths compared to other
machine learning models and as such would lend itself to
other clinical applications in medicine. First, our model can
be initiated with clinical knowledge. In a wide spectrum of

applications, there exist invaluable heuristics and domain
expertise. The majority of machine learning models, how-
ever, have no mechanism by which to leverage such knowl-
edge for model formation and training. Second, the model
captures and then refines the inherent imprecision in clinical
decision-making.”' For example, patients are often evalu-
ated for advanced therapies when their functional capacity
is severely reduced, typically defined by a low 6-minute
walk distance or reduced peak VO2 on a cardiopulmonary
exercise test. Rather than requiring specific cutoffs, the
model can accommodate the recommendation from clini-
cians that a “low” peak VO2 may identify patients eligible

Table 3  Classification Performance of Machine Learning Models on Test Datasets
Transparent /
Parsimonious
Model Accuracy (%) Recall (%) Precision (%) F1 (%) p-value rules
Our Model 77.5(75.7-79.3)  51.1 (44.5-57.7)  46.9 (43.8-50.0)  43.8 (40.8-46.8)  N/A Yes, Yes
Logistic Regression 80.9 (79.3-82.5)  30.9 (26.4-35.4) 53.8 (48.0-59.6) 34.8 (30.4-39.2)  0.005 Yes, No
Naive Bayes 22.3(20.6-24.0) 88.6 (86.1-91.1)  18.9 (18.0-19.8)  28.5 (27.2-29.8)  <0.001 Yes, No
Decision Tree 75.1(72.9-77.3)  44.8 (39.0-50.6)  40.2 (34.9-45.5)  36.1(33.1-39.1)  0.042 Yes, Yes
Fuzzy Inference Classifier 80.4 (79.2-81.6) 3.3 (-0.7-7.3) 29.9 (2.3-57.5) 5.0 (-1.1-11.1)  <0.001 Yes, Yes
Explainable Boosting 81.0 (79.6-82.4)  48.3 (44.0-52.6) 52.8 (49.3-56.3) 45.7 (42.6-48.8) 0.45 Yes, No
Machine
Random 80.4 (78.4-82.4)  58.4 (53.3-63.5) 51.2 (47.2-55.2)  49.7 (46.2-53.2)  0.08 No, No
Forest
XGBoost 81.7 (80.2-83.2)  43.0(38.1-47.9)  55.4 (51.1-59.7)  43.7 (39.9-47.5)  0.32 No, No
Support Vector Machine 76.1(72.4-79.8)  43.1(36.8-49.4) 43.8 (36.2-51.4) 37.4(33.7-41.1) 0.20 No, No

The results are averaged over 10 repetitions. Presented as mean (95% confidence interval). p-value refers to the statistical significance for the F1 score
from our proposed model compared to other commonly used methods.
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for advanced therapies. As such, the model does not dichot-
omize inherently gray variables.

Finally, the model is transparent, meaning that it pro-
vides justification for its recommendations. Decision-mak-
ers in sensitive applications such as medicine, of which
advanced HF is just one example, are less likely to trust rec-
ommendations in which no clear justification is provided to
support a recommendation. Many commonly used machine
learning models, including families of neural networks and
SVMs, are amongst the “black box” models whose usages
in clinical practice have been limited by a lack of transpar-
ency. While more traditional models such as regression
trees provide such capabilities, they do not provide a set of
rules to explain the logical relations and interactions
between variables, rules that can be effectively communi-
cated to clinicians. In addition, some models, such as ran-
dom forest, list a very large number of rules, ranging from
hundreds to thousands, limiting their utility for decision
making. Our model overcomes these limitations by provid-
ing a clear rationale for recommendations. Thus, clinicians
can inspect the rules and identify any potential fallacies in
the recommendations, allowing them to update the model
in near real-time. This will increase clinicians’ confidence
in the model and allow for serial improvement in perfor-
mance. Furthermore, by representing the rationale for rec-
ommendations, the model enables the extraction of new
clinical knowledge which can subsequently be applied in
practice.

In addition to the strengths of the model itself, our study
has multiple strengths. We used data from the INTER-
MACS and REVIVAL registries with data collected pre-
dominantly as part of real-world clinical practice. As such,
there is missingness and imprecision in the data similar to
real-world settings. The data was also collected from
patients at multiple clinical centers with the INTERMACS
registry including data on patients from all North American
centers implanting FDA-approved LVADs. Our dataset
thus captures clinical information on a diversity of patients
and reflects varying clinician practice patterns with respect
to advanced therapies. Second, the clinical rules used to ini-
tiate the model were created by 5 HF and transplant cardiol-
ogists, each from a different academic medical center. As
such, these rules capture a plurality of perspectives. Finally,
we removed subjective variables such as NYHA and

Our method)
EBM

Random Forest
SVM

XGBoost

F1

Generalization gaps between the validation sets and test sets.

INTERMACS classifications from the model. While this
reduced model performance, we viewed these variables as
subjective and deterministic as the decision to initiate an
advanced therapies evaluation is determined, in part, by cli-
nician perception of illness severity. Thus, the presented
model was derived from more objective markers of illness
severity.

Our study does have limitations. First, the REVIVAL
dataset is relatively small with only 400 patients, only a
subset of whom went on to receive advanced therapies. As
such there was a relatively limited number of “positive”
case examples by which to train the model. To overcome
this limitation, we combined cases from the REVIVAL and
the INTERMACS datasets. Differences between these data-
sets included those related to variable measurement as well
as to illness severity, with patients in the INTERMACS reg-
istry generally having more severe HF. This also led to the
majority of patients receiving an advanced therapy, which
is not the case for the majority of HF patients in practice.
The data split was selected, however, so as to retain the
greatest number of positive samples from the REVIVAL
registry in the test dataset, which more closely mirrors the
real-world setting in terms of advanced therapies delivery,
and to then retain only REVIVAL cases in the validation
set for algorithm optimization. Second, follow-up in the
REVIVAL dataset was terminated at the time of LVAD
implantation or heart transplantation. In order to mirror the
REVIVAL dataset, post-LVAD and heart transplantation
outcomes from the INTERMACS dataset were not included
in the model. As such, the model was trained to identify
patients warranting evaluation for advanced therapies
though does not identify patients most likely to benefit
from advanced therapies given the lack of data on post-
heart transplantation and LVAD outcomes. Finally, we
trained and validated the model using variables already
known to be associated with HF severity. While we limited
the number of variables in this study, future studies can use
an expanded set of variables including those not previously
known to be associated with HF, increasing our ability to
learn clinical relationships from the model.

In conclusion, while HF advanced therapies have the
potential to improve survival and quality of life, our ability
to screen a population to identify appropriate candidates
and deliver optimally timed therapies is limited. Herein, we
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posite rule. When completing the KCCQ, patient answers are converted to a numerical value with lower scores indicating greater illness
severity. Key: Alb = Albumin; CRT = cardiac resynchronization therapy; DISTWLK = distance walked; EF = ejection fraction;
GFE = glomerular filtration rate; HGB = hemoglobin; KCCQ = Kansas City Cardiomyopathy questionnaire; MR = mitral regurgitation;

TempMCS = temporary mechanical circulatory support.

present a novel machine learning model capable of identify-
ing patients with advanced HF warranting evaluation for
heart transplantation and/or LVAD. We applied the model
to the REVIVAL and INTERMACS registries and demon-
strated that the model outperforms commonly used machine
learning models and provides transparent and accessible
recommendations that can inform clinician decision mak-
ing. Such a model has multiple potential uses in other
important and similarly sensitive clinical applications out-
side of HF care.
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