# Nanomaterials and Sustainability

Gary P. Wiederrecht<sup>1\*</sup>, Renaud Bachelot<sup>2\*</sup>, Hui Xiong<sup>3</sup>, Konstantinos Termentzidis<sup>4</sup>, Alexandre Nominé<sup>5</sup>, Jier Huang<sup>6</sup>, Prashant V. Kamat<sup>7</sup>, Elena A. Rozhkova<sup>1</sup>, Anirudha Sumant<sup>1</sup>, Michele Ostraat<sup>8</sup>, Prashant K. Jain<sup>9</sup>, Chris Heckle<sup>10</sup>, Jie Li<sup>11</sup>, Krzysztof Z. Pupek<sup>11</sup>

<sup>1</sup>Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439 USA

<sup>2</sup>Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 10004 Troyes Cedex, France

<sup>3</sup>Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA and Center for Advanced Energy Studies, Idaho Falls, ID, USA

<sup>4</sup>Université Claude Bernard Lyon, CNRS, INSA-Lyon, CETHIL UMR5008, F-69621, Villeurbanne, France

<sup>5</sup>Institut Jean Lamour, UMR CNRS-UL 7198, 54011 Nancy, France; LORIA UMR CNRS-UL- INRIA 7503, 54506 Vandoeuvre-lès-Nancy; Gaseous Electronics, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia

<sup>6</sup>Department of Chemistry and Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts, 02467, USA

<sup>7</sup>Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA

<sup>8</sup>Pajarito Powder, Albuquerque, NM 87109, USA

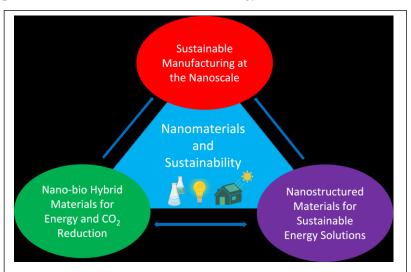
<sup>9</sup>Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA

<sup>10</sup>Materials Manufacturing Innovation Center (MMIC), Argonne National Laboratory, Lemont, IL 60439

<sup>11</sup>Materials Engineering Research Facility (MERF), Argonne National Laboratory, Lemont, IL 60439

\*Communicating author email addresses: wiederrecht@anl.gov and renaud.bachelot@utt.fr

### **Abstract**


This Energy Focus article summarizes the topics presented at the Nanomaterials and Sustainability Workshop held on May 4<sup>th</sup>, 2023 as part of the annual Advanced Photon Source/Center for Nanoscale Materials Users Meeting. Nanomaterials with novel properties and phenomena offer tremendous opportunities for sustainable technologies that address critical environmental and energy applications. The large variation that is possible for nanomaterials across composition, dimension, size and geometry aids in the range of properties and applications that can conceivably be addressed. However, in order to have maximum impact, earth abundance of materials must be considered and scalable manufacturing technologies must be developed. The opportunities discussed at the workshop are organized into topical areas of *Nanostructured Materials for Sustainable Energy Solutions*; *Nano-bio Hybrid Materials for Energy and CO*<sub>2</sub> *Reduction*; and *Sustainable Manufacturing at the Nanoscale*.

Nanostructuring adds a tremendous degree of tunability to the optical, electronic, magnetic, tribological and chemical properties of matter. As a result, nanostructured materials already play major roles in the many technologies and industries that provide the comfort and convenience of our everyday lives. However, although there are examples of nanostructured materials that currently enhance sustainable technologies, such as for batteries and electrolyzers, the potential impact of nanoscale materials on sustainability has likely not nearly been realized when one considers that the nanostructure-property-composition exploration phase space is almost infinite. We can find inspiration from nature, which builds and assembles nanostructured materials into hierarchical biological structures to perform the enormously complex functions of life, all the while doing so with a relatively small set of elements that are sustainably sourced. This contrasts with current technology where performance demands tend to require greater and greater diversity of elements from the periodic table, some of which are very challenging to be sustainably sourced or recycled.<sup>2</sup>

These were the topics for discussion at the *Nanomaterials and Sustainability Workshop* held on May 4<sup>th</sup>, 2023 as part of the annual Advanced Photon Source/Center for Nanoscale Materials Users Meeting. The workshop had more than 180 registrants and consisted of 12 invited talks covering a diverse range of subjects that included the impact of nanomaterials on sustainable energy solutions, nanostructured

biomaterials, sustainable and manufacturing with nanomaterials. The speakers were each asked to provide examples of sustainability challenges and how nanomaterials could address those challenges. What follows is a summary of those contributions, organized into three topical areas: Nanostructured Materials for Sustainable Energy Solutions: Nano-bio Hybrid Materials for Energy and CO<sub>2</sub> Reduction: and Sustainable Manufacturing at the Nanoscale. A schematic of the connections of these three topics as they relate to nanomaterials and sustainability theme of this article is shown in Figure 1.

# Nanostructured Materials for Sustainable Energy Solutions



**Figure 1.** The importance of Nanomaterials and Sustainability to science and technology is schematically illustrated via the interconnections of three topical areas: Nanostructured Materials for Sustainable Energy Solutions, Nano-bio Hybrid Materials for Energy and CO<sub>2</sub> Reduction, and Sustainable Manufacturing at the Nanoscale.

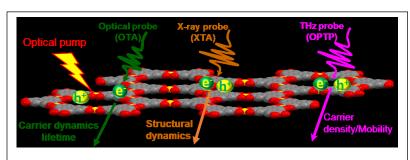
Surging global energy demands along with growing environmental concerns related to climate change have spurred great interest in recent years for a reduced carbon emission economy that utilizes low carbon footprint renewable energy sources such as wind and solar systems. Energy of course takes on many forms, including chemical, optical, electrical, mechanical, thermal, nuclear or a combination of them. Each one of these forms of energy can be harvested, converted into another form, managed or stored. The aim of a large part of the scientific community is to increase the efficiency of energy harvesting and conversion as well as the durability of energy related devices. As noted above, in this complex equation, one has to add the need to increase the use of abundant and recyclable materials and to minimize the use of toxic materials.

The evolution of materials science the last decades is one of the strongest allies of the energy transition, by enabling the proposition of a plethora of new materials that vary in composition (alloys, nanocomposites), dimensions (3D, 2D, 1D, 0D) and geometries (nanoarchitectured structures). Nanostructures and nanostructured materials have rapidly produced new paradigms and phenomena that have begun to impact the sustainable energy landscape. Examples of proposed ideas by topic from the Nanomaterials and Sustainability Workshop follow.

<u>Energy storage</u>: Mobile energy storage solutions enabled by electrochemical energy storage (EES) technologies to power electric vehicles will further reduce the dependence on high carbon-emissions fossil fuels. Although today's rechargeable lithium-ion batteries (LIBs) have transformed portable electronics, meeting large-scale grid storage and electrified transportation demands present greater challenges. Burgeoning energy and transportation markets have a hard-pressed and urgent need for EES to provide coveted energy, power, life, safety, and low cost while utilizing more sustainable raw materials. Meeting these challenges will require innovative approaches and transformative concepts to design and discover new materials, and nanostructuring can play a significant role.

Electroceramics and their tailored nanostructures are promising materials widely used as intercalation electrodes for LIBs. As the name implies, intercalation electrodes operate by reversibly accepting (intercalation) and releasing (deintercalation) lithium ions during cycling. Nanostructuring these materials is an effective means to produce efficient exposure of electrolyte to the ceramic material via increased surface area, thereby improving charge transport. Traditionally, researchers have focused on highly ordered crystalline intercalation oxides, driven by a general belief that ordered crystals having little or no intermixing between Li and the transition metal (TM) sublattice is required in order to achieve facile Li diffusion, and hence high capacity. However, in the past decade, transition metal oxides (TMOs) with structural disorder (amorphous) have emerged as promising storage materials for anchoring more guest ions or reaction intermediates during electrochemical processes, owing to improved adsorption and storage of charge carriers than ordered oxides.

Evidence has shown that TMOs with cation-disordered sites have the potential to offer higher capacity and better stability compared to ordered oxides. Interestingly, despite their structural dissimilarities, the synthesis of cation-disordered materials has thus far been based on the same chemical processes as their well-ordered counterparts. In current synthetic approaches, the disordered material is typically entropically-stabilized using higher temperatures. However, researchers have recently demonstrated alternative approaches to stabilizing disordered TMO electrodes when they are subjected to different external stimuli (e.g., Li ion, ion irradiation).<sup>3,4</sup> The hypothesis is that nanostructured amorphous structures represent a high-energy state that can undergo an amorphous-to-crystalline (a-to-c) transformation under far-from-equilibrium stimuli. Inducing crystallization of nanostructured amorphous metal oxides under external stimuli is therefore an exciting new avenue for creating rare TMO electrode materials with high capacity, power, and stability for enhanced energy storage systems.


<u>Thermal transport:</u> Theoretical studies of silicon nanostructures, in several cases confirmed by experiment, show that thermal transport diverges from the classic Fourier law. The ramifications are that thermal conductivity in several silicon nanosystems is no longer an intrinsic property and thus it does not obey the Fourier law which describes well the diffusive phonon transport. It specifically fails when ballistic or quasiballistic transport become predominant and phonon filtering effects are produced as in a 2D-3D network of nanowires or in a crystalline/amorphous nanocomposite or in diameter-modulated nanowires. Hydrodynamic heat transfer has also been observed in both pristine and core/shell silicon nanowires. In composite materials of crystalline nanoinclusions inside an amorphous silica matrix, phonons can effectively sense the existence and the orientation of the neighboring nanoinclusions and hop from one

nanoinclusion to another accordingly showing phonon tunneling behavior. Asymmetric core/shell nanowires have been used to demonstrate thermal rectification due to variable axial and radial phonon propagation and confinement. Finally, very recently, phonon interference patterns have been reproduced in a nanoporous silicon structure, showing similarities with the Young double-slit experiment for photons. All of these examples show new paradigms to create breakthrough energy technologies based on nanomaterials, with primary goals being heat management and energy harvesting. This work further allows the proposition of new functionalities such as so-called thermotronics - the reduction of the device sizes, the increase of their efficiency and lifetime and the technology of the Internet of Things (IoT). Using silicon as the main material for such devices lies in the scope of developing new strategies for both energy and materials economy, materials management and recycling, the replacing of critical raw materials, and the use of green and non-ecotoxic materials. From the fundamental point of view, these physical phenomena require a new theoretical framework which can explain non- or beyond-Fourier thermal transport.

Solar energy conversion and catalysis: There are many nanostructured materials that are being researched for solar energy conversion or photocatalyis for solar fuels. Much of this is driven by the reactivity of nanoscale surfaces, where high surface-to-volume ratios, strain and/or the presence of environmentally exposed defects make for enhanced rates of chemical/catalytic activity. One example is for semiconductor nanocrystals which can be synthesized reliably over a wide range of composition, shape, bandgap and size. The availability of an active surface for chemical modification in semiconductor nanocrystals makes it possible to also design and synthesize a variety of semiconductor molecular hybrids. Such hybrid assemblies have applications in light energy conversion processes such as light to electricity (e.g., solar cells), electricity to light (e.g., light emitting devices) and light to chemicals (e.g., photocatalysis). By carefully selecting molecules with sensitizing or catalytic properties one can introduce hybrid architecture with tailored properties. In addition, the ability to tune the bandgap of semiconductor nanocrystals through size variation (e.g., metal chalcogenides) or compositional control (e.g., metal halide perovskites) offers another knob to modulate light energy capture. Future research opportunities include design of new semiconductor-molecular hybrids, understanding of mechanism of energy and electron transfer processes and their assembly in a device that can deliver desired light energy conversion processes.

Similarly, nanoporous materials, which in a sense are the inverse of nanoparticle systems, also show great promise for sustainability applications. One key example are Metal Organic Frameworks (MOFs), a class of highly porous crystalline materials that are constructed from zero- or one-dimensional inorganic chains in combination with multitopic organic ligands. They have received great attention recently due to their large surface area, tunable porosity, and easy preparation, which lead to their versatile applications including gas storage and separation, sensing, catalysis and drug delivery. 8 However, the use of MOFs as semiconducting light absorption and charge transport (CT) materials has received little attention due to their low electrical conductivity. While some work has been done in the study of electronic properties of conductive MOFs, it is still in its early stages and a majority of these works focus on material design principles and conductivity measurements, leaving the fundamental understanding of CT mechanism underexplored; yet the latter is essential for the further development of this class of materials to be exploited in optoelectronics, solar cells, and photocatalysis. From a fundamental perspective, CT in solids or polymeric materials can be described by either of two general mechanisms: hopping transport and band like charge transfer. These mechanisms require low energy pathways for CT which can be realized through two synthetic approaches from a chemical perspective to achieve such low energy pathways; through bond approach and through space approach. Whilst literature relies mainly on computational modeling results as support for different types of charge transport mechanisms in MOFs, the robust nature of MOFs and compositional complexities together with possible coexistence of CT pathways in a single material has led to electronic structures which are still poorly understood with both experimental and computational methods.

A key to understanding these structures and developing them for sustainability applications is spectroscopic characterization, including particularly time-resolved spectroscopies. As illustrated in Figure 2, key processes related to optimizing semiconductor behavior can be measured through advanced 2D spectroscopic techniques such as Optical Transient absorption (OTA), X-ray Transient Absorption (XTA) and Optical Pump Terahertz Probe (THz-OPTP). These techniques are based on the initial generation of



**Figure 2.** Diagram showing different pump-probe techniques and the information obtained from each technique.

free carriers and promotion into excited states from a pump pulse. Choice of this pump pulse is based on understanding of the system which includes an experimental hypothesis to be examined. A secondary probe pulse whose choice also depends on the experimental design introduced at different delay times after the pump pulse is used to investigate the effects of the latter. The outcomes from these

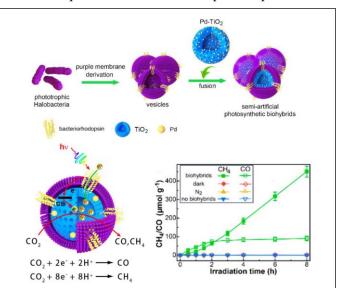
experiments as depicted in Figure 2 includes charge carrier and structural dynamics, where information about the CT mechanism can be inferred together with their overall photoconduction.

Plasmonic nanostructures for green chemical manufacturing and solar fuels: Plasmonic nanostructures have emerged as an exciting new class of catalysts for directing chemical reactions using light instead of heat or electricity. Optical excitations of localized surface plasmon resonances (LSPR) in metal nanostructures provide a route to generate amplified electromagnetic fields, energized charge carriers, and electron-hole pair excitations on the nanoparticle surface. <sup>10</sup> These photophysical effects can coax species adsorbed on the nanoparticle surface to undergo chemical reactions along excited-state pathways and at rates that are not otherwise accessible thermally. Examples range from dissociation of strong bonds at lower temperatures, generation of reactive radicals and species, multielectron multiproton redox chemistry, and thermodynamically uphill fuel-forming reactions. The promise of the plasmonic chemistry or plasmonic catalysis approach is that optical excitation would eliminate the need for harsh process conditions used in conventional chemicals production (such as high temperatures and pressures), precious metal catalysts (such as Pt or Pd), or energetic reagents produced by high carbon-impact processes (such as H<sub>2</sub> from methane reforming). This would open up a path to sustainable, solar-powered processes for the manufacturing of valuable chemicals and fuels, such as ammonia.<sup>11</sup> However, for this promise to be realized, important avenues remain to be explored and key advances remain to be made. First, it would be desirable for plasmonic catalysts to be based on earth-abundant elements rather than the coinage metals, particularly gold, that has dominated this area. Plasmonic oxides, sulfides, and nitrides, which have emerged in the last decade, can be prime candidates for sustainable materials for plasmonic catalysis; however, considerable research is needed to ascertain if these nanomaterials host the salient carrier photophysics and photochemical activities that underlie plasmonic catalysis with coinage metal nanostructures. These investigations would need to draw from the current state of mechanistic understanding of plasmonic catalysis, which is itself incomplete. There is therefore a need to develop a comprehensive, electronic picture of plasmon-induced chemistry based on ultrafast electronic, vibrational and X-ray spectroscopies and time-dependent quantum mechanical methods. Questions also remain about the true contribution of non-thermal effects relative to photothermal effects that always accompany plasmonic excitation, the

maximum quantum efficiency achievable in light-to-chemical energy conversion with plasmonic light absorbers, and if plasmonic excitations of charge carriers provide truly unique access to modes of chemical reactivity when compared with band-gap excitations in semiconductors. Finally, attempts at technology translation will be predicated on scaleup and technoeconomic analysis of plasmonic photoreactors and catalytic nanomaterials synthesis.

# Nano-bio Hybrid Materials for Energy and CO<sub>2</sub> Reduction

<u>Artificial Photosynthesis</u>: There is a growing demand for the sustainable production of industrially important chemicals, materials and fuels using new environmentally friendly schemes. Inspiration comes from naturally occurring processes, such as enzyme catalysis and photosynthesis, that involve both "dark" and light-driven conversion of energy into chemical molecules. Chemical transformations carried out through natural mechanisms are highly selective, specific, can occur under ambient conditions, and are accompanied by harmless emissions into the environment. For example, natural photosynthesis has evolved as a complex catalytic reactor powered by sunlight to convert water and carbon dioxide into muti-carbon glucose molecules to store energy for the needs of plants or bacteria.


However, while optimal for living organisms, biological mechanisms can be slow or costly to address humanity's energy and environmental problems. Inspired by nature's mechanisms for capturing, conversion and storage of solar energy, scientists created the concept of light-driven processes that mimic nature and called it *artificial photosynthesis*. The first artificial water-splitting photosynthesis, pioneered by Fujishima and Honda in 1972, was carried out in a photoelectrochemical (PEC) cell, incorporating the archetypal TiO<sub>2</sub> semiconductor and platinum electrodes, under UV light irradiation. If both the electrodes are imaginarily fused and scaled down to a hybrid nanostructure, the light energy conversion can be achieved "wirelessly" through photocatalysis. To date, both PEC and photochemical approaches have not only mimicked the steps of natural photosynthesis, water splitting and carbon dioxide fixation, but have gone even further towards converting greenhouse gases into value-added chemicals. Over the past five decades, extensive development of artificial systems, which typically include photosensitive semiconductors and cocatalysts, often noble metals, has focused on balancing their catalytic activity and stability, improving selectivity and efficiency of light absorption, optimizing reaction conditions, separating products, and reducing toxicity to the environment and cost.

<u>Hybrid nanoarchitectures</u>: Among ongoing efforts, integration of specificity, selectivity and environmental friendliness of natural machineries with the strengths of synthetic nanomaterials is gaining momentum. In the resulting nano-biohybrid architectures, semiconductor or photonic nanostructures provide photoexcited

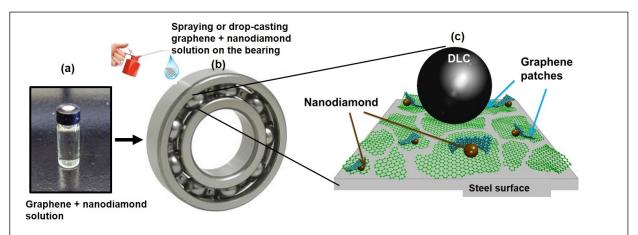
electrons instead of organic high-energy cofactors to energize biosynthetic pathways and perform chemical transformations, while biomachineries pre-assembled by nature bring to the table such unique properties as chemical reaction specificity, wavelength-selectivity, and reactivity through proton-coupled electron transfer (PCET). Recent successful examples include the integration of non-photosynthetic whole cell machinery or isolated enzymes with photoactive synthetic nanostructures into a photosynthetic hybrid catalyst systems. <sup>12,13</sup>

Key limitations here include the sensitivity of bacterial cells to oxygen and hence the cost of anaerobic cultures, the compatibility and efficiency of energy transfer at the bioticabiotic interface, the necessary costs for cell viability, and enzyme isolation and stability.

To circumvent these limitations, a distinct type of hybrid has been developed, that includes as a building block the light-gated proton pump bacteriorhodopsin (bR), a non-enzymatic retinol-centered protein capable of creating a



**Figure 3.** Assembly of nano-bio hybrid (top); proposed mechanism of photosynthetic CO<sub>2</sub> reduction to value-added chemicals by nano-bio hybrid (left); photocatalytic CH<sub>4</sub> and CO formation under various conditions (right) Adapted from Ref 14, Copyright 2019, American Chemical Society.

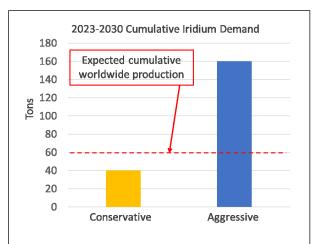

proton gradient across a microbial purple membrane (PM) and inorganic nanostructures, such as semiconductor  $TiO_2$  and photonic Au, Ag or Ag/Au. These nanobio hybrids have been applied for light-driven hydrogen evolution and photosynthesis of organic energy storage ATP molecules. Recently, an artificial photosynthesis strategy for carbon dioxide reduction was developed by integrating PM isolated from *Halobacterium*, with hollow mesoporous semiconductor Pd-TiO<sub>2</sub> nanoparticles (Figure 3). In these hybrid catalytic systems, a proton pump bR, functions as a photosensitizer that injects light-excited electrons into the conduction band of  $TiO_2$  while retaining its natural biological function as a visible light-driven proton pump. Thus, photoinduced electrons and protons accumulated within a confined nano-bio architecture act in concert, allowing catalytic reactions via proton-coupled multielectron transfer PCET process at significantly reduced potential requirements. The nano-bio architecture converted  $CO_2$  into CO and  $CH_4$  under  $\lambda > 420$  nm light in water at pH7 and room temperature with ascorbate as a sacrificial electron donor, with a pronounced selectivity of over 95% toward methane.<sup>14</sup> This approach provides an alternative minimalistic reconfigurable toolkit for designing photosynthetic bio-inspired and bio-enabled nanoarchitectures for sustainable energy applications.

### Sustainable manufacturing at the nanoscale

<u>Development of green nanolubricants:</u> It is estimated that approximately 23% of the world's total energy consumption can be attributed to tribological contacts. <sup>15</sup> The lubrication industry heavily relies on oil-based lubricants due to their ability to minimize friction and wear losses while maintaining durability. However, the disposal of oil waste, as well as the presence of hazardous additives, presents significant environmental and health concerns. In line with the decarbonization objective of achieving net carbon neutrality by 2050,

the development of biodegradable lubricants has become increasingly critical for the lubrication industry and contributing towards building a sustainable society.

In this context, there is a growing interest in the utilization of nanomaterial-based solid lubricants that offer several advantages, such as the absence of hazardous waste, lower cost, and durability. At Argonne National Laboratory, significant progress has been made in developing a series of solid nanolubricants based on graphene/nanodiamond and its derivative (Figure 4). These lubricants have demonstrated outstanding wear and friction properties, including the remarkable phenomenon of superlubricity (nearly zero friction)




**Figure 4.** Schematics of a graphene-nanodiamond based superlubric solid lubricant coating developed at Argonne National Laboratory showing application from a) solution to b) bearing. The schematic in c) shows diamond-like carbon (DLC) ball sliding on nanodiamond/graphene patches. Adapted from Ref 16, Copyright 2015, American Association for the Advancement of Science.

at high contact pressures, in diverse environments, and with long-lasting effectiveness. Moreover, the efficacy of these lubricants in reducing friction and wear losses has been demonstrated at an industrial scale in key sectors such as the automotive industry's metal stamping process and the oil and gas industries as protective coatings for mechanical shaft seals. Collaborative efforts with industry partners have enabled successful demonstration at the industrial scale. Importantly, these materials can be applied using a simple air-spray coating process, making them scalable over large areas at significantly lower costs compared to traditional thin film coatings. At the nanoscale, the intricate nature of tribochemistry plays a pivotal role in the formation of a tribolayer, effectively reducing friction and wear. The two-dimensional (2D) structure of these lubricants facilitates excellent adhesion to the base substrate, resembling chemical bonding while enabling smooth shearing between the deposited layers. The dynamic behavior of 2D flakes resembles that of semi-liquid or crystalline oil, resulting in exceptionally low friction and wear. These exceptional characteristics of nanolubricants hold great promise for advancing the development of oil-free solid lubricants in various practical applications. Furthermore, they offer significant potential in contributing to the decarbonization objectives of the lubrication industry.

<u>Nanomaterials for fuel cells and electrolyzers.</u> Nanomaterials offer a multitude of opportunities to address and enhance sustainability across most industries. In addition to contributing to sustainable technologies, such as fuel cells and electrolyzers, nanomaterials can also be deployed to enhance the sustainability of energy-intensive industrial operations as well as to more efficiently utilize our natural resources. One major

challenge in the development of sustainable electrolyzer and fuel cell technologies involves the reality that critical minerals, including iridium and platinum, are essential to achieving higher performance while offering the necessary durability and stability under an electrolyzer's extremely aggressive high voltage and acidic operating conditions.<sup>17</sup> At commercial electrolyzer deployment scales, the demand for Ir is forecasted to outstrip the worldwide production of Ir (Figure 5). A number of approaches are being pursued to mitigate this challenge, including renewed efforts in recycling across the electrolyzer value chain, from recovering platinum group metals (PGMs) from low value, dilute manufacturing waste to recycling end of life electrolyzer stacks. Additionally, new catalyst formulations are being developed that aim to utilize



**Figure 5.** 2030 Cumulative Iridium Demand (Conservative) at 80-100GW 40% PEM; (Aggressive) at 80% PEM.

less mg Ir/cm² without sacrificing performance. Current strategies being pursued involve the incorporation of Nb- and Ru-containing IrO<sub>x</sub> materials, both as mixed oxides and as supported structures, to reduce both Ir usage and to derive performance advantages from incorporated Nb and Ru. Recent results indicate that high surface area IrO<sub>x</sub>, IrRuO<sub>x</sub>, and IrRuO<sub>x</sub>/NbO<sub>x</sub> demonstrate stability in high efficiency proton exchange membrane (PEM) Water Electrolyzers over 1400 hours of testing. To push boundaries even further, driving nanoscale IrO<sub>x</sub> catalyst structures to even smaller particle sizes is effective in reducing crystallite sizes and increasing catalyst surface areas, which are effective techniques at demonstrating promise in achieving similar electrolyzer performance under polarization with lower Ir loading levels. <sup>18</sup>

The science of scale-up and nanomaterials manufacturing. Materials to enable next generation technologies are increasingly structured at the nanoscale whether flexible electronics, industrial catalysts, quantum computing, battery materials, or other applications. The benefit for industry stems from tunable properties as desired via precisely controlling the size, morphology and composition by adjusting synthesis conditions and appropriate functionalization. However, the critical bottleneck in harvesting the benefits of advanced nanomaterials is in their low availability. Furthermore, industry still struggles to translate discovery lab inventions into tangible technological applications. Nanomaterials are notoriously difficult to scale up to a commercial level even though they can be manufactured by using a variety of methods either "top-down" or "bottoms-up". The historical three-stage scaling method (i.e., lab-scale/pilot-scale/large-scale) based on increasing the volume of a batch reactor cannot satisfy the requirement of manufacturing of nanomaterials as it is hard to maintain the required nanostructure and properties.

One approach that is uniquely suited for nanomaterial synthesis and scale-up with superior process control and material performance is the application of a continuous flow reactor (CFR).<sup>20</sup> Particle size and morphology is controlled via temperature, pressure, flow rate (residence time), process chemistry and precursor concentration. All parameters can be easily and reproducibly controlled due to the superior and predictable mass and heat transfer capabilities of a CFR. Continuous flow syntheses present *multiple benefits*: 1) excellent homogeneity leads to narrow particle size distribution; 2) fully automated computer

controlled system expedites process optimization to achieve desired nanoparticle properties; 3) processes can be run in conditions that are difficult or impossible to otherwise achieve, e.g. rapidly heating/cooling leads to ultrasmall nanoparticles, and 4) scalable architecture provides the tools for seamless moving from benchtop process optimization to production. Furthermore, 5) the modular design of a CFR system allows for multi-stage synthesis of complex nanocomposite materials in a single-pass process, as well as for parallel synthesis of up-scaling large amounts of nanomaterials in the multi-pass.

For a CFR, the reaction can also be monitored as a function of distance along the flow path, which provides the opportunity to conduct time-resolved studies using an in-situ real-time method e.g. APS X-ray tools, for *elucidating the fundamentals*. The feedback can be used to optimize processes and reactor design. With additional assistance of machine learning/artificial intelligence (ML/Al) capabilities, the CFR process can readily be automated, accelerating development of novel materials and their manufacturing to address the highly time-consuming problem of multi-parameter optimum.

Moreover, surfaces and interfaces plays a key role in not only enabling synthesis of ultrasmall high-quality nanomaterials (controlling agglomeration), but scaling up the process (allowing for higher precursor concentration). It is crucial to understand surface phenomena by conducting computer simulations and experimental validation such that a deep knowledge of the relationship between particle formation (nucleation and growth), physicochemical properties and material performance can be developed and the material can be up-scaled.

We have described the opportunities and examples of possible contributions of nanomaterials to sustainability efforts, as presented at the Nanomaterials & Sustainability Workshop. There are considerable opportunities and research efforts across the globe addressing clean energy solutions. However, while the case for nanomaterials to realize new technologies is very strong, it is also true that the emergence of nanotechnology is partly responsible for the extension of the palette of metals used by humanity. One need only note that a smartphone requires twice more elements than all life-forms on Earth.<sup>2</sup> Thus, our challenge in nanoscience research is to ultimately advance nanotechnology applications while balancing performance with considerations of elemental abundance and environmental impact as a whole.

# Acknowledgments

Work at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, was supported by the U.S. DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Material from P. K. J. is based upon work supported by the National Science Foundation under Grant No. CHE-2304910. The work of H. X. was supported by the U.S. National Science Foundation grant numbers DMR- 1408949, 1454984, and 1838604.

### References

- 1. Mertz, W. The Essential Trace Elements. Science 1981, 213 (4514), 1332–1338.
- 2. King, A. H. Our Elemental Footprint. *Nat. Mater.* **2019**, *18*, 408–409.
- 3. Xiong, H.; Yildirim, H.; Shevchenko, E. V.; Prakapenka, V. B.; Koo, B.; Slater, M. D.; Balasubramanian, M.; Sankaranarayanan, S. K. R. S.; Greeley, J. P.; Tepavcevic, S.; Dimitrijevic, N. M.; Podsiadlo, P.; Johnson, C. S.; Rajh, T. Self-Improving Anode for Lithium-Ion Batteries Based on Amorphous to Cubic Phase Transition in TiO<sub>2</sub> Nanotubes. *J. Phys. Chem. C* **2012**, *116* (4), 3181–3187.
- 4. Barnes, P.; Zuo, Y.; Dixon, K.; Hou, D.; Lee, S.; Ma, Z.; Connell, J. G.; Zhou, H.; Deng, C.; Smith, K.; Gabriel, E.; Liu, Y.; Maryon, O. O.; Davis, P. H.; Zhu, H.; Du, Y.; Qi, J.; Zhu, Z.; Chen, C.; Zhu, Z.; Zhou, Y.; Simmonds, P. J.; Briggs, A. E.; Schwartz, D.; Ong, S. P.; Xiong, H. Electrochemically Induced Amorphous-to-Rock-Salt Phase Transformation in Niobium Oxide Electrode for Li-Ion Batteries. *Nat. Mater.* **2022**, *21* (7), 795–803. https://doi.org/10.1038/s41563-022-01242-0.
- 5. Desmarchelier, P; Tanguy, A.; Termentzidis, K. Thermal Rectification in Asymmetric Two-Phase Nanowires, Phys. Rev. B **2021**, *103*, 014202.
- 6. Desmarchelier, P.; Beardo, A.; Alvarez, X.; Tanguy, A.; Termentzidis, K. Atomistic Evidence of Hydrodynamic Heat Transfer in Nanowires, *Int. J. Heat Mass Transf.* **2022**, *194*, 123003.
- 7. Dionne, J. A.; Dagli, S.; Shalaev, V. M., Nanophotonics for a Sustainable Future, *Phys. Today* **2023**, *76* (6), 24–31.
- 8. Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B., Photochemistry and Photophysics of MOFs: Steps Towards MOF-Based Sensing Enhancements. *Chem. Soc. Rev.* **2018**, *47* (13), 4710–4728.
- 9. Xie, L. S.; Skorupskii, G.; Dincă, M., Electrically Conductive Metal–Organic Frameworks. *Chem. Rev.* **2020**, *120* (16), 8536–8580.
- 10. Yu, S.; Jain, P. K. The Chemical Potential of Plasmonic Excitations. *Angewandte Chemie International Edition* **2020**, *59* (5), 2085–2088.
- 11. E Contreras, R Nixon, C Litts, W Zhang, FM Alcorn, PK Jain, Plasmon-Assisted Ammonia Electrosynthesis, *J. Am. Chem. Soc.* **2022**, *144* (24), 10743–10751.
- 12. Sakimoto, K. K.; Wong, A. B.; Yang, P. D., Self-Photosensitization of Nonphotosynthetic Bacteria for Solar-to-Chemical Production. *Science* **2016**, *351* (6268), 74–77.
- 13. Reisner, E.; Powell, D. J.; Cavazza, C.; Fontecilla-Camps, J. C.; Armstrong, F. A., Visible Light-Driven H-2 Production by Hydrogenases Attached to Dye-Sensitized TiO<sub>2</sub> Nanoparticles. *J. Am. Chem. Soc.* **2009**, *131* (51), 18457–18466.
- 14. Chen, Z. W.; Zhang, H.; Guo, P. J.; Zhang, J. J.; Tira, G.; Kim, Y. J.; Wu, Y. M. A.; Liu, Y. Z.; Wen, J. G.; Rajh, T.; Niklas, J.; Poluektov, O. G.; Laible, P. D.; Rozhkova, E. A., Semi-artificial Photosynthetic CO<sub>2</sub> Reduction through Purple Membrane Re-engineering with Semiconductor. *J. Am. Chem. Soc.* **2019**, *141* (30), 11811–11815.
- 15. Holmberg, K., Erdemir, A. Influence of Tribology on Global Energy Consumption, Costs and Emissions. *Friction* 2017, 5 (3), 263–284.

- 16. Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K. R. S., Erdemir, A., Sumant, A. V. Macroscale Superlubricity Enabled by Graphene Nanoscroll Formation. *Science* **2015**, *348* (6239), 1118–1122.
- 17. Applegate, J. D. 2022 Final List of Critical Minerals. *Federal Register*, 87 FR 10381, pp 10381–10382, February 24, 2022. <a href="https://www.federalregister.gov/documents/2022/02/24/2022-04027/2022-final-list-of-critical-minerals">https://www.federalregister.gov/documents/2022/02/24/2022-04027/2022-final-list-of-critical-minerals</a>
- 18. Ayers, K. High Efficiency PEM Water Electrolysis Enabled by Advanced Catalysts, Membranes, and Processes. U.S. Department of Energy HFTO Annual Merit Review 2020 Report (Nel Hydrogen), May 20, 2020. <a href="https://www.hydrogen.energy.gov/pdfs/review20/p155">https://www.hydrogen.energy.gov/pdfs/review20/p155</a> ayers 2020 p.pdf
- 19. Bai, N., Kammakakam, I. Falath, W. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress and Challenges, *Materials Advances* **2021**, *2* (6), 1821–1871.
- 20. Wang, R. Dzwiniel, T., Pupek, K. Continuous Flow Synthesis, A Platform to Accelerate the Transition of Nanomaterials To Manufacturing, Informatics, Electronics And Microsystems. *TechConnect Briefs* **2018**, 130–133.