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Abstract: In hyperbolic space, the angle of intersection and distance classify pairs of totally geodesic hyper-
planes. A similar algebraic invariant classifies pairs of hyperplanes in the Einstein universe. In dimension 3,
symplectic splittings of a 4-dimensional real symplectic vector space model Einstein hyperplanes and the
invariant is a determinant. The classification contributes to a complete disjointness criterion for crooked sur-
faces in the 3-dimensional Einstein universe.
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1 Introduction
Polyhedra bounded by crooked surfaces form fundamental domains in the Einstein Universe for Lorentzian
Kleinian groups; see [5], [10]. Crooked surfaces are assembled from pieces of certain hypersurfaces, namely
light cones and Einstein tori. This motivates our study of these hypersurfaces, and how they intersect.

The theory of crooked planes, in the context of Minkowski space, has been very successful in understand-
ing and classifying discrete groups of affine transformations acting properly on ℝ3; see [2], [3], [4] and [8].
Crooked planes are piecewise linear surfaces in Minkowski 3-space which bound fundamental domains for
proper affine actions. In 2003, Frances [9] studied the boundary at infinity of these quotients of Minkowski
space by introducing the conformal compactification of a crooked plane. In this paper, we call conformally
compactified crooked planes crooked surfaces.

Recently, Danciger–Guéritaud–Kassel [7] have adapted crooked planes to the negatively curved anti-de
Sitter space. In a note shortly following [7], Goldman [11] unified crooked planes and anti-de Sitter crooked
planes. More precisely, Minkowski space and anti-de Sitter space can be conformally embedded in the Ein-
stein universe in such a way that crooked planes in both contexts are subsets of a crooked surface.

A crooked surface is constructed using three pieces: two wings, and a stem. The wings are parts of light
cones, and the stem is part of an Einstein torus. In order to understand the intersection of crooked surfaces,
we first focus on Einstein tori. Our first result classifies their intersections.

Theorem 1. Let T1, T2 ⊂ Ein3 be Einstein tori. Suppose that T1 ̸= T2. Then T1 ∩ T2 is nonempty, and exactly
one of the following possibilities occurs:

∙ T1 ∩ T2 is a union of two photons which intersect in exactly one point.
∙ T1 ∩ T2 is a spacelike circle and the intersection is transverse.
∙ T1 ∩ T2 is a timelike circle and the intersection is transverse.

A single geometric invariant η(T1, T2), related to the Maslov index, distinguishes the three cases.

∙ η(T1, T2) = 1 if and only if T1 ∩ T2 is a union of two photons which intersect in exactly one point,
∙ η(T1, T2) > 1 if and only if T1 ∩ T2 is spacelike, and
∙ η(T1, T2) < 1 if and only if T1 ∩ T2 is timelike.

*Corresponding author: Jean-Philippe Burelle, Université de Sherbrooke, Sherbrooke, Canada,
email: j-p.burelle@usherbrooke.ca
Virginie Charette, Université de Sherbrooke, Sherbrooke, Canada, email: virginie.charette@usherbrooke.ca
Dominik Francoeur, ENS de Lyon, 69364 Lyon Cedex 07, France, email: dominik.francoeur@ens-lyon.fr
William M. Goldman, University of Maryland, College Park, MD 20742, USA, email: wmg@math.umd.edu



2 | Burelle, Charette, Francoeur and Goldman, Einstein tori and crooked surfaces

We next show how to further interpret this result in the three-dimensional case. The Lagrangian Grass-
mannian in dimension 4 is amodel of the 3-dimensional Einstein universe. The relationship between the two
models was studied extensively in [1]. We develop the theory of Einstein tori in the space of Lagrangians and
characterize η as the determinant of a linear map.

A simple consequence of Theorem 1 is

Corollary 2. Let T1, T2 be a pair of Einstein tori. Then T1 ∩ T2 is non-contractible as a subset of T1 or T2.

We use this corollary to prove a complete disjointness criterion for crooked surfaces, generalizing the
construction in Charette–Francoeur–Lareau-Dussault [5] and the criterion for disjointness of anti-de Sitter
crooked planes in Danciger–Guéritaud–Kassel [7]:

Theorem 3. Two crooked surfaces C, C󸀠 are disjoint if and only if the four photons on the boundary of the stem
of C are disjoint from C󸀠, and the four photons on the boundary of the stem of C󸀠 are disjoint from C.

The Lagrangian model of the Einstein universe allows us to express the condition in this theorem explic-
itly in terms of symplectic products. In that model, a pair of simple inequalities guarantee that a photon does
not intersect a crooked surface.

Finally, we show that the criterion in Theorem 3 reduces to the criterion for disjointness of anti-de Sitter
crooked planes from [7] when specializing to crooked surfaces adapted to an anti-de Sitter patch.

Notation and terminology. If V is a vector space, denote the associated projective space by ℙ(V), defined as
the space of all 1-dimensional linear subspaces of V. If v ∈ V is a nonzero vector in a vector space V, then
denote the corresponding point (projective equivalence class) in the projective space ℙ(V) by [v] ∈ ℙ(V).
We call a real vector space endowed with a nondegenerate bilinear form a bilinear form space. If v ∈ V is a
nonzero vector in a bilinear form space (V, ⋅), then v⊥ := {w ∈ V | v ⋅ w = 0} is a linear hyperplane in V.
When v is non-null, then v⊥ is nondegenerate and defines an orthogonal decomposition V = ℝv ⊕ v⊥. More
generally, if S ⊂ V is a subset, then define S⊥ := {w ∈ V | v ⋅w = 0 for all v ∈ S}.
2 Einstein geometry
This section briefly summarizes the basics of the geometry of Einn. For more details, see [10; 1; 9; 5].

2.1 The bilinear form spaceℝn,2. LetW be a (n+2)-dimensional real vector space endowedwith a signature
(n, 2) symmetric bilinear formW ×W→ ℝ : (u, v) 󳨃→ u ⋅ v. Define the null cone:

N (W) := {v ∈ W | v ⋅ v = 0}.

The Einstein universe is the projectivization of N (W):

Einn := ℙ(N (W)).

Einn carries a natural conformal Lorentzian structure coming from the product onW. More precisely, smooth
cross-sections of the quotient map N (W) → Einn determine Lorentzian structures on Einn. Furthermore
these Lorentzian structures are conformally equivalent to each other.

The orthogonal group O(n, 2) ofW acts conformally and transitively on Einn. In fact, the group of con-
formal automorphisms of Einn is exactly O(n, 2).

2.2 Photons and light cones. A photon is the projectivization ℙ(P) of a totally isotropic 2-plane P ⊂ W. It
corresponds to a lightlike geodesic in the conformal Lorentzianmetric of Einn. A spacelike circle (respectively
timelike circle) is the projectived null cone ℙ(N (S)) of a subspace S ⊂ W which has signature (2, 1) (respec-
tively signature (1, 2)).

A light cone is the projectivized null coneℙ(N (H)) of a degenerate hyperplaneH ⊂ W. Such a degenerate
hyperplane H = n⊥ for some null vector n ∈ N (W). In terms of the synthetic geometry of Einn, the light cone
defined by p = [n] ∈ Einn equals the union of all photons containing p. We denote it by L (p).
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One can consider a different homogeneous space, the space of photons of Einn, denoted Phon. It admits
a natural contact structure (see [1]) in which the photons in a lightcone form a Legendrian submanifold. The
contact geometry of photon space is intimately related to the conformal Lorentzian geometry of the Einstein
universe. This relation stems from the incidence relation between the two spaces.We say that a point p ∈ Einn

is incident to a photon φ ∈ Phon whenever p ∈ φ. By extension, two points p, q ∈ Einn are called incident
when they are incident to a common photon, and two photons φ, ψ ∈ Phon are called incident when they
intersect in a common point.

2.3 Minkowski patches. The complement in Einn of a light cone is aMinkowski patch. Its natural structure is
Minkowski space En−1,1, an affine space with a parallel Lorentzian metric. Any geodesically complete simply-
connected flat Lorentzian manifold is isometric to En−1,1. As such it is the model space for flat Lorentzian
geometry.

Following [1], forW we use quadratic form of signature (n, 2) given by

v ⋅ v := v21 + v
2
2 + ⋅ ⋅ ⋅ + v

2
n−1 − v2n − vn+1vn+2

and work in the embedding of Minkowski space

En−1,1 󳨀→ Einn : [ v
vn
] 󳨃󳨀→
[[[[

[

v
vn

‖v‖2 − (vn)2
1

]]]]

]

. (2.1)

In the expression above, the vector

v :=
[[[

[

v1
...

vn−1
]]]

]

∈ En−1
in Euclidean space has Euclidean norm ‖v‖, and the Lorentzian norm in En−1,1 is (v, vn) 󳨃→ ‖v‖2 − (vn)2.

The complement of this embedding of En−1,1 is a light cone, and we denote its vertex by p∞. This vertex
is called the improper point in [1], and its coordinates in a basis as above are:

p∞ ←→ [[[[
[

0
0
1
0

]]]]

]

.

The closure in Einn of every non-null geodesic γ in En−1,1 contains p∞ and the union γ ∪ {p∞} is a spacelike
circle or a timelike circle according to the nature of γ. Conversely, every timelike or spacelike circle which
contains p∞ is the closure of a timelike or spacelike geodesic in En−1,1.

The light cone of a point which is not p∞, but belongs to its light cone, intersects the Minkowski patch
En−1,1 in an affine hyperplane upon which the Lorentzian structure on En−1,1 restricts to a field of degenerate
quadratic forms, that is, a null hyperplane.

If we choose an origin p0 for a Minkowski patch, then we get an identification of the patch with a
Lorentzian vector space. The trichotomy of vectors into timelike, spacelike and lightlike has an intrinsic
interpretation with respect to p0 and p∞: A point is

(1) timelike if it lies on some timelike circle through p0 and p∞,
(2) spacelike if it lies on some spacelike circle through p0 and p∞, and
(3) lightlike if it lies on a photon through p0.

One and only one of these three happens for every point in the Minkowski patch.

2.4 Einstein hyperplanes. An Einstein hyperplane H corresponds to a linear hyperplane ℓ⊥ ⊂ ℝn,2 orthogo-
nal to a spacelike line ℓ ⊂ ℝn,2. A linear hyperplane ℓ⊥ is conveniently described by a normal vector s ∈ ℓ,
which we may assume to satisfy s ⋅ s = 1. In that case s is determined up to multiplication by ±1.
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The hyperplane s⊥ is a bilinear form space isomorphic toℝn−1,2 and its projectivized null cone is amodel
for Einn−1. In dimension n = 3, an Einstein hyperplane is homeomorphic to a 2-torus S1 × S1, so we call it an
Einstein torus. Under the embedding (2.1), an Einstein hyperplane which passes through the point p∞ meets
the Minkowski patch En−1,1 in an affine hyperplane upon which the Lorentzian structure on En−1,1 restricts
to a Lorentzian metric, that is, a timelike hyperplane.

Since an Einstein torus is a totally geodesic embedded copy of Ein2, it has a pair of natural foliations by
photons. This is because the light cone of a point in Ein2 is a pair of photons through that point. As described
in Goldman [11] for n = 3, the complement of an Einstein hyperplane has the natural structure of the double
covering of anti-de Sitter space. This identification is presented in more detail in Section 6.

3 Pairs of Einstein hyperplanes
The purpose of this section is to define the invariant η ≥ 0 characterizing pairs of hyperplanes in Einn and to
prove Theorem 1. We describe the moduli space of equivalence classes of pairs, and reduce to the case n = 3.
Then § 4 reinterprets Ein3 in terms of symplectic geometry using the local isomorphism Sp(4,ℝ)→ O(3, 2).

3.1 Pairs of positive vectors. A linearly independent pair of twounit-spacelike vectors s1, s2 spans a2-plane
⟨s1, s2⟩ ⊂ W which is

∙ Positive definite⇐⇒ |s1 ⋅ s2| < 1;
∙ Degenerate⇐⇒ |s1 ⋅ s2| = 1;
∙ Indefinite⇐⇒ |s1 ⋅ s2| > 1.

The positive definite and indefinite cases respectively determine orthogonal splittings:

W ≅ ℝn,2 = ℝ2,0 ⊕ℝn−2,2 and W ≅ ℝn,2 = ℝ1,1 ⊕ℝn−1,1.
In the degenerate case, the null space is spanned by s1 ± s2, where s1 ⋅ s2 = ∓1. By replacing s2 by −s2 if
necessary, we may assume that s1 ⋅ s2 = 1. Then s1 − s2 is null. SinceW itself is nondegenerate, there exists
v3 ∈ W such that (s1 − s2) ⋅ v3 = 1. Then s1, s2, v3 span a nondegenerate 3-plane of signature (2, 1).

In all three cases, there is a 5-dimensional subspace of signature (3, 2) containing s1 and s2. For that
reason, the discussion of pairs of Einstein hyperplanes can be reduced to the case of n = 3.

The absolute value of the product
η(H1, H2) := |s1 ⋅ s2|

is a nonnegative real number, depending only on the pair of Einstein hyperplanes H1 and H2. Specifying the
above discussion to the case n = 3 we have proved Theorem 1:

If the spanof s1, s2 is positive definite (η(H1, H2) < 1), then the intersectionof the correspondingEinstein
tori is the projectivised null cone of a signature (1, 2) subspace, which is a timelike circle.

If the span of s1, s2 is indefinite (η(H1, H2) > 1), then the intersection is the projectivised null cone of a
signature (2, 1) subspace, which is a spacelike circle.

Finally, if the span of s1, s2 is degenerate (η(H1, H2) = 1), the span ℝs1 + ℝs2 is a degenerate 2-plane
in ℝs1 + ℝs2 + ℝv3 ≅ ℝ2,1. The orthogonal complement of this ℝ2,1 is of signature (1, 1) and is contained
in (ℝs1 + ℝs2)⊥ = s⊥1 ∩ s⊥2 . Since this last subspace is of dimension 3 and must also contain the degenerate
direction ofℝs1+ℝs2, it is a degenerate subspacewith signature (+, −, 0). Its null cone is exactly the union of
two isotropic planes intersecting in the degenerate direction, so when projectivising we get a pair of photons
intersecting in a point.

Corollary 4. The intersection of two Einstein tori is non-contractible in each of the two tori.

Proof. An Einstein torus is a copy of the 2-dimensional Einstein universe. Explicitly, we can write it asℙ(N )
where N is the null cone inℝ2,2. A computation shows that all timelike circles are homotopic, all spacelike
circles are homotopic and these two homotopy classes together generate the fundamental group of the torus.
Similarly, photons are homotopic to the sum of these generators. ✷
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(a) Two photons (b) A timelike circle (c) A spacelike circle

Figure 1: The three possible types of intersection for a pair of Einstein tori, viewed in a Minkowski patch.

3.2 Involutions in Einstein tori. Orthogonal reflection in s defines an involution of Einn which fixes the cor-
responding hyperplane H = s⊥. The orthogonal reflection in a positive vector s is defined by

Rs(v) = v − 2
v ⋅ s
s ⋅ s s.

We compute the eigenvalues of the composition RsRs󸀠 , where s, s󸀠 are unit spacelike vectors, and relate this
to the invariant η. The orthogonal subspace to the plane spanned by s and s󸀠 is fixed pointwise by this com-
position. Therefore, 1 is an eigenvalue of multiplicity n. In order to determine the remaining eigenvalues, we
compute the restriction of RsRs󸀠 to the subspaceℝs +ℝs󸀠.

RsRs󸀠 (s) = Rs(s − 2(s ⋅ s󸀠)s󸀠) = −s − 2(s ⋅ s󸀠)(s󸀠 − 2(s󸀠 ⋅ s)s) = (4(s󸀠 ⋅ s)2 − 1)s − 2(s󸀠 ⋅ s)s󸀠.
RsRs󸀠 (s󸀠) = Rs(−s󸀠) = −s󸀠 + 2(s ⋅ s󸀠)s.

Thematrix representing RsRs󸀠 in the basis s, s󸀠 is therefore(4(s󸀠 ⋅ s)2 − 1 2(s ⋅ s󸀠)
−2(s󸀠 ⋅ s) −1

). The eigenvalues of this

matrix are 2(s ⋅s󸀠)2−1±2(s ⋅s󸀠)√(s ⋅ s󸀠)2 − 1; they depend only on the invariant η = |s ⋅s󸀠|. The composition of
involutions has real distinct eigenvalues when the intersection is spacelike, complex eigenvalues when the
intersection is timelike, and a double real eigenvalue when the intersection is a pair of photons.

The casewhen s1 ⋅s2 = 0 is special: in that case the two involutions commute andwe say that the Einstein
hyperplanes are orthogonal. As observed at the end of Section 2.4, the complement of an Einstein torus in Ein3

is a model for the double covering space of anti-de Sitter spaceAdS3, which has a complete Lorentzianmetric
of constant curvature −1. In this conformal model of AdS3 (see [11]), indefinite totally geodesic 2-planes are
represented by tori which are orthogonal to ∂AdS3.

4 The symplectic model
We describe a model for Einstein 3-space in terms of 4-dimensional symplectic algebra, an alternative ap-
proach which is simpler for some calculations.

Let (V, ω) be a 4-dimensional real symplectic vector space, that is, V is a real vector space of dimension 4
and ω : V×V→ ℝ is a nondegenerate skew-symmetric bilinear form. Let vol ∈ Λ4(V) be the element defined
by the equation (ω ∧ ω)(vol) = −2. The second exterior power Λ2(V) admits a nondegenerate symmetric
bilinear form ⋅ of signature (3, 3) defined by

(u ∧ v) ∧ (u󸀠 ∧ v󸀠) = (u ∧ v) ⋅ (u󸀠 ∧ v󸀠)vol.
The kernelW := Ker(ω) ⊂ Λ2(V) inherits a symmetric bilinear form which has signature (3, 2).
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Define the vector ω∗ ∈ Λ2V to be dual to ω by the equation ω∗ ⋅ (u∧v) = ω(u, v), for all u, v ∈ V. Because
of our previous choice of vol, we have ω∗ ⋅ ω∗ = −2. The bilinear form ⋅, together with the vector ω∗ define a
reflection

Rω∗ : Λ2(V)→ Λ2(V) : α 󳨃→ α + (α ⋅ ω∗)ω∗.
The fixed set of this reflection is exactly the vector subspaceW orthogonal to ω∗.

The Plücker embedding ι : Gr(2,V) → ℙ(Λ2(V)) maps 2-planes in V to lines in Λ2(V). We say that a
plane in V is Lagrangian if the form ω vanishes identically on pairs of vectors in that plane. If we restrict ι to
Lagrangian planes, then the image is exactly the set of null lines inW.

The form ω yields a relation of (symplectic) orthogonality on 2-planes in V. Lagrangian planes are or-
thogonal to themselves, and non-Lagrangian planes have a unique orthogonal complement which is also
non-Lagrangian. The following proposition relates orthogonality in V with an operation on Λ2(V).

Proposition 1. A pair of 2-dimensional subspaces S, T ⊂ V are orthogonal with respect to ω if and only if
[Rω∗ (ι(S))] = [ι(T)].
Proof. If S is Lagrangian, then S = S⊥ and ι(S) ∈ ω∗⊥. Hence Rω∗ (ι(S)) = ι(S) = ι(S⊥).

If S is not Lagrangian, then there are bases (u, v) of S and (u󸀠, v󸀠) of S⊥ satisfying ω(u, v) = ω(u󸀠, v󸀠) = 1
and all other products between these four are zero. Then vol = −u ∧ v ∧ u󸀠 ∧ v󸀠 and ω∗ = −u ∧ v − u󸀠 ∧ v󸀠,
hence [Rω∗ (ι(S))] = [u ∧ v + ω(u, v)ω∗] = [−u󸀠 ∧ v󸀠] = [ι(S⊥)]. ✷

4.1 Symplectic interpretation of Einstein space and photon space. The natural incidence relation between
Ein3 and Pho3 is described in the two algebraic models (V andW) as follows. A point p ∈ Ein3 and a photon
φ ∈ Pho3 are incident if and only if (p, φ) satisfies one of the two equivalent conditions:

∙ The null line inW corresponding to p lies in the isotropic 2-plane inW corresponding to φ.
∙ The Lagrangian 2-plane in V corresponding to p contains the line in V corresponding to φ.

These two are equivalent because of the following proposition:

Proposition 2. Let P, Q ⊂ V be 2-dimensional subspaces. Then P ∩ Q = 0 if and only if ι(P) ⋅ ι(Q) ̸= 0.

Proof. Choose bases u, v of P and u󸀠, v󸀠 of Q. Then, u∧ v∧u󸀠 ∧ v󸀠 ̸= 0 if and only if u, v, u󸀠, v󸀠 span V, which
is equivalent to P and Q being transverse. ✷

The light cone L (p) of a point p ∈ Ein3 is the union of all photons containing p. It corresponds to the
orthogonal hyperplane [p]⊥ ⊂ W of the null line corresponding to p. In photon space ℙ(V), the photons
containing p form the projective space ℙ(L) of the Lagrangian 2-plane L corresponding to p.

4.2 Timelike or spacelike triples and the Maslov index. Fixing a pair of non-incident points in the Ein-
stein universe induces a trichotomy on points, as explained in Section 2.3. The corresponding data in the
Lagrangian model is related to theMaslov index of a triple of Lagrangians.

Two non-incident points correspond to a pair of transverse Lagrangians L, L󸀠. This induces a splitting
V = L ⊕ L󸀠. Together with the symplectic form ω, this splitting defines a quadratic form defined by

qL,L󸀠 (v) := ω(πL(v), πL󸀠 (v)).
The Maslov index of a triple of pairwise transverse Lagrangians L, P, L󸀠 is the integer m(L, P, L󸀠) =

sign(qL,L󸀠 |P), where sign(q) is the difference between the number of positive and negative eigenvalues of q.
Transversality implies that qL,L󸀠 restricted to P is nondegenerate. This index classifies orbits of triples of
pairwise transverse Lagrangians; see [6].

Lagrangians which are nontransverse to L correspond to lightlike points, Lagrangians P satisfying
|m(L, P, L󸀠)| = 2 correspond to timelike points, and Lagrangians P with m(L, P, L󸀠) = 0 correspond to space-
like points.
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4.3 Nondegenerate planes and symplectic splittings. We describe the algebraic structures equivalent to an
Einstein torus in Ein3. As a reminder, these are hyperplanes of signature (2, 2) insideW ≅ ℝ3,2, and describe
surfaces in Ein3 homeomorphic to a 2-torus.

In symplectic terms, an Einstein torus corresponds to a splitting of V as a symplectic direct sum of two
nondegenerate 2-planes. Let us detail this correspondence. Define a 2-dimensional subspace S ⊂ V to be
nondegenerate if and only if the restriction ω|S is nondegenerate. A nondegenerate 2-plane S ⊂ V determines
a splitting as follows. The plane

S⊥ := {v ∈ V | ω(v, S) = 0}
is also nondegenerate, and defines a symplectic complement to S. In other words, V splits as an (internal)
symplectic direct sum:

V = S ⊕ S⊥.
The corresponding Einstein torus is then the set of Lagrangians which are non-transverse to S (and therefore
also to S⊥).

The lines in S determine a projective line in Pho3 which is not Legendrian. Conversely, non-Legendrian
projective lines in Pho3 correspond to nondegenerate 2-planes. This non-Legendrian line in Pho3, as a set of
photons, corresponds to one of the two rulings of the Einstein torus. The other ruling corresponds to the line
ℙ(S⊥).

In order to make explicit the relationship between the descriptions of Einstein tori in the two models,
define a map μ as follows:

μ : Gr(2,V)→ ℙ(W) : S 󳨃→ [ι̂(S) + 12ω(ι̂(S))ω
∗],

where ι̂(S) is any representative inW of the projective class ι(S). The map μ is the composition of the Plücker
embedding ι with the orthogonal projection ontoW.

Lemma 5. For a nondegenerate plane S, the image of μ is always a spacelike line, and μ(S) = μ(S⊥).
Proof. For the first part, let s be any vector representative of the line ι(S). Then

(s + 12ω(s)ω
∗) ∧ (s + 12ω(s)ω∗) = 12ω(s)2vol,

and therefore μ(S) is spacelike.
The secondpart is a consequence of the correspondence between orthogonal complements and reflection

in ω∗ (Proposition 1) and the fact that a vector and its reflected copy have the same orthogonal projection to
the hyperplane of reflection. ✷

Proposition 3. Themap μ induces a bijection between spacelike lines inWand symplectic splittings of V. Under
the Plücker embedding ι, the Einstein torus defined by the symplectic splitting S⊕ S⊥ is sent to the Einstein torus
defined by the spacelike vector μ(S) ∈ W.

Proof. Let u ∈ W be a spacelike vector normalized so that u ⋅ u = 2. Then both vectors u ± ω∗ are null. By the
fact that null vectors in Λ2(V) are decomposable, each u ± ω∗ corresponds to a 2-plane in V. These 2-planes
are nondegenerate since

(u ± ω∗) ∧ ω∗ = −ω(u ± ω∗)vol = 2 ̸= 0.
The two planes u ± ω∗ are orthogonal since they are the images of each other by the reflection Rω∗ , and so
they are the summands for a symplectic splitting of V. This map is inverse to the projection μ defined above.

To prove the last statement in the proposition, we apply Proposition 2. The Einstein torus defined by the
splitting S, S⊥ is the set of Lagrangian planes which intersect S (and S⊥) in a nonzero subspace. Let P be such
a plane. Then ι(S) ⋅ ι(P) = 0, which means that

(ι(S) + 12 (ι(S) ⋅ ω
∗)ω∗) ⋅ ι(P) = 0,

so ι(P) is in the Einstein torus defined by the orthogonal projection μ(S). Similarly, if ι(P) is orthogonal to μ(S)
then P intersects S in a nonzero subspace. ✷
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4.4 Graphs of linear maps. Now we describe pairs of Einstein tori in terms of symplectic splittings of (V, ω)
more explicitly.

Let A, B be vector spaces of dimension 2 and A⊕B their direct sum. If F : A → B is a linear map, then the
graph of f is the linear subspace graph(f) ⊂ A ⊕ B consisting of all a⊕ f(a), where a ∈ A. Every 2-dimensional
linear subspace L ⊂ A⊕Bwhich is transverse to B = 0⊕B ⊂ A⊕B equals graph(f) for a unique f . Furthermore,
L = graph(f) is transverse to A = A⊕0 if and only if f is invertible, inwhich case L = graph(f−1) for the inverse
map f−1 : B → A.

Now, suppose A and B are endowed with nondegenerate alternating bilinear forms ωA , ωB, respectively.
Let f : A → B be a linear map. Its adjugate is the linear map Adj(f) : B → A defined as the composition

B
ω#
B󳨀󳨀→ B∗ f †
󳨀→ A∗ (ω#

A)−1󳨀󳨀󳨀󳨀󳨀→ A (4.1)

where ω#
A , ω

#
B are isomorphisms induced by ωA , ωB respectively, and f † is the transpose of f . If a1, a2 and

b1, b2 are bases of A and B respectively with ωA(a1, a2) = 1 = ωB(b1, b2), then the matrices representing f
and Adj(f) in these bases are related by:

Adj[f11 f12
f21 f22

] = [
f22 −f12
−f21 f11

] .

In particular, if f is invertible, then Adj(f) = Det(f)f−1 where Det(f) is defined by f∗(ωB) = Det(f)ωA.
Lemma 6. Let V = S ⊕ S⊥. Let f : S → S⊥ be a linear map and let P = graph(f) ⊂ V be the corresponding
2-plane in V which is transverse to S⊥.
∙ P is nondegenerate if and only if Det(f) ̸= −1.
∙ If P is nondegenerate, then its complement P⊥ is transverse to S, and equals the graph

P⊥ = graph(−Adj(f)),
of the negative − Adj(f) : S⊥ → S of the adjugate map to f .

Proof. Choose a basis a, b for S. Then a ⊕ f(a) and b ⊕ f(b) define a basis for P, and

ω(a ⊕ f(a), b ⊕ f(b)) = ω(a, b) + ω(f(a), f(b)) = (1 + Det(f))ω(a, b),

since, by definition, ω(f(a), f(b)) = Det(f)ω(a, b). Thus P is nondegenerate if and only if 1 + Det(f) ̸= 0, as
desired.

For the second assertion, suppose that P is nondegenerate. As P, P⊥, S, S⊥ ⊂ V are each 2-dimensional,
the following conditions are equivalent:

∙ P is transverse to S⊥;
∙ P ∩ S⊥ = 0;
∙ P⊥ + S = V;
∙ P⊥ is transverse to S.

Thus P⊥ = graph(g) for a linear map g : S⊥ → S. We express the condition that ω(P, P⊥) = 0 in terms of f
and g: for s ∈ S and t ∈ S⊥, the symplectic product is zero if anly only if

ω(s + f(s), t + g(t)) = ω(s, g(t)) + ω(f(s), t) (4.2)

vanishes. This condition easily implies that g = −Adj(f) as claimed. ✷

The following proposition relates the invariant η defined for a pair of spacelike vectors with the invariant
Det associated to a pair of symplectic splittings.

Proposition 4. Let S ⊕ S⊥ be a symplectic splitting and let f : S → S⊥ be a linear map with Det(f) ̸= −1. Let
T = graph(f) be the symplectic plane defined by f . Then

η(μ(S), μ(T)) = |1 − Det(f)|
|1 + Det(f)| .
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Proof. Let u, v be a basis for S such that ω(u, v) = 1. Then u + f(u), v + f(v) is a basis for T. Moreover,

u ∧ v ∧ (u + f(u)) ∧ (v + f(v)) = u ∧ v ∧ f(u) ∧ f(v).

We can compute whichmultiple of vol this last expression represents, using the normalization (ω∧ω)(vol) =
−2 and the computation (ω ∧ω)(u∧ v∧ f(u)∧ f(v)) = 2Det(f). We deduce that u∧ v∧ f(u)∧ f(v) = −Det(f)vol.

Using the product formula from Lemma 5, we find that

√2u ∧ v + ω
∗
√2

is a unit spacelike representative of μ(S), and

√2(u + f(u)) ∧ (v + f(v))
1 + Det(f) +

ω∗
√2

is a unit spacelike representative of μ(T). Their product is −2Det(f)1+Det(f) + 1 = 1−Det(f)
1+Det(f) , proving the proposition. ✷

5 Disjoint crooked surfaces
In this sectionwe apply the techniques developed above in order to prove a full disjointness criterion for pairs
of crooked surfaces.

We work in the symplectic framework of Section 4 with the symplectic vector space (V, ω). Let u+, u−,
v+, v− be four vectors in V such that ω(u+, v−) = ω(u−, v+) = 1 and all other products between these four
vanish. This means that we have Lagrangians

P0 := ℝv+ +ℝv−, P∞ := ℝu+ +ℝu−, and P± := ℝv± +ℝu±
representing the points of intersection of the photons associated to [u+], [u−], [v+], [v−]. We call this config-
uration of four points and four photons a lightlike quadrilateral.

The crooked surface C determined by this configuration is a subset of Ein3 consisting of three pieces: two
wings and a stem (see Figure 2 below). The two wings are foliated by photons, and we denote by W+,W−
the sets of photons covering the wings. Each wing is a subset of the light cone of P+ and P−, respectively.
Identifying points in ℙ(V) with the photons they represent, the foliations are as follows:

W+{[tu+ + sv+] | ts ≥ 0} and W−{[tu− + sv−] | ts ≤ 0}.
We sometimes abuse notation and use the symbolW± to denote the collection of points in the Einstein uni-
verse which is the union of these collections of photons.

The stem S is the subset of the Einstein torus that is determined by the splitting S1 ⊕ S2 := (ℝu+ +ℝv−)⊕
(ℝu− +ℝv+) consisting of timelike points with respect to P0, P∞:

S = {L = ℝw +ℝw󸀠 | w ∈ S1,w󸀠 ∈ S2, |m(P0, L, P∞)| = 2}.
Note that this definition gives only the interior of the stem as defined in [5]. A crooked surface is the closure
in Ein3 of a crooked plane in the Minkowski patch defined by the complement of the light cone of P∞; see [5].
Theorem 7. Let C1, C2 be two crooked surfaces such that their stems intersect. Then the stem of C1 intersects a
wing of C2 or vice versa. That is, crooked surfaces cannot intersect in their stems only.

Proof. The stem consists of two disjoint, contractible pieces. To see this, note that this set is contained in the
Minkowski patch defined by P∞. There, the Einstein torus containing the stem is a timelike plane through the
origin, and the timelike points in this plane form two disjoint quadrants. Let K be the intersection of the two
Einstein tori containing the stems of C1 and C2. Then, K is non-contractible in either torus (Corollary 4), so it
cannot be contained in the interior of the stem. Therefore, K must intersect the boundary of the stem which
is part of the wings. ✷
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Figure 2: A crooked surface in a Minkowski patch which contains all four vertices of the lightlike quadrilateral.
The Einstein torus containing the stem is a vertical plane.

Lemma 8. Let p0, p∞, p ∈ Ein3 be three points in the Einstein universe. The point p is timelike with respect to
p0, p∞ if and only if the intersection of the three light cones of p, p0, p∞ is empty.

Proof. Wework in themodel ofEin3 given by lightlike lines in a vector space of signature (3, 2). If p is timelike
with respect to p0, p∞, then it lies on a timelike curve whichmeans that the subspace generated by p, p0, p∞
has signature (1, 2). Therefore, its orthogonal complement is positive-definite and contains no lightlike vec-
tors, so the intersection of the light cones is empty. The converse is similar. ✷

Lemma 9. A photon represented by a vector p ∈ V is disjoint from the crooked surface C if and only if the
following two inequalities are satisfied:

ω(p, v+)ω(p, u+) > 0 > ω(p, v−)ω(p, u−).
Proof. Write p in the basis u+, u−, v+, v− as p = au+ + bu− + cv+ + dv−. Then a = ω(p, v−), b = ω(p, v+), c =
−ω(p, u−) and d = −ω(p, u+). The photon p is disjoint fromW+ if and only if the equation ω(p, tu++ sv+) = 0
has no solutions with ts ≥ 0. This happens exactly when bd < 0. Similarly, p is disjoint fromW− if and only
if ac > 0. These two equations are equivalent to the ones in the statement of the lemma, therefore it remains
only to show that under these conditions, p is disjoint from the stem.

The Lagrangian plane P representing the intersection of pwith the Einstein torus containing the stem is
generated byp and au++dv−. This is because au++dv− represents the unique photon in one of the foliations
of the Einstein toruswhich intersects the photonp, and hence the spanℝp+ℝ(au++dv−) is their intersection
point, the Lagrangian P. We want to show that P is not timelike with respect to P0, P∞. By Lemma 8, this is
equivalent to showing that the triple intersection of the lightcones of P0, P, and P∞ is non-empty.

The intersection of the light cones of P0 and P∞ consists of planes of the formℝ(su++tu−)+ℝ(s󸀠v++t󸀠v−)
where st󸀠+ts󸀠 = 0.Wewant to show that nopoint representedby suchaplane is incident to P. TwoLagrangian
planes are incident when their intersection is a non-zero subspace. Equivalently, they are incident if they do
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not span V. We have

det(p, au+ + dv−, su+ + tu−, s󸀠v+ + t󸀠v−) = (−bdss󸀠 + catt󸀠)det(u+, u−, v+, v−)
= k(bds2 + act2)det(u+, u−, v+, v−),

where t󸀠 = kt, s󸀠 = −ks, k ̸= 0. There exist t, s making this determinant vanish because bd, ac have different
signs. This means that the point where p intersects the Einstein torus containing the stem is not timelike and
therefore outside the stem. ✷

Theorem 10. Two crooked surfaces C, C󸀠 given respectively by the configurations u+, u−, v+, v− and u󸀠+, u󸀠−, v󸀠+,
v󸀠− are disjoint if and only if the four photonsu󸀠+, u󸀠−, v󸀠+, v󸀠− do not intersect C and the four photonsu+, u−, v+, v−
do not intersect C󸀠.
Proof. Since the four photons on the boundary of the stem are part of the crooked surface, the forward impli-
cation is clear.

We now show the reverse implication. Assume that the four photons u󸀠+, u󸀠−, v󸀠+, v󸀠− do not intersect C and
the four photons u+, u−, v+, v− do not intersect C󸀠. We first show that the wingW+ of C does not intersect C󸀠.
By Lemma 9, it suffices to show that

ω(tu+ + sv+, v󸀠+)ω(tu+ + sv+, u󸀠+) > 0 and ω(tu+ + sv+, v󸀠−)ω(tu+ + sv+, u󸀠−) < 0
for all s, t ∈ ℝ such that st ≥ 0 (with s and t not both zero). We have

ω(tu+ + sv+, v󸀠+)ω(tu+ + sv+, u󸀠+)
= t2ω(u+, v󸀠+)ω(u+, u󸀠+) + stω(u+, v󸀠+)ω(v+, u󸀠+) + stω(v+, v󸀠+)ω(u+, u󸀠+) + s2ω(v+, v󸀠+)ω(v+, u󸀠+).

By hypothesis, neither u+, v+ intersect C󸀠, and neither u󸀠+, v󸀠+ intersect C. Therefore, using again Lemma 9
and st ≥ 0, we see that each term in this sum is non-negative and that at least one of them is strictly positive.
Thereforeω(tu++ sv+, v󸀠+)ω(tu++ sv+, u󸀠+) > 0. The proof thatω(tu++ sv+, v󸀠−)ω(tu++ sv+, u󸀠−) < 0 is similar.
Therefore,W+ does not intersect C󸀠.

In an analogous way, one can show that W− does not intersect C󸀠. Therefore, the wings of the crooked
surface C do not intersect C󸀠. Hence, to show that C and C󸀠 are disjoint, it only remains to show that the stem
of C does not intersect C󸀠.

By symmetry, the wings of C󸀠 do not intersect C, which means in particular that they do not intersect the
stem of C. Consequently, the stem of C can only intersect the stem of C󸀠. However, according to Theorem 7,
if the stem of C intersects the stem of C󸀠, it must necessarily intersect its wings as well, which is not the case
here. Therefore, we conclude that C and C󸀠 are disjoint. ✷

By Lemma 9, this disjointness criterion can be expressed explicitly as 16 inequalities (two for each of the
8 photons defining the two crooked surfaces). There is some redundancy in these inequalities, but there does
not seem to be a natural way to reduce the system.

6 Anti-de Sitter crooked planes
In this section, we show that the criterion for disjointness of anti-de Sitter crooked planes described in [7] is a
special case of Theorem 10, when embedding the double cover of anti-de Sitter space in the Einstein universe.

The 3-dimensional Anti-de Sitter space, denoted AdS, is the manifold PSL(2,ℝ) ≅ Isom(H2) endowed
with the bi-invariant Lorentzianmetric given by the Killing form.We now recall the definition of a (right)AdS
crooked plane.

Let ℓbe a geodesic in thehyperbolic planeH2. The rightAdS crooked plane based at the identity associated
to ℓ is the set of g ∈ PSL(2,ℝ) such that g has a nonattracting fixed point in ℓ ⊂ H2 ∪ ∂H2. In other words,
the isometries g ∈ PSL(2,ℝ)whichmake up the crooked plane are: elliptic elements centered on a point of ℓ,
parabolic elements with fixed point in ∂ℓ, and hyperbolic elements with repelling fixed point in ∂ℓ.
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A right AdS crooked plane based at g ∈ PSL(2,ℝ) is a left-translate of one based at the identity. We say
that such a crooked plane is defined by the pair (g, ℓ).

A left AdS crooked plane is defined the sameway, replacing nonattracting fixed point by nonrepelling fixed
point. Since a right AdS crooked plane and a left AdS crooked plane always intersect, we will assume in what
follows that all our AdS crooked planes are of the first type.

Theorem 11 ([7], Theorem 3.2). Let ℓ, ℓ󸀠 be geodesic lines of H2 and g ∈ PSL(2,ℝ). Then, the rightAdS crooked
planes defined by (I, ℓ) and (g, ℓ󸀠) are disjoint if and only if for any endpoints ξ of ℓ and ξ 󸀠 of ℓ󸀠, we have ξ ̸= ξ 󸀠
and d(ξ, gξ 󸀠) − d(ξ, ξ 󸀠) < 0.

In this criterion, the difference d(p, gq) − d(p, q) for p, q ∈ ∂H2 is defined as follows: choose sufficiently
small horocycles C, D through p, q respectively. Then d(p, gq)− d(p, q) := d(C, GD)− d(C, D), and this quan-
tity is independent of the choice of horocycles.

6.1 AdS as a subspace of Ein. Let V0 be a real two-dimensional symplectic vector space with symplectic
formω0. Denote byV the four-dimensional symplectic vector spaceV = V0⊕V0 equippedwith the symplectic
form ω = ω0 ⊕ −ω0. This vector space V will have the same role as in Section 4.

The Lie group Sp(V0) = SL(V0) is a model for the double cover of anti-de Sitter 3-space. We show how
to embed this naturally inside the Lagrangian Grassmannian model of the Einstein Universe in three dimen-
sions. To do this, define

i : SL(V0)→ Gr(2,V) : f 󳨃→ graph(f).

The graph of f ∈ Sp(V0) is a Lagrangian subspace of V = V0 ⊕V0. This means that i(SL(V0)) ⊂ Lag(V) ≅ Ein3.
This map is equivariant with respect to the homomorphism

SL(V0) × SL(V0)→ Sp(V) : (A, B) 󳨃→ B ⊕ A,

where the action of SL(V0)×SL(V0) on SL(V0) is by (A, B) ⋅ X = AXB−1. The involution of Ein3 induced by the
linear map

I ⊕ −I : V0 ⊕ V0 → V0 ⊕ V0,

where I denotes the identity map on V0, preserves the image of i. It corresponds to the two-fold covering
SL(V0) → PSL(V0). The fixed points of this involution are exactly the complements of the image of i, corre-
sponding to the conformal boundary of AdS; see Section 2 of [11] for details.

6.2 Crooked surfaces andAdS crooked planes. As in [11], we say that a crooked surface is adapted to anAdS
patch if it is invariant under the involution I ⊕−I. Goldman proves in [11] that a crooked surface is adapted to
anAdS patch if and only if it is the closure in Ein3 of a left or rightAdS crooked plane in that patch. Moreover,
two AdS crooked planes in the same patch are disjoint if and only if their closures in Ein3 are disjoint.

If a crooked surface is invariant under I ⊕ −I, then its corresponding lightlike quadrilateral is invariant.
Two of the opposite vertices are fixed (they lie on the boundary ofAdS) and the two others are swapped. If we
denote the four photons by u−, u+, v−, v+, this means that v− = (I ⊕ −I)u− and v+ = (I ⊕ −I)u+.
6.2.1 AdS crooked planes based at the identity. For concreteness, choose a basis of V to identify it withℝ4.
We represent a plane in ℝ4 by a 4 × 2matrix whose columns generate the plane, up to multiplication on the
right by an invertible 2×2matrix. For example, graph(f) corresponds to the matrix ( If ). The identity element
of SL(V0) maps to the plane ( II ) and its image under the involution I ⊕ −I is ( I−I ). The intersection of the
lightcones of the two Lagrangians graph(I) and graph(−I) consists of Lagrangians which have the form

(

v1 v1
v2 v2
v1 −v1
v2 −v2

)

for some v1, v2 ∈ ℝ not both zero.
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Therefore, the lightlike quadrilaterals containing as opposite vertices graph(I) and graph(−I) are param-
eterized by pairs of distinct nonzero vectors a, b ∈ V0 (2 × 1 column vectors), up to projective equivalence.
The four vertices of the lightlike quadrilateral are then:

(
I
I
) ,(a a

a −a
) ,(b b

b −b
) ,( I
−I
) .

We will say that such a lightlike quadrilateral is based at I and defined by the vectors a, b. We choose as
representatives of its lightlike edges the vectors:

v− = (aa) , u− = (−aa ) , v+ = (bb) , u+ = ( b−b) .
With the definition of the wings using the sign choices of Section 5, we will see that the intersection of

the associated crooked surface with the AdS patch is a right AdS crooked plane. Indeed, the definition of the
photons foliating the wingW+ wasW+ = {[tu+ + sv+] | ts ≥ 0}. Suppose that the graph Lagrangian ( If ) for
some f ∈ SL(2,ℝ) is on such a photon, equivalently that it contains a vector of the form ( (t+s)b(t−s)b ) with ts ≥ 0.
This is equivalent to fb = ( t−st+s )b. When ts ≥ 0, then 󵄨󵄨󵄨󵄨

t−s
t+s 󵄨󵄨󵄨󵄨 ≤ 1, hence the point [b] ∈ ∂H2 is a nonattracting

fixed point of f . By a similar calculation, W− consists of elements graph(f) such that f has a nonattracting
fixed point at [a] ∈ ∂H2.

6.2.2 AdS crooked planes based at f . In order to get an AdS crooked plane based at a different point f ∈
SL(V0), we map the crooked plane by an element of the isometry group SL(V0) × SL(V0) ⊂ Sp(V). The easiest
way is to use an element of the form ( I 00 f ). This corresponds to left multiplication by f in SL(V).

Applying f to a lightlike quadrilateral, we get a lightlike quadrilateral with vertices of the form

(
I
f
) ,( I
−f
) ,( a −a

fa fa
) ,( b b

fb −fb
)

and edges of the form

(
a
fa
) ,(−a

fa
) ,( b

fb
) ,( b
−fb
) .

6.3 Disjointness. The disjointness criterion for crooked surfaces in the Einstein Universe is given by 16 in-
equalities. Using the symmetries imposed by an AdS patch, we can reduce them to 4 inequalities: using the
involution defining the AdS patch, we can immediately reduce the number of inequalities by half. This is
because both surfaces are preserved by the involution, and their defining photons are swapped in pairs. (So
for example, we only have to check that u+ and u− are disjoint from the other surface, for each surface.)
The second reduction comes from the fact that for AdS crooked planes, we only need to check that the four
photons from the first crooked surface are disjoint from the second, and then the four from the second are
automatically disjoint from the first.

For a crooked surface based at the identity with lightlike quadrilateral defined by the vectors a, b ∈ V0
and another based at f with quadrilateral defined by a󸀠, b󸀠 ∈ V0, the inequalities reduce to:

ω0(a󸀠, b)2 > ω0(fa󸀠, b)2, ω0(b󸀠, b)2 > ω0(fb󸀠, b)2,
ω0(a󸀠, a)2 > ω0(fa󸀠, a)2, ω0(b󸀠, a)2 > ω0(fb󸀠, a)2. (6.1)

What remains is to interpret these four inequalities in terms of hyperbolic geometry. We first define an equiv-
ariant map from ℙ(V0) to ∂ℍ2. As a model of the boundary ofℍ2, we use the projectivized null cone for the
Killing form in sl(V0) ≅ sl(2,ℝ). Choose a basis of V0 in which ω0 is given by thematrix J = ( 0 1−1 0 ) and define
η : V0 → N (sl(2,ℝ)) : a 󳨃→ −aaT J, where a is a column vector representing a point in ℙ(V0). This map
associates to the vector a the tangent vector to at identity of the photon between I and the boundary point
( a a
a −a ). Note that the image of η is contained in the upper part of the null cone.

Lemma 12. η is equivariant with respect to the action of SL(V0).
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Proof. η(Aa) = −Aa(Aa)T J = −AaaTAT J = −AaaT JA−1 = Aη(a)A−1. ✷

We denote by K the trace form on sl(2,ℝ), thus K(X, Y) = Tr(XY). Its value is 1
8 times the Killing form.

Lemma 13. If a, b ∈ V0, then ω0(a, b)2 = −K(η(a), η(b)).

Proof. ω0(a, b)2 =−aT JbbT Ja = aT Jη(b)a = Tr(aT Jη(b)a) = Tr(aaT Jη(b)) =−Tr(η(a)η(b)) =−K(η(a), η(b)). ✷

Note that the expression ω0(a, b) is not projectively invariant, but the sign of ω0(a, b)2 − ω0(a, fb)2 is.

Corollary 14. The inequalitiesω0(a, b)2−ω0(a, fb)2 > 0 and K(η(a), fη(b)f−1) > K(η(a), η(b)) are equivalent.
Finally, we want to show that the four Inequalities (6.1) are equivalent to the DGK criterion (Theorem 11).

Let A, B, A󸀠, B󸀠 denote respectively η(a), η(b), η(a󸀠), η(b󸀠). Then, A, B, A󸀠, B󸀠 represent endpoints of two
geodesics g, g󸀠 in the hyperbolic plane. We want to show that d(ξ, fξ 󸀠f−1) − d(ξ, ξ 󸀠) < 0 for ξ ∈ {A, B} and
ξ 󸀠 ∈ {A󸀠, B󸀠}.

We use the hyperboloid model ofH2, {X ∈ sl(2,ℝ) | K(X, X) = −1}. Consider horocycles Cξ (r) = {X ∈ H2 |
K(X, ξ) = −r} and Cξ 󸀠 (r󸀠) = {X ∈ H2 | K(X, ξ 󸀠) = −r󸀠} at ξ and ξ 󸀠 respectively. The distance between these two
horocycles is given by the formula

d(Cξ (r), Cξ 󸀠 (r󸀠)) = arccosh(−12(K(ξ, ξ 󸀠)2rr󸀠 + 2rr󸀠
K(ξ, ξ 󸀠))).

Similarly,

d(Cξ (r), fCξ 󸀠 (r󸀠)f−1) = arccosh(−12(K(ξ, fξ 󸀠f−1)2rr󸀠 +
2rr󸀠

K(ξ, fξ 󸀠f−1))).
We know that K(ξ, fξ 󸀠f−1) > K(ξ, ξ 󸀠). If r, r󸀠 are sufficiently small, bymonotony of arccosh and of the function
x 󳨃→ x + 1

x for x > 1 we conclude that d(Cξ (r), Cξ 󸀠 (r󸀠)) > d(Cξ (r), fCξ 󸀠 (r󸀠)), which is what we wanted.
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