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Abstract: Lewis-base molecules that bind undercoordinated Pb atoms at interfaces and grain 

boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells 

(PSCs). Using density functional theory calculations, we found that phosphine (P)-containing 

molecules have the strongest binding energy among members of a library of Lewis base 

molecules studied herein. Experimentally, we found that the best inverted PSC treated using 1,3- 

bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base which passivates, binds, and 

bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its 

initial PCE of -23% following continuous operation under simulated AM1.5 illumination at the 

maximum power point and at ~40°C for >3,500 hours. DPPP-treated devices showed a similar 

increase in PCE after being kept at open-circuit and at 85 Celsius for >1,500 hours.

One-Sentence Summary: The Lewis base molecule DPPP enables inverted perovskite solar cells 

with superior stability under both operating and open circuit accelerated ageing conditions.
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Main Text:

Metal halide perovskite solar cells (PSCs) offer a route to lowering the cost of solar electricity 

given their high power conversion efficiencies (PCEs) {1-4). However, durability remains a major 

hurdle along the path to technological relevance (5-7) and must be assessed through accelerated 

degradation tests (5). Damp-heat testing at 85°C in dark and 85% relative humidity (RH), a test 

standard for crystalline silicon (Si) and thin-film PV modules, has been adopted for accelerating 

the durability test of PSCs {9 - 11). These tests are typically used to evaluate packaging rather than 

PV material durability. PSCs can also show degradation under photoexcited conditions (72), and 

especially at open-circuit (OC) conditions (75), that are more acute than one sees in standardized 

silicon tests. Mechanistically, such this findings are often assigned to ion migration {14, 15) and 

charge accumulation at interfaces {9, 16,17).

We studied the operating stability at 85°C under simulated one sun illumination and OC 

conditions - important test conditions under which PSCs have been studied to date only to a 

limited degree {18-20). Light- and heat-induced degradation in PSCs is related to point defects 

formed at interfaces and grain boundaries (GBs) {14, 21). Moisture-induced degradation is 

curtailed using encapsulation (22); whereas the passivation of defects at interfaces and GBs 

within the perovskite film is required to improve the PCE and intrinsic durability of PSCs (77, 

23-26). Particular promise in increasing durability has been seen in the use of P-, N-, S-, and O- 

containing Lewis-base molecules to form coordinate covalent bonds (dative bonds) that donate 

electrons to undercoordinated Pb atoms at interfaces and GBs {27-29).

Using density functional theory (DEL), we saw evidence that P-containing Lewis base molecules 

showed the strongest binding with uncoordinated Pb atoms. We thus pursued diphosphine- 

containing molecules, reasoning that these would provide additional binding and bridging at 

interfaces and GBs. For experimental studies we selected l,3-bis(diphenylphosphino)propane 

(DPPP), a diphosphine Lewis base. We found that treating perovskites with a small amount of 

DPPP improves PCE and durability: inverted {p-i-n) PSCs after DPPP treatment showed a 

champion PCE of 24.5%. A DPPP-treated PSC with an initial PCE of -23% stabilized at -23.5% 

after maximum power point (MPP) tracking under continuous simulated AMI.5 illumination at 

~40°C for >3,500 hours. DPPP-stabilized PSCs showed no PCE degradation after being kept at 

OC and 85°C conditions for >1,500 hours.
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Bonding interactions of Lewis bases

The P, N, S, and O atoms in Lewis base molecules donate electrons to the Lewis acid sites in 

perovskites, such as the undercoordinated Pb2+ at perovskite surfaces, in order to form coordinate 

covalent bonds. In general, the Lewis basicity, which is inversely proportional to 

electronegativity, is expected to determine the binding energy and the stabilization of interfaces 

and GBs. We compared binding energies of prototypical Lewis bases, trimethylphosphine (TMP), 

trimethylamine (TMA), dimethylsulfide (DMS), and dimethylether (DME), with sp3 

hybridization to the surface of FAPbL through DFT calculations (Fig. 1 A). The calculated 

binding strength followed the order P > N > S > O, indicating the electronegativity rule did not 

strictly apply - a finding we attribute to the remaining lone pair electrons in the case of S and O 

following binding with perovskites. We also compared frequently-reported Lewis base molecules 

with the sp2 oxygen in the carbonyl groups and took acetone and methyl acetate (MeOAc) as 

examples in Fig. 1A (26, 30). The binding energies were similar to that of DME.

Lewis base molecules have mostly been used to passivate uncoordinated Pb atoms (24, 31 - 

33). A Lewis base molecule with two electron donating atoms can potentially bind and 

bridge interfaces and GBs, offering the potential to enhance the adhesion and strengthen the 

mechanical toughness of PSCs and provide additional benefits related to the durability of 

PSCs. For this reason, we selected DPPP, a diphosphine Lewis base molecule in seeking to 

stabilize and passivate PSCs. As shown in Fig. IB and fig. SI, a DPPP molecule has two P 

atoms with sp3 hybridization in tetrahedral coordination. The lone pair electrons occupy the 

missing vertex of the tetrahedron, and if donated to Lewis acids (metal cations) to form a 

covalent bond, the fully tetrahedral coordination would realize and gain more stabilization.

We calculated the binding of DPPP on the surfaces of FAPbL both with Pbh and FAI 

terminations. Although DFT calculations predicted that the FAI terminated surface was more 

stable (34), experimental evidence showed that the PbL terminated surface is readily formed 

during the solvent treatment from depositing subsequent layers (55). DFT calculations also 

showed that DPPP was chemically bonded to the PbL terminated surface through P-Pb bond 

formation with a binding energy of 2.24 eV but was weakly bonded to the FAI-terminated 

surface by the van der Waals interaction with a binding energy of 1.09 eV (Fig. 1, C and D).
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Moreover, the calculated binding energy of DPPP with perovskites in two adjacent slabs 

(3.08 eV) was larger than that in the same slab (2.24 eV) (Fig. 1, D and E). Similarly, the 

binding energy of DPPP with both the perovskite and NiOx slabs (4.31 eV) was larger than 

that (3.28 eV) in the same NiOx slab (Fig. IF and fig. S2). Thus, DPPP was predicted to 

bind, bridge and stabilize perovskite GBs and perovskite/NiOx interface. DPPP molecules 

also provided hole transport channels through the P-terminated alkane chain of DPPP (fig. 

S3).

A H,C.

|*’ 1.06 eV

h3c ch3
N1 •* 0.90 eV

CH3
I. 0.79eV

ch3 ch3

TMP TMA DM5

h,c'

ch3 V °-6'eV -'o'- 0J

i'“°" „ JL, „ Jk „ch3

DME

h3c ch3

Acetone

h^c TOT
MeOAc

B

Fig. 1. DFT calculated DPPP binding with perovskites. (A) Chemical structures of 

prototypical Lewis base molecules. The numbers are the DFT-calculated binding energies (in eV) 

of the Lewis base molecule bonded to the FAPbL surface with Pbh termination. (B) Molecular 

structure of DPPP. The P atom of DPPP donates a lone-pair electron to the metal cation forming 

a coordinate covalent bond. Covalent bonding and van der Waals bonding for DPPP bound on 

FAPbh surfaces with (C) FAI and (D) Pbh terminations, respectively. DPPP binds (E) two 

perovskite slabs and (F) perovskite and NiOx substrate through chemical-bond formation between 

P and Pb/Ni atoms in a Lewis acid-base reaction.
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Synthesis and structure

The interaction between DPPP molecules and Pb2+ is seen via the formation of a new adduct 

when a thin layer of DPPP was deposited on a PhD layer (fig. S4). When fabricating devices, we 

deposited the FA-based perovskite layer on DPPP coated NiOx hole transport layer. During the 

growth of perovskite films, some DPPP molecules re-dissolved and segregated at both the 

perovskite/NiOx interface and the perovskite surface regions, as verified by the time-of-flight 

secondary ion mass spectrometry (ToF-SIMS) depth profiles shown in Fig. 2A. X-ray 

photoelectron spectroscopy (XPS) revealed that after DPPP treatment, the core levels of the 

elements in both perovskite and NiOx shifted (Pb and Ni XPS spectra in Fig. 2B and Fig 2C and 

the O, C, N, and I spectra in fig. S5). The universal shift of core levels caused by electrostatic 

interaction indicates the existence of DPPP at both the interfaces. The DPPP treatment also 

slightly improved the crystallinity of perovskite films, as can be seen from the enhancement of 

grain domain size (fig. S6) and XRD peak intensity (fig. S7). DPPP treatment did not change the 

bandgap of the perovskite films (fig. S8). Photoluminescence (PL) and time-resolved PL 

spectroscopy (TRPL) spectra (Fig. 2, D and E) showed enhanced PL intensity and -50% 

improved lifetime from 0.98 to 1.49 ps for the DPPP-treated perovskite films, consistent with the 

expected reduction in nonradiative recombination and defect density upon Lewis-base treatment 

(29, 36). We further verified that DPPP treatment enhanced the mechanical toughness of the 

perovskite/NiOx interface. Perovskite films were deposited on a half-cell structure with and 

without DPPP treatment, protected by a thin PMMA layer, and adhered to a glass plate with 

epoxy (see details in the Supplementary Materials and fig. S9). A tensile load was applied to 

delaminate the films using a testing machine shown in fig. S10. After delamination, both the NiOx 

and perovskite surfaces of the NiOx/perovskite interface showed P signals, indicating DPPP 

remained on both surfaces (fig. SI 1). The tensile force recorded during the delamination process 

(Fig. 2F) suggest that DPPP treatment enhanced the mechanical strength of the perovskite/NiOx 

interface through the binding of DPPP at the interface.
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Fig. 2. Effects of DPPP on perovskite film quality and device performance. (A) ToF-SIMS 

depth profile of a DPPP-treated sample showing DPPP molecules segregate at both interfaces. 

XPS spectra comparing (B) binding energy of Pb-4f core levels of control and DPPP-treated 

samples and (C) binding energy of Ni-2p core levels ofNiOx before and after DPPP treatment. 

PL (D) and TRPL (E) spectra of control and DPPP-treated perovskite films measured from the 

film side. The samples were excited with a continuous-wave 633-nm laser at a fluence of 

1,5x 1017 photons cm"2s"'. (F) Histogram and standard deviation values of loads at break of 10 

sets of control and DPPP-treated samples.

Hyperspectral PL mapping measured from the buried interfaces and PL intensity histograms in 

Fig. 3, A to D revealed an overall higher PL intensity of the DPPP-treated perovskite film that 

was consistent with the longer PL lifetimes and indicated reduced defect density as compared to 

the control perovskite films. The PL emission heterogeneity increased and more dark spots were 

observed over time in the control film after light aging (fig. S12). These dark spots showed lower 

PL emission intensity, and we attributed them to the initial sites of photodegradation at localized 

defects and local heterogeneities, which were more prevalent in the control sample without 

DPPP. PL decay takes place mostly in regions with low initial PL counts, while PL enhancement 

takes place in regions with high initial PL counts (fig. SI3). This observation proves that local 

PL enhancement/decay in the control sample is associated with local defect heterogeneities. In 

comparison, the DPPP-treated films exhibited higher uniformity and better light stability, with
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most of the pixels showing photo-brightening with increased PL counts, rather than photo-decay 

with decreased PL counts as was observed for the control perovskite film (Fig. 3, B and D and 

fig. S12). Scanning electron microscopy (SEM) images measured from the bottom surface show 

needle-shaped Pbb crystals on the as-prepared control film, which is likely caused by the excess 

Pbb added to the precursor solution (fig. S14A). The as-prepared DPPP-treated film showed 

distinct layered structures (fig. S14B), which we speculated could possibly be the Lewis acid- 

base adduct of PbL and DPPP. After aging, the Pbh crystals in the control film decomposed and 

produced pinholes on the grains (Fig. 3E). In contrast, the DPPP-treated films exhibited much- 

suppressed degradation (Fig. 3F), consistent with the optical microscopy above. Time-resolved 

mass spectroscopy was also conducted on control and DPPP-treated films under illumination to 

investigate the degradation process. The control sample showed the release of HI and I species 

(fig. SI 5), which are by-products of the photoinduced decomposition and trigger irreversible 

chemical chain reactions that accelerate the decomposition of perovskites (37, 38). In addition to 

the iodide species, another perovskite decomposition by-product, metallic Pbo, was also observed 

on the control film after light soaking. The XPS spectrum of the control film after light-soaking 

showed two Pbo peaks at -136 and -141 eV (Fig. 3G), whereas no Pbo peaks were observed in 

DPPP-treated film. These results reveal that DPPP treatment could effectively suppress the 

photodecomposition at the NiOx/perovskite interface, likely by reducing the density of reactive 

undercoordinated lead sites (halide vacancies) at the surface and interfaces.
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Fig. 3. Characterization of perovskite film stability before and after DPPP treatment. (A to

D) Hyperspectral PL images and histograms of control and DPPP-treated perovskite films before 

and after light aging. The PL images were taken from the buried interface side, and the PL count 

at each pixel refers to the integrated PL counts over the whole spectrum. (E and F) SEM top- 

view images taken from the buried interface of control and DPPP-treated perovskite films after 

light soaking. (G) XPS measured from the buried interface of control and DPPP-treated 

perovskite films after light soaking.

Solar cell fabrication and performance

We fabricated PSCs with thep-i-n configuration of glass/FTO/NiOx/Me-4PACz/(with or without) 

DPPP/FAo.gsCso.osPbL/PEAI/Ceo/SnCL/Ag to show the effect of DPPP treatment on improving 

device performance and stability. Note that NiOx was treated by a very thin layer of Me-4PACz to 

improve the reproducibility (fig. SI6). The statistics of our device performance results are shown
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in fig. SI7. A small amount of DPPP (1 or 2 mg/mL) consistently improved the open-circuit 

voltage (Foe) and fill factor (FF) across the comparison of 40 devices. Both the improvement in 

Voc and FF are expected to accompany a reduction in surface recombination velocity through a 

reduction in surface defects (39), and are also in qualitative agreement with the increase in film 

PL and PL lifetime upon treatment. Higher concentrations of DPPP (4 mg/mL) decreased short- 

circuit current density (Jsc) and FF, which may be resulted from the overreaction between DPPP 

and perovskites. Figure 4A shows J-V scans of the champion control and DPPP (2 mg/mL)- 

treated devices with 0.1 cm2 aperture masks under forward and reverse scans. The PCE of the 

DPPP-treated device improved from 22.6% to 24.5%, with the Voc increased from ~1.11 to -1.16 

V and FF increased from -79% to -82% (see detailed device parameters in table SI). External 

quantum efficiency (EQE) spectra (Fig. 4B) verified the Jsc values obtained from the J-V 

measurement. The enhanced EQE at short wavelengths also indicates improved carrier extraction 

at the front interface, which may be associated with the passivated interface achieved through the 

use of DPPP. We have also fabricated PSCs with a larger active area (1.05 cm2) to validate the 

benefits of DPPP treatment. The target devices with DPPP treatment also showed overall 

improvement in device parameters (fig. SI8), with the champion target device showing PCEs of 

23.9% and 23.6% under reverse and forward scans (fig. S19 and table S2). The improvement on 

FF and Voc confirmed the reduction on defect density at the NiOx/perovskite front interface after 

DPPP treatment.

For durability tests, we replaced the Ag electrodes by Cr/Cu to avoid instability caused by Ag 

corrosion and diffusion but slightly lowered the device efficiency (by - 4 %) (fig. S20). We used

0.1 cm2 aperture masks for solar cells when conducting all the stability tests. We first tested the 

effect of DPPP on device stability by maximum power point tracking (MPPT) under continuous 1 

sun illumination in N2 environment and at a temperature of -40 °C. As shown in Fig. 4C, the 

DPPP-treated device exhibited an initial PCE of-23%, increased to -23.5% after -450 hours and 

maintained unchanged after 3,500 hours. The increased PCE was contributed by the increased 

voltage at MPP (fig. S21), which is likely due to the light-induced annihilation of halide defects 

(10, 40-43). However, the PCE of the control device decreased to <80% of its initial PCE after 

1,000 hours. The film area of the control PSC turned dark yellow, indicating the decomposition 

of perovskite to Pbh after 3,500 hours (fig. S22). In contrast, the film area of the DPPP-treated 

device remained dark, indicating more stabilized perovskite after DPPP treatment.
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We then conducted accelerated durability tests at elevated temperatures. We kept the PSCs in a 

dark oven at 85°C and in the ambient, and measured the PCEs periodically for the 

thermal stress test (ISOS-D-2). We tested 18 PSCs and summarize their statistics in fig. S23. The 

average PCEs and their corresponding standard deviations (Fig. 4D) reveal that the DPPP-treated 

devices retain on average -90% of their initial PCE after 1500 hours, while, in contrast, the 

average PCE of the control devices dropped to <90% after 168 hours.

We conducted a more rigorous accelerated durability test under the OC condition and 

continuous -0.9 sun illumination. The devices were kept in an oven at a temperature of 85 °C 

and humidity of -65% and measured every 208 s. The devices measured at 85 °C showed 

slightly lower PCEs possibly due to the negative temperature coefficient (fig. S24). The PCE 

was stable for the first -300 hours and then slightly increased to -108% of its initial value and 

showed no degradation after 1,500 hours (Fig. 4E). However, the control device degraded rapidly 

after 400 hours, dropping to -80% of its initial PCE. Two more DPPP-treated PSCs were 

measured to validate the improved stability by DPPP treatment (fig. S25). The photos of devices 

after 1,500 hours of illumination were shown in fig. S26. The glass-side view of the control film 

turned gray, which was likely the result of delamination of the perovskite film at the 

NiOx/perovskite front interface and the degradation of the perovskite layer. In contrast, the 

DPPP-treated device showed partial delamination on the edge but remained dark in most of the 

film area.
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Fig. 4. Performance and stability of control and DPPP-treated devices. (A) J-V curves of 

champion control and DPPP treated devices. (B) EQE spectra of the corresponding control and 

DPPP-treated devices. (C) MPPT of control and DPPP-treated devices measured under 

continuous one sun illumination in Nz environment and at a temperature of -40 °C. (D) Thermal 

stress test of control and DPPP-treated devices aged at 85 °C following the ISOS-D-2 protocol. 

(E) Tracking of control and DPPP-treated devices measured at 85 °C and under continuous -0.9 

sun illumination and OC condition.

Discussion

Taking experimental findings together with DPT studies, we offer that DPPP molecules 

strengthen the NiOx/perovskite interface and stabilize the perovskite phase. The robust binding
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273 between the NiOx and perovskite enabled by DPPP modification appears to be an enabler of the

274 stable operation of PSCs under outdoor conditions. The measured stability under accelerated

275 testing conditions indicates a benefit from DPPP in improving device stability and provides ways

276 to realizing commercialization of PSCs.
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