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Highlights:

Multiscale models are needed to describe fibrin mechanics, deformation and contraction.
Role of biomechanical interactions between platelets and fiber networks in blood clot
stretching and contraction models.

e Models predicted that local strain-stiffening of individual fibers and pairwise interactions
between individual fibers contribute to mechanical responses of fibrin networks
undergoing stretching or contraction.

e Open problems and challenges: study of microscale mechanisms of lateral aggregation of
protofibrils and of the structure of fibrin fibers, detailed description of fibrin-fluid
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interactions; coupling of submodels at different space and time scales into a multiscale
model and its calibration; experimental verification of multiscale model predictions.

Abstract

Fibrin deformation and interaction of fibrin with other blood components play critical roles in
hemostasis and thrombosis. In this review, computational and mathematical biomechanical
models of fibrin network deformation and contraction at different spatio-temporal scales as well
as challenges in developing and calibrating multiscale models are discussed. The long-standing
challenges include careful evaluation of the applicability of models to identify and test potential
mechanisms of the biomechanical processes mediating interactions between platelets and fiber
networks in blood clot stretching and contraction. Also, there is a need to use modeling
approaches to determine how exactly structural and mechanical properties of major blood clot
components can influence biomechanical responses of the entire clot subjected to external forces,
such as blood flow or vessel wall deformations.

1. Introduction

Through in vivo, in vitro, and in silico studies, significant progress have been made in developing
a better understanding of the role of fibrin fiber networks in, among others, halting bleeding
(hemostasis) and the development of obstructive pathological blood clots impairing blood flow
(thrombosis)[1-3]. The latter can be associated with various disorders such as cardiovascular

disease, cancer and viral diseases including COVID-19 [4-6].

The fibrin fiber network, an end product of the enzymatic cascade of blood clotting, is a
proteinaceous polymer present in intra- and extravascular blood clots that forms at the sites of

vascular injury and serves as scaffolding for blood clots [7] (see Figure 1A-B). Fibrin fibers and
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fiber networks are the results of the conversion of fibrinogen into fibrin monomers and their
consequent polymerization. Although this review does not focus on discussing modeling of
polymerization of fibrin to form a network of fibrin fibers, this process has been extensively

studied both experimentally [8—10] and through computational modeling [11-15].
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Figure 1. Electron microscopy images of (A) unperturbed fibrin clot (reproduced from [16],
with permission) and (B) whole blood clot. (Reproduced from [7], with permission.). (C)
Force-strain curve for single fibrin fiber: inset (a)—(d) single fibrin fiber at different levels of
strain before breakage (d) stretched using an atomic force microscopy (AFM) tip. In the plot,
single fibrin fiber force-strain data (black dots) were obtained via AFM measurements. The
fitting (red curve) was done using the worm-like-chain (WLC) equation. (Reproduced from
[17], with permission.) (D) Force-extension curve of a cylindrical fibrin clot. The force-
extension curve (black solid line) was fitted using two versions of a constitutive model that
considers clot microstructure. The best agreement is obtained when protein unfolding is
included (red line), while without molecular unfolding (black dashed line) the fitting only
reproduces the experimental results (black solid line) for low strains. (Reproduced from [18],
with permission.)
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(For a more detailed review on the structure and function of fibrin and fibrinogen see
[19].) Individual fibrin fibers reveal extraordinary extensibility and viscoelasticity, referred to as

strain-stiffening, which are important for fibrin biological functions [16] (see Figure 1C-D).

As a major component of the extracellular matrix, fibrin participates in various cellular
processes, including adhesion, migration, proliferation, differentiation, wound healing,
angiogenesis, inflammation, and others. The formation of fibrin networks in blood vessels is one
of the key events contributing to hemostasis and thrombosis [8,20]. Fibrin networks of in vivo
blood clots are subjected to various mechanical forces including external forces generated by
blood flow and deformation of the vessel wall, as well as internal forces generated by platelets
within a clot [9]. Activated platelets attach to fibrin via their allbp3 integrin receptors and use
filopodia to pull on fibrin fibers of a blood clot, causing compaction of the entire clot (clot
contraction) [21].
The structure and mechanical responses of fibrin [22-24], exposed to various forces, determine
changes in the stiffness and size of the clot, extent of clot deformation, and clot structural
stability and embologenicity [25], therefore defining the course and outcomes of thrombotic and
hemostatic disorders, such as heart attacks and ischemic strokes and bleeding. Despite the fact
that hemostasis and thrombosis studies can take advantage of computational and mathematical
modeling [26-30], biomechanical processes mediating these experimentally observed fibrin

network responses are still ambiguous.
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This article reviews models studying the mechanics of individual fibrin fibers and fiber

networks, fiber-fiber and fiber-platelet interactions, as well as clot deformation and contraction.

Process: individual fibrin fiber mechanics

Space scales: nanoscale and microscale

Fibrin fiber diameter: 20 to 100 nm

Fibrin fiber length: up to 10 pm

Critical extension of a-helices (the equilibrium distance
between the [J-state and the transition state): 0.25 nm
Three-stranded a-helical coiled-coils: 17 nm

Folded fibrin molecule: 45 nm

Molecular scale: ~10-100 nm

Time scales: 2 usto 0.1 - 0.4 s
(Molecular dynamics)

Molecular Dynamics (o-to-f transition in a-helical) [14];

Self-organized Polymer Model and Molecular Dynamics (y-
nodules, a-helical) [33];

Monomer as Wormlike Chain (WLC) [38];

Process: Fibrin fiber-fiber interactions

Space scale: microscale
Fibrin fibers length: from <1 pm to > 10 um

Time scales: N/A

2D Lattice Model for Fibrin Network Compression [44];

Cohesive Fibrin-Fibrin Crisscrossing Model [39];

Process: Mechanical properties of fibrin networks

Space scales: microscale and mesoscale
Fibrin network volume: 1 — 1000 um?3

Time scales: N/A

Entropic Elastic Filament Networks Models [19, 34, 38, 53];

Enthalpic Elastic Filament Networks Models [54 — 57];

Process: Deformation and stretching of fibrin fibers
Space scales: mesoscale to macroscale
Fibrin network volume: > 1000 pm? fibrin network clots

Fibrin network length: a few um to around 1 cm

Time scales: A few seconds to a few minutes

Three-chain Model [61];

Eight-chain Model [62];

Isotropic Network Model [34];

Phase Transition Method [51];

Continuous Models for 2D Layered Materials [64, 65];
Multiscale Model with Non-linear Elastic Cylinder, Anisotropic
Biphasic Theory (ABT), and Structural Model of Tissue
Mechanics [66 — 68];

Continuum Chemo-elastic Theories Model for Gels [69];
Liquid Crystal Models are for Biological Materials [70];

Process: Clot deformation
Space scales: multiscale from microscale to macroscale
Fibrin network volume: > 1000 um?3

Fibrin network length: a few um to around 1 cm

Time scales: Contraction time: 20 — 90 minutes

Coarse-Grain Molecular Dynamics for Filopodia Formation [87];
Modification of Elastic Fibrin Network Models to Include Fibrin-
Platelet interactions [88 — 90] and including red blood cells [91];

Process: Clot fluid interactions

Space scales: multiscale from microscale to macroscale
Fibrin network volume: > 1000 um?3
Fibrin network length: a few um to around 1 cm

Immersed Boundary Method [92 — 95];
Two-fluid model [96];
Continuous Visco-hyperelastic Model [97];




Time scales: Simulations from a few seconds to a few
minutes

Table 1. List of models of processes determining blood clot mechanics at different space and time scales

(See Table 1.) It concludes with a description of several formidable challenges that remain, as
well as the potential for successful development of a systems approach to understanding fibrin

mechanics in hemostasis/thrombosis.

2. Modeling Studies of Fibrin Mechanics and Platelet-Fiber

Network Interactions

In this section, we present an overview of the main processes related to fibrin mechanics and the
main models used to simulate them (see also Table 1).

Modeling individual fibrin fiber mechanics. At the molecular scale, fibrin fiber mechanics is
defined by the properties of monomeric fibrin, an elementary structural unit that shares structural
and mechanical similarity with fibrinogen, a blood plasma protein, converted enzymatically to
monomeric fibrin [9,31]. While this review does not mainly focus on single fiber mechanics, we
are providing a short overview of some of the most important models. For a detailed review on
individual fibrin fiber mechanics, see [20,32,107]. To model the dynamics of human fibrin(ogen)
undergoing forced elongation, which is considered to be an important mechanism to
accommodate strain, Zhmurov ef al. [33] focused on describing the microscale/nanoscale level

and used molecular dynamics (MD) simulations to characterize the a-to- transition in a-helical
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coiled-coil connectors of the fibrin(ogen) molecule, revealing the molecular origin of distinct
elastic, plastic, and non-linear regimes in force-extension profiles. Zhmurov et al. then further
improved their model [34] and used a self-organized polymer model and MD simulations to
elucidate structural mechanisms of forced elongation of fibrin(ogen) based on the stepwise
unfolding of y-nodules concomitant with partial stretching and contraction of a-helical
connectors. Similar results from this and other groups [9], that used MD simulations, suggest that
extensibility of fibrin(ogen) may be due, on the microscale level, to the following molecular
processes: (1) unfolding of coiled-coil connectors; (2) unfolding of the globular y-nodule; (3)
straightening and unfolding of aC region; and (4) combinations of them.

Other approaches, that focused on the microscale level but with reduced computational
cost, utilized a coarse-grained approach to represent the response of a single elastic filament to
an applied force [35-38]. For example, Houser et al. [39] modeled each fiber monomer as a unit
consisting of a wormlike chain (WLC) nonlinear spring. They report that the success of WLC in
replicating the behavior of a single fibrin fiber under tension, suggests that the straightening of
otherwise unstructured polypeptides might be responsible for the mechanical properties of fibrin
observed during stretching and that the elasticity of fibrin is entropic in nature. (See also [9,35]
for a comprehensive review of relevant models.)

Neither molecular dynamics (MD) nor coarse-grained modeling approaches alone can
accurately describe fibrin mechanics across different spatio-temporal scales. Nevertheless,
because MD simulations are computationally expensive and limited to microseconds or at most

milliseconds, the WLC approach (see, among others, [39]) has been largely used as a foundation
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for models for studying mesoscale and macroscale deformation of a single fiber or fibrin fiber
networks due to its demonstrated relevance when the molecular origin of fibrin(ogen) elasticity
is not the main focus of the research.
Modeling fibrin fiber-fiber interactions. Fibrin networks are three-dimensional, consisting of
branched fibrin fibers resulting from self-assembly of fibrin monomers and oligomers further
stabilized via intermolecular covalent isopeptide bonds (fibrin cross linking) introduced by
Factor XlIla [23,40]. The mechanical responses of fibrin networks to shear, tensile, and
compressive loads are highly nonlinear and referred to as strain-stiffening [24,41-43]. These
types of responses are mediated by molecular unfolding, interactions within and between
individual fibers, spatial rearrangement of filamentous networks, and other mechanisms that are
not fully understood [16,40]. Several discrete models have been developed to simulate the
formation of connections between individual fibers. One of such models, based on a bead and
spring representation of individual fibers, was used by Kim et al. [23] to determine fibrin
network elastic modulus for networks with different structures. A similar model was later
developed by Sharma et al. [44] to study how network connectivity affects the mechanical
properties and structural integrity of the tissue. This modeling approach was also later simplified
and used [45] to provide a minimal 2D lattice model that was used to show that fiber-fiber
interactions could influence clot stiffness in compressed fibrin networks. However, the extent to
which such interactions contribute to overall clot stiffness could not be quantified.

Most existing models do not consider bending of individual fibers or physical contacts

between them, which can significantly alter the mechanical response of the entire fibrin network.
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The recently developed Cohesive Fibrin-Fibrin Crisscrossing Model (CFFCM) introduced by
Britton et al. [40] includes these components. The CFFCM uses a general bead and spring
modeling approach to simulate single fibrin fibers. Each fiber in a network is represented as a
segment between two nodes (branch points) containing a series of sub-nodes connected by
nonlinear worm-like-chain springs. The sub-nodes along a single fiber are placed equidistant to
each other to represent a uniform distribution of mass and physical properties within one fiber.
Moreover, a fixed spacing of sub-nodes serves to equally distribute possible fiber-fiber cohesion
sites and points of fiber bending. Model simulation results showed that the nascent cohesive
crisscrossing of fibers in stretched fibrin networks increased the strain of individual fibers in the
network, revealing an underappreciated important structural mechanism of fibrin network
stiffening under external mechanical stresses.

While all previous models used MD or coarse-grained representations of fibrin fibers, a
multiscale model, which would include all structural mechanisms of fibrin crosslink formation
and account for fiber bending, stretching, buckling, and fiber-fiber interactions is yet to be
developed. Given the fact that the mechanisms span from (sub)molecular to individual fiber and
multiple fibers scales, such development is extremely challenging and new mathematical and
computational methodologies to rigorously bridge these scale gaps are needed.

Mechanical properties of fibrin networks. Several modeling frameworks have been introduced
for simulating fibrin structural mechanics at different spatial scales [26,32,46—51]. Storm et al.
[35] developed a molecular theoretical model that accounts for strain-stiffening in a range of

molecularly distinct gels. Subsequently, to explain the strain-stiffening behavior of stretched
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fibrin networks, two conceptually different types of models of cross-linked filamentous networks
were developed and applied in Kang et al. [52]. The first type of models, referred to as entropic
models, assumed the existence of semi-flexible filaments that undergo thermal fluctuations
[35,53]. On the other hand, the second type, referred to as enthalpic models, represented
filaments as elastic rods that can bend and stretch but do not exhibit thermal fluctuations [54—
56]. One entropic approach used by Hudson and Houser et al. [17,39], implemented the WLC
model to simulate the force-strain profile of single fibrin fibers under stretching, with fitting
parameters obtained using data from atomic force microscopy experiments, suggesting that the
natively unfolded area of the aC region mediates the mechanical response of fibrin fibers.
Moreover, their simulations show that the strain-stiffening behavior of individual fibers helps to
redistribute the strain within the fibrin network effectively strengthening it. On the other hand,
Vahabi et al. [57] used an enthalpic extensible WLC model to represent bending and stretching
contributions of the filaments and a 3D face-centered cubic lattice to generate the network
structure showing that the onset of fibrous network stiffening depended strongly on the imposed
uniaxial strain.

Both types of models were capable of capturing the strain stiffening behavior of fibrin
networks, but gave different predictions for the degree and onset of stiffening, suggesting that
further studies are required to calibrate these entropic and enthalpic models to quantifiably
reproduce mechanical properties of fibrin networks [52]. (See Janmey et al. [20] for a more

extensive review of other mechanical models of fibrin networks.) Similar to fiber-fiber
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interaction models, none of these models have yet incorporated many of the multiscale structural
mechanisms accounting for the highly nonlinear responses of fibrin networks.

Deformation and stretching of fibrin clots. At the macroscale level, discrete and continuous
modeling approaches have been used to account for elastic responses of fibrin networks to
external tensile and shear deformations inducing stiffening [40,52,58] as well as to suggest
mechanisms of softening-stiffening behavior of compressed fibrin networks [51,57,59,60]. From
a computational cost perspective, it is advantageous to adopt continuum approaches to model a
meso- or macro-scale network (consisting of thousands or more nodes) and its interaction with
the (fluid) environment. Several continuous models of fibrin networks, including a three-chain
model [61], an eight-chain model [62], and one isotropic network model [35], were used to
predict the force-strain response of stretched fibrin clots [18]. All these models were shown to
correctly reproduce fibrin network behavior under tension in the linear regime. However, at large
strains, the results significantly deviated from experimental data. This significant deviation can
be attributed to the fact that all three models simulated isotropic networks and assumed affine
network deformations. Meanwhile, biological networks such as those formed by fibrin in vivo
are frequently anisotropic and their deformation is non-affine [63]. Additionally, these models
neglect molecular level mechanisms accounting for fibrin nonlinearity such as the unfolding of
coiled-coil connectors that are instead captured by discrete models using non-linear springs.
However, continuous models have been successfully used to make predictions on the mesoscale
and macroscale behavior of fibrin networks under specific conditions. Recently a phase

transition method was used to predict the shear viscoelastic response of compressed networks,
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which revealed a remarkable softening-stiffening behavior due to bent fibers and network
densification [51]. Additionally, continuous models have also been developed to efficiently
simulate the deformation of 2D layered materials at a mesoscale level [64,65]. Also, modeling
approaches for fibrin networks can benefit from earlier introduced models of collagen and mixed
collagen-fibrin gels. Barocas et al. [66—68] developed a multiscale model using non-linear elastic
cylinder representations of fibers, the anisotropic biphasic theory (ABT) of tissue equivalent
mechanics [67], and a structural model of tissue mechanics [68], in which the tissue is
represented as a sum or integral of fiber contributions for a distribution of fiber orientations.
Moreover, Sun et al. [69] utilized continuum chemo-elastic theories to also model the
mechanical behavior of gels. Finally, liquid crystal models were widely developed to model
biological materials, especially bio-gels [70]. Ideas introduced in these works can also be used in
fiber network studies.

It remains a challenging task to develop discrete or continuous models for meso- or
macro-scale networks to include subscale mechanisms. For instance, although continuous models
[51,64,65] are important for studying layered materials, they are not designed to capture the
impact of fiber cohesion on the dynamical changes of the 3D structure of fibrin networks under
stretching [23,51].

Modeling clot contraction. Blood clot contraction, mediated by activated platelets [1], is
essential for hemostasis, and proper wound healing and restoration of blood flow past an
otherwise obstructive thrombus in prothrombotic patients [2,20]. Defective clot contraction can

lead to more obstructive thrombi, which may exacerbate thrombotic conditions such as heart
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attacks, strokes, and deep vein thrombosis. Biophysical regulation of blood clot contraction [71]
is poorly understood. Mechanistic impacts of platelets, nonmuscle myosin Ila, red blood cells
(RBCs), fibrin(ogen), factor XIlla (FXIIIa), and thrombin all affect the kinetics and mechanics of
the contraction process [71]. Studies of individual platelet dynamics and their interaction with
the fibrin network substrate [72] are fundamental to get a better understanding of clot contraction
as well as of a multitude of other biological processes, including tissue healing and development
[73-75], phagocytosis [76], and cancer development [77]. While many experiments on platelet
adhesion and aggregation have been carried out [78,79] and models have been developed [80—
85], quantitative experimental and modeling studies of the emergent properties of contracting
clots have yet to be extensively explored. Experimentally, measuring filopodial forces [86] is
extremely difficult, and for modeling, platelet function during clot contraction encompasses
multiple interdependent factors, including cell shape, number of filopodia, filopodia length,
filopodia strength, and mechanical and adhesive properties of platelets. Notably, Pothapragada et
al. [87] employed a coarse-grained molecular dynamics particle-based model to simulate
filopodia formation during early activation of platelets but did not attempt to model clot
contraction.

Similarly, some of the coarse grained models used to simulate the elastic fibrin network
have recently been modified to include interactions between fibrin fibers and platelets and some
even added interactions with red blood cells [88—91]. In particular, Tutwiler et. al [91] used their
model to study how red blood cells influence the dynamics of clot contraction. These coarse-

grained approaches allow us to simulate some details of the platelet/fibrin interactions driving
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clot contraction. However, depending on the level of detail and number of coarse-grained
elements used, they can be computationally expensive and are often limited in the size of the
clots that they can simulate. Therefore, simulating contraction for clots that are more than a few
tens of micrometers in diameter in a reasonable amount of time remains an open problem.
Nevertheless the current availability of high performance computing facilities and in particular of
high performance GPU computing is allowing for much faster computations than with single or
even multiple CPUs, extending the size of the clots that can be simulated.

Models describing clot fluid interactions. Since fluid comprises a major part of clots, it is
important to consider the fluid impact on fibers, platelets, and other blood cells (see Figure 1B).
Models that include fluid are of particular interest in predicting the formation and impact of
occlusion on blood circulation (e.g. deep vein thrombosis, strokes, and pulmonary embolisms).
In the past decades, the powerful immersed boundary method [92] has been widely used to
simulate single fiber and fiber networks, single to multiple platelets [93], and fluid interactions
[94,95]. At the same time, the immersed boundary method simulations sometimes are very time
consuming, because of the stiffness of the fibers and the small mesh size needed to resolve the
interactions. In this regard, the two-fluid model of de Cagny et. al [96], which describes a
polymer gel as a biphasic system composed of a linear elastic network immersed in a viscous and
incompressible liquid, might provide a good alternative for simulating biopolymer gels. (For
more details see [93,96] and references therein.) However, in this model, network structure is not
directly resolved, and phenomenological parameters are used for coupling the network and the

fluid. More recently, Tashiro et. al [97] used a continuous visco-hyperelastic model for blood
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clots and finite element simulation to study stress transmission from a thrombectomy device to
the blood clot. This model successfully reproduced the hyperelastic characteristics of clots under
tensile load. However, since this model is continuous, it does not reveal how each major

component of the blood clot responds to the tensile load.

3. Open Problems

Development and calibration of multiscale models coupling submodels, of different blood clot
components and processes for studying hemostasis and thrombosis, remains the main challenge.
In particular, combined experimental and computational studies of microscale mechanisms of
lateral aggregation of protofibrils and of the structure of fibrin fibers [8,98—102] remains very
challenging. Designing new models, simulation schemes, and efficient parallel algorithms is
critical in any modeling study of the mechanical response of fiber networks of a considerable
size under fluid flow. Some attempts [26—30,103,104] have been made to couple some aspects of
fluid interactions and mechanical properties of blood clots. These efforts either use a continuum
description for all components, which can miss important microscale or mesoscale phenomena,
or apply a hybrid strategy in which cells are described by discrete submodels such as clusters of
smooth particles, subcellular elements, or cellular Potts representations. For these hybrid models,
spatio-temporal coupling of discrete models with continuum models with proven consistency,
stability, and convergence present a significant mathematical challenge and more work needs to

be done. (For a more detailed review, see [11,105,106].)
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https://paperpile.com/c/NI5zCC/OpBs+awqF+szZ3

The study of clot contraction provides specific challenges for multiscale modeling. As
previously mentioned, the clot contraction dynamics originate from platelets that act at a
microscale or even nanoscale. This includes filopodia extension dynamics through deformation
of the cell-membrane via actomyosin, filopodia adhesion to fibrin fibers, and filopodia retraction.
All of these properties are difficult to measure experimentally. At the same time, some limited
experimental data is already available. For example, measurements of forces exerted by platelets
on substrates with different stiffness levels have shown that platelets exert higher pulling forces
on stiffer substrates [72]. This is an important property to include in clot contraction models
since fibrin fibers have strain-stiffening properties, and therefore are supposed to pull harder on

more strained fibers as the clot contracts.

4. Conclusions

Hemostasis and thrombosis involve complex mechanical and biochemical interplays involving
blood flow, millions of platelets, and the fibrin network. Despite many modeling and
computational challenges, the potential to simulate a quantitative response of the fibrin fiber
network and platelets to simultaneous variations in different hemostatic or thrombotic processes
has major potential for medical and scientific applications. Existing detailed models need to be
further extended and calibrated using experimental data for studying different types of network
and clot deformations including compression. Then, with additional clot fracture data, they can

be also applied for studying clot breakage and formation of thrombotic emboli under different


https://paperpile.com/c/NI5zCC/VeY3T

blood flow conditions as well as for studying other hydrogels including collagen, actin, and

fibronectin, and for designing new biomaterials.
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