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Abstract. Let ¥ be a compact orientable surface of genus g =1 with n = 1 boundary
component. The mapping class group I of T acts on the SU(3)-character variety of .
We show that the action is ergodic with respect to the natural symplectic measure on the
character variety.
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1. Introduction
Let ¥ =X, , be the compact oriented surface of genus g with boundary 3% which
has n > 1 components denoted 01X, ..., d,X. Fix a base point xop on X and let
m =m (X, xo) denote its fundamental group. Let Homeo™ (T, %) be the group of
orientation-preserving homeomorphisms of ¥ which fixes dX pointwise. Define the
mapping class group of X:

I :=mo(Homeo™* (%, 9¥)).
Alternatively, choose base points x; € 9; ¥ and paths from x¢ to x;. Define 71 (d; ) as the
cyclic subgroup of 7 corresponding to 71 (9; X, x;) and determined by the paths between xg
and x;. Let Aut™ (7, 8) denote the subgroup of Aut(rr) which preserves both the conjugacy
classes of the subgroups 71 (9; (X)) and the orientation of ¥. Then I" is isomorphic to the
image of Aut™ (7, 8) under the quotient homomorphism

Aut(mr) —> Out(rr) := Aut(z)/Inn(r).
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Mapping class group action 2383

Let G be an algebraic group over R. Then the set of homomorphisms 7 — G enjoys
the structure of an R-algebraic set denoted Hom(sr, G). Choose conjugacy classes C; C G
foreachi=1,...,nandlet C:={Cy, ..., C,}. Denote by Hom¢(x, G) the subset of
Hom(zr, G) comprising homomorphisms which send 71 (9; X) to C;.

The group INN(G) of inner automorphisms of G acts on Hom¢ (;r, G) by composition.
Denote the resulting relative character variety by

M (G) :=Home(z, G)/Inn(G).

The group Autt(w, d) acts on 7 and hence on Homg(mw, G) by composition.
Furthermore, the action descends to a I'-action on M¢(G). The moduli space M (G)
has an invariant dense open subset /\/lg(G), which is a smooth manifold. If, for example,
G is R-reductive (see [Gol84, Gol97]), this subset has an I'-invariant symplectic structure
. In particular, Mg (G) admits a natural smooth I'-invariant measure (.

This paper is part of the general program to understand the dynamics of the action of
I' and automorphism groups of free groups on character varieties when the Lie group is
compact. Suppose that K is a compact Lie group. In [Gol97], Goldman conjectured that I"
acts ergodically on M (K') and showed this to be the case when K is locally a product of
SU(2)’s and U(1)’s. In [PX02] and [PXO03], the conjecture was proved for g > 2 and also
established for almost all boundary classes when g = 1 = n. In [GX11], Goldman and Xia
offered an alternative and simpler proof for the case of K = SU(2).

In this paper, we consider the case g =1 =n with K = SU(3). Then I' = SL(2, Z)
(see [FM12]). In this special case, M (K) is explicitly described by the commutator map

K x K- K
(a,b) —> [a, b] :=aba~ b7 1.

Indeed, M (K) = «~'(C)/Inn(K) for each conjugacy class C C K.

THEOREM 1.1. Let K = SU(Q3) and £ = % ,1. The T-action is ergodic on M¢(K) with
respect to the measure [L.

We prove this theorem along the lines of the main results in [GX11]. If pe
Home(r, G), we denote its Inn(G)-equivalence class as [p]. Similarly, if SC
Hom¢ (r, G), then the corresponding set of INn(G)-equivalence classes is denoted by [S].
A simple closed curve o on X defines a function

M (K) t—“) C
[p] —> Tr(p(a)).

The symplectic structure 2 together with the real and imaginary parts of {, give rise
to Hamiltonian flows. The ring-theoretical results in [Law07] imply that the algebra of
Hamiltonian vector fields is infinitesimally transitive. It follows that the group generated
by these flows is locally transitive and hence ergodic.

Depending on the choice of «, these Hamiltonian flows preserve the sets [H(a, b)] or
[H'(a, b)] defined in §5.1. On the other hand, I contains the Dehn twist 7, along o.
The t4-action also preserves [H(a, b)] and is ergodic in almost all [H(a, b)]. It follows
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that a w-measurable function is invariant under 7, if and only if it is invariant under the
Hamiltonian flows associated with t,. By local transitivity, such a measurable function is
almost everywhere constant.

1.1. Notation and terminology. Let G be a group. Denote the inner automorphism
induced by A € G by

G Inn(A) G

Br——> ABA™!.

The set of conjugacy classes in G equals the quotient G/Inn(G), and we denote the image
of a subset S C G under the quotient map by [S]. Denote the centralizer of A in G by

G 4 := Fix(Inn(4)) < G,

where Fix(S) is the set of fixed points of § C G.
Define the commutator map of G:

GxG->G
(A, B)—> [A, Bl:= ABA™'B~!.

Suppose further that G is a Lie group with Lie algebra g, and denote the adjoint
representation of G on g by Ad. Identify g with the Lie algebra of right-invariant vector
fields on G then, for any right-invariant vector field X € g, the element Ad(a)(X) equals
the image of X under left multiplication by a. Denote the centralizer of a in g by

ga == Fix(Ad(a)) C g.

Denote the trace of a matrix a by Tr(a) and the A-eigenspace of a matrix a by Eig, (a)
for a scalar A € C.

The notation K and £ is reserved for compact Lie groups and their Lie algebras,
respectively.

If (M, Q2) is a symplectic manifold and M i) R is a smooth function, denote its
Hamiltonian vector field by Ham( f). We denote the tangent space to a smooth manifold
M atapoint p e M by T, M.

When we say a set is closed, we mean it to be closed in the classical topology.

2. Character varieties and the mapping class group
We fix a base point on the boundary of ¥ := X 1. The fundamental group 7 :=m(X) is
isomorphic to the rank 2 free group F, generated by homotopy classes of oriented based
loops @ and 8. We often do not distinguish elements in 7 from corresponding oriented
based loops on X.
We write
7 ={a, B,olk(a, B) =0),
where o is the boundary element. In this way, we have
R:=Hom(wz, K)=ZK x K and M :=R/K,

where the K -action is by conjugation.
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In our case, we have only one boundary circle and we let C C K be a conjugacy class
and ¢ € C. Then the relative representation variety and character variety are

R.:=Hom¢(w, K) :=x"'(¢) and M, := R.(K)/K..

Again, the K -action is by conjugation. In this way, a representation p € R, corresponds to
(a, b) € K x K such that « (a, b) = c. Notice that M, is usually and equivalently defined
as

M. =« C)/K.

The space M, has a natural symplectic structure 2 [Gol84, Gol97].

The diffeomorphism group of ¥ (fixing the boundary and hence also the base point)
acts on 7 and this action descends to a I'-action on 7, fixing the conjugacy class of o.
This further induces an action

M xT — M,
([pl, Y) = [povy].

The I'-action leaves 2 and u invariant [Gol97]. For any oriented simple closed curve «
on X, denote by t,, the Dehn twist along «. The mapping class group I" contains all Dehn
twists; indeed, the Dehn twists generate I" (although we do not need this fact). Denote by
S the set of homotopy classes of oriented simple closed curves on X.

3. Compact Lie groups

This section reviews well-known facts that are used in the proofs. Generic elements are
introduced; these are regular elements which are dense in their maximal tori and provide
non-trivial dynamics.

3.1. Regularity. Suppose that M is an irreducible algebraic set over R or C and M* C
M its singular locus. Then U = M \ M® is a smooth manifold and Zariski dense in M.
The smooth structure on U gives rise to the Lebesgue measure class on U and on M, by
assigning M* to be a null set. We shall always mean this class, which coincides with the
measure class discussed in the introduction [Hue95].

Let G be a linear semi-simple algebraic group over C of rank r and K < G a maximal
compact subgroup. The corresponding Lie algebras are denoted by € and g, respectively.

Recall that an element a € K is regular if K, has dimension r. In general, dim(K,) > r
and K, contains a maximal torus of K. An element a € K is regular if and only if K, is a
maximal torus (that is, a Cartan subgroup) in K.

Recall that an action on a topological space is minimal if every orbit is dense. If
a € K, denote the Haar measure on K, by wg, and the pushforward (L), under left

L
multiplication K, — bK, by [pg.

3.2. Genericity. In general, regularity is too weak a notion for dynamical complexity.
We introduce a notion of genericity, which is more useful for constructing non-trivial
dynamics.
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Let (a, b) € K x K. Then the cyclic group (a) acts on the left coset bK, by
be Vs bea,
where n € Zand ¢ € K.

PROPOSITION 3.1. Let a € K be a regular element. For any b€ K, the following
conditions are equivalent:

e the cyclic group (a) < K, is Zariski dense in K ;;

e the cyclic group (a) < K, is dense in K,;

e the action of (a) on bK, is minimal;

e the action of (a) on (bK,, pg) is ergodic.

In this case, we say that a is generic. The proof of Proposition 3.1 uses standard facts
about compact abelian Lie groups, such as the following lemma.

LEMMA 3.2. A cyclic subgroup of K, is dense in the classical topology if and only if it is
dense in the Zariski topology.

Proof. Any set that is classically dense is also Zariski dense since the Zariski topology is
coarser than the classical topology. We now show the converse. Clearly the cyclic group
(a) C Kg4, and its Zariski closure is also an abelian subgroup. Its closure in the classical

topology

H :=(a)
is a closed abelian subgroup of K,. Now every compact linear group is Zariski closed
(see Onishchik and Vinberg [OV90, §4.4, Theorem 5, pp. 133-134]). Hence, H is Zariski
closed in K. Since {(a) is Zariski dense in K, and H D {a), H = K,,. ]

Proof of Proposition 3.1. The proof now follows from Lemma 3.2 and the fact that
dense subgroups of the torus act minimally (see Katok and Hasselblatt [KH9S, §1.4,
p. 28]) and ergodically (see Katok and Hasselblatt [KH9S, Proposition 4.2.2, p. 147]
or Walters [Wal82, Theorem 1.9, p. 30]). 0O

4. Infinitesimal transitivity and Hamiltonian flows

In this section, we let G be a semi-simple complex algebraic Lie group. Let M be a
symplectic manifold and M L> R a smooth function. Denote by Ham( f) the associated
Hamiltonian vector field.

Definition 4.1. Let M be a manifold and F be a set of real smooth R-functions on M such
that at x € M, the differentials df (x), for f € F, span the cotangent space T,*(M). Then
F is said to be infinitesimally transitive at x. F is infinitesimally transitive on M if F is
infinitesimally transitive at all x € M.

PROPOSITION 4.2. Let M be a connected symplectic manifold and F be infinitesimally
transitive on M. Then the group H generated by the Hamiltonian flows Ham(f) of the
vector fields Ham(f), for f € F, acts transitively on M.

Proof. See [GX11, Lemma 3.2]. 0O
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We now briefly review results of Goldman [Gol86], describing the flows generated by
the Hamiltonian vector fields by simple closed curves on X. In this case, the local flow of
this vector field on M, lifts to a flow on the representation variety R.. Furthermore, this
flow admits a simple description [Gol86], as follows.

4.1. Invariant functions and flows on groups. Let G be a semi-simple complex Lie
group with Lie algebra g. Then the adjoint representation Ad preserves a non-degenerate
symmetric bilinear form (_, _) on g. In the case G = SL(n, C), this is

(X, Y) :=Tr(XY).

Let G LN R be a function invariant under the inner automorphisms Inn(G). Following
[Gol86], we describe how t determines a way to associate to every element x € G a one-
parameter subgroup

¢'(x) = exp(t F (x))

centralizing x. Given t, define its variation function G LN g by

d

(F(x),v)=—| t(xexp(tv))

dt =

for all v € g. Invariance of t under Inn(G) implies that F is G-equivariant:
F(gxg™!) = Ad(g) F (x).
Taking g = x implies that the one-parameter subgroup
¢! (x) :=exp(t F (x)) ey

lies in the centralizer of x € G.
Intrinsically, F(x) € g is dual (by (-, _)) to the element of g* corresponding to the left-
invariant 1-form on G extending the covector df (x) € T (G).

4.2. Invariant functions and centralizing one-parameter subgroups. Recall that S
denotes the set of homotopy classes of oriented simple closed curves on . If ¢ € S is
an oriented homotopy class of based loops, then 1y, the trace function of «, is defined as

Hom(r, G) - C

p > Tr(p(a)).

Since the function G l) C is Inn(G)-invariant, t, defines a C-valued function (also
denoted by t,) on M,. Let

tR =Re(ty), t.=Imd,).

Then t¥ and t/ define R-valued functions on M,.

Let « € S and X |« denote the compact surface obtained by splitting ¥ along «. The
two components o4 of dX|a corresponding to « are the preimages of « C ¥ under the
quotient mapping ¥ |« —> X. The original surface ¥ may be reconstructed as a quotient
space under the identification of «_ with o .
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The fundamental group 7 can be reconstructed from the fundamental group 71 (X |«)
as an HNN-extension:

7 = (m(Sle) L (B)/(Ba_p~' = ay). )

A representation p of & is determined by:
e the restriction p’ of p to the subgroup 71 (Z|a) C 7; and
e the value B/ = p(B)
which satisfies
B'o' @ )p ™" =p'(as), 3)
Furthermore, any pair (o', 8’), where p’ is a representation of 77 (X|a) and B’ € G satisfies
(3), determines a representation p of .
Lett=t® ort =t/. Define the twist flow &, associated with t on Hom(rr, SU(3)):

) ify em(Z|a),
EL(p):y — P )
PV ot (o)) ify =B,

where ¢! is defined in (1). This flow covers the flow generated by Ham(t) on M, (see
[Gol86]).

4.3. Infinitesimal transitivity. Let X be the geometric invariant theory (GIT) quotient
of Hom(F,, SL(3, C)) by Inn(SL(3, C)). Choose «, B € S as in §4.2 to correspond to
curves with geometric intersection number 1 (or equivalently a free basis of F;). Let

So.p = 1o, B, af, aﬁ_l, ozﬂa_l,B_l} cS

and 807}3 ={yl:iye Su,p)- Let
Fap =1t v €SapUS, ).

THEOREM 4.3. (Lawton [Law06, Law07]) The coordinate ring C[X] is generated by
Fa,p-

Since Tr(A~1) =Tr(A) for A € SU(3), the set Fa,p is invariant under complex
conjugation.

The relative SU(3)-character variety M, of F; embeds in X as a real semi-algebraic
subset. The regular functions on this R-semi-algebraic set are the real and imaginary parts
of the restrictions to M of the regular functions on X.

COROLLARY 4.4. The set
]:5/3 = {tf, t)l, 1y € S8}

is infinitesimally transitive on M.

Proof. Given the remarks preceding this corollary, the result follows from Theorem 4.3
and [GX11, Lemma 3.1]. 0O
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5. The Dehn twists

Let @ € S and 1, € I' be the corresponding Dehn twist. The fundamental group 7 can be
reconstructed from the fundamental group 1 (X |«) as an HNN-extension as in (2). Then
7, induces the automorphism (), € Aut(rr) defined by

() 1y s 17 ify emi(Zla),
o ya ify=8.

This further induces the map (7,)* on Hom(r, G) mapping p to

p () if y e mi(Zla),
(P) ()" 1y > 5)
g ’ {p(y)p(oz) ify =p.

(See [Gol86]).

5.1. Dehn twists and Hamiltonian twist flows. Leta := p(«) and b := p(B). Then

Re ={p e Hom(z, K) : k(p(a), p(B)) =c}
={(a,b) e K x K :«(a, b) =c}.

Let
H(a, b) :={a} x bK,, H'(a, b) :=aKk, x {b}.

PROPOSITION 5.1. If (a, b) € R, then H(a, b), H'(a, b) C R..
Proof. Suppose that ¢ € Kj,. Then at =ta andt~'a™' =a~'+~!. Then
k(a, bt) =abt)a ' (bt) " =abta™'t7 b =aba b7 =k(a, b) =c.
Hence, (a, bt) € R.. The proof of aK} x {b} C R, is similar. O

PROPOSITION 5.2. If (a, b) € R., then the Hamiltonian flows of the vector fields Ham (tg)
and Ham(tl) preserve [H(a, b)]. Similarly, Ham(tg) and Ham(tg) preserve [H'(a, b)).

Proof. This follows from (4) and by exchanging « and . O

COROLLARY 5.3. If a is generic, then (t,) acts ergodically on H(a, b). If b is generic,
then (tg) acts ergodically on H'(a, b).

Proof. By (5), tu(a, b) € H(a, b) and tg(a, b) € H'(a, b). The corollary then follows
from Proposition 3.1. O

6. The case of K = SU(3)
For the rest of this paper, we denote w := e
this section, we fix K = SU(3).

The classification of conjugacy classes of K can be described in terms of the trace
function

27i/3 and the identity transformation by I. In

K C.

Let A =Tr(K) (see Figure 1).
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FIGURE 1. A, the traces in SU(3).

If ¢1, &2, ¢3 € C are the eigenvalues of a € K, then they satisfy

1Sil=10l=1831=1 and {18283 =1. (6)
The coefficients of the character polynomial x, are
1=1,
O+ o+ i=T),

0o+ 538 + ¢1o = Tr(a),
G5t =1.

Therefore, the characteristic polynomial is
xa) =2 —z22+zx -1,
where z = Tr(a) € C. Furthermore, (6) is equivalent to the condition
|z|* — 8Re(z®) + 18]z]* =27 <0

and this real polynomial condition exactly describes the image A < C.

The traces of central elements are the vertices 3, 3w, 3@ of A. The trace of a regular
element of order three is the center O of A. The traces of elements of order two are
—1, —w, —®, the mid-points of the edges of 9 A.

PROPOSITION 6.1. The map Tr is a local submersion at almost all points of A.
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Proof. The map Tr is smooth. Hence, by Sard’s theorem, almost all points of C are regular
values of Tr [GP10, §1.7]. Hence, Tr is a local submersion at almost all points of A. O

Remark 6.2. Tt is not difficult to show that Tr has full rank in the interior of A, but we only
need Proposition 6.1. For a general discussion of A and Weyl chambers, see [DK00].

PROPOSITION 6.3. The image Tr(N) of the subset N C K of generic elements is conull in
A.

Proof. Let
U={(a,,3)eRxR:a,,B,%eR\Q}.

Let A’ C A be the image of U under the mapping
RxR-—C

(Ol, ,3) —_ eZm’a +e271i;3 +e—2m’(a+ﬂ).
Then A’ is conull in A and Tr™'(A’) € N. O

7. Central fibers of k
Again in this section, we fix K = SU(3).

7.1. The abelian representations. The fiber Ry = x~!(I) consists of commuting pairs
(a, b). In this case, a and b lie in a maximal torus T2. Hence, My = (T? x T?)/ W, where
W is the Weyl group of K acting diagonally (see [FL14] for more discussion of these
abelian character varieties).

7.2. The non-abelian cases.

PROPOSITION 7.1. If k=wl, where w# 1, then My consists of a single point.
Specifically, if (a, b) € Ry, then there exists g € K such that

a=gayg , b=gbyg ’,
where
1 0 O 0 0 1
ap:=(0 w O |, byp:=|1 0 0O]. @)
0 0 o 010

Proof. Suppose that (a, b) € Ry, that is,
aba~'b™' = wl. (8)
We first prove the following lemma.
LEMMA 7.2. @’ =0 =1L
Proof of Lemma 7.2. By (8) and taking traces,
Tr(a) = Tr(wbab™ ") = wTr(@) and Tr@@™ ") =Tr(wb 'a"'b) = wTr@@™).
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Hence, w # 1 implies that Tr(a) =Tr(a~') =0. Now apply the Cayley—Hamilton
theorem:
a® —I=a® - Tr(a)a* + Tr(a"a — Det(a)l = 0.

The same argument applied to b = wa~'ba implies that b3 =T, as claimed. m|

Returning to the proof of Proposition 7.1, Lemma 7.2 implies that ¢ = Inn(g)ag for some
geK,sincea #1.

We claim that b = Inn(g)by. For convenience, assume that a = ag; then we show that
(8) implies that b is the permutation matrix bg defined in (7).

Recall that Eig, (a) is the A-eigenspace of a. We claim that (8) implies that

b(Eig; (a)) = Eig,,; (). C))

To see this, rewrite (8) as
ab = wba. (10)

Suppose that v € Eig, (a), that is,
av = \v,

so, applying (10),
a(bv) = wbav = wA(bv),
whence bv € Eig,, (a), as claimed.
Since a is the diagonal matrix ag defined by (7), the lines Eig, (@), Eig,,(a) and Eig (a)
are the three coordinate lines in C3. Thus, (9) implies that b = by, concluding the proof of
Proposition 7.1. |

In particular, both a and b have order 3. Since « (a, b) has order 3 and is central, the

subgroup (a, b) C K is a non-abelian group of order 27, a non-trivial central extension of
Z]3® Z/3 by Z/3.

8. Ergodicity

Let K be any compact Lie group. Each tangent space T, K identifies with the Lie algebra ¢
of right-invariant vector fields: namely, a tangent vector v € T, K identifies with the right-
invariant vector X € € such that X (a) = v. In this way, the differential of the commutator
map « at (a, b) € K x K identifies with the linear map (see [Gol84, Gol20, PX02]):

Dkpy:t@t— ¢
(X, Y) —> Ad(ba)(Ad(b™") — )X
+ ([ —Ad@@ ")Y.
From this formula, the following proposition holds.
PROPOSITION 8.1. « is submersive at (a, b) if and only if ¢, N ¢, = 0.

For the rest of this section, let K =SU(3), which comes with the standard
representation IT on C3. An element in (a, b) € R, corresponds to a representation p
of 7 (see §2). Hence, p o I is a representation of 7. Denote by M’ € M, the subspace
of irreducible representation classes.
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8.1. Relation to the moduli space of K-bundles. If we fix a complex structure on X,
then we can construct the coarse moduli space N*% of semi-stable parabolic K -bundles
[BR89] on ¥, endowed with a complex structure. A*% contains the subspace N of stable
parabolic K-bundles.

PROPOSITION 8.2. The set of smooth points of M is a connected manifold.

Proof. There is a homeomorphism M, = A%, restricting to a diffeomorphism M’ = N/
[BR89, Theorem 1]. The moduli space N** is irreducible and contains N* as an open
subvariety [BR89, Theorem II]. Hence, N* is open and connected. Hence, /\/l’c is open
and connected. Proposition 8.1 implies that a point [p] = [(a, b)] € M is a smooth point
if and only if p is irreducible, i.e. M’L is also the set of smooth points of M. The
proposition follows. O

For almost every conjugacy class ¢, the action M, x ' = M_ is ergodic [PX02]. This
section proves that this is true for all c.
Let ¢ € K. Up to conjugation,

cit 0 O
c=(0 ¢ O
0 0 c3

For (a, b) € R., we have the natural map
t: Kg—>H(a, b), (t) =(a, br).

Let P,: K x K—> K be the projection to the second factor. An element p € R,
corresponds to a pair (a, b) € K x K. Let

T=TroP,:R.—>A and T :=10T:K,—A.

PROPOSITION 8.3. Let ¢ € Z(K). Then (a, b) € R, exists such that:
(1) (a, b) is a smooth point;
(2) T is a submersion at (a, b).

Proof. Let (a, b) € R, be such that

01 0 by 0 0
a=10 0 1|, b=|0 B o0]. (11)
100 0 0 bs
Then 5
2 0 0
b
c=«(a,by=| 0 b—3 0. (12)
1 by
0o o =
by

This formula for ¢ implies that « is onto K.

Remark 8.4. A result of Gotd [Got49] states that for any compact semi-simple Lie group
K, K x K L Kis surjective. Hence, R, # W forall c € K.

Downloaded from https://www.cambridge.org/core. 09 Jul 2021 at 14:37:29, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

2394 W. M. Goldman et al

Note that a is regular. For (1), there are three cases for b € Z(K), b1 = by # b3 (and its
permutation variation) and b being regular.

If b € Z(K), then k(a, b) = I = ¢ and this violates our hypothesis of ¢ & Z(K).

If b is regular, then ¢ € €, implies that

tn 0 O
t=0 n 0|, H+n+1B=0. (13)
0 0 n
Then
Hh—1 0 0
(Ad(a) — D)t = 0 33—t 0
0 0 1 —1

Hence, if 7 € &, then (Ad(a) —I)t =0. This implies that ¢, N ¢, =0. Hence, by
Proposition 8.1, we conclude that « is regular at (a, b).
If by = by #b3z and t € &, then

1 t2 0
t=|t; tr 0|, H+H+13=0.
0 0 133
Then
n — N1 —12 53
(Ad(a) -Dt=| -1 tB3—1n 0
D) 0 t1 — 133

Hence, if ¢ € ¢,, then (Ad(a) — I)+ = 0. This implies that # = 0. Hence, ¢, N ¢, = 0. By
Proposition 8.1, « is regular at (a, b). We conclude that in all cases (a, b) € R, is a smooth
point.

Notice that H(a, b) € R.. We consider T restricted to H(a, b). Let

2

0w w 1 0 O
r=1|1 o o? and g=|0 «? 0
1 1 0 0 w

Thena = pgp~". The element ¢ € K, has the form t = pt, p~!

Then

, where t, € K}, is diagonal.

T(t) =Tr(bt) = 3 Tr(D)Tr(1).

By Proposition 6.1, T is alocal submersion for almost all # € A unless Tr(b) = 0. However,
Tr(b) = 0 implies that ¢ € Z(K), which is a contradiction. Hence, Tr(b) #0 and T is a
local submersion for almost all ¢. 0O

COROLLARY 8.5. T is a local submersion for almost all points in H(a, D).
Proof. Since DT = DT o D¢, DT; being surjective implies that DT, p;) is surjective. O

COROLLARY 8.6. There is a conull set V C R, such that b is generic for almost all
(a,b)e V.
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Proof. The subset containing points at which a map is locally submersive is Zariski open.
Hence, by Proposition 8.3, there exists a smooth and Zariski open V C R, such that T'|y
is a submersion. Let O € R, be the smooth part. By Proposition 8.2, Q is connected and
hence irreducible. Since a Zariski open subset of a smooth irreducible variety is conull in
the Lebesgue class, V is conull. The map T'|y is a fibration over an open domain of A.
The corollary follows from Proposition 6.3. O

COROLLARY 8.7. Suppose that ¢ € Z(K). Suppose that B €S and ¢ : M.—>R is a
w-measurable function. If ¢ is tg-invariant, then ¢ is Ham(t}’; )-invariant and Ham(tlls)-
invariant.

Proof. By Proposition 8.3, R. contains a smooth point (a, b) with b generic. By
Proposition 8.2 and Corollary 8.6, b € K is generic for almost all (a, b) € R.. Hence,
b € K is generic for almost all [(a, b)] € M. By Proposition 3.1, 5.1 and Corollary 5.3,
tg-orbit is dense in H'(a, b) and ¢ is Ham(t§ )-invariant and Ham(tllg)-invariant. O

With the notation we have adopted, we restate Theorem 1.1 as follows.

THEOREM 8.8. The action M, x I' — M. is ergodic.

Proof. Suppose that ¢ =I. Identifying R? with its dual (R?)*, the group SL(2, Z) has
the standard dual linear action on R? which induces the diagonal action on T? x T2. This
SL(2, Z)-action is known to be ergodic because SL(2, Z) contains hyperbolic elements,
meaning that the eigenvalues of these elements do not have absolute value 1 [BS15, §4].

There is an isomorphism [FM12] ¢ : T’ = SL(2, Z). By §7.1, M. = (T? x T?)/ W.
The I'-action on M, lifts to an action on T2 x T2. Moreover, this ['-action is equivariant
with respect to . Hence, the I"-action on M_ is ergodic.

Suppose that ¢ € Z(K) and ¢ # [; then M. is a single point by Proposition 7.1 and the
statement is trivially true.

Suppose that ¢ ¢ Z(K). Recall that H is the group generated by all Hamiltonian flows
Ham(tg) and Ham(tg), where B € S. Let ¢ : M.—>R be a I'-invariant p-measurable
function. By Corollary 8.7, ¢ is H-invariant. By Corollary 4.4 and Proposition 4.2, ¢ is
constant almost everywhere. Our theorem follows. O

Acknowledgements. 'W. Goldman and S. Lawton were partially supported by U.S.
National Science Foundation grants DMS 1107452, 1107263, 1107367 and 1309376
‘RNMS: Geometric structures and representation varieties’ (the GEAR Network). S.
Lawton acknowledges support from U.S. National Science Foundation grant DMS
1309376 and also DMS 0932078000 while he was in residence at the Mathematical
Sciences Research Institute in Berkeley, California during the Spring 2015 semester. He
was also partially supported by a Simons Foundation Collaboration grant. E. Xia was
partially supported by the Ministry of Science and Technology Taiwan with grants 103-
2115-M-006-007-MY2, 105-2115-M-006-006, 106-2115-M-006-008 and 107-2115-M-
006-009 and the National Center for Theoretical Sciences, Taiwan.

Downloaded from https://www.cambridge.org/core. 09 Jul 2021 at 14:37:29, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

2396

[BR89]
[BS15]

[DKO00]
[FL14]

[FM12]

[Gol20]

[Gol84]
[Gol86]
[Gol97]
[Got49]
[GP10]

[GX11]

[Hue95]

[KH95]

[Law06]
[Law07]
[OV90]
[PX02]
[PX03]

[Wal82]

W. M. Goldman et al

REFERENCES

U. Bhosle and A. Ramanathan. Moduli of parabolic G-bundles on curves. Math. Z. 202(2) (1989),
161-180.

M. Brin and G. Stuck. Introduction to Dynamical Systems. Cambridge University Press, Cambridge,
2015.

J. J. Duistermaat and J. A. C. Kolk. Lie Groups (Universitext). Springer, Berlin, 2000.

C. Florentino and S. Lawton. Topology of character varieties of Abelian groups. Topology Appl. 173
(2014), 32-58.

B. Farb and D. Margalit. A Primer on Mapping Class Groups (Princeton Mathematical Series, 49).
Princeton University Press, Princeton, NJ, 2012.

W. Goldman. Parallelism on Lie groups and Fox’s free differential calculus. Characters
in Low-Dimensional Topology (Centre de Recherches Mathématiques Proc.) (Contemporary
Mathematics, 760). Eds. O. Collin, S. Friedl, C. Gordon, S. Tillmann and L. Watson. American
Mathematical Society, Providence, RI, 2020, to appear.

W. M. Goldman. The symplectic nature of fundamental groups of surfaces. Adv. Math. 54(2) (1984),
200-225.

W. M. Goldman. Invariant functions on Lie groups and Hamiltonian flows of surface group
representations. Invent. Math. 85(2) (1986), 263-302.

W. M. Goldman. Ergodic theory on moduli spaces. Ann. of Math. (2) 146(3) (1997), 475-507.

M. Gotd. A theorem on compact semi-simple groups. J. Math. Soc. Japan 1 (1949), 270-272.

V. Guillemin and A. Pollack. Differential Topology. AMS Chelsea, Providence, RI, 2010.

W. M. Goldman and E. Z. Xia. Ergodicity of mapping class group actions on SU(2)-character varieties.
Geometry, Rigidity, and Group Actions (Chicago Lectures in Mathematics). University of Chicago
Press, Chicago, IL, 2011, pp. 591-608.

J. Huebschmann. Symplectic and Poisson structures of certain moduli spaces. 1. Duke Math. J. 80(3)
(1995), 737-756.

A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia
of Mathematics and its Applications, 54). Cambridge University Press, Cambridge, 1995. With a
supplementary chapter by Katok and Leonardo Mendoza.

S. Lawton. SL(3, C)-character varieties and RP2-structures on a trinion. PhD Thesis, University of
Maryland, College Park, ProQuest LLC, Ann Arbor, MI, 2006.

S. Lawton. Generators, relations and symmetries in pairs of 3 x 3 unimodular matrices. J. Algebra
313(2) (2007), 782-801.

A. L. Onishchik and E. B. Vinberg. Lie Groups and Algebraic Groups (Springer Series in Soviet
Mathematics). Springer, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites.
D. Pickrell and E. Z. Xia. Ergodicity of mapping class group actions on representation varieties. I.
Closed surfaces. Comment. Math. Helv. 77(2) (2002), 339-362.

D. Pickrell and E. Z. Xia. Ergodicity of mapping class group actions on representation varieties. II.
Surfaces with boundary. Transform. Groups 8(4) (2003), 397-402.

P. Walters. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New
York, 1982.

Downloaded from https://www.cambridge.org/core. 09 Jul 2021 at 14:37:29, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

	Introduction
	Notation and terminology

	Character varieties and the mapping class group
	Compact Lie groups
	Regularity
	Genericity

	Infinitesimal transitivity and Hamiltonian flows
	Invariant functions and flows on groups
	Invariant functions and centralizing one-parameter subgroups
	Infinitesimal transitivity

	The Dehn twists
	Dehn twists and Hamiltonian twist flows

	The case of K = SU(3)
	Central fibers of κ
	The abelian representations
	The non-abelian cases

	Ergodicity
	Relation to the moduli space of K-bundles

	Acknowledgements
	References



