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Core-collapse supernovae are among the astrophysical sources of gravitational waves that could be
detected by third-generation gravitational-wave detectors. Here, we analyze the gravitational-wave strain
signals from two- and three-dimensional simulations of core-collapse supernovae generated using the code
FORNAX. A subset of the two-dimensional simulations has nonzero core rotation at the core bounce.
A dominant source of time changing quadrupole moment is the / =2 fundamental mode (f-mode)
oscillation of the protoneutron star. From the time-frequency spectrogram of the gravitational-wave strain
we see that, starting ~400 ms after the core bounce, most of the power lies within a narrow track that
represents the frequency evolution of the f-mode oscillations. The f-mode frequencies obtained from
linear perturbation analysis of the angle-averaged profile of the protoneutron star corroborate what we
observe in the spectrograms of the gravitational-wave signal. We explore the measurability of the f-mode
frequency evolution of a protoneutron star for a supernova signal observed in the third-generation
gravitational-wave detectors. Measurement of the frequency evolution can reveal information about the
masses, radii, and densities of the protoneutron stars. We find that if the third-generation detectors observe a
supernova within 10 kpc, then we can measure these frequencies to within 5 Hz rms error. We can also
measure the energy emitted in the fundamental f-mode using the spectrogram data of the strain signal.
We find that the energy in the f-mode can be measured to within 20% error for signals observed by Cosmic

Explorer using simulations with successful explosion, assuming source distances within 10 kpc.
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I. INTRODUCTION

The core of a massive star (M > 8M,) collapses due to
gravity upon achieving the effective Chandrasekhar mass of
a massive-star progenitor [1-3]. The inner part of the core
collapses to nuclear densities to form a protoneutron star.
A shock wave is created at the boundary of the proto-
neutron star and propagates outwards. The shock is initially
stopped in its progress outward as a fraction of the kinetic
energy of the shock is used to dissociate the heavy nuclei.
A fraction of neutrinos produced in the protoneutron star
are trapped behind the shock. This heats up the shocked
region and enhances the turbulent convection, which
revives the stalled shock [4]. The joint observation of
the photons, neutrinos, and gravitational waves emitted
during this process can help reveal the mechanism by
which the shock is revived, and a neutron star is born.
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Core-collapse supernovae are possible sources of gravi-
tational waves that could be detected by the proposed third-
generation interferometric detectors, such as the Cosmic
Explorer [5,6] and the Einstein Telescope. These observa-
tories will be able to detect a supernova within 100 kpc,
which includes the Milky Way galaxy and its satellites [7].
The estimated rate of supernovae for a galaxy the size of
Milky Way is 1-3 per century [8-10].

A number of studies have characterized the gravitational-
wave signal from the collapse and explosion of the core of a
massive star [11-20]. After decades of improvement in the
numerical techniques, we are now much better able to
account for the complex hydrodynamics in multidimen-
sions, the neutrino interactions, and the hydrodynamical
instabilities [21-25].

This rich and complex physics gives rise to a complex
gravitational-wave signal, which in the time domain rep-
resents the stochastic nature of matter movements within
the star. There is a sharp negative peak in the signal at the
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time of core bounce, and its amplitude depends on the
rotation rate of the core of the progenitor. This is followed
by the postbounce oscillations of the core, that extend for
6—10 ms after the bounce, with an amplitude that depends
interestingly on the rotation rate of the core of the
progenitor star and its equation of state [26]. The end of
postbounce oscillations mark the onset of “prompt con-
vection” due to the dynamical imposition of a negative
entropy gradient as the shock stalls. Starting from ~150 ms
after the core bounce, there is a strong stochastic signal.
Moreover, an asymmetrical explosion is accompanied by a
growing offset in the mean strain from zero due to
“memory” [27-29].

Even though the signal is highly stochastic in the time
domain, the time-frequency spectrogram of the gravitational-
wave signal reveals that most of the power lies in a narrow
track in the time-frequency plane. Linear perturbation
analysis of the protoneutron star shows that this frequency
corresponds to the quadrupolar f-mode of the protoneutron
star [19,20], which start approximately 100-400 ms after the
core bounce. These oscillations are excited by the downflows
of matter accreted onto the protoneutron star [13,19].

Previously, Ref. [30] measured the frequencies associ-
ated with the g-mode oscillations of the protoneutron star
using the time-frequency spectrograms of the gravitational-
wave strains obtained from simulations. Using the fre-
quency measurement and universal relations, they obtain
measurement of the ratio Mpyg/ R%Ns of the protoneutron
star, where Mpysg is the mass, and Rpyg is the radius of the
protoneutron star. Reference [31] develops a phenomeno-
logical model of the gravitational-wave signal associated
with the dominant mode and uses the spectrogram of the
strain to measure f-mode frequency evolution and energy.
They use Bayesian parameter estimation to measure their
model parameters and then obtain frequencies and energies
associated with the mode from the posteriors. More
recently, Ref. [32] extended the work of Ref. [30] of
measuring the f/g mode frequencies of the protoneutron
stars using the strains of 3D and 2D simulations. They use a
network of current and future detectors to perform a
coherent analysis of the detected signal.

In this paper, we develop a model-independent method to
measure the f-mode frequencies and the energy emitted in
gravitational radiation of the protoneutron star oscillations
by analyzing the spectrograms of the gravitational-wave
strains obtained from state-of-the art three-dimensional
core-collapse supernovae simulations. We develop a novel
method of generating time-frequency spectrograms that can
be used to reliably measure power in a given track on the
spectrogram. We inject the strain obtained through the
simulations into several instances of simulated detector
noise to measure the frequencies and energies. We vary
the distance of the source to test this method for signals with
various signal-to-noise ratios. We find that, from simulated
observations using the third-generation gravitational-wave

detectors, while we can detect the signal out to distances of
~100 kpc, we can measure the frequencies and the energies
associated with the f-mode oscillations to within 5 Hz rms
error from sources within ~10 kpc distance.

Section II describes the numerical simulations used in
this paper and describes the linear perturbation analysis
used to determine the f-mode oscillation frequencies. In
Sec. III we describe our method to construct the short-time
Fourier transform and the spectrogram of the gravitational-
wave signal obtained from the simulations. In Sec. IV, we
describe our main results from the analysis. We summarize
our findings in Sec. V.

II. SIMULATIONS

In our analysis we used the data obtained from two- and
three-dimensional core-collapse supernovae simulations
performed with the neutrino-radiation hydrodynamics code
FORNAX [33-35]. The progenitors used in the simulations
were calculated by Refs. [36,37]. Further details of the
simulations can be found in Refs. [19,20,22].

We tabulate the models we consider in our works in
Table 1. We show the mass of the progenitor, the equation of
state of the protoneutron star used in the simulations, and
the core-rotation rate in columns 3, 4, and 5 of the table. We
also indicate whether the shock is revived and the star
explodes within the time of the simulation. For the three-
dimensional simulation models, we use a wide range of
progenitors with the zero-age main sequence (ZAMS)
mass ranging from 9My — 60M,. We use SFHo [38]
equation of state, and all but the 13M, 14M,, and
15M  explode within the time of the simulation. For the
two-dimensional simulations with core rotation at the time
of core bounce, we use a 15M , progenitor. We have a total
of 14 models with rotation rates ranging from 0.0 rad/sec
to 6.14 rad/sec. We also include nine two-dimensional
simulations with zero core rotation.

The last three columns show the optimal distances for
every simulation, for Advanced Laser Interferometer
Gravitational Wave Observatory (aLIGO) [39], Einstein
Telescope [40], and Cosmic Explorer [6]. Optimal distance
of a source for a given detector is defined as the distance at
which the signal-to-noise ratio of the optimally-oriented
source is equal to eight. It is calculated as

Sl A L

where p,, = 8 is the signal-to-noise ratio of an optimal

low

detection, #(f) is the strain signal in the Fourier
domain, and S,(f) is the power spectral density of
the detector noise. For Advanced LIGO, we use the
aLIGOZeroDetHighPower [41] power spectral den-
sity, with fj,, = 10 Hz. The average of the optimal
distances of the waveforms from three-dimensional
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TABLE L.

The table summarizes the details of the simulations, including the progenitor mass, equation of state, initial core rotation,

and explosion status within the simulated time interval. Based on the gravitational-wave strain obtained from the simulations, we also
measure the optimal distance of the strain signal for Advanced LIGO, Einstein Telescope, and Cosmic Explorer.

Optimal distance (kpc)

Progenitor ~ Equation  Core rotation  Explosion Advanced  Einstein =~ Cosmic
Label mass (My)  of state  rate (rad/sec) status LIGO telescope  explorer
Three-dimensional s9-3D 9 SFHo Yes 2 25 39
simulations s10-3D 10 SFHo Yes 7 73 116
s11-3D 11 SFHo Yes 6 61 98
s12-3D 12 SFHo Yes 8 79 127
s13-3D 13 SFHo No 7 71 118
s14-3D 14 SFHo No 7 74 121
s15-3D 15 SFHo No 7 72 114
s17-3D 17 SFHo Yes 11 107 171
s18-3D 18 SFHo Yes 11 108 174
s19-3D 19 SFHo Yes 15 141 228
s20-3D 20 SFHo Yes 13 131 214
s25-3D 25 SFHo Yes 13 125 208
s60-3D 60 SFHo Yes 9 93 150
Two-dimensional 0.0strain 15 SFHo 0.0 No 28 270 427
simulations 0.05strain 15 SFHo 0.05 No 32 324 516
with core rotation 0.1lstrain 15 SFHo 0.1 No 32 320 531
0.2strain 15 SFHo 0.2 No 45 458 735
0.25strain 15 SFHo 0.25 No 46 466 797
0.3strain 15 SFHo 0.3 No 34 335 572
0.4strain 15 SFHo 0.4 No 51 510 863
0.5strain 15 SFHo 0.5 No 54 534 903
0.75strain 15 SFHo 0.75 No 59 567 907
1.0strain 15 SFHo 1.0 No 79 763 1249
2.0strain 15 SFHo 2.0 No 106 1096 1715
pi.strain 15 SFHo 3.14 Yes 140 1465 2343
4.0strain 15 SFHo 4.0 No 145 1539 2511
5.0strain 15 SFHo 5.0 No 146 1580 2633
2pi.strain 15 SFHo 6.28 No 123 1312 2316
Two-dimensional M10-1.S220 10 LS220 No 15 150 232
simulations M10-DD2 10 DD2 No 17 176 268
without core M10-SFHo 10 SFHo Yes 36 361 566
rotation M13-SFHo 13 SFHo No 30 312 483
M19-SFHo 19 SFHo Yes 55 534 880
gw-s11-2D 11 SFHo No 31 307 481
gw-s519-2D 19 SFHo No 39 401 621
gw-525-2D 25 SFHo No 47 446 715
gw-s60-2D 60 SFHo No 47 460 732

simulations for Advanced LIGO is 8 kpc. Hence, we can
detect a signal coming from the center of the Galaxy if
it is loud enough. The next generation detectors, Einstein
Telescope and Cosmic Explorer, can detect signals coming
from the Milky Way galaxy and its satellite galaxies. Their
detection range is large enough to cover the entire
Milky Way but not large enough to reach the nearest
galaxy, Andromeda, which is at 770 kpc. The gravitational-
wave signals from core-collapse supernovae observed by
the third-generation detectors will have large signal-to-
noise ratio.

A. Linear perturbation analysis

In this section, we outline the method of the linear
perturbation analysis of the angle-averaged data of the
protoneutron star profile (i.e., integrated over the solid
angle Q). The protoneutron star is to be modeled with the
energy-momentum tensor of a perfect fluid. Note that

T,, = pHuW'w + Pg,,, (2)

where p denotes the rest-mass density, P the pressure, u/
the fluid 4-velocity, H:= (1+¢e+ P/p) the specific
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enthalpy, and ¢ the specific internal energy. Under the
assumption of spherical symmetry [42], the space-time
metric g, in isotropic coordinates, using the (3 + 1)
foliation, can be written as [e.g., [21,43,44]]

ds* = g, dx*dx’ = —a*dt* +y*fdx'dx!,  (3)

where « is the lapse function, and the metric for spatial
slices is approximated to be conformally related to the flat
metric §;; with a conformal factor w?, set to 1 in all
simulations of Table I.

We now perform perturbation analysis on top of this
conformally-flat background by linearizing the equations
of general relativistic hydrodynamics. In general, the three
components of the Lagrangian fluid displacement field,
E(r.1) =&+ 0 + £ representing the perturbation,
can be resolved in terms of three scalar functions by virtue
of the Helmholtz decomposition theorem. If one assumes
that the radial component of the fluid vorticity equation
vanishes at all points of the star, that is, (V x &), = 0, then
one can show that the three components of £ can now
instead be resolved in terms of only two scalar functions.
We now decompose these two scalar functions into purely
radial functions (,(r),n.(r)) supplemented with the
spherical harmonics Y;,, and mode frequency ¢ as

— —iot
gr - nrY[me o s

—iot

1
&= mpaaylme .

1 )
——0,Y,,e"". 4
nL (r sin9)2 L im€ (4)

& =
Here, any time dependence of the background state is
assumed to be very small compared to the eigenvalue (i.e.
the time derivative of any quantity x, dx/0t << x/o).If 5 is
real, then the system is neutrally stable (i.e., the modes
are oscillatory in nature). As the background metric is
assumed to be conformally flat, the perturbation of the
metric is accomplished by perturbing the lapse function.
Decomposing the perturbation to the lapse function in
purely radial and spherical harmonics yields

da = 6a(r)Y,,e ", (5)

We define f,, = 0, (5(;/ a); together with Sait represents the
perturbation in the gravity sector. The timescale associated
with neutrino heating and nuclear dissociation is typically
> 1/0, hence the perturbations to the fluid properties to be
adiabatic in nature, implying

oP

P
= —ma="r, (©)
ap adiabatic P

c, the relativistic sound speed in the fluid and I'; the
adiabatic index. Now the equations of general-relativistic
hydrodynamics together with the 00 component of the
Einstein equation can be linearized to obtain the following
system of equations:

2 10.P 0y
0 -+ — 6
M+ L’+F1 P + W]ﬂr
w! 1
+—=— (6> = L), ——5ba =0, (7)
ascs acs
N2 N 1
(3rm_— <1_?>’7r+ [drlnq—G(l+g>]m_
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———060=0, 8
oG o (8)
0.fq+4n 0p—L()P n —4L'0q02m_

rJ a 1 PF] r r PF]

[47rp2h L+ 1)] s

Plia a r? =0, ©)

and
9,60 = f,a— Gba. (10)

In Egs. (7)-(10), we have collected the combination
pha~>y* as g, G is the radial component of gravitational
acceleration G := —d,Ina, N is the relativistic Brunt-
Viisild frequency,

Sa(10,P 0
N2 =2 (r_; - ’e>, (11)
v 1 pH

and L is the relativistic Lamb shift,

a? JI(l+1)
L’A‘:Fc? et (12)

The system of Egs. (7)—(10) can be solved by incorporating
appropriate boundary conditions: at the outer boundary, set
at the radial coordinate where the density p = 10'° g/cm =3,
we consider the Lagrangian pressure to vanish and at the
inner boundary (i.e., r = 0) use the regularity condition of
Reisenegger and Goldreich [45]. Mathematically, this reads,
at the outer boundary,

H
q6°n. —%&H 0Py, =0, (13)

and at the inner boundary,
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_ -1
ﬂr—;’ufxr )

’7r|r:0 = ’7J_|r:0 =0.

By discretizing the derivatives by means of trapezoidal rules,
we can start integrating the set of Egs. (7)—(10) by inverting
the 4 x4 coefficient matrix at every step to solve for

(et Ls far 35) and then using the bisection method to
uniquely determine the solutions by satisfying the outer
boundary condition, Eq. (13). The eigenvalue corresponding
to the unique solution thus obtained gives the frequency of
oscillation as o/2x. The lowest frequency oscillation mode
is the fundamental oscillation mode (f-mode), with zero
radial nodes. We find the f-mode starts a few hundred ms
after the core bounce for the simulations in Table I, which
confirms similar findings in [19]. The f-mode thus obtained
is then laid on the spectrogram and is found to contribute
significantly to the strength of the gravitational wave signal
after ~400 ms. As noted in [19], the higher-order g- or
p-modes are not found to be excited in these simulations.

I1I1. SPECTROGRAM ANALYSIS

In this section, we describe the construction of the
spectrogram of the gravitational-wave strain signal. We
use the spectrogram to measure the properties of the
fundamental quadrupolar f-mode oscillations of the pro-
toneutron star. In particular, we are interested in measuring
the frequency of the oscillations and the energy emitted in
the gravitational-wave radiation. The analysis described
here is for the fiducial case when the detector noise is not
present. In the later sections we will discuss the effect of
detector noise in the extraction of the features from the
spectrogram and compare it with the output from the
analysis described here.

Following [18,46-48], the gravitational-wave strain
for a source at a distance D can be written as

TT
h;

TT _ Ed‘lij
R D dt’

(14)

where ¢;; is the time derivative of the mass quadrupole
tensor, Q;; = [ d®xp(x;x; —1r?8;;). The strain amplitudes
of the two polarizations, 4, and h,, can be obtained in the
slow-motion limit from the linear combinations of the
second time derivatives of the components of the transverse
traceless mass quadrupole tensor Q;;. The polarization
strains as observed along the line of sight (6,¢) are
given by

G (dqey dqpy
h, = (oo 900 15
* c4D< dt  dt )’ (15)

=—|—]. 16
- c4D< dt (16)

Here, the time derivatives of the mass quadrupole in
spherical coordinates, in terms of those in Cartesian
coordinates, are given by

G0 = (4.:c08* P + q,,sin?p + 2¢,, sin ¢ cos ) cos?d
+q,.5in*0 —2(g,, cosp + g, sing)sinfcosd, (17)

Qpp = Qrx SIN* P + gy, cOS* p — g, singpcos p,  (18)

00 = (Qux — qyy) cOSOsing cos ¢
+ ¢, cos 6(cos? ¢ — sin® )
+ ¢, sin@sing — g, sincos ¢. (19)

The total energy emitted in gravitational waves is given
by [48]

EGW_SG/ Z{ dr? ] (20)

which, in terms of gravitational-wave strain, is given by
AD? dh dh,\?
do| (== :
o =iaea ), | () + ()]
3D? dh dh
~ dr| == <), 21
a olCa) el
where the second approximation holds true if the strains are
assumed to be nearly independent of line of observation
and the integral over the solid angle gives a factor of 4x.
The variation in the amplitudes of the strain for differ-
ent points of observation are 10-15% [49]. For two-
dimensional simulations without progenitor core rotation,
the approximation does not hold, and we use Egs. (3)—(6) in
Morozova et al. [19] to compute the energy from gravi-
tational-wave strain &, .

Ground-based interferometers will detect a linear com-
bination of the strain polarizations,

s(2) = se(2) + n(1), (22)

where n is the noise in the detector, and effective strain
from the astrophysical source is given by

Seit = F hy + Fyhy. (23)

Here, F, and F, are the antenna pattern functions of an
interferometric detector, and they depend on the sky
location (right ascension, declination) of the source at a
given time and its polarization angle, with respect to the
detector arms. The energy estimation from an observation
is then given by
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(24)

AD? [t [(dser)?
EGW;efszA dl(ﬁ) ,

which would be ~0.5 times the energy calculated using
both the polarizations individually [i.e., from Eq. (21)].

To compute the energy spectra of the gravitational wave
signal, we use the spectrogram of the signal

dELy,  D?
df 4G
AD?

2G

(27f)?[(hs)? + (he)’]

(2”f)2[§eff]2’

~
~

(25)
where 7 is the short-time Fourier transform, defined as

A(f) = /_ : WOH(t = 1)e0dr, (26)

and H(t—1;) is the Hann window with offset time 7,
indexed by /. A window function is applied to each segment
to ensure that we do not get Gibb’s junk when we take the
Fourier transform of the segment. Equation (25) gives the
energy per unit Hertz for a time-frequency block centered
at time 7; and frequency f. Thus, a spectrogram is the
transformation of the short-time Fourier transform to
represent the power content in a time-frequency block.

In practice, gravitational-wave strain s is a discrete
function of time, obtained either from simulations, or via
observations made by a gravitational-wave detector. In
order to take the Fourier transform of the time-domain
strain data, /1; = h. (t;), it must be evenly sampled at time
intervals of Az =1¢; , —1t; seconds, V j. The sampling
rate, or sampling frequency, is given by f, = 1/At. The
data from the simulations is unevenly sampled since the
size of each time step in the simulations is governed by
the micro- and macrophysics at the time.

We resample the data at sampling rates ranging from
16,384 Hz to 2,097,152 Hz in powers of two and
interpolate using one of the two interpolation schemes:
linear interpolation and cubic spline interpolation. We then
compute the energy using discretized versions of Egs. (15),
(16), and (21), where now h(t) = h(t;). We compute the
third-order time derivative of the quadruple moment from
the second-order derivative using the central difference
method. Figure 1 shows the energies on the left ordinate for
the model s19-3D computed via the two interpolation
methods at various sampling rates. We see that the energy
values converge with the increasing sampling rate. The
dashed curves show the difference between the energy
values obtained between two consecutive sampling rates
(shown on the right ordinate). This plot gives us a range of
energy estimations for data sampled at different frequen-
cies. We choose to use the cubic spline interpolation and a
sampling rate of 16,384 Hz (or equivalently, sampling

L ! ! ]
E v —-0.200
L \ ]
C \ / ]
1.60- \\ / 40.175
. \ <
\ ]
_ g 3 —40.150
§, L55F %
¥ i / i J0.125
T C | —— Cubic Spline Interpolation 3 g
g 150 \‘ = [p | 'p J0.100 9
-; L \ —— Linear Interpolation ] g
)] r \ . =)
@ C i -0.075
2 1.45F 4 .
w C N ]
E A —0.050
- \ 4
1.40F * 3
C % —0.025
1.35F — e [ AT

Sampling rate [Hz]

FIG. 1. The figure shows the energy (in 1078Myc?) obtained
for the simulation s19-3D as a function of the sampling rate
used to resample the data from the simulations. The solid blue
curve represents the case when cubic interpolation is used,
whereas the orange curve shows the case when linear interpo-
lation is used. The corresponding dashed curves show the
difference between energy values obtained for a particular
sampling frequency and the one lower. We can see that the
values converge as the sampling frequency is increased.

interval of A7 = 6.1035 x 10~ seconds) since its is com-
putationally less expensive and is a more realistic choice
with regards to the sampling rate used by current and
proposed gravitational-wave detectors.

In the next subsection we describe the construction of the
short-time Fourier transform of the discretely-sampled
signal and measurement of the frequencies associated with
the f-mode from the time-frequency representation. For
this purpose, we use 50% overlap of Hann-windowed time
segments since this configuration does not affect the
amplitude of the signal. In the subsection that follows,
we discuss the construction of a spectrogram that can be
used to measure the energy associated with the f-mode
oscillations. For this, we use 66.65% overlap between two
consecutive Hann-windowed segments since this configu-
ration provides equal weights across all the points in the
signal for power calculation.

A. f-mode frequency measurement

In order to compute the short-time Fourier transform of
the data, we need to divide the data into segments of equal
length, say of Ty, = Ny At seconds, and multiply each of
these segments with a window function before we take its
Fourier transform. There are a variety of windows available
for this purpose [50]. In this study, we use the Hann
window. We need to ensure that each data point of the
waveform is equally weighted when we consider the sums
of the windowed waveform segments. This presents a
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problem at the ends of the waveform since the Hann
window starts from (or tapers to) zero. The solution is to
first taper both ends of the waveform to zero and then zero-
pad the entire waveform on both ends by multiples of Ny,
points. Zero-padding the waveform does not change the
total power content in the signal since we are only adding
zeros to the ends of the data. We use the window size of
Tw = 40 ms. For tapering, we use the 1024 data points at
both ends of the waveform and apply a half cosine window.
We zero-pad both ends of the tapered waveform by
Ny =655 points. For constructing the short-time
Fourier transform of the signal, we use 50% overlap
between two consecutive time segments that get multiplied
by the Hann window.

The top panel of Fig. 2 shows the gravitational-wave
strain data of the plus polarization as a function of time after
core bounce for the simulation s19-3D in blue. This three-
dimensional simulation uses a progenitor with ZAMS mass
of 19M . The equation of state used in the simulation is
SFHo. The top panel shows evenly-sampled data in blue,
and the data with both ends tapered for construction of the
short-time Fourier transform is shown in orange. The
bottom panel shows the short-time Fourier transform of
the strain. The horizontal axis shows the time after bounce;
the vertical axis shows the frequency. The color bar
shows the modulus of the Fourier amplitude. We see the
prompt convection signal after ~50 ms after the core
bounce. The prompt convection phase is followed by the
~50 ms long quiescent phase. After this, the dominant part
of the signal starts with the frequency growing from
~500 Hz to ~1000 Hz 0.6 sec after core bounce. This
signal is caused by matter accreting on the protoneutron
star and exciting its modes, including the f-mode. The
f-mode frequencies obtained by the linear perturbation
analysis are shown as red crosses in the bottom panel.

We measure the frequency evolution of the dominant
track in the short-time Fourier transform. To measure the
frequencies, we use the following procedure. We start by
analyzing the spectrogram data after 7, seconds. The vertical
orange line in Fig. 2 shows the time #, = 200 ms after the
core bounce. From the linear perturbation analysis we know
that the f-mode starts around this time. We define a plausible
range of the f-mode frequencies shown by the two orange
quadratic curves in Fig. 3. The quadratic parameters for the
lower frequency bound are a = —700, b = 1800, c = 10
and for the upper frequency bound are a = —600,bh =
2500, ¢ = 400 used in the formula f(¢) = at* + bt + c.
For each time segment after 7, we find the highest value of
the energy spectrum within the frequency range constrained
by the two orange curves. We model the frequency evolution
of the f-mode as the quadratic function and use a robust
least-squares fit of the maxima in the short-time Fourier
transform for each time slice using the soft-11 loss
function to get the parameters {a, b, c} of the quadratic
function.
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FIG. 2. The figure shows the strain (top) and its spectrogram
(bottom) of the 3D simulation s19-3D. The strain data has been
uniformly sampled at 16,384 Hz. The ends have been tapered to
zero by applying half cosine windows to the first and last 1024
points of the data. Then, the data are zero-padded by 0.04 seconds
on either end. The spectrogram of this signal is shown on the
bottom panel. The f-mode frequencies, obtained from linear
perturbation analysis, start at 200 ms and go from 500 Hz to
1000 Hz at 0.6 seconds after the core bounce and are shown as red
crosses in the bottom panel. The vertical orange line shows the
time fy = 200 ms after the core bounce. The two orange para-
bolic curves define the frequency range within which the
algorithm looks for the peak in the spectra.

B. Energy measurement

We are interested in computing the power in each of the
time-frequency blocks in the spectrogram associated with
the f-mode frequencies. To ensure that we can do this
correctly, we first compare the power in the entire signal
evaluated using Eq. (21) (using the time-domain represen-
tation of the signal) and via the spectrogram (adding up
power in all the time-frequency blocks). However, when we
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FIG. 3. The top panel in the figure shows the spectrogram of the

3D simulation s19-3D. The red curve shows the quadratic fit to
the fundamental f-mode frequencies measured by picking the
frequencies corresponding to the peak in spectra, and the two
white curves represent the width of the track. The energy of the
mode is measured by summing the energy of the time-frequency
blocks within the white curves. The blue, orange, and green
curves in the bottom panel show the cumulative energy measured
from the time domain representation of the signal, its spectro-
gram, and for the f-mode from the spectrogram, respectively, and
summed for the individual polarizations s, and h,. The red,
purple, and brown curves show two times the energy for the same
for the effective strain as observed in an interferometer.

construct the spectrogram, multiplying a data segment with
a window function alters the amplitude and hence the
power of the signal. To mitigate this problem, we make two
consecutive segments of the data overlap by a fixed amount
of Ty seconds. We also want to ensure that the relative
weighing is the same for all the data points across different
segments. The relative weighing of the data for power
calculation is obtained by summing the square of the
window values at each data point. That is, for the point
Jj» the weighing will be given by >, H*(jAt — 7;). We want
this quantity to be constant across the entire signal. For the
first half of the first window, and the second half of the last

window, the relative weighing does not matter since we are
zero-padding the ends of the waveform.

Trethewey [51] shows that one cannot simultaneously
obtain equal weighing of all data points and compute the
correct power. For Hann windows, one obtains the correct
value of average power of the entire signal if consecutive
segments overlap by 62.5%. However, in this case, there is
variation in the relative weighing of the data points,
resulting in amplification of power in certain data seg-
ments, whereas reduction in others. This would mean large
errors in power estimates within individual time segments,
specially if the data are stochastic in nature, like the
gravitational-wave strain from a supernova. If two con-
secutive segments overlap by 66.65%, then all the points
are equally weighed, but the power calculation is amplified
by a factor of 1.125, across all segments. However, we can
compute the power with 66.65% overlap and scale it down
by the relevant factor to obtain the correct value of power.

Assuming 66.65% overlap between segments, the time
difference between the start of two consecutive segments is
Ty = Ty — T seconds, such that 100 x T/ Ty = 66.65.
We multiply each segment by a Hann window H(t; —7;),
where 7; is the time offset of the center of the segment from
the start of the signal. The length of the Hann window is
equal to the length of the segment. We take the discrete
Fourier transform of each segment of the windowed data
h;H(t; —7;) using scipy.fftpack.fft, given by

Ny—1
yk,‘rl = h]H(fj — T/)eZEijk/NW. (27)
Jj=0

The discrete form of Egs. (25) and (26) is given by

AEgy D?¢?

Af (fro7j) ~ EYeR (Z”fk)zAt2|)~)k,rj > (28)

where we have a factor of 2 instead of 4 in the denominator
to account for the power in the negative frequencies. To
normalize the effect of the window function, we use the
window normalization factor from Heinzel et al. [50],

S5 1 e
—= —— N H(1). 29

Using this normalization, Eq. (28) becomes

AEGW B D2C3
AT

N
(2nf AR5 [S—W} . (30)

The total energy can then be written as
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Egw = ZZAEGW(fk, [ﬂ

2At2|yk 7 |2Af

[NwTH], (31)

where the quantity [ ] is introduced to account for the fact
that two consecutive segments overlap by T» seconds. The
factor [ ] corrects for this double counting and represents
the correct fraction of the energy in the time segment. In the
final equation, the factor [ NuTn 11] for 66.65% overlap is equal

to 1.125, the same factor from Trethewey [51].

Now, we can verify if the energy values obtained from
the spectrogram [Eq. (31)] agree with those obtained using
Eq. (21). We find that the energy values agree within the
error range due to interpolation.

Once we have verified that the energies obtained from
the time-frequency data agree with those obtained by the
time domain data, we can compute the energy associated
with a given time-frequency track. In particular, we can
compute the energy associated with the f-mode oscillation
of the protoneutron star.

The top panel in Fig. 3 shows the frequency evolution of
the f-mode obtained from the spectrogram. For each time
segment, we assume the width of the f-mode track to be
6Af (3Af above the spectral peak associated with the
f-mode frequencies and 3Af below it). This width is
represented as the two white curves encompassing the peak
frequency curve shown in red. We can add up the energy
values for all the time-frequency blocks within the width
obtained. Doing this for all the time segments after 1 = 7,

e e S B s o b S S B B S S S
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1000

Frequency [Hz]

800

600 —

| IR U I SN T T T ST SO BT SO S S R
0 0.2 0.4 0.6 0.8 1.0

Time after bounce [sec]

will give us the time evolution of the energy associated with
the f-mode.

The bottom panel of Fig. 3 shows the cumulative energy
as a function of time for the simulation s19-3D. The blue
curve shows the cumulative energies obtained from the
time-domain data [Eq. (21)], and the orange curve shows
the cumulative energies obtained by adding up energy
values for all time-frequency blocks in the spectrogram. We
can see that both match very well. The green curve shows
the cumulative energy of the f-mode as a function of time
measured by adding the energy values in time-frequency
blocks only corresponding to the f-mode (i.e., within the
two white curves in the top panel of Fig. 3). The energy
obtained in the f-mode is ~20-40% of the energy from the
entire signal. We also compute the energy values obtained
from the effective strain observed by a detector and its
spectrogram [i.e., from Eq. (24)]. We show these energies
(multiplied by a factor of 2) in purple and red color in the
bottom panel.

We test this method for toy signals of the form
h(r) = A(t) sin(2zft), as well as the solutions for the
differential equations for a driven simple-harmonic oscil-
lator (for details on this model see Ref. [52]). We find that
we get 220% error in the measurement of the power from
the spectrogram as compared to the measurement directly
from the time domain signal. The error is higher when
stochasticity of the amplitude increases.

IV. RESULTS

In this section, we describe the results of using the above
method for measuring the properties of the f-mode for
gravitational-wave strains from various simulations.

T
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FIG. 4. The figure shows the frequency evolution (left) and power (right) measured for the f-mode oscillations from the gravitational-
wave strains of the three-dimensional simulations. The frequency increases with time, owing to the shrinking of the protoneutron star.
We find that the power in the gravitational waves associated with the f-mode oscillations generally increases as the progenitor mass

increases.
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The figure shows the frequency evolution (left) and power (right) measured for the f-mode oscillations from the gravitational-

wave strains of the two-dimensional simulations with core rotation. The frequency increases with time, owing to the shrinking of the
protoneutron star. We find that the power in the gravitational waves associated with the f-mode oscillations increases monotonically as
the progenitor core rotation rate increases, up till Q = 0.75 rad/sec, and then decreases as centrifugal forces dominate.

The left panel of Fig. 4 shows the frequency evolution of
the f-mode measured from short-time Fourier transform for
the three-dimensional simulations. Since the simulations
are for a short duration, we start the measurement of the
Jf-mode frequencies (and consequently, the energy) from
200 ms after the core bounce. However, this procedure
makes the frequency measurement noisy for the time
interval 200400 ms after the core bounce since f-mode
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oscillations are not the most energetic contributors to the
gravitational-wave signal. The peak of the Fourier trans-
form may not lie on the frequencies associated with the
f-mode. One can see that the frequencies at 200 ms lie in
the range between 500 Hz—600 Hz. 600 ms after the core
bounce; the frequencies can increase up to 1100 Hz—
1250 Hz. Again, there is no monotonous dependence of
the frequencies with the progenitor mass.
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FIG. 6. The figure shows the frequency evolution (left) and power (right) measured for the f-mode oscillations from the gravitational-
wave strains of the two-dimensional simulations without core rotation. The frequency increases with time, owing to the shrinking of the
protoneutron star. We find that the power in the gravitational waves associated with the f-mode oscillations generally increases as the

progenitor mass increases.

123005-10



MEASURING THE PROPERTIES OF f-MODE ...

PHYS. REV. D 107, 123005 (2023)

The right panel of Fig. 4 shows the energy in the f-mode
track obtained from the spectrogram of the gravitational-
wave signal, divided by the time when the f-mode
oscillations are active (i.e., 200 ms to the end of simu-
lations). Typically, the higher mass progenitors produce a
stronger gravitational-wave signal, and hence the power in
the f-mode oscillation track is higher for higher progenitor
mass. If we look at Fig. 2 of Ref. [22], which describes the
time evolution of the shock radius of the same progenitors
that we use in this study, then we find that delayed
explosion time also correlates with increased energy
emission in the gravitational wave signal. For example,
the power measured in f-mode for simulations with
progenitor masses 10, 19, and 25M, is higher in com-
parison to other simulations, and the shock expansion
associated with the explosion is also delayed. For the
progenitors with no explosion during the simulation time,
we measure low power in the f-mode from the gravita-
tional-wave signal.

Figure 5 shows the frequency evolution on the left panel
and the power in f-mode oscillations from the gravita-
tional-wave signal as a function of the core rotation rate on
the right panel for simulations with nonzero core rotation.
We find that both the frequency evolution and the power of
the f-mode oscillations depend on the core rotation rate.
Mild core rotation (0-0.75 rad/sec) increases the quadru-
pole moment and hence the power in gravitational-wave
radiation. Increasing the core rotation rate increases the
centrifugal support on the accreting matter that excites the
protoneutron star oscillations, resulting in reduced power in
the oscillations. The frequencies are also affected and we
can see two distinct groups of the frequency tracks. For the
core rotation rates of 0-0.5 rad/sec, where the centrifugal
forces are not affecting the f-mode oscillations, we see
similar time dependence for the frequencies as for the
simulations with no core rotation—they rise from
~850-900 Hz at 400 ms after the core bounce to
~1700 Hz at 1 second after the core bounce. As the core
rotation rate increases, the frequencies decrease, as is seen
in the simulations with 0.75 rad/sec and 1.0 rad/sec core
rotation rates. Further, for the higher rotation rates (greater
than 1.0 rad/sec), the centrifugal forces are large, and the
frequencies decrease—starting from ~600-800 Hz at
400 ms after the core bounce to ~1200 Hz at 1 second
after the core bounce.

The left panel of Fig. 6 shows the interpolated f-mode
frequency evolution measured from the short-time Fourier
transforms of the simulations listed in the figure. These are
two-dimensional simulations with progenitors having zero
core rotation rate at the core bounce. We assume that the
Jf-mode starts at ~400 ms after the core bounce. There is no
monotonic trend with respect to the mass of the progenitor
star for the frequency evolution of the f-mode oscillations.
There is also no monotonic dependence on the equation of
state used in the simulation. The stiffest equation of state,

DD2, used for the simulation M10-DD2 produces the
smallest frequencies (for times ~600 ms after the core
bounce). Whereas, the softest equation of state, SFHo, used
for simulation M10-SFHo, produces frequencies lower
than a relatively stiffer equation of state LS220. This has
been already discussed in Morozova et al. [19], where the
authors obtained the frequency evolution from linear
perturbation analysis of the protoneutron star. Here we

TABLEIIL. In this table we show the energy in the gravitational-
wave signal computed from the time-domain representation of
the signal [Eq. (21)] and from the spectrogram [Eq. (25)]. We
show the error in measurement of the energy from the spectro-
gram of the signal. In the last column, we show the energy
measured from the spectrogram in the track associated with the
f-mode oscillations.

Egw(10°Mgc?)

Time Fractional  f-mode
Label domain Spectrogram error (%)  energy
s9-3D 0.0014 0.0015 7 0.0002
s10-3D 0.073 0.084 15 0.016
s11-3D 0.03 0.03 6 0.005
s12-3D 0.05 0.05 1 0.012
s13-3D 0.012 0.011 9 0.002
s14-3D 0.028 0.031 10 0.003
s15-3D 0.026 0.029 8 0.006
s17-3D 0.12 0.13 14 0.03
s18-3D 0.13 0.15 10 0.03
$19-3D 0.33 0.38 16 0.081
s20-3D 0.18 0.21 16 0.27
$25-3D 0.13 0.16 21 0.07
s60-3D 0.024 0.027 13 0.008
0.0strain 1.2 1.5 22 0.81
0.05strain 0.92 1.08 18 0.41
0.lstrain 0.97 1.15 19 0.49
0.2strain 1.43 1.63 14 0.82
0.25strain 1.09 1.34 22 0.71
0.3strain 1.47 1.77 20 1.09
0.4strain  2.28 2.92 28 1.60
0.5strain 3.75 4.38 17 2.38
0.75strain 5.63 6.47 15 2.82
1.0strain 7.9 8.7 9.4 2.54
2.0strain 5.7 6.3 10 0.44
pi.strain 7.44 8.13 9.3 0.01
4.0strain 5.07 4.07 20 5% 1074
5.0strain 241 2.56 6 5% 107
2pistrain  0.96 3.3 242 9x 1078
M10-LS220 0.21 0.24 13 0.07
M10-DD2 0.16 0.17 11 0.04
M10-SFHo 1.57 1.86 19 0.43
M13-SFHo 0.93 1.09 17 0.47
M19-SFHo 5.27 6.80 29 2.12
gw-s11-2D 1.54 1.89 22 0.65
gw-519-2D 1.47 1.74 18 0.69
gw-525-2D  4.52 5.46 20 1.44
gw-s60-2D  4.14 5.48 32 2.49
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FIG. 7. The left panels of the figure show the root-mean-squared error in measurement of frequency evolution of f-mode () for
waveforms from three-dimensional simulations. The right panel shows the error in measurement of energy in the f-mode oscillations
(o). The orange line shows the median obtained from measurement in 10000 noise instances of Cosmic Explorer noise, with the fill
representing the 90th quantile. The blue curve represents the results for Einstein Telescope and the green curve for Advanced LIGO.

verify the frequency evolution by measuring the frequen-  Again, we see that the higher mass progenitors typically
cies from the short-time Fourier transform. The right panel =~ have higher power in the f-mode oscillation track. The
of Fig. 6 shows the power in the f-mode track obtained  results of energy measurement for all the waveforms are
from the spectrogram of the gravitational-wave signal.  summarized in Table II.
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‘We also repeat the analysis on the spectrogram of signals
embedded in simulated detector noise. We assume the
source distances to range from 1 kpc to 60 kpc. For each
distance, we inject the signal in 10000 instances of detector
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noise. To generate the simulated noise instances, we use the
designed power spectral density for Advanced LIGO and
the proposed third-generation detectors, Cosmic Explorer
and FEinstein Telescope.
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FIG. 8. The left panels of the figure show the root-mean-squared error in measurement of frequency evolution of f-mode () for
waveforms from two-dimensional simulations with core rotation. The right panel shows the error in measurement of energy in the f-mode
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‘We assume that the time of core bounce will be measured
by the neutrino detectors such as ICECUBE [53],
Super-Kamiokande [54], and DUNE [55] to within
4 ms [44,56,57]. We measure the f-mode frequencies

200 ms after the time of core bounce. We also assume
that the distance to the progenitor is known a priori, so
that when we measure the energy in the f-mode via the
spectrogram, we can scale it (by the square of the distance)
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FIG. 9. The left panels of the figure show the root-mean-squared error in measurement of frequency evolution of f-mode (o) for
waveforms from two-dimensional simulations with zero core rotation. The right panel shows the error in measurement of energy in the
f-mode oscillations (6z). The orange line shows the median obtained from measurement in 10000 noise instances of Cosmic Explorer noise,
with the fill representing the 90th quantile. The blue curve represents the results for Einstein Telescope and green curve for Advanced LIGO.
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to obtain the energy in gravitational waves associated with
the f-mode.

For closer sources, the signal is strong, and the noise does
notaffect the f-mode frequency measurement. As the source
distance increases, the f-mode peaks are picked more
randomly. This is because the gravitational-wave strain
amplitude from the signal is dominated by the detector
noise. Consequently, the least-square fit is also affected.

In Figs. 7-9, we show the results of our analysis for the
f-mode frequency and energy measurement when the
signal is embedded in detector noise. For each case, we
generate a short-time Fourier transform and measure the
Jf-mode frequencies. We then interpolate the measured
frequencies and compare them with those for the case when
the signal was not embedded in simulated detector noise.
We do this by computing the root-mean-squared error in the
frequencies, given by

(32)

Here, Ajzf = (fwith noise fnoiseless)z’ and Nf is the number
of time columns of the f-mode. After measuring the
Jf-mode frequencies, we use them to measure the energy
in the corresponding track on the spectrogram. Since this
track now has the gravitational-wave signal from a core
collapse, as well as the detector noise, the measurement will
yield the energy in the sum of the two. This way, we can
place an upper bound on the energy in gravitational-wave
radiation associated with the f-mode.

In Figs. 7-9, on the left panels, we show error in frequency
measurement (o) on the vertical axis and distance to the
source on the horizontal axis. The blue curve shows the
median of the inner product obtained from 10000 injections
into simulated Cosmic Explorer noise, whereas the green
curve shows the same for the Einstein Telescope. The fill
represents the 90th quantile measurements of o ;. We see that
as distance increases, o also increases. We can measure the
Jf-mode frequencies to within 10 Hz rms error for sources
within the Milky Way galaxy.

The right panel shows the relative error in measurement
of the energy in the f-mode from the spectrogram based on
the frequencies measured from the short-time Fourier
transform,

o — Ef—mode\noiseless - Ef—mode\with noise
E —_— -

(33)

E f-mode | noiseless

We find that we overestimate the energy by up to 220% for

higher mass exploding models with source distances within
the Milky Way galaxy.

1 1 1 s Simode

In Fig. 10 we show the time evolution of the ratio N

c

for the three-dimensional simulations, where p. is the
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FIG. 10. f‘ﬁ as a function of time for the three-dimensional
simulations, where p. is the central density of the protoneutron
star. The frequencies are obtained from linear perturbation
analysis, whereas the p, values are obtained from the simulation

: : +¢ fimode ;
data. We obtain a linear fit o= 0.237 + 0.06 (shown in red)

using the data for all the simulations.

central density of the protoneutron star. We find that
the ratio linearly increases with time and obtain the fit
y = 0.23¢ + 0.06 using linear regression, where ¢ is the
time after bounce. The fit is shown in red in Fig. 10. Using
this fit, and the frequency evolution from the spectrogram
of the strain measured in a detector, we can measure p,. (7).
In Fig. 11 the central density p.(7) of the 19M star
obtained from simulation is shown in red. We also measure
p. for the 10000 injections of the signal associated with the
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FIG. 11. We plot the time evolution of p, for the 19M, model
in red, as obtained from the three-dimensional simulation. We
obtain p, for each injection instance when the source is assumed
to be at 10 kpc, and the signal is detected in Cosmic Explorer. We
plot the two-dimensional histogram for the pmj(tb), where inj is
the injection instance, and ¢, is the time after bounce. The counts
for such histogram are shown on the color bar.
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model 19 — 3D in Cosmic Explorer, assuming the source
distance to be 10 kpc. Given the linear fit for ffﬁ%f and

quadratic fits for f(t), p.(¢) is a ~¢> function of time after
bounce. We obtain p, values for various times and for
various injection instances. The two-dimensional histo-
gram for p. is shown in gray scale, with the color map
normalized to the logarithm of counts in each p,. — ¢ bin.
We can see from the plot that we can measure the central
density of the core of the star using the frequency evolution
measured from the spectrogram.

V. CONCLUSION

In this paper, we have developed a model-independent
method to measure the frequencies and energies associated
with the quadrupolar oscillations of a protoneutron star.
We use gravitational-wave signals from two- and three-
dimensional core-collapse simulations.

We construct the short-time Fourier transform of these
signals to extract the f-mode frequencies. We then con-
struct a spectrogram of the signal in a way that provides
equal weights in power to all the data points of the signal.

We first test the energy measurement from the spectro-
gram of the signal by comparing it to the energy computed
using the time-domain data. We find that the total energy
measured using the spectrogram is within 20% of the
energy measured using the time domain data. We then use
the frequency evolution of the f-mode measured via the
short-time Fourier transform to extract the energy from the
time-frequency blocks associated with the f-mode oscil-
lations using the spectrogram. We find that the f-mode
energies can be as high as 40% of the total energy emitted
in gravitational radiation during a core collapse.

We find that the energy associated with the f-mode
oscillations typically increases with the progenitor mass.
The energy also depends on the delayed explosion times and
the success of explosion. Simulations having higher shock
stall times before the onset of explosion emit more gravi-
tational-wave radiation since the oscillations are excited for a
longer time. Additionally, the energy of the f-mode also
increases monotonically with the rotation rate of the core, up
to a certain value of core rotation rate. Centrifugal forces
dominate for faster core rotations and cease the activation of
the oscillations of the protoneutron star.

To understand how the detector noise will affect this
analysis, we inject the gravitational-wave signals into simu-
lated Cosmic Explorer and Einstein Telescope noise and then
extract the f-mode frequencies and measure the energies. We
vary the distance to the source, but limit it to within the
Milky Way galaxy. We find that for waveforms from three-
dimensional simulations, we can measure the f-mode
frequencies for sources up to 20 kpc within a rms error of
5 Hz and the f-mode energies within 20% fractional error,
when the gravitational-wave signal is assumed to be detected

by a third-generation observatory. For waveforms from two-
dimensional simulations with core rotation, we can measure
the frequencies for sources up to 20 kpc to within 2 Hz rms
error and energies to within 10% fractional error.

Measurement of the frequencies and energies of the
f-mode oscillations can provide us more information about
the mechanism of the supernova explosion. We can also
infer the central density of the protoneutron star and the
turbulence energy within the system.

Supporting Data for this manuscript is available
at Ref. [58].
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