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Abstract—In many applications, developed deep learning models need to be iteratively

debugged and refined to improve the model efficiency over time. Debugging some models, like
Temporal Multi-Label Classification (TMLC) where each datapoint can simultaneously belong to
multiple classes, can be specially more challenging due to the complexity of the analysis and
instances that need to be reviewed. In this paper, focusing on video activity recognition as an
application of TMLC, we propose DETOXER; an interactive visual debugging system to support

finding different error types and scopes through providing multi-scope explanations.

B WITH DEEP LEARNING MODELS used in
many applications—often in contexts with high
stakes and critical outcomes— iteratively debug-
ging the models for errors and further refining
them becomes an essential step in developing and
deploying deep learning models [1]. In this paper,
we focus on debugging Temporal Multi-Label
Classification (TMLC) models, which address the
problem of assigning multiple labels (classes) to
all data points in an input sequence, assuming
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all data points in the sequence are related to
each other [2]. These models are used in a wide
range of applications, including video activity
recognition and annotation.

In practice, debugging TMLC models can eas-
ily grow exponentially with the number of la-
bels. For example, in each single video frame
(used for activity recognition), there are 2" pos-
sible combination of labels to examine for errors
(with n as number of labels defined). Therefore,
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examining all possible combinations of labels
within the video becomes exponentially hard.
Additionally, with sequential data, an analyst
must reason about how errors in one datapoint
(e.g., video frame) can propagate and relate to
others within a sequence. With deep learning
models often trained and verified on hundreds or
thousands of instances, analysts need to examine
large collections of all possible combinations
when debugging TMLC models. Even if exploring
all combinations was practical, perceiving model
uncertainties and outputs in numerical or tabular
formats can be challenging and may obscure error
patterns or common problems among instances.

We present research examining video activity
recognition, one of the prominent applications
of TMLC models, with videos as sequential in-
puts, frames as data points, and the labels be-
ing activity components (i.e., actions + objects
and/or locations). Motivated to overcome some of
the debugging challenges in this application, we
propose DETOXER, an explainable, interactive
visual analytics tool for debugging video activity
recognition models. With the deep learning mod-
els being complex and hard to comprehend, we
designed our tool to provide multiple scopes of
explanations and outputs: 1) frame-level outputs
to represent temporal data points and to provide
a compact visualization for the combination of
possible labels; 2) video-level explanations to
provide an overview of the errors and labels for
each unique instance; and 3) global-level expla-
nations to reveal error trends and patterns across
all the instances.

Our tool is designed to support error detection
of variable scopes (errors that occur on instances
vs. high-level patterns that can fix problems glob-
ally) and types (false positive and false nega-
tive errors) through exploration and interactive
visualization. This paper contributes our research
summarized with the following:

1) We demonstrate the DETOXER explainable
visualization system for exploratory debug-
ging video activity recognition models.

2) We present the results of a human-subjects
evaluation.

3) We provide two case studies on models
from two domains to demonstrate how our
tool can support model designers in their

exploratory model debugging.

1. Design Goals

Explainable AI (XAI) approaches aim to
improve a model’s decision-making transparency,
and our work focuses on explanation for model
analysis and debugging. Explanations can help
identify when the model makes errors and
why [3], along with model-wide problems.
TMLC adds a time dimension to the multi-label
classification problem. With these models, the
same instance can be assigned to multiple classes
(labels), and with the inputs being temporal,
what is detected at any given moment relies on
what is observed earlier. This paper specifically
focuses on the problem of debugging video
activity recognition models, a prominent usecase
of TMLC. We summarize our main Design Goals
(DG) in four categories:

DG1) Multi-Scope Explainability. To improve
human understanding of how the model works,
we aim to provide explanations of various scope.
Many applications incorporate instance-level
explanations, which are less overwhelming for
novices and support debugging edge cases in
the model [3]. However, these explanations
may limit the ability to find systematic issues
with large datasets [4] and require usage over
time to achieve that. When working with multi-
label classification, instances that are detected
as matches for any given class are often a
smaller subset than non-matches and easier to
examine, while users may be biased towards
inspecting more false positives than negatives [4].
We provide additional global explanations to
help contextualize instances with model-level
information.

DG2) Support for Guided Exploration.
Visual analytics tools allow for exploratory
approaches to debugging machine learning
models, but it can be difficult to find a good
starting point for candidate problems. Verifying
whether an observed instance-level error is also
a systematic problem can also be challenging. To
this end, we aim to support guided exploration
of the outputs by calling attention to underlying
problems with instances and labels in our design.
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DG3) Supporting Both Multi-Label and
Temporal Comparisons. With thousands of
possible combinations of labels to show per
video, our goal is to minimize the presented
information to improve the exploration while
providing enough context for error detection and
explorations. Additionally, it is important for the
design to integrate the temporal nature of the
input, as data points (frames) in a sequential
data (video) might depend on the prior data
point(s). Our design aims to support comparisons
of various labels at any given frame (time).

DG4) Supporting Detection of Type 1
and II Errors. Debugging machine learning
models should go beyond merely finding any
errors, as some types of errors can be more
prominent or even overshadow others. Thus,
we aim to encourage attention to different
types of errors—specifically, we call attention
to False Positive (FP or type 1) and False
Negative (FN or type II) errors. Depending
on the domain and how critical the task is,
detection of either or both these errors becomes
vital. For instance, with anomaly detection in
surveillance cameras, it is more consequential
when malicious activities are not identified (i.e.,
false negatives). In general, many applications
that showcase model-generated outputs fail to
highlight both false negatives and false positives.
This is because the focus is on highlighting
detection hits when displaying outcomes, which
comprise true and false positives. Since both
false positive and false negatives are important
in the debugging process, our goal is to design
our tool to intuitively steer user attention to both
of these error types.

2. Model

The machine learning model we use in this
paper comprises a two-tiered system that uses a
CNN based on the BAIR/BLVC GoogleNet archi-
tecture [5] and a tractable dynamic probabilistic
model to model the temporal dependencies be-
tween the labels as a joint probability distribu-
tion [6], [7]. With this two-tiered architecture,
the first layer serves as a video classification
black-box model, while the second layer a) gen-
erates explanations for probabilistic queries and
b) refines the accuracy of noisy labels at each
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frame to obtain the true ground label. For more
information on the model specifics and technical
details, we refer the readers to our prior work [8],
or the supplemental material of this paper. We
emphasize that our application and presented vi-
sual designs can work with any TMLC model for
video activity recognition as long as individual
label probabilities (w.r.t to the model) can be
calculated at each time slice.

3. System Design

To address our design challenges, we pro-
pose DETOXER, an interactive debugging tool
that supports detecting errors of various types
and scopes in video activity recognition mod-
els. Our system supports three levels of expla-
nation/outputs: (1) Global explanations, high-
lighting performance information extracted from
the model-Figure 1 (D) and (E); (2) Video-level
explanations, highlighting high-level information
about each video-Figure 1 @ and ; and (3)
Frame-level explanations, demonstrating infor-
mation specific to each frame (image) of a se-
lected video—Figure 1 @ Although both (2) and
(3) provide explanations on the instance level, (2)
can be considered more global on the explanation
scope spectrum.

The web-based interface for DETOXER is
implemented using HTML/CSS, React.js, D3 js,
and Material Ul (MUI). ! An overview of our
visualization is shown in Figure 1. In this section,
we will first describe interface design components
in our tool and how the information they present
is extracted from the model to support the design.
We will then briefly describe how each of these
elements can be used concurrently or separately
to support our design goals.

3.1. Heatmap View

In our model, an activity consists of up to
three components: an action + an object and/or a
location. For each of these activity components,
we have a set of labels that are defined for the
model through data annotations. Our main goal
was to allow a high-level view of the activities
within a given video where users can get a grasp
of activity components detected by the model
by simplifying the examination of thousands of

IThe application is open-sourced and available here: https://
github.com/MahsanNourani/DETOXER.
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Figure 1: The overview of DETOXER. In the center, a video is selected for exploration. Directly under
the progress bar, heatmaps demonstrate the model’s confidence for any given label per second @
(frame-level explanations). On the left, available videos are shown; for each video, the tool shows
top-5 detected labels @ and the rate of FP and FN errors (B) in the video (video-level explanations).
The selected video is emphasized with a blue background. On the right, a global information panel
displays model performance metrics @ and object-specific FN and FP error rates in two vertically
adjacent bar charts @ (Global-level explanations).

possible combinations (DG3), while supporting
the detection of both error types (DG4). More-
over, we sought after a visualization approach that
would highlight the temporal aspect of video data
(i.e., DG3) [9], [10]. To this end, for each activity
component defined in our vocabulary (comprised
of actions + objects and/or locations), we provide
a temporal heatmap under the video progress bar
(see Figure 1). Heatmaps represent probabilities
extracted from the model, and we simply define
them as the model’s confidence score for whether
a given component is present at the given time.
For the currently selected video, the heatmap
rows are statically ordered based on relevance of
labels.

The component-wise confidence scores in the
heatmaps were extracted from the model and
show the marginal probabilities conditioned on
the evidence from the neural network. If X ,it)
is the random variable associated with the k-th
component of the ground label vector at time
slice ¢ for video v, then the confidence score is
given by P(X\” = 1|y&7)) where T, denotes

the number of frames in video v and y:7%)
denotes the noisy labels obtained from the neural
network for all the frames in v. We also computed
a relevance score for each component label and
ordered them in descending order of their scores.
The relevance score for each predicted label y
in a specific video v was computed as R(y, v)
Fl(y,v)-#tframes(y,v) firaframeys Where
F1(y,v) is the F1 score of y in v while
#frames(y,v) and first_frame(y,v) are the
number of frames and the first frame respectively
that y is detected in v.

3.2. Global Information Panel

In accordance with DG1 and DG2, we sought
to design an information panel where users
could review estimations of the model’s over-
all strengths and weaknesses to guide inspec-
tion of different errors while debugging. We de-
signed a global information panel to show gen-
eral information—extracted and calculated from
the model—to guide user explorations. Note that
all the information represented in this panel are
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Table 1: The Jaccard Index computation per video frame.

True Positive: TP(z,y) =z - 1{z = y}

False Positive: FP(z,y) =z - 1{z # y}

True Negative: TN (z,y) = (1 — z) - 1{z = y} False Negative: FN(z,y) = (1 — z) - 1{z # y}

overall estimations considering the entire data set
(i.e., all videos). At the top of the panel, we show
three metrics, including model accuracy (higher
values better), overall rate of false positives (type
I errors), and false negatives (type II errors) in the
model (lower values better); see Figure 1 @ We
also visualize the rates of false positive and false
negative errors per each object in the vocabulary
via two bar charts (Figure 1 @). Bar charts are
vertically aligned to support easier comparison of
type I and II errors for the same object. Higher
percentages represent higher number of errors.
Prior research demonstrates the effectiveness of
the presence of such information on early-on
debugging attempts [11], [12].

The overall accuracy of the model was mea-
sured using the Jaccard Index which is defined as
the ratio between the intersections and the unions
of the ground (true) labels and the predicted labels
respectively. This metric is commonly used in
multi-label classification system since it measures
the degree of overlap between the true labels and
predicted labels and yields a value of 1 when
both sets are exactly the same and O when they
are disjoint with nothing in common. The Jaccard
Index was computed for each frame of each video
and then averaged out over all the frames and
videos, as seen in Table 1.

The false positive rate (FPR) is defined as
the ratio between the number of false positives
and the total number of false positives and true
negatives. The false negative rate (FNR) is the
ratio between the number of false negatives and
the total number of false negatives and true pos-
itives. These are computed for each video and
then averaged over over all videos. FPR and FNR
are important metrics because they provide the
user with an estimate of how frequently they
can expect the model to make FP and FN errors
respectively. The usefulness of these metrics for
debugging is highlighted in section 5.
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3.3. Video Preview

While the global information panel provides
high-level context (DG1) and supports explo-
ration (DG2), it does not incentivize instance-
level explorations and might be insufficient as the
number of instances to explore grows. To address
this problem, we provide summarized, high-level
information per video to explain model errors
per video and show the most prominent labels
detected in the video.

On the left-side of our application is a list
of all videos available to the model. Each item in
the list includes a video preview with a thumbnail
(showing the middle frame of the video) and de-
scriptive model information. We show the top-five
activity components (labels) the model detected
for the video as simple tags (in pink; Figure 1
@). We also show the calculated percentage of
FPR and FNR for the video ( Figure 1 (B)). In the
example of Figure 1, the model was more likely
to not detect labels/activities that are taking place
rather than detecting something by mistake.

The FPR and FNR for each video use the
same formula described in subsection 3.2 with
the only difference being that we compute these
on a per-video basis and therefore average out
only over the number of frames present in the
current video. To calculate the top-five detected
tags, we compute a relevance score (as we did
in subsection 3.1) per each activity component
(label) defined in the system and pick the compo-
nents with the top five scores. The relevance score
is calculated for a predicted label y and a video
v as T(y,v) = Fl(y,v) - m where
F1(y,v) is the F'1 score while present(y,v) is
a function that evaluates to 1 if label y is on for
video v for at least one frame and O otherwise.
This was motivated by the notion of assigning
higher priority to rarer labels that are specific to
a select subset of videos.

3.4. System Usage
Each of the designed interface elements can
be used separately or together throughout the
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debugging process. In this subsection, we de-
scribe the intended utility of our visual design
via a hypothetical example to showcase a poten-
tial debugging workflow that would not require
expertise in machine learning.

The global information panel can be ben-
eficial with context-aware error detection as it
presents global-level explanations regarding the
model (i.e., explanations that are not specific to
any instances). As prior work shows, local expla-
nations can limit mental model formations [4].
Our design aims to counteract such problems
by including descriptive model information and
directing user awareness towards varying levels
of system performance.

Furthermore, users might not know where
to look at or what to look for when debug-
ging a model. Global explanations in this panel
support and contextualize exploratory debugging,
especially earlier in the debugging process or
when users struggle with error discoveries. In our
example approach, users can initially understand
the model’s performance through inspecting the
global information panel @ For example, they
might notice that the model is prone to more
FN errors than FP. This can encourage them to
explore potential false negatives and decide what
components to investigate further. Using the false
negative bar charts (@), users find components
with the highest possible error rate. In case of
multiple possibilities, users can compare those
based on their false positive errors choose the
one that is suspected to maintain the highest error
values in both error categories.

Let us assume a user decides to investigate
object X. The next step is to identify which
videos contain the selected object. Extracting and
visualizing explanations for the video instances
and generating a high-level overview of each
video is another aid for users in their debugging
process. These features can be used separately
or together with the global information. In our
example, since there are many videos available,
it might be the wiser choice to refer to the
top detected components @ to determine which
videos contain object X. While this narrows down
the search, the decision of which video to explore
first remains. Using the detection error infor-
mation in the video preview , the user can
decide to explore the video with the highest FNR.
Even if the user ignores the global information
panel, using these two features is still useful
in selecting a video to explore. Additionally,
this design supports the discovery of higher-level
error patterns that are concurrent across various
instances, as users can skim through the available
videos for specific components and drill down
their search to only those videos. Such technique
can generally be used when many videos exist
where a video overview can be beneficial. Other
techniques, such as filtering, can be utilized to
improve interactivity and the debugging process
based on the context, domain, and number of data
inputs.

From this point forward, exploring videos
through using and comparing heatmaps @ allows
for finding FN/FP errors with object X. Our
heatmap design aligns with our main design goals
(i.e., DG1 and DG2-3) and provides support
throughout the debugging process. Having one
temporal heatmap per activity component (i.e.,
label) provides an overview of model predictions
based on video frames while stacking them al-
lows for comparisons across multiple labels and
identifications of various combinations simultane-
ously. In our example, a user may observe that
the model does not detect object X when the
person is performing action Y on it. The heatmaps
provide a simple means to visually locate such
correlations and to compare the patterns of action
Y and object X. For instance, when exploring the
heatmaps from cut and cutting board in Figure 2a,
we can detect a logical correlation between the
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Table 2: Summary of significant results for user
reported helpfulness and usage of different design
elements in DETOXER. Bold texts represent the
more-used elements.

Main Effect
x2(5) = 24.9,72 = 0.33,p < 0.001 *
Post-Hoc Test

(a) Helpfulness

pairwise comparison failed to detect significant differences.

Main Effect
x3(5) = 32.2,n2 = 0.43,p < 0.001 *
Post-Hoc Test
Heatmaps vs. FN Bar charts (p < 0.001) *
Heatmaps vs. FP Bar charts (p < 0.001) *
H vs. Overall Performance Metrics (p < 0.001) *

(b) Usage

two. The video is focused around the activity
of cutting a potato; however, there are occasions
where the potato is not detected, although cut
and cutting board are detected. This can either
indicate a false negative error for potato, or a
false positive error for the other two components.
We could therefore show that displaying overall
label detection coupled with color-coded model
confidence for individual activities in the heatmap
can reveal both FPs and FNs in our model.

Finally, exploring multiple videos that include
object X might reveal hidden shared patterns
across videos. For instance, assume that the false
negative error with activity Y + X happens in
more than one video; thus, the user can identify
this as a higher-level problem and fixing it glob-
ally can solve this problem in all or most of the
videos.

The debugging process presented in this sec-
tion provides context for how debugging TMLC
models might work using DETOXER or similar
implementations. Since it supports open-ended
exploration, analysts are able to adjust their de-
bugging approach according to their goals and
level of machine learning familiarity. Such added
flexibility allows analysts to adapt to different
error detection techniques over time in the itera-
tive debugging process. In the following sections,
we demonstrate how DETOXER supports other
workflows and usage scenarios for both non-
expert users and model experts.

4. User Study

We conducted a user study (approved by our
Institutional Review Board) to evaluate the de-
bugging tool and assess the effectiveness of the
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different interface components in an exploratory
debugging scenario. For this study, we used a
model (described in Figure 2) that was trained
on activity recognition with videos of kitchen
activities using the TACoS Corpus dataset [13].

4.1. Study Design and Procedure

We designed a study where participants were
asked to a) find false positive and false negative
errors with the model and b) identify higher-
level problems that are common across multiple
inputs. The task was limited to 30 minutes, and
participants were free to inspect any number of
videos. Additionally, participants were asked to
use a think-aloud approach and verbalize errors as
they found them. After the main task, participants
completed a questionnaire, rating their usage and
the helpfulness of each interface element on an
ordinal scale, followed by a short interview to
better understand users’ approach.

We recruited 15 participants (8 females, 7
males) who were undergraduate and graduate stu-
dents from computing fields with some familiarity
with software debugging. The study was con-
ducted online through video conferencing, with
the study lasting approximately 60 minutes.

4.2. Study Results

We first present the quantitative analysis for
the self-reported usage and helpfulness of the
interface elements of DETOXER via repeated-
measures statistical analysis. With both measures
being ordinal, we used a Friedman statistical
test for the main effect and a Wilcoxon signed-
rank test with Bonferroni correction for pairwise
comparisons.

Table 2 shows the summary of the main quan-
titative findings and the significant comparisons,
and Figure 3 shows the distributions of the
responses. As demonstrated in Table 2, while the
omnibus test for both usage and helpfulness mea-
sures showed evidence of significant differences
among interface elements, posthoc testing only
found evidence of pairwise significant differences
for self-reported usage. The posthoc test in usage
indicates that participants used the heatmaps (Fig-
ure 1 @) significantly more than explanations on
the global information panel (Figure 1 @ and
@). The distribution of the self-reported helpful-
ness of the design elements (as seen in Figure 3)
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Figure 3: Participants’ self-reported usage and helpfulness for the main elements of DETOXER.

shows that, overall, most of the participants found
them helpful, despite variations in usage. For
instance, despite using them less than heatmaps,
participants still found the global information
panel helpful in their task.

To better understand these results, we inter-
viewed participants about their debugging ap-
proach and usage. Here, we summarize the find-
ings of qualitative analysis focusing on error types
and usages of interface elements.

The heatmaps and video preview panel were
the most used design components (Figure 3);
86% and 60% of the participants mentioned
they used them. Additionally, around 40%
of participants explicitly mentioned heatmaps
supported the identification of and brought their
focus to both FP and FN errors at the same
time. Following our design motivations (DG4),
this observation provides further evidence that
DETOXER promotes attention to both error types.
We further found three debugging trends
based on the affinity diagram:

1) Instance-level debugging: Participants re-
lied heavily on video-specific explanations
and designs; i.e., video preview explanations
(Figure 1 @ and ), heatmaps (Figure 1
@), and the video). The total of 67% partic-
ipants incorporated this approach, who stated
that they either explored videos (1) in no
specific order, (2) in the order they appeared,
or (3) based on the top components or the
error detection per video to decide what to
explore.

Global-level debugging: 13% of partici-
pants relied on the global information panel
to first identify objects with the highest
known errors (Figure 1 @), and then looked

2)

for videos containing those items to investi-
gate why the system is making these mis-
takes.

Multi-level debugging: 20% of participants
changed their approach at different times
(i.e., a hybrid approach). These people re-
ported relying more on the global panel later
in their debugging process or verified their
exploration directions by referring to the
provided global explanations.

These trends confirm that DETOXER provides
support for various debugging approaches, as
users were able to focus on both global and local
inspections depending on their goals (DG1). For
example, one participant explained their global-
level debugging approach:

“...I looked at the false positive and false
negative rates per object [bar charts] ... [and]
picked objects from either of these categories with
higher [error] values and associated them with
the videos in the top components. So when I
looked at a video and the heatmap, it provided
a better insight into [the activity].”

Another participant described their instance-
level debugging as:

“...I was watching the video and seeing the
heatmaps. That was really my process, to see if
[the heatmaps] were accurate. I didn’t use the
[global information] panel as much, I looked
at them but I wasn’t really thinking about the
percentages; more if they were accurate or not”.

3)

The findings from this study demonstrate
DETOXER’s flexibility for enabling different ap-
proaches to model debugging, and the results
provide evidence that general users are able to
understand and effectively use such design, which
aligns with the intended system usage discussed
in subsection 3.4.
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5. Case Studies in Model Debugging

In this section, we describe DETOXER’s case
studies through two different activity recognition
models trained with two video data sets: the
TACoS dataset of kitchen activities [13] and video
dataset of wet laboratory procedure [14]. As op-
posed to the user study, the goal in the case study
is to demonstrate the utility of DETOXER for
experienced model architects in diagnosing both
system-wide and instance-level model errors. For
both models, the activities included action and
object, with the cooking dataset including loca-
tion as well. In this section, we briefly describe
four examples of error types identified through
debugging with DETOXER. More details of the
case study can be found in the supplemental
material.

5.1. Confusion Pairs

A confusion pair is when a single ground
label = is mistaken for a predicted label y
such that x # y. DETOXER makes identifying
these errors much more efficient by providing
a visualization for the distribution of confidence
scores for each label through heatmaps (Figure 1
@). For instance, with the cooking dataset, we
examined videos including pineapple as a top-
detected component (Figure 1 ) to investigate
why they have the highest FPR. After thorough
examination, we found that the model mistakenly
detected pineapples when the edible object was
cucumber.

5.2. Error Rules

Almost all of the errors made by the system
can be succinctly summarized as probabilistic
rules of the form p® : &® — y® where p®
is the probability of the ith rule, ¥ is a set of
ground labels and y® is a set of predicted labels.
The system supported such error debugging for
both models. For example, in the wet lab model,
we observed the FNR was relatively high for
certain objects (over 30%) despite the model’s
high accuracy (around 84%). The label salt bottle
had a FNR of around 70%. We examined the
videos and the heatmaps to find that salt bottle
was almost always missing whenever get and
pipette were present. Querying the model returned
a probability of 0.98 giving us the error rule:
0.98 : get, pipette, salt bottle — get, pipette.
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Figure 4: Heatmap persistence comparison be-
tween cooking (top two: lower persistence) and
wet lab (bottom two: higher persistence) datasets.

The heatmap helped us quickly isolate videos
to confirm these error patterns—something that
would have been difficult to detect otherwise.

5.3. Low Confidence Negations

These are false negatives with mid to low
confidence scores (i.e. between 0.2 to 0.6). For
instance, for the debugged model for cooking
videos, bowl had a relatively high FNR (Figure 1
@). By checking and isolating heatmap areas
with low to mid confidence scores in videos with
bowl, we identify that while bowl was detected
by the model, the model had lower confidence in
its prediction; thus, increasing FNR. DETOXER
helps highlight such low confidence negations
that could be fixed by improving train data to
improve model’s confidence.

5.4. Persistence-based Errors

In the context of TMLC problems, we define
“persistence” of a system to be its tendency to
keep labels on after they are first detected. A
highly persistent model would tend to keep a label
on for a longer period of time, once activated.
In our case studies, the cooking model had low
persistence and the wet lab model had high per-
sistence (see Figure 4). This was clearly visible
upon examining the heatmaps for each video.
For example, action labels like cut and peel have
heatmaps that are highly fragmented into multiple
tiny sections (around a second or two long). Due
to DETOXER showcasing this visually, analysts
can become aware of the problem and rectify by
introducing solutions like adding regularization
terms.

6. Discussion and Conclusion

DETOXER provides multiple explanation
scopes to support systematic understanding of
TMLC model errors both globally and locally. The
interactive visualization tool provides: frame-level
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model predictions through temporal heatmaps to
support comparing combinations of labels over
time; video-level information specific to video
via showing the top-five detected labels and the
overall FPR and FNR; and global-level explana-
tions including model performance measures and
bar charts showing FPR/FNR for all the activ-
ity components of objects to support systematic
exploration and analysis when detecting errors.
The presented usability study demonstrates the ef-
fectiveness of DETOXER for various exploratory
debugging workflows, and the two case studies
showcase how it can be utilized by machine
learning specialists for elaborate, technical error
detection.

The system is a novel, open-sourced debug-
ging application in the context of video activity
recognition. Our visual analytics approach is not
domain-dependent and may be used for any tem-
poral model where individual label probabilities
can be calculated at every time frame. Our ap-
proach/system can extend to other video activity
recognition or TMLC applications, regardless of
the number or length of the videos. For instance,
in the anomaly detection domain, each anomaly
can be represented by one heatmap, and the
colors can vary based on the importance of the
anomaly or model’s confidence in detecting them.
Furthermore, combinations of anomalies might be
explored by comparing various heatmaps at the
same time when a higher-level anomaly consists
of smaller irregularities or when new anomaly
behaviour patterns need to be explored.

While the usage of our heatmap representation
is more specific to temporal and sequential data,
the usage of the model-agnostic design features
can be extended to other models and tools. For
instance, the model performance metrics and the
FPR and FNR (both local and global variations)
can be incorporated by other models to improve
explainability for debugging purposes or to im-
prove user mental models.

We hope our visual analytics tool motivates
future debugging applications and systems for
TMLC models, and our model-agnostic design
features can inspire future visualization of trans-
parent machine learning models.
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