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Abstract—Developing compute platforms capable of performing
computations at high speed is essential for data processing in the
next generation of data centers and edge devices. A neuromorphic
photonic accelerator on a silicon photonic platform is a promis-
ing solution. Compared to silicon photonic data communication
transceiver modules, neuromorphic photonic accelerators consti-
tute a large number of active and passive components and optoelec-
tronic devices to handle the parallel processing. Thus, an increased
number of optical and electrical interconnects are required, making
the packaging of such processors challenging. Moreover, thermal
and electrical crosstalk can dramatically degrade the performance
of such processors. Thus, packaging a neuromorphic photonic
accelerator for efficient processing and data movement requires
careful considerations at the chip, module, and board levels. This
work investigates the challenges and potential solutions for op-
tical coupling, optical and electrical interconnections, processor-
memory communication, and thermal and electrical cross-talk to
develop neuromorphic photonic accelerators.

Index Terms—Heterogeneous integration, optical computing,
silicon photonics, co-packaging.

I. INTRODUCTION

HOTONIC computing is a promising technology to address
I the explosive demand for cost-effective data movement
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and processing in future data centers. Graphics processing units
(GPUs) and tensor processing units (TPUs) enable energy-
efficient parallel computation and hardware acceleration [1].
Together with CPUs, they provide a compute platform suitable
for different kinds of neural networks. TPUs are especially
suited to 8-bit precision computation with high energy efficiency.
However, current and future datacenter inference and training
demands require accelerators that drastically reduce latency and
increase TOPS/W. Silicon photonic processors can exploit the
inherent parallelism and large bandwidth at optical frequen-
cies [2] to implement multiply—accumulate (MAC) operations
with large throughput and low latency on-chip [3], [4], [5], [6],
(71, [8].

Fig. 1(a) shows a building-block perceptron including mul-
tiple inputs, the sum of products, and a nonlinear activation
function. Fig. 1(b) shows the concept of a silicon photonic
neural network enabled by wavelength-division multiplexing
(WDM). Ring resonators as tunable filters together with the
detectors implement the vector-dot product (as the linear part of
the neuron) with the ring resonator performing the weight tuning
and elementwise multiplication, and the balanced photodetec-
tors performing the summation (while enabling positive and
negative weighting) and OE conversion. After current-to-voltage
conversion, a ring modulator applies the nonlinear activation
function to the electrical signal, performs EO conversion, and
delivers the optical signal to the next layer or the feedback
loop. Neuromorphic photonic accelerators consist of four fun-
damental elements: 1) A photonic engine for performing the
processing and computation tasks, 2) CMOS circuits such as
trans-impedance amplifiers (TIAs), digital-to-analog converters
(DACs), and analog-to-digital-converters (ADCs) for electri-
cal signal amplification, calibration and control of the neural
network parameters, 3) laser sources to supply input optical
signal at various wavelengths possibly aided by semiconductor
optical amplifiers (SOAs) for maintaining the required optical
signal-to-noise ratio and compensating for the optical propaga-
tion loss [9], and 4) a CMOS digital processor to handle the
tasks not suited for the photonic engine. Fig. 2 shows the block
diagram of a neuromorphic photonic accelerator. Interfacing
the photonic engine with the CMOS circuits and optoelectronic
components requires a significant amount of pads and inter-
connections, and hence the scalability of such processors is
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Fig. 1. (a) Abstract model of an (n’th) artificial neuron in a neural network.
Incoming signals x; withs = 1,2, ..., N are weighted (w;). Their sum, added
to a trainable extra bias by, is nonlinearly transformed (¢) into an output
signal y,,. (b) Silicon photonic neuron implementation, with electrical 10
emphasized. Incoming signals P;(¢) encoded onto the power envelope of
wavelength-multiplexed signals are individually weighted by NV spectral filters
reconfigurable through, as an example, individual voltages V;}?. Summing is
performed by balanced photodetectors (each requiring a bias V,¥), with the
external bias captured by an added current If;. Nonlinearity is achieved by
remodulation onto the power envelope of an output carrier Py, (¢) through a
transimpedance amplifier (TIA) and a high-speed reconfigurable spectral filter,
whose wavelength can be separately adjusted on a slower timescale with, as an
example, control voltage V/,.
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Fig.2.  Block diagram of a neuromorphic photonic accelerator and its electrical
and optical interconnects. The bias distribution network delivers adequate DC
signals to the light sources, active devices on the PIC, and SOAs.

a complex problem [9]. Indeed, one of the main challenges
in developing advanced neuromorphic photonic accelerators is
co-packaging of photonic integrated circuit (PIC) with CMOS
electronics and opto-electronic components. This is primarily
due to the number of electrical interconnects required, the size
mismatch between CMOS and photonic chips, and the difficulty
meeting the bandwidth requirements (since the photonic com-
puting core requires serial data at tens of Gb/s for full utilization
of its throughput capacity). Moreover, co-packaging CMOS
and silicon photonic chips necessitates overcoming thermal,
electrical, mechanical, and optical challenges [10]. This paper
investigates potential packaging solutions for developing neuro-
morphic photonic accelerators from a laboratory prototype with
a few I/Os to a large-scale module with many I/Os. Section II
reviews existing technologies for developing neuromorphic pho-
tonic accelerators and provides an insight for packaging of
large-scale neuromorphic photonic accelerators. It describes the
challenges involved in photonic-electronic co-integration with
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Fig. 3. Neuromorphic photonic accelerator packaging: (a) Top view of a
conventional packaging technology consisting of a CMOS ASIC including
SRAMs, TIAs, and drivers, and a neuromorphic photonic accelerator all on a
PCB board which utilizes a PCle interface to communicate with the main CPU
on motherboard. (b) Prospect of a packaging solution consisting of a silicon
PIC, CMOS chip, and ITI-V DFB lasers and SOAs integrated via photonic wire
bonds. The CMOS ASIC includes memory controller, modulator drivers, and
TIAs. BP:bond pad, EWB:electrical wire bond, PWB:photonic wire bond; The
recess cavity, etched in the PIC surface, helps to vertically align the facet of the
DFB laser with the waveguide facet at the edge of the PIC and hence facilitates
the process of photonic wire bonding.

several optoelectronic components and optical and electrical
interconnects. A scalability analysis for common packaging
techniques is also presented. Section III reviews recent advances
in memory-processor communication and proposes a hardware
architecture for implementing efficient data movement between
a neuromorphic photonic accelerator and memory modules.

II. PHOTONIC-ELECTRONIC INTEGRATION

Monolithic integration, multi-chip side-by-side integration
through wire bonding on a printed circuit board (PCB) or
flip-chip bonding on an interposer [11], and chip-stacked flip-
chip bonding are common photonic-electronic integration ap-
proaches [12]. Dense photonic-electronic integration is possible
using monolithic technology. However, considering the cost of
fabrication and the lack of scaled CMOS transistors in existing
monolithic CMOS-SOI photonic-electronic process, multi-chip
integration is the most prevalent choice for high-volume pro-
duction today. Multi-chip integration helps achieving the best
functionality of photonic and CMOS ICs each fabricated in a
separate technology node (PIC in 90 or 130 nm SOI, electronic
IC in bulk FinFET or BiCMOS SiGe process) [13]. The photonic
processor core should handle multiple optical and electrical
signals such as the optical input signals, optical output signals,
driving currents for distributed feedback (DFB) lasers or SOAs,
and driving currents for weight control. To manage the signals,
integration of multiple chips is essential - an SOI photonic
chip as the processing core, and a CMOS chip in an advanced
process node for high-speed analog to digital (A/D) and digital
to analog (D/A) conversions, SRAM, memory controller, I/Os
and digital cores. The low-speed controllers for the SOI photonic
devices can be included in the CMOS chip, or included in the
SOI photonic chip if the latter is on a monolithic CMOS-SOI
photonic-electronic process ([14] as an example). DFB lasers or
SOAs can be placed on the same carrier as the photonic chip or on
the photonic chip inside a recess cavity, as illustrated in Fig. 3
and connected to the PIC using V-groove fiber coupling [15]
or photonic wire bonding [16]. Fig. 3(a) shows an existing
technology leveraging the Peripheral Component Interconnect
Express (PCle) interface to connect to a PCB incorporating a
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neuromorphic photonic accelerator and a CMOS ASIC includ-
ing SRAMs, TIAs, and drivers. In this approach, optical sources
are placed outside the accelerator PCB on the motherboard. The
Optical I/O ports provide an interface for the optical signals.
Fig. 3(b) shows the prospect of co-packaging the memory as
well. Flip-chip bonding is a feasible approach for integrating
the CMOS application-specific integrated circuit (ASIC) and the
memory module with the photonic processor core. More details
are provided in Section III.A.

A. Optical Interconnects

1) Chip-to-Fiber Connection: Conventional light-coupling
technologies such as edge coupling and vertical coupling re-
quire tedious active alignment [17]. V-grooves allow passive
alignment, but occupy a large area on the PIC. Furthermore,
a failed fiber attach process will waste a significant amount of
good silicon in V-grooves [18]. Thus, it is essential to explore
alternative methods for low-loss light coupling with passive
alignment.

Photonic wire bonding (PWB) is a technique in which a
three-dimensional free-form polymer waveguide is fabricated
in-situ by two-photon polymerization [16], [19], [20]. This
technology has enabled the demonstration of a highly compact
hybrid multi-chip assembly of an optical transceiver [21]. PWB
can also be employed to accommodate the complex packaging
needs of neuromorphic photonic accelerator architectures for the
following reasons: (1) PWB enables dense optical I/O intercon-
nections with optical fibers by utilizing multi-core fibers [20]. (2)
Chip-to-chip coupling can be realized with a pitch of 25 pm, and
could be further reduced to 10 pum, which allows for 100 PWBs
per millimeter of chip edge [21]. (3) Compared to out-of-plane
coupling techniques, PWB interconnects enable the construction
of flat packaging, which is helpful in miniaturizing the optical
I/O to silicon photonic (SiP) chips via in-plane coupling to
optical fibers [20]. (4) PWB allows for connecting components
with disparate mode field diameters and material platforms,
such as III-V lasers [22], SOAs [23], silicon-on-insulator (SOI)
chips, and optical fibers [20]. (5) The insertion loss is low, with
chip-to-chip loss of 0.7 dB = 0.15 dB [21], chip-to-laser loss of
0.4 dB £+ 0.3 dB [22], and chip-to-fiber loss of 1.6 dB £ 0.13
dB [20]. (6) The PWB fabrication can be fully automated using
existing 3D machine vision techniques [20] which enables high
throughput, e.g., 30 s for each chip-to-chip bond [22]. (7) As
the PWB process does not require precise (< 1pm) passive or
active alignment of the components to be bonded, the assembly
of components is greatly simplified. An illustrative example is
shown in Fig. 4 as a laboratory prototype (all of the drivers, TIA,
temperature controller, laser, and optical amplifiers are therefore
external). The SOI PIC chip has its optical I/O coupled to the
fiber array with PWBs. Electrical wire bonds connect the metal
pads on the SOI chip and the pins on PCB, although flip-chip
bonding must be used for a high pad-count implementation. A
Peltier module and a negative temperature coefficient (NTC)
temperature sensor is used for precise temperature control.

2) Laser Integration: To support parallel analog computing
in the optical domain in large-scale neuromorphic photonic
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Fig. 4. Assembly of a PIC with photonic wire bonding: (a) Isometric view
of the assembly with PCB sub-mount, SOI chip, fiber array, negative tempera-
ture coefficient (NTC) temperature sensor, and the Peltier temperature control
module. (b) The Peltier module is attached to the back side of the PCB.
(c) An implementation of the assembly. (d) The photonic wire bonds couple
light between the fiber array and the SOI chip.

accelerators, a scalable and cost-effective method for integrating
multiple lasers with silicon photonic PICs is needed. Here we
propose a heterogeneous integration approach utilizing wafer-
scale SiP fabrication to produce integrated SiP circuits combined
with high-quality III-V DFB lasers using photonic wire bonds.
Heterogeneous integration of III-V components, specifically
lasers, with SiP is a very active area of research, and many
impressive techniques for integrating these components on-chip
have been demonstrated. These strategies can be classified into
two broad categories: 1) Heterogeneous integration of III-V
materials on SOI, either through direct wafer bonding [24],
or hetero-epitaxy [25], and 2) multi-chip integration, where
laser (or SOA) dies are placed on an existing SiP chip [26],
[27]. Broadly speaking, direct hetero-epitaxy of III-V lasers on
Si can be further separated into two classes: selective epitaxy
of III-V lasers on pre-patterned Si/SOI wafers, and blanket
epitaxy of III-V lasers on III-V/Si compliant substrates [28].
While the blanket epitaxy approach is the most mature, and
has demonstrated lasing properties approaching that on native
substrates in the O-band [28], [29], [30], [31], [32], it suffers
from the requirement of using thick buffer layers which sep-
arate the active gain region from the SiP circuit by several
micrometers. This makes efficient coupling of light from the
active region of quantum well lasers to the SiP circuit a chal-
lenge. Furthermore, quantum well lasers suffer from low laser
efficiency. For example, quantum-well-based active region in
a GaAs laser, epitaxially grown on silicon, does not provide a
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Fig. 5. Methods for integrating lasers with silicon photonics. (1) Traditional
external laser approach utilizing free space optics and traditional Faraday
isolators to realize high-performance lasers. Light is coupled to the SiP chip
through fiber or free space coupling. (2) Laser die bonded on the surface of the
SiP chip with free space optics to couple light to the Si layer. (3) Laser die placed
p-side up in etched cavity where light is coupled via free space to the SiP circuit.
This requires high placement accuracy or active alignment. (4) Laser is placed
p-side up in an etched cavity but is connected to the SiP chip via a photonic wire
bond. (5) VCSEL is placed on top of the SiP chip, and light is coupled to the SiP
circuit via grating couplers. (6) Laser die is flip-chip bonded on a shallow etched
region of the chip and coupled via free space to the SiP circuit. This requires high
placement accuracy for low insertion loss coupling. (7) Heterogenous integration
approach where the gain material is wafer bonded to the SiP chip and the laser is
co-fabricated with the SiP chip. (8) Direct heteroepitaxy where the gain material
is grown on the SOI. This can be further subdivided into blanket epitaxy (8a)
or selective epitaxy (8b), where the gain material is only grown in the desired
region, and thick buffer layers can be avoided. (8a) and (8b) have been adapted
from [28].

high laser efficiency [33]. In contrast, quantum dot-based active
region in such a laser promises high laser efficiencies [34]. The
slope efficiency of GaAs quantum well-based lasers and InAs
quantum dot-based lasers are reported as approximately 1075
W/A and 0.3 W/A, respectively [34]. Moreover, several poten-
tial promising methods for coupling light from a laser with a
quantum dot-based active region to a silicon waveguide has been
demonstrated [29]. Alternatively, the selective epitaxy approach
solves this problem by growing III-V material in pre-patterned
structures on the SiP chip [28], [35]. This enables the gain region
to be close enough to the silicon device layer to enable efficient
coupling to the SiP circuit. While this approach is promising, all
selective epitaxy demonstrations to date have relied on optical
excitation rather than electrical driving [28]. Fig. 5 summarizes
the methods for integrating lasers with silicon photonics.
Multi-chip integration utilizes a pre-fabricated laser or SOA
die placed on or next to the SiP chip. To couple light from
the die to the SiP chip, complex fabrication and alignment
techniques are required to achieve the sub-micrometer alignment
accuracy required for efficient coupling from the laser to the
SiP circuit. These challenges have prevented the inclusion of
heterogeneously integrated III-V lasers on PICs available from
SiP foundries that offer multi-project wafer (MPW) runs. As
such, we have opted for the PWB approach detailed earlier in
sub-Section II.A.1. [22], [36], which allows for the integration
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of components without the need for high-precision/active align-
ment techniques [10], [37]. This enables connecting components
with arbitrary mode fields in an automated fashion [38]. Integra-
tion of lasers and reflective SOAs with SiP chips via PWBs have
been demonstrated with side-by-side assemblies [22], [23].

3) SOA Integration: One of the key bottlenecks in developing
large-scale neuromorphic photonic accelerators is the optical
power loss due to the aggregated insertion loss of the pho-
tonic components on the PIC and the optical coupling loss [8].
External optical amplifiers such as C-band erbium-doped fiber
amplifier and O-band booster optical amplifier are widely used to
mitigate propagation and coupling loss. However, external am-
plifiers are bulky and expensive. SOAs can be used to compen-
sate for the optical propagation loss in large-scale neuromorphic
photonic accelerators, by placing the SOA on the neuromorphic
photonic accelerator PIC as illustrated conceptually in Fig. 6.
SOAs with an on-chip gain of 39 dB and saturation power of
24 dBm have been demonstrated [39].

B. Electrical Interconnects

Neuromorphic photonic accelerator chips require many more
low-frequency traces than high-frequency. That is because DC-
controlled weights outnumber AC-coupled neurons in most
neural networks. For example, if the chip contains a simple, fully
connected two-layer neural network with /N neurons in the first
layer and M neurons in the second, this corresponds to N + M
neurons and at least N - M weights between them. To simplify
calculations, if the number of neurons in the network is NV, the
number of weights scale with O(IN?). This is illustrated in Fig. 1.
Consequently, configuring the neural network requires many
independent, low-frequency signals, and a few high-frequency
ones. The number of interconnects, however, depends on where
the analog sources and control circuitry are placed: on-chip or in
a multi-chip package. Regardless of the packaging structure, all
data plane levels must be designed in tandem. Because integrated
photonic and electronic design, packaging, mixed-signal circuit
design, and PCB layout span a wide range of technical skills
often distributed among multiple engineers, here we offer a few
high-level considerations aimed at photonic engineers.

1) Chip Level Considerations: Each resonator weight,
shown in Fig. 1.(b), takes at least one analog electrical input for
weight tuning if the return pass is shared. Optionally, another
electrical port is added for weight readback. As the number of
neurons increases, the footprint dedicated to weights dominates
the chip’s overall area. For large networks implemented in
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Fig. 7. Scaling analysis for electrical wire bonding and flip-chip bonding as
two methods for electrical interconnects in neuromorphic photonic accelerators.

silicon photonics, it is only feasible to accommodate that many
metal interconnects if the bump pads to these traces are mostly
organized in a 2d-grid array for flip-chip bonding. Furthermore,
placing pads next to the constituent elements could reduce
the amount of electrical crosstalk. Fig. 7 shows a comparative
study for the chip size as a function of number of neurons in
two packaging approaches for implementing electrical intercon-
nects, namely electrical wire bonding and flip-chip bonding. For
the neurons displayed in Fig. 1, a N x NN photonic network will
consist of N? optical resonators each with two bond pads, N
balanced photodetectors each with two pads, and N microring
modulators with up to four bond pads (including return paths). In
this study we assumed that most of the chip area on the photonic
side is dedicated to the weight bank. Moreover, for wire bonding,
we assumed that the maximum allowable number of bond pad
rows for staggered wire bonding is two rows around the edge of
the chip. To avoid crossing electrical wire bonds, maintaining
a minimum length of wires, and observing the keep-out area
required for the optical coupling, the bond pads on the photonic
chip are placed around the photonic circuit close to the edge of
the chip. Considering a pad size of 75 pm with a pitch of 100 pum,
microring resonator (MRR) radius of 10 um with a spacing of
100 pem, our analysis for wire bonding approach shows that with
only 23 neurons, the chip size is at the limit of the standard reticle
size of 800 mm.2. Flip-chip bonding, however, allows for spread-
ing the metal contacts across the chip, which can accommodate
up to 160 neurons considering the solder microbump diameter of
75 pm and a pitch of 100 pm. It should be noted, recent advances
in Cu-Cu flip-chip bonding allows for even smaller microbump
and a finer pitch down to 10 pm [40]. This significantly helps
accommodating larger number of neurons. In this analysis, the
amount of area occupied by the traces in the electrical wire
bonding approach has been neglected. Monolithic approaches
with both electronics and photonics on the same die significantly
relax the packaging concerns for weight control. Addressing
schemes that include multiplexing (such as active matrices for
time multiplexing) can further allow higher neuron densities
for monolithic implementations, although on-chip drivers come
with their own area and bond pad requirements [41].

6100311

Photonic devices, like modulators and detectors, can be oper-
ated at multiple gigahertz speeds. The neuron’s modulator, for
example, may require a high-speed electrical input for external
modulation via a low-impedance metal trace from the edge of
the chip to its location. In small silicon photonic circuits, this
trace can be considered as a lumped element. However, the
chip boundary creates an unavoidable impedance discontinuity,
which causes reflections. The effect of wire bond parasitic
inductance can be reduced via impedance-matching capacitors
near the bond pads on the chip [42] or a matching network on
the PCB [43].

The electrical interconnects must be placed far from the
optical I/O’s region. The reason is that the 3D-printing polymer
epoxy for photonic wire bonds requires a large clearance from
any active surface. This means that electrical bond pads placed
on the chip’s surface must be separated by about 800pm from
the tapered waveguides, despite tapered waveguides themselves
being much smaller (~ 100 ym). Fortunately, the scaling of
the number of electrical interconnects, coupled with optical
multiplexing via wavelength, enables a smaller number of op-
tical I/Os than electrical pads. Hence, at the chip level, it is
simpler to layout optical ports where convenient and route to
the components as required.

Heat dissipation causes thermally-sensitive devices to interact
with each other, imposing more space considerations. In silicon
photonics, while free-carrier effects can be used to locally tune
elements, the stronger thermo-optic effect is often used for index
tuning. But because the chip acts as a thermal reservoir, this
results in thermal crosstalk between components. This crosstalk
can be mitigated by keeping heated components apart; for in-
stance, a minimum of 10 um is quoted for microdisk modula-
tors [44]. Some processes offer extra thermal management by
allowing deep trenches to be etched into the substrate, which
also demonstrate up to 20x improved heating efficiency [45].

The reconfiguration rate of the neuromorphic photonic ac-
celerator circuit largely depends on the weight memory access
and its update. Weights can be stored in the SRAM of the
CMOS ASIC controller. The controller maintains a stable optical
weight configuration by setting an analog voltage (current) to
each weight-tuning device on the PIC for weight-stationary
tasks. The setting depends on calibration parameters, and the
controller must compensate for environmental fluctuations such
as temperature variation. These fluctuations happen at a slow
timescale, but as the weight count (O(N 2)) increases, the al-
gorithmic complexity for calibration and control also increases
with O(N?) for circuits [46]. The circuits require additional
local sense ports on each weighting unit to provide a feedback
signal that can be corrected dynamically by the controller, which
makes the access slow and costs a large amount of energy per
bit of control.

2) Board-Level Considerations: For rapid prototyping,
where a CMOS ASIC controlleris still not available, a PCB inter-
poser board can be used to make low-noise electrical connections
from the PIC to the control circuit (e.g. precision source-measure
units such as the Keithley 2400). A typical interposer (as shown
inFig. 8) is designed with chip sockets for mounting the photonic
chip, and electrical connectors for mating with cables linking
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Fig. 8.  Example of a interposer design. (a) Design view in the PCB CAD
software. (b) Footage of the interposer mounted with a photonic chip and fully
connected with optical and electrical I/O.

to other control circuits. Some interposers are also populated
with a thermistor and thermal-electrical cooler for implementing
the temperature control for the chip carrier. Since the major
functionality of the interposer is transferring electrical control
signals from the connectors to the chip pins, to assure the signal
integrity, careful considerations on grounding and signals traces
need to be carried out when designing the interposer.

As for grounding, a sufficiently wide ground plane is often
a good practice. For robustness to electromagnetic interference
(EMI), the ground plane should be allocated right under the
signal traces and at the adjacent PCB layer. This helps to reduce
the electrical interference since the electromagnetic fields of the
coupled noise of the signal path and that of the corresponding
return path in the ground plane tend to cancel each other in such a
layout. The ground planes are usually allocated to multiple PCB
layers, and it is also a good practice to apply via-stitching across
the board that lowers the impedance between them. Finally,
placing via arrays along the board edges further fosters the
suppression of the EM radiation and coupling, helping with
electromagnetic compatibility (EMC) specifications.

For applications where the MRR weights have to updated at
MHz or higher rates, dedicated signal pairs are recommended
(one for signal and one for the ground) for signal integrity.
Laying out signal traces in pairs helps lower the cross-talk
between MRR channels and reduces EMI.

3) Biasing Circuit: The electrical parasitics between various
components in a neuromorphic photonic accelerator must be
accounted for carefully. For example, when supplying current
to a thermo-optic heater, any common-mode resistance be-
tween multiple heaters, e.g., due to shared ground, will create
crosstalk. This common-mode resistance makes sensing circuits
more challenging to design since their sensing voltage will
depend on other channels’ actuation. This is a concern also for
proof-of-concept designs where a PIC is controlled not using
CMOS circuits but with benchtop equipment. Any resistance
between the chip’s shared ground and the PCB ground plane will
cause a voltage differential between them. This can be mitigated
through extra high-impedance sensing traces and more sophis-
ticated control. Isolating ground planes between the controller
and the power supply can significantly reduce parasitic voltage
levels [47].

Some circuits in neuromorphic photonic accelerators require
multi-point DC biasing of AC components. A good example is
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Fig. 9. Modulator photonic neuron alongside a DC-coupled biasing circuit:
(a) Monolithic implementation; (b) Co-integration of PIC with ASIC. Inductive
components and capacitors allow AC photocurrent generated on the chip to
modulate a reverse-biased PN junction modulator by generating a voltage drop
across a resistive on-chip TIA. At very low frequencies, a “current-dividing”
resistance fulfills this role. Voltage sources use remote sensing to maintain a
specified voltage across the photodiodes in the presence of the series resistance.
A specific DC bias accounting for DC photocurrent can be imposed on the neu-
ron. Schottky diodes in series with the photodiodes protect unbiased photodiodes
from spurious forward biasing.

an optical-electrical-optical (OEO) unit [48]. When neurons in a
recurrent neural network can respond to both low-speed and high
speed inputs, it has the ability to process and recognize complex
temporal patterns [49]. This can be achieved if the circuit has a
flat frequency response from DC to some cutoff bandwidth. For
a fully electronic-photonic single-chip monolithic implemen-
tation, the microring modulator (MRM) can be easily driven
by an active TIA which buffers the differential current of the
balanced photodetectors and provides the desired gain as shown
in Fig. 9(a).

For a co-integrated solution with separate PIC and CMOS
ASIC, the bias configuration is more involved. The optical
signal’s DC component impinging on the photodetectors should
have the desirable effect of offsetting a configurable DC bias
of the modulator. Setting this bias voltage electrically is tricky.
An extra current or voltage source across the modulator will
end up in series with the current source from the photodi-
odes in the transimpedance branch. A way around this is to
monitor the optical DC power without such an extra source
and make the extra source conditioned on this knowledge to
impose the correct DC pedestal in addition to any desired
bias, a form of current-controlled current source as shown
in Fig. 9(b).

At multigigahertz frequencies, an efficient O-E conversion
relies on making sure that the modulator is the lowest-impedance
path with respect to the PD. This can be achieved by adding
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RF chokes between bias voltage sources and the photode-
tector. Multiple such components, each operating over some
range of frequency in a LC ladder operation (assisted by de-
Q’ing with parallel resistors), can be employed to extend the
frequency range of the inductive regime [50]. Short AC re-
turn paths provided by (small) on-chip and (large) off-chip
capacitors at each LC ladder stage further improve circuit
behaviour [48]. However, the footprint of these components
on-chip and on-board would negatively impact neuron scala-
bility, and it clearly demonstrates why a two-chip solution is
difficult to scale.

C. Power Management

The total amount of power consumed for neuromorphic pho-
tonic accelerators can be estimated based on the speed and scale
of the neuromorphic photonic accelerator units. The need to
compute large matrices necessitates tiling several photonic units,
where a photonic unit conducts a vector matrix multiplication.
As an example, performing such an optical multiplication for
an input vector with a size of 1024 x 1 requires tiling several
photonic units. For a photonic unit with a size of N = 85 limited
by the electrical power of the laser, 12 photonic tiles would be
needed. For N > 85, the maximum rated laser power cannot
compensate for the accrued amount of insertion loss in the
network [8]. Therefore, for a photonic processor operating
at a data rate (DR) of 10 GS/s with an energy efficiency (E)
of ~ 1pJ/OP, the total power consumption can be estimated
as P =12 x 2N2DR x E(J/OP) ~ 1.7 kW[8]. Assuming 2
sets of Peltier TEC coolers (driven by ~ 10V, sourcing ~ 4 A),
heat sinks and air fans (~ 30 W) to be used to maintain the
temperature of the photonic cores and PCB electronics, a total
cooling power of 140 W is dissipated, amounting to a total
estimated power of ~ 1.9 k.

D. Thermal Management

Components of a neuromorphic photonic accelerator module
such as the core photonic processor, DFB lasers, and SOAs
are susceptible to thermal fluctuations [51], [52]. This means
that a slight change in the refractive index induced by ambient
temperature or unwanted thermal crosstalk between the adja-
cent components can significantly affect the performance of
the photonic module. CMOS ASICs are relatively less sensi-
tive to the changes in temperature. Lasers and CMOS ASICs
generate significant heat and can influence the performance
of the other components [10]. InP, as a constituent material
of DFB lasers and SOAs, has a thermo-optic coefficient of
2.5 x 10’4/0. [53]. These devices also show a heat flux of
over 102W/em? [54] which means that they can easily transfer
heat to peripheral components. Apart from adequate spacing
between the sensitive devices within the neuromorphic pho-
tonic accelerators [44], a temperature controller, a temperature
sensor, and a Peltier thermoelectric cooler (TEC) is needed
for photonic processors employing WDM [10]. A temperature
control algorithm is needed on the CMOS ASIC to hold the
state of the weight tuning components and compensate for the
thermal fluctuations [55], [56]. A temperature control algorithm
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is also implemented on the CMOS ASIC or micro-controller to
sense the temperature from a temperature sensor (e.g., NTC)
and trigger the TEC element to stabilize the temperature of
the module within the allowed range similar to pluggable
transceivers [57]. The choice of the module holder, heat sinks
and thermal conductivity of the epoxy resin used for securing
the components inside the module plays a vital role in the heat
dissipation [51].

III. NETWORK AND MEMORY CONSIDERATIONS

Memory modules are crucial for inference and learning us-
ing neuromorphic photonic accelerators as the neural networks
scale up to handle massive data flows and instructions [51].
One challenge in the practical applications of neuromorphic
photonic accelerators is the memory wall which is the limited
data rate at which the processor can communicate with the
memory interface due to the gap between processing speed
and the speed of accessing DRAM [58]. Although the inherent
parallelism of photonics can greatly improve the computing
speed, the performance of accelerators, either electronics [59] or
photonics [60], is dominated by the interconnection bandwidth
between their memory modules and processing units. This is
because the advantage of the high-speed photonic computing
core can only be realized if the high-speed serial data can be
fed to it from the memory. The improvement in processing units
alone could further enlarge the performance gap between the
processing units and memory modules because of the latency to
fetch data from memory modules and the limited interconnec-
tion bandwidth. Given the high throughput of SiP accelerators,
memory interfacing circuits should be introduced to fetch and
serialize data at the desired data rate. Moreover, the scalability
of neuromorphic photonic accelerators is also limited by the
available pins to memory channels. This is often called pin wall,
which is encountered by electronic accelerators [61]. Simply
increasing the number of channels and controllers for memory
access could conflict with energy constraints [59]. Meanwhile,
an energy-efficient high-speed data transfer between the pho-
tonic processor and the corresponding memory modules is a
key to enable high-performance computing with massive data
transmissions. 2.5D [62] and 3D [63] stacked memory modules
using a silicon interposer [64] with embedded active SiP inter-
connects have been proposed to optically link the processor and
its memory modules. Nevertheless, such schemes are yet to be
realized.

One possible solution to ease the memory wall is to imple-
ment the processor-memory interconnection using a photonic
link [65], as shown in Fig. 10. In this case, the data transfer
speed no longer depends on the speed limitation of the DDR
interface. The processed signal propagates through a waveguide
or an optical fiber and is de-multiplexed in the ring-based WDM
module. The photodetectors convert light into electrical signals
which is written into the memory module. On the other hand,
to retrieve data from the memory module, modulators convert
electrical signals to optical signals which are later multiplexed
in a ring-based WDM module and processed in the photonic
processing units.
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Fig. 10.  An optical link connecting the memory to the SiP accelerator.

IV. CONCLUSION

The advances in silicon photonics have enabled the recent
surge in neuromorphic photonic processors, which can poten-
tially outperform electronic counterparts in terms of latency
and bandwidth. Efficient data processing and data movement
between a neuromorphic photonic accelerator and memory mod-
ules are directly linked to the packaging strategies. Configuring
the weights and thermal stabilization of the PIC requires a
CMOS controller with SRAM. Feeding the high-speed serial
input data to the PIC requires efficient data movement from
the DRAM. Hence, the neuromorphic photonic accelerator must
accommodate many I/O pads for handling DC, low-speed and
high-speed signals between the PIC and the CMOS ASIC,
in addition to efficient DRAM access. Flip-chip packaging is
the practical solution in the near-term before wafer-level inte-
gration becomes commercially viable. Monolithic CMOS-SOI
photonic-electronic platforms significantly reduce the number of
I/0 pads required and hence are an attractive solution in the near
term. Because a neuromorphic photonic accelerator must still
include high-performance digital processors, a separate FinFET
CMOS chip is still required. In the longer term, wafer-level in-
tegration of PICs with FinFET CMOS chips would significantly
improve performance. Since the power dissipation exceeds kW,
thermal management and reliability is the most crucial consid-
eration. In the near term, the laser would likely be physically
separated for thermal and ease of packaging considerations.
Since V-grooves require a large area, photonic wire bonding
is a viable solution for medium-volume production which is not
limited by the position of the optical source. Advances in laser
technology and heterogeneous/hybrid integration would help
improve efficiency and reliability. Replacing electrical intercon-
nects with optical interconnects could facilitate data movement
and ease the pin wall and power wall issues associated with the
scaling of neuromorphic photonic accelerators. New architec-
tures and processor-memory communication schemes relying
on optical links for data movement seems to be a promising
path.
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