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Abstract

In its 60 years of existence, the field of nonlinear optics has gained momentum especially over the
past two decades thanks to major breakthroughs in material science and technology. In this article,
we present a new set of data tables listing nonlinear-optical properties for different material
categories as reported in the literature since 2000. The papers included in the data tables are
representative experimental works on bulk materials, solvents, 0D—1D-2D materials,
metamaterials, fiber waveguiding materials, on-chip waveguiding materials, hybrid waveguiding
systems, and materials suitable for nonlinear optics at THz frequencies. In addition to the data
tables, we also provide best practices for performing and reporting nonlinear-optical experiments.
These best practices underpin the selection process that was used for including papers in the tables.
While the tables indeed show strong advancements in the field over the past two decades, we
encourage the nonlinear-optics community to implement the identified best practices in future
works. This will allow a more adequate comparison, interpretation and use of the published
parameters, and as such further stimulate the overall progress in nonlinear-optical science and
applications.

© 2023 The Author(s). Published by IOP Publishing Ltd
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List of symbols

defr) effective second-order nonlinear coefficient
dk/dt change in wave-number with temperature
dn/dt change in linear refractive index with temperature
ZBrillouin Brillouin gain coefficient

gRaman Raman gain coefficient

Tsat(eff) (effective) saturation irradiance

1o linear refractive index

1) (eff) (effective) nonlinear index

o linear loss coefficient

%) two-photon absorption coefficient
;3 three-photon absorption coefficient
Y (eff) effective nonlinear coefficient
VBrillouin Brillouin gain factor

YRaman Raman gain factor

A« change in absorption

An change in refractive index

Ang change in group index

AOD change in optical density

AT change in pulse duration

€ dielectric permittivity

Ui conversion efficiency

A wavelength

Apump pump/excitation wavelength

Aprobe probe/signal wavelength

o nonlinear conductivity

Tpump pump/excitation pulse duration

T probe probe/signal pulse duration

x? second-order susceptibility

P third-order susceptibility

w frequency

List of abbreviations

0D
1D

2D
2FBS
2PA
3PA
3WM
BD
BIC
CAIBE
CDQW
ChG
CVD
CVT
cwW
dB

DB
DFG
DUV
EFISH
ENZ
EO

ER
FCA
FEL
FEOS
FIB
FSR
FWHM
FWM
GO

zero-dimensional
one-dimensional
two-dimensional
two-frequency beat signal
two-photon absorption
three-photon absorption
three-wave mixing

beam deflection

bound states in the continuum
chemically assisted ion-beam etching
coupled double quantum well
chalcogenide glass

chemical vapor deposition
chemical vapor transport
continuous-wave

decibels

diffusion bonded
difference-frequency generation
deep ultraviolet
electric-field-induced second-harmonic generation
epsilon near zero

electro-optic

ellipse rotation

free-carrier absorption
free-electron laser

free-space electrooptic sampling
focused ion beam

free spectral range

full width at half maximum
four-wave mixing

graphene oxide
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GVD
GVM
HHG
HPHT
HRS
HVPE
HW1/e*M
IGA

IR

IRS
ISBT
ITO
LED
LIDAR
LN

LO
LPCVD
LSPR
MBE
MFD
MOCVD
MOVPE
MPAPS
MQWs
NA
NLA
NLO
NLR
NSM
NZI
ocC

oP
OPA
OPG
OPO
PAMBE
PCF
PDI
PECVD
PhC

PI

PIC
PVT
PLD
QCSE
QD
QPM
QW
rGO
RIE

SA

SBS
SCG
SEED
SEM
SESAM
SFG
SHG
SLR
SOl
SpBS
SPDC
SPM
SpRS
SRR

group velocity dispersion

group velocity mismatch
high-harmonics generation

high pressure high temperature
hyper-Rayleigh scattering

hydride vapor phase epitaxy

half width at 1/¢* maximum
induced-grating autocorrelation
infrared

inverse Raman scattering
intersubband transitions

indium tin oxide

light emitting diode

light detection and ranging

lithium niobate

longitudinal optical mode
low-pressure chemical vapor deposition
localized surface plasmon resonance
molecular-beam epitaxy

mode field diameter

metal-organic chemical vapor deposition
metal-organic vapor-phase epitaxy

multiphoton absorption photoluminescence saturation

multiple quantum wells

numerical aperture

nonlinear absorption

nonlinear optics/nonlinear-optical
nonlinear refraction
nanostructured material

near-zero index

optically contacted

orientation patterned

optical parametric amplification
optical parametric generation
optical parametric oscillation
plasma-assisted molecular beam epitaxy
photonic-crystal fiber

periodic domain inversion
plasma-enhanced chemical vapor deposition
photonic crystal

periodically inverted

photonic integrated circuit
physical vapor transport

pulse laser deposition
quantum-confined Stark effect
quantum dot
quasi-phase-matching

quantum well

reduced graphene oxide

reactive ion etching

saturable absorption

stimulated Brillouin scattering
supercontinuum generation
self-electro-optic effect device
scanning electron microscope
semiconductor saturable absorber mirror
sum-frequency generation
second-harmonic generation
surface lattice resonance
silicon-on-insulator

spontaneous Brillouin scattering
spontaneous parametric down-conversion
self-phase modulation
spontaneous Raman scattering
split-ring resonator
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SRS stimulated Raman scattering
SRTBC spectrally resolved two-beam coupling
SWCNT single-wall carbon nanotube
TDS time-domain spectroscopy

TE transverse-electric

THG third-harmonic generation

™ transverse-magnetic

TMD transition metal dichalcogenide
TO transverse optical mode

TPFP tilted pulse front pumping

TRI time-resolved interferometry
WZ wurtzite

XPM cross-phase modulation

ZB zinc blende

1. General introduction

The idea of composing a new set of data tables for NLO materials emerged in 2020 on the occasion of

60 years of NLO research [Franken1961, Kaiser1961]. In those 60 years, the field has witnessed tremendous
growth, and several NLO data tables were published before the turn of the century [Robinson1967,
Chase1994, Van Stryland1994, Sutherland1996, Dmitriev1999]. After the year 2000, additional data tables
were introduced for specific material types (see, for example, [Nikogosyan2005, Smith2018]), but a data
table that focuses on the post-2000 NLO research developments for a wide range of materials has not yet
been presented. Nevertheless, there have been major advances in materials science and technology since
2000, and these have also accelerated the overall progress in NLO research. Whereas the idea of creating a
new set of NLO data tables was originally introduced by John Dudley, we further elaborated on it along the
following approach: the data tables presented here have been composed based on a representative set of
experimental works published since 2000. In other words, the list of publications included in the table is not
comprehensive. We mostly focused on experimental papers that not only provided NLO coefficients, but also
reported experimental parameters that give the context and limits of validity for using the quoted coefficient
values. In this regard, we also listed best practices for performing and reporting NLO experiments. Some of
these best practices are appropriate for any NLO measurement, while others are specific for the chosen NLO
characterization technique, e.g., SHG, Z-scan, FWM, etc. In turn, many of these NLO techniques are
appropriate only for specific categories of NLO materials: bulk materials, 0D—1D-2D materials,
metamaterials, fiber waveguiding materials, on-chip waveguiding materials, and/or hybrid waveguiding
systems. Both the NLO techniques and the material categories are defined in more detail in the specific
separate sections. With this work, besides providing a set of NLO data tables focused on the progress since
2000, we also aim at stimulating the use of the listed best practices in future NLO publications to allow a
better comparison, interpretation and use of the published parameters. The long-term goal of this article is
to help advance the development of innovative NLO materials, devices and systems for real-life applications
in optical data communication, signal processing, metrology, medical imaging, sensing, laser and quantum
light generation, and many other areas.

Most of the NLO materials listed in the data tables are solids, but we also included some solvents as they
are often used as reference materials in NLO measurements or for preparing solutions or dispersions.
However, we did not consider organic/polymeric NLO materials since these are so numerous that tabulating
them is outside the scope of this work. Gases are not included either, except for a few examples in the hybrid
waveguiding systems category. More specifics of what is and is not included are given in the respective
material category sections. We point out that these will be ‘living’ data tables that can be updated, so the
materials that are currently absent might be added in the future.

To build the data tables presented here, we started by identifying the different material categories while
also listing the different NLO techniques and their associated best practices. We then performed a literature
search for experimental NLO papers published since 2000 and made a selection based on the listed best
practices. Note that we did not limit our search to optical-wavelength-based experiments only but also
included works on THz NLO. Finally, we filled out the data in dedicated table templates per material category.
To minimize errors, the data filled out by each co-author were also cross-checked by another co-author.
Hence, the parameter values listed in the tables should match with those provided in the selected papers.

The main NLO coefficients that we considered for composing the data tables are: the second-order
nonlinear susceptibility x'?, the effective second-order nonlinear coefficient d.g, the third-order nonlinear
susceptibility x®), the effective nonlinear index 1, ., the effective third-order nonlinear coefficient 7., the
two- and three-photon absorption coefficients «v,, a3, the saturation irradiance I, specified for saturation of
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the linear absorption, and the Raman and Brillouin gain coefficients graman» $Brillouin- Further information
about the underlying physics for each of these coefficients can be found, for example, in [Sutherland1996,
Bloembergen1996, Shen2002, Stegeman2012, Boyd2020]. We have not tabulated hyperpolarizabilities,
photorefractive effects, electro-optic effects, stimulated polariton scattering, nor cascaded NLO processes.
Note that the meaning of ‘effective’ is different for d.g than for 1, o and Re(7ef). For degs the subscript
‘effective’ implies that the coefficient comprises all contributions from the different tensor components being
studied during the experiment. In contrast, 1, . and Re(.sr) are effective coefficients in the sense that they
might not be solely due to bound-electronic nonlinear transitions as one would expect for a ‘pure’ n, and
Re(7), but instead could also contain contributions from, e.g., nuclear and/or thermal effects (see also
section 2.1). Finally, we point out that some works in the data tables do not only report a NLO coefficient but
also provide NLO conversion efficiencies 7 and bandwidths in case techniques such as SHG, THG, Raman,
Brillouin and FWM are used. These parameters are then also tabulated for those works since they are
important to assess the practical use of the material in wavelength conversion applications.

The outline of the manuscript is as follows: in section 2 we list various NLO measurement techniques and
describe some best practices for performing and reporting NLO experiments. Here we make a distinction
between best practices that can be applied in general and those that are technique-specific. In section 3 we
present the actual data tables per material category, together with background information of the status prior
to 2000, a brief discussion of the advancements since 2000 and of the remaining challenges, and some
recommendations for future works. Finally, we summarize and conclude in section 4.

As an intermezzo before the main body of the manuscript, we want to visit what is arguably the single
most studied material in NLO, namely fused silica. We think this digression is instructive on the difficulties
inherent in making NLO measurements as well as in obtaining a complete theoretical understanding. It is
also of significant importance because fused silica has been used as a reference in many studies of other
materials, i.e., if the reference value is in error, so is the reported value of the measured material. This history
of NLO measurements in fused silica is also illustrative of how NLO materials properties are not as well
understood as one often assumes.

1.1. Fused silica nonlinearity
To illustrate the difficulties in reporting accurate values of nonlinear parameters, let us look at 7, of fused
silica (see table 1 below). Fused silica is often used as a reference for determining the #,, or 1, ¢ of other
materials. We use 1, . since while the bound-electronic nonlinearity is essentially instantaneous, other
nonlinearities, including those involving nuclei, depend on the pulsewidth used. The values found in the
literature for fused silica do not always agree, and, of course, there is dispersion. [Milam1998] attempted to
determine the best experimental values at various wavelengths by taking a weighted average, determined
by experimental error bars, of the published values up to 1998. This approach gave a value of
~2.7 x 1072 m?> W~ in the IR with little dispersion from 1-1.6 um, with values increasing toward the UV.
As summarized in [Agrawal2013] the nuclear (Raman) contribution to the nonlinear refractive index of
fused silica may be of the order of ~20% as first discussed by the seminal work of [Hellwarth1975,
Hellwarth1977]. Under this assumption, the bound-electronic nonlinearity is 7, 22 2.2 x 1072 m> W1,
However, the nuclear contribution estimated in other publications varies from 13% [Smolorz1999] to 26%
[Heiman1979]. Following [Agrawal2013], for pulses much longer than ~1 ps, the nuclear contribution
should be fully established. However, [Santran2004] calculates a response function, from which they
determine a pulsewidth dependence curve indicating that the nuclear contribution would not be fully
developed until >10 ps. It appears that [Stolen1992] was the first to predict the pulsewidth dependence of
1 for fused silica, showing the effective Raman contribution decreasing for pulsewidths <100 fs, going to
zero for a pulsewidth of ~30 fs, and then predicting that it actually turns negative for even shorter pulses.
These two publications are the only ones we find that present the projected pulsewidth dependence for 1, .
Note that when using femtosecond experiments, the finite duration/finite bandwidth of the pulses results in
spectral-filtering effects on the intrinsic material response that can result in difficulties in interpreting the
experimental data [McMorrow1990]. For much longer pulses (>1 ns) electrostriction can become important
and can further significantly increase the measured #, .¢. This is particularly important in fibers
[Buckland1996]. Additionally, more recent measurements tend to use shorter pulses and yield smaller values
of ny ¢ (see table 1). [Buckland1996] also calculates that n, . is reduced by a factor of 8/9 due to the
polarization randomization in fibers as indicated in table 1. We also note that measurements of 1, ¢ reported
for fibers have rarely been corrected for any modal overlap with the cladding. In principle, there could be a
small systematic difference between fiber measurements and bulk measurements, but given the spread of
data it is challenging to discern.

Among the several publications where attempts were made to measure the temporal response function,
e.g., [Kang1996a, Aber2000, Santran2004, Patwardhan2021], the only one to see a temporal dependence is
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Table 1. Nonlinear refractive index of fused silica giving some historical references to early works as well as a representative group of
more recent publications (not inclusive)—listed in order of year published. Note: Fused silica is high purity synthetic glass (amorphous
SiO;,) and different from naturally occurring or synthetic quartz (crystalline a-SiO, ). All measurements listed use linearly

polarized inputs except where noted. Legend for superscripts: see below the table. The following abbreviations have been used:

de-pol = de-polarized; pol-maint = polarization maintaining; ER = ellipse rotation; SF-Pcr = self-focusing using the critical power
for self-focusing, Pcr; Freq Mix = frequency mixing; TRI = time-resolved interferometry; SPM = self-phase modulation;

3WM = three-wave mixing; XPM = cross-phase modulation; 2FBS = two frequency beat signal; Multiple = multiple techniques

were used in this compilation of publication data; SRTBC = spectrally resolved two-beam coupling; IGA = induced-grating

autocorrelation-based upon time-delayed four-beam coupling in a photorefractive crystal.

My eff Pulse
Method (x1072°m?> W~ X (nm) Fiber/Bulk Width Notes Reference
ER 3.2 694 Bulk 13 ns Fused quartz [Owyoung1972,
Owyoung1973]
SF Pcr 3.94 1064 Bulk 30 ps [Smith1975]
Freq Mix 5.2 ~525 Bulk 3ns [Levenson1974]
TRI 2.73 1064 Bulk 125 ps [Milam1976]
TRI 2.73 1064 Bulk 100-150 ps [Weber1978]
SPM 2.7;3.3 515 100 m fiber 90 ps 2nd entry x9/8  [Stolen1978]
3WM 2.4 1064 Bulk 3 ns CS; used asref  [Adair1992]
SPM 2.36; 2.66 1319 250 m fiber 110 ps 2nd entry x9/8  [Kim1994]
XPM 2.48;2.79 1550 Fiber CW 1% F doping [Kato1995b]
2FBS 2.2;2.5% 1550 Fiber CW 2nd entry x9/8  [Boskovic1996]
XPM 2.47 1550 Fiber CW de-pol input [Wada1996]
not x9/8
Z-scan 2.14 1064 Bulk 30 ps [DeSalvo1996]
Z-scan 2.24 532 Bulk 22 ps [DeSalvo1996]
Z-scan 2.41 355 Bulk 17 ps [DeSalvo1996]
Z-scan 7.8 266 Bulk 15 ps [DeSalvo1996]
Multiple 2.56 800-1550  Bulk ps to ns Compilation of  [Milam1998]
ref. data
SRTBC 2.3 ~800 Bulk 18 fs [Smolorz1999,
Riggs2000]
1GA 2.44 1064 24 m fiber 53 ps not x9/8 [Garcia2003]
pol-maint
IGA 2.2;2.5 1064 23 m fiber 50-70 ps 2nd entry x9/8  [Oguama2005a]
IGA 1.81;2.04 1064 ~100 m fiber 56 ps 2nd entry x9/8  [Oguama2005b]
IGA 2.22 1064 Short fiber 50-70 ps not x9/8 [Oguama2005]
pol-maint
ER 2.5 775 Bulk 150 fs [Miguez2015]
Z-scan 2.23 1030 Bulk 140 fs [Flom2015]
SPM 2.1;2.4 1550 Fiber Telecom Vascade fiber [Makovejs2016]
SRTBC 1.94 2300 Bulk >65 fs [Patwardhan2021]
SRTBC 2.0 3500 Bulk >65 fs [Patwardhan2021]

2 Values should be reduced by 16% [Smolorz1999] due to electrostrictive contribution estimated by [Buckland1996].

[Smolorz1999], which used ‘spectrally-resolved two-beam coupling’ with 18 fs, 800 nm pulses. They
observed a small oscillatory signal in fused silica lasting for 100s of femtoseconds after excitation indicating a
~13% nuclear contribution to 11 ef.
In all the papers of which we are aware where fused silica is used as a reference, its 11 f is assumed
constant. For all the materials reported in the tables in this publication that have been referenced to fused
silica, this adds to the uncertainly of the reported n, . values. For very short pulses, ~10 fs, the nonlinear
response could be reduced by as much as the above quoted fractions of the Raman contribution, the highest
estimate being 26%.
We are not aware of any direct measurement of the variation of #, . with pulsewidth in the picosecond
to femtosecond regime to determine its time dependence. Future measurements of the temporal dependence
of the nonlinear response of fused silica and other materials would be quite useful, as has been done for
solvents (see section 3.2).

2. NLO characterization techniques and their best practices

2.1. General best practices to obtain and report high-quality NLO measurement data
Before addressing the existing NLO characterization techniques, we provide some general ‘best practices’ that
apply to most of them, i.e., some general rules for obtaining and reporting high-quality, useful NLO

measurement data regardless of the technique employed:

7
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e First, the material’s composition, dimensions, method of fabrication and linear optical properties as well
as temperature need to be known. Particularly, the linear loss/absorption at the wavelengths used in the
NLO measurements is an essential parameter, but also other linear optical characteristics such as dispersion
coefficients and the properties of optically excited free carriers can be relevant.

e Second, a careful quantification of the NLO pump/excitation parameters inside the material and, if relevant
for the technique used, also of the signal/probe parameters is required. These parameters, relevant for both
pulsed and CW operation, include (but are not limited to):

* Wavelength

Peak power, irradiance (or in some cases electric field amplitude), and/or pulse energy

* Beam size (specified as, e.g., FWHM, HW1/eM) and beam shape

*  Pulse width (specified as, e.g., FWHM, HW1/eM) and pulse shape

Pulse repetition rate (for pulsed operation)

Beam polarization and orientation with respect to crystal axes if appropriate and relative polarization
for two-beam experiments

e Last, the generated NLO response needs to be carefully measured, and the measurement results should be
appropriately analyzed to extract the NLO coefficient(s). This can be done by means of a model for the
technique used, by means of a benchmark measurement on a sample with well-known characteristics, etc.
Models should also account for other effects that may interfere with the NLO measurements, and addi-
tional supporting information for the conclusions drawn (e.g., investigation of the dependence on pump
power/irradiance/energy, the wavelength dependence, or the temporal dependence of the NLO response)
is often required (see previous section 1.1). In addition, special attention should be paid to the influence
of the sample substrate (if any) and to the possible occurrence of sample damage when performing high-
irradiance NLO experiments. When specifying conversion efficiencies and bandwidths, it should be clear
which formulas were used for determining them. Finally, the inclusion of error bars on the data sets is very
valuable to understand the limitations of the measurements and the extracted parameters.

We consider these general best practices to be an appropriate set of rules for carrying out, analyzing and
reporting NLO measurements, independently from the type of technique used. It is also important to keep in
mind the following general insights valid for any kind of NLO measurement: whenever long pulse durations
and/or high pulse repetition rates are employed in NLO experiments, thermal effects can occur. They can
build up collectively over many pulses or arise within the pulse duration, depending upon the material
absorption and pulse width. These irradiance-dependent thermal effects can mask the NLO effect one aims
to study. More generally speaking, it is unusual for a single nonlinearity to fully determine the overall NLO
response. Hence, one should try to unravel the various contributions, e.g., by studying the power/irradiance/
energy dependence, the wavelength dependence, the temporal dependence, etc, or at least consider the
measured nonlinearity as an ‘effective’ coefficient for the input parameters quoted. We note that long and
short pulses can trigger very different NLO processes (see, e.g., section 3.2 on the NLO response of solvents)
and could also exhibit different damage thresholds for the material under study. Also, measuring the
wavelength dependence of the NLO response provides crucial information, since knowing the spectrum of
the NLA and the dispersion curve of the NLR of a material is extremely helpful for understanding the
fundamental physical interactions leading to the observed NLO effects. In some cases, the nonlinear
absorption spectra/dispersion curves are necessary information for a proper interpretation of the
experimental results. A more detailed discussion of the underlying physics can be found in
[Christodoulides2010, Van Stryland2009a, Van Stryland2009b, Boyd2020, Stegeman2012, Sutherland2003,
Shen2002, Bloembergen1996].

2.2. Technique-specific best practices

Besides the general best practices identified above, one should also consider additional best practices that are
specific for the NLO technique used. In what follows, we list the most common technique families'®, the
NLO coefficients they yield and the technique-specific best practices we have identified for each of them.

18 There exist very specialized techniques that are not addressed in this section as they are only employed in very specific or rather uncom-
mon experiments. Some of these specialized techniques are used in a few papers included in the tables of this work. The reader is directed
to those papers for further information on these techniques.
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2.2.1. Best practices for second-order NLO techniques

2.2.1.1. Second-order wave mixing

Second-order wave mixing processes, mainly SHG, SFG and DFG [Shen1989, Shen2002, Sutherland2003,
Wang2009, Liang2017, Prylepa2018], are often utilized in characterization of bulk materials, 0D-1D-2D
materials, metamaterials, fiber waveguiding materials, on-chip waveguiding materials, and hybrid
waveguiding systems. The developed techniques allow one to extract the material’s x?) and dg coefficients,
and the conversion efficiency of the associated process. In some cases, the techniques also allow
characterization of the relevant components of the x? tensor, or the conversion bandwidth of the process.
Second-order wave mixing is also at the heart of OPO, OPG, and OPA [Shen2002, Sutherland2003]. We note
that EFISH is in fact a third-order wave mixing process that in the presence of an external static electric field
gives rise to SHG.

Besides the general best practices in section 2.1, it is important to verify successful phase matching of the
NLO interaction in the material and to determine the parameters on which the considered phase matching
approach relies (e.g., dispersion, poling parameters in some cases of QPM, etc). Furthermore, when
reporting the conversion efficiency and conversion bandwidth of the material, the used parameter definitions
should be clearly stated. Finally, when performing SHG experiments, it is important to verify that the SHG
response is not masked by two-photon-excited fluorescence effects.

2.2.1.2. Second-order nonlinear imaging
Second-order nonlinear imaging techniques, most notably SHG imaging [Gannaway1978, Kumar2013,
Yin2014, Woodward2016], can be meaningfully applied to material categories exhibiting spatially varying
second-order nonlinear parameters (0D—1D-2D materials, metamaterials, on-chip waveguiding materials,
and hybrid waveguiding systems). Second-order nonlinear imaging allows one to characterize the magnitude
of x? along with the conversion efficiency associated with the material and the performed experiments.
While the general best practices listed in section 2.1 also apply for second-order nonlinear imaging, we
further stress the importance of carefully characterizing the NLO excitation parameters (the peak
power/irradiance/energy, beam size, pulse width and polarization) inside the material. This is particularly
important, because optical components such as microscope objective lenses may considerably modify the
properties of incident pulses. Furthermore, when using SHG imaging, the occurrence of two-photon-excited
fluorescence effects should be avoided.

2.2.2. Best practices for third-order NLO techniques

2.2.2.1. Third-order parametric wave mixing

Third-order parametric wave mixing refers to techniques such as FWM [Jain1979, Friberg1987,
Agrawal2001], THG [Ward1969, Soon2005], and SPM/XPM [Alfano1986, Agrawal2001], and can be applied
to all material categories considered in this work. Third-order parametric wave mixing allows measuring the
magnitude of Re(x?), 1 . (which is usually assumed to be real), and Re(7.g). Specifically in the case of
SPM/XPM one can also extract the sign of these nonlinearities [Vermeulen2016a]. When using THG one
most often quantifies a Re(y®)) value that is specifically associated with bound-electronic nonlinear
transitions. Note also that FWM may be more complex than THG and SPM/XPM as often the imaginary
part of the third-order nonlinearity cannot be neglected. To separate the real and imaginary parts of the
nonlinearity in a FWM signal, special experimental modifications and careful analysis involving also

2PA and Raman contributions, which will be described in the following sections, are generally required
[Burris1985].

In FWM and THG experiments one most often measures the power/energy of the new signal generated
by these wave mixing interactions, whereas SPM/XPM experiments are focused on measuring the phase
modulation effects (e.g., spectral broadening, SCG [Dudley2010], ...) that these processes induce. Besides
the general best practices listed in section 2.1, FWM and THG also require that their phase matching
conditions are addressed. When the conversion efficiency of FWM or THG is measured, attention needs to
be paid as to how the conversion efficiency and bandwidth are defined. For SPM experiments the spectral
shape and phase information, i.e., chirp, of the input pulses also need to be known to allow for a correct
measurement of the NLO coefficients [Vermeulen2016a]. However, in the case of wideband SCG, the input
chirp typically has a negligible impact on the output spectrum and hence does not necessarily have to be
known to allow for a correct extraction of the NLO coefficients. Finally, it is important to keep in mind that,
besides the material’s bound-electronic (Kerr) nonlinearity, other effects can also contribute to its
third-order parametric wave mixing response (e.g., free-carrier effects contributing to SPM- and
XPM-induced spectral broadening [Vermeulen2018, Zhang2016]).
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2.2.2.2. Raman/Brillouin gain measurement techniques

The material intrinsic NLO parameter that most often characterizes stimulated scattering for the
Raman/Brillouin processes is the gain coefficient graman/Brillouin (M W™ 1). In the context of waveguides, the
parameter can be expressed as a gain factor Yraman/Brillouin (M~ W1). Two classes of measurement methods
are distinguishable: (a) direct methods—which rely on the amplification of a Stokes field, and (b) indirect
methods—which rely on the determination of the spontaneous scattering cross-section and the dephasing
time. Both methods can in principle be applied to all material categories considered in this work. Although
most of the literature has focused on the Raman gain coefficient, the considerations often apply analogously
to Brillouin scattering. Besides the general best practices listed in section 2.1, we have identified the following
best practices specifically for Raman and Brillouin gain measurements:

e Direct methods are based on measuring the threshold for SRS/SBS [Ippen1972, Zverev1999], the threshold
of laser action [McQuillan1970] and probing gain in an amplifier [Stappaerts1980, Nikles1997]. In the
tables presented further on, these are indicated as ‘SRS/SBS threshold’, ‘Raman/Brillouin laser threshold,
and ‘SRS/SBS pump-probe), respectively. Major contributors to the measurement uncertainty include the
precision of beam sizes and shapes, and the specification of the relative polarization of pump and Stokes
(in relation to crystal axes in the case of crystals) and the pulse shape. In cases where the Rayleigh range of
the beams are comparable to or shorter than the material length, the variation in beam waist upon
propagation through the medium should be factored-in [Boyd1969]. The gain is a function of the pump
and Stokes linewidths, decreasing markedly as the widths approach that of the phonon resonance
[Georges1991, Agrawal2001, Bonner2014] or, equivalently, as pulse durations approach the T, phonon
relaxation time [Basiev1999b]. For methods involving co-propagating multi-longitudinal mode beams,
correlations between the pump and Stokes irradiances also need to be considered [Stappaerts1980,
Sabella2015]. Benchmarking against better known values of other materials [Basiev1999b], or the Kerr
nonlinearity [Sabella2015], are valuable ways to increase confidence in the obtained values. For
measurements at frequencies approaching the bandgap, a model is needed that includes a description of
other nonlinearities occurring in the material (2PA, multiphoton absorption, FCA, ...). It should be noted
that measurements of the stimulated scattering threshold often use a chosen exponential gain value G in
the vicinity of G = 20, i.e., it is assumed that for typical spontaneous seeding, an irradiance growth of e¢
with G ~ 20 leads to a readily observable stimulated scattering signal [Grasyuk1998, Ippen1972]. However,
there is no universally accepted value for G which may lead to some variability between reported values. In
waveguides, two-color pump-probe techniques have been used to better separate the gain signal from
background noise and other complications [Yang2020, Renninger2016].

e The gain coefficient may be determined indirectly by measuring the total cross-section for spontaneous
scattering and its peak linewidth (T, dephasing time) [Basiev1999a], which are indicated in the tables, by
the terms ‘SpRS/SpBS cross-section” and ‘SpRS, SpBS linewidth’ Absolute measurements of the cross
section are rare due to the increased practical difficulties associated with precise photometric
measurements; a problem often mitigated by benchmarking against better known materials. It has also
been shown that IRS of a probe beam at the anti-Stokes frequency also gives access to absolute values
without benchmarking [Schneebeli2013]. For Brillouin scattering, the cross-section may be determined
from the photoelastic tensor [Ippen1972]. Determination of the linewidth may be readily achieved using a
spectrometer provided that the instrument width is sufficiently small or is adequately deconvolved. The
linewidth may also be determined from direct measurements of T, by using fast pump—probe optical
pulses [Waldermann2008].

2.2.2.3. Third-order polarization rotation

Third-order polarization rotation refers to techniques where the change of polarization of an intense pump
beam, or of a probe beam, is monitored to determine the real (or imaginary) part of the nonlinear
susceptibility x®), which may also yield the nonlinear refractive index 7, . or a nonlinear absorption
coefficient, e.g., ap. Examples are ER measurements [Maker1964, Owyoung1972, Miguez2014], specifically
for linearly isotropic materials such as liquids (see section 3.2 on solvents), or Optical Kerr Gating
[Duguay1969, McMorrow1988]. If the polarization is changed solely by refractive index changes, this refers
to the quadratic Kerr effect. These techniques are most often used for bulk materials, such as isotropic liquids
or linearly isotropic or cubic symmetry solids, but can also be applied to other material categories such as
fiber materials and on-chip waveguiding materials.

Besides the general best practices listed in section 2.1, third-order polarization rotation measurements
also require special attention to precisely knowing the polarization of the source, or sources in the case of
pump-probe experiments where knowledge of the relative polarization is also needed. The example of ER is
illustrative. In that method for isotropic materials, due to symmetry, there are three unknown susceptibility
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elements. The key in an ER experiment is to create an elliptically polarized beam of well-known orientation.
This can be done, e.g., by starting with a linearly polarized beam and introducing a quarter-wave plate, and
then carefully measuring the transmission of the beam through a polarizer as a function of orientation, both
before and after propagation through the NLO medium.

For pump-probe experiments, the optical Kerr gate is a good example. Starting with linearly polarized
pump and probe beams with a relative polarization at 45 degrees, the pump induces a birefringence in the
nonlinear sample that rotates the transmitted polarization. Monitoring the transmittance of the probe
through a polarizer crossed to give zero transmittance without the pump gives a sensitive method for
measuring the induced refractive index or absorption changes [Stegeman2012, Duguay1969,
McMorrow1988]. Again, careful attention to the polarization is needed in these experiments.

2.2.2.4. Beam distortion/absorption

In beam distortion measurements, one quantifies the spatial variation of the beam due to a NLO process by
measuring the power that passes through a fixed reference (e.g., pin-hole) or using a spatially resolved
detector (e.g., quad-cell). For beam absorption measurements, one seeks to measure the nonlinearity-
dependent power reflected/transmitted (also referred to as ‘nonlinear R/T’) from the material, with the
transmission dependent on both nonlinear absorption and scattering. In either case, it is possible to utilize
single-beam or pump-probe style measurements. While more complex, the latter case provides more
versatility to explore the temporal, polarization, and angular dependences of the nonlinearity as well as
degenerate and non-degenerate spectral dependences.

Beam distortion and absorption refer to techniques such as Z-scan [Sheik-Bahae1989, Sheik-Bahae1990b,
Balu2004, de Aratjo2016], I-scan [Taheri1996], nonlinear reflection/transmission (loss) [Bloembergen1962,
Clays1991, Sutherland2003, Cheng2018, Dong2018, DaSilva-Net02020], BD [Ferdinandus2013,
Ferdinandus2017], and power limiting [Siegman1962, Smirl1975, Soileaul983, Gu2006, Maas2008,
Liaros2013, Riggs2000]. Note that the I-scan technique had previously been used before being named as such
(see, for example, [Bechtel1976, Van Stryland1985]). As these techniques involve spatial distortion/pointing
and/or loss of the beam, they are generally used for the extraction of nonlinear parameters in free space. As a
result, bulk materials, 0D—1D-2D materials, and metamaterials are commonly evaluated using these
techniques. However, nonlinear loss measurements can also be used in waveguides and fibers, and is
common for characterizing, e.g., 2PA and saturable absorption [Sorin1984, Colin1996, Set2004, Jiang2018a].

In addition to the general best practices listed in section 2.1, beam distortion techniques are the simplest
to analyze using clean Gaussian beam profiles as this is currently an assumption of many subsequent analysis
techniques [Sheik-Bahae1990b, Gu2005] to extract the NLO coefficients; however, by using reference
samples of known nonlinearity, such techniques can be calibrated for non-Gaussian beams [Bridges1995].
Furthermore, for thick samples and/or short pulses, it is useful to characterize the pulse chirp to correct for
modifications in the temporal response of the nonlinearity due to varying group velocities. We also note that
nonlinear beam distortion and loss, when used together, provide a complete methodology for characterizing
lossy and/or lossless materials, enabling accurate evaluation of the magnitude, sign, and dispersion of the
nonlinear refractive index 1, 15 eff, (12, Q2 ff, thermal index (dn/dT and dk/dT), etc through the fitting of
experimental quantities. With subsequent analysis [DelCo0s02004, Christodoulides2010], the complex value
and sign of; e.g., a pure x®) can be determined as well. When only one of the techniques is used, the
information is often restricted. Beam distortion alone is sometimes sufficient to discern the sign and
magnitude of the complex nonlinear index and susceptibility in the case of lossless (or low-loss) materials.
However, in the case of very lossy materials (Im(e) ~ Re(¢)), the terms of the complex susceptibility are
inextricably coupled in measurements of both nonlinear losses and NLR. The use of beam distortion (Z-scan
or other methods) alone results in an effective coefficient which combines contributions from both
nonlinear absorption and refraction [Del Cos02004].

In general, it can be difficult to separate the different contributions using a single methodology (e.g.,
Z-scan requires both open and closed aperture experiments), although information on the sign of the
respective nonlinearities can often be obtained. Beam absorption alone is typically sufficient to discern the
sign and magnitude of nonlinear absorption but does not give information on the NLR, although in some
cases the sign of the NLR can be predicted [Smith1999] (here negative absorption would correspond to
either absorption saturation or gain depending on circumstances). Since both components cannot be
individually interpreted, absorption alone also cannot provide complete information on the x* although it
may be possible to discern the sign of the terms. Pump-probe experiments such as BD [Ferdinandus2013]
again require simultaneous transmittance and deflection signals to determine both absorptive and refractive
components [Ferdinandus2017]. These restrictions can be easily understood by comparing the number of
unknowns (NLR and absorption coefficients) for a given material with the constraints (distortion and
absorption measurements) imposed by the experimental information. In the case of an under-constrained
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problem such as when attempting to extract two coefficients with a single measurement, the sign can be
argued based on Kramers—Kronig causality if one knows the underlying mechanism(s) and/or the spectral
response of one of the nonlinear terms. Lastly, we reiterate that although in some cases a singular technique is
sufficient to obtain information on the nonlinearity of a material, if one assumes a pure x> process, it is rare
for this assumption to be absolutely accurate (e.g., higher-order processes may provide non-negligible
contributions). In this scenario, a single measurement will return only an effective nonlinear response,
comprising multiple underlying physical mechanisms. Thus, the use of several analysis techniques is highly
encouraged. This will provide more data to constrain analysis and elucidate the response of various
contributing effects.

2.2.2.5. Nonlinear interferometry

The purpose of NLO interferometry is usually to measure the real part of the nonlinear susceptibility y>%,
but this technique can also be used to measure both the real and imaginary parts by suitable experimental
modifications [Chang1965, Sutherland2003]. When using a wavelength of operation at which the NLO
material is transparent, the most important part is the non-resonant Re(x™). In contrast, if we are interested
in the enhancement of ™ by resonance effects, information on both Re(x™) and Im(x™) spectra is
needed. Although dispersion relations similar to the Kramers—Kronig relations hold for NLO coefficients
[Sheik-Bahae1990a, Bassani1991, Sheik-Bahae1991, Hutchings1992], it is practically impossible to strictly
apply the Kramers—Kronig relations and there are restrictive conditions under which the Kramers—Kronig
relations hold in time-resolved spectroscopy [Tokunaga1995]. Thus, direct measurement of the real and
imaginary parts is often required. NLO interferometry is most often used for bulk materials, but can be
applied to other material categories as well. Although interferometric methods are also modified as
heterodyne detection to be employed in SFG [Ostroverkhov2005, Nihonyanagi2013, Wang2017] (otherwise
only |x®| is obtained), most of the targeted nonlinearities measured by NLO interferometry are third-order
nonlinearities in a pump-probe setup. In this case, a NLO interferometer is often based on pump, probe
(signal), and reference beams. There are multiple interferometric configurations possible. They can be
categorized in two-arm types (Michelson, Mach—Zehnder, Sagnac, etc, or two-beam interference) and
resonator types (Fabry-Perot, or multiple-beam interference), and hybrids of them, e.g., Laser Interferometer
Gravitational-Wave Observatory combining Michelson and Fabry-Perot [Abbott2016]. There are also other
classifications such as common path (Sagnac) and non-common path (Michelson) for the two arms, and
also beam division methods are specified (space, time, direction, polarization, etc).

In addition to the general best practices outlined in section 2.1, it is important to evaluate the
measurement sensitivity of the NLO interferometric method used and to account for a possible surface
reflectance change due to changes in both the Re(x?) and Im(x®) parts. The bulk NLR can also change the
propagation time of pulses. With pulsed lasers, it is convenient to use time division (i.e., in the same sample
path, reference, pump, and probe pulses arrive at the sample in that order) and spectral interference
[Tokunagal995, Chen2007]. In addition to time division, common path interferometry such as division by
direction [Misawal995] or by polarization [van Dijk2007] (where the reference and probe share a common
optical path) is advantageous for obtaining stable interference, but otherwise active control to stabilize the
optical path length is often required [Cotter1989]. In order to cancel instabilities of the laser irradiance,
balanced detection can also be employed by dividing the probe beam in two to be detected with an identical
detector for subtractive detection [Waclawek2019]. Resonance cavity effects with Fabry-Perot
interferometers are also useful for enhancing the NLO effects by increasing the light-matter interaction
[Birnbaum?2005, Fryett2018, Wang2021].

2.2.2.6. Third-order nonlinear imaging

Third-order nonlinear imaging techniques, most notably THG imaging [Squier1999, Woodward2016,
Karvonen2017], can be meaningfully applied to material categories exhibiting spatially varying third-order
nonlinear parameters (0D—1D-2D materials, metamaterials, on-chip waveguiding materials, and hybrid
waveguiding systems). Third-order nonlinear imaging allows one to characterize the magnitude of x* along
with the conversion efficiency associated with the material and the performed experiments.

While the general best practices listed in section 2.1 also apply for third-order nonlinear imaging, we
further stress the importance of carefully characterizing the NLO excitation parameters (the peak
power/irradiance/energy, beam size, pulse width and polarization) inside the material. This is particularly
important, because optical components such as microscope objective lenses may considerably modify the
properties of incident pulses.

2.2.3. Remarks on choice of NLO technique
The technique-specific best practices listed above combined with the general best practices in section 2.1
should form a solid basis to obtain high-quality NLO measurement data and appropriate analysis results.
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When selecting a technique for characterizing a given NLO coefficient, it should be noted that for
single-wavelength experiments only a specific frequency component of this nonlinearity will be revealed. For
example, when applying both THG and SPM with pump frequency w to characterize the x®) of a given
material, THG will yield ¥ (3 w: w, w, w) whereas SPM will provide information about x® (w: —w, w, w)
plus permutations [Bloembergen1996, Shen2002, Sutherland2003, Stegeman2012, Boyd2020]. This
underlines the importance of including the technique used in each entry of the data tables presented below.
And, as we have previously stated, it is highly desirable to use multiple techniques and/or multiple
wavelengths and/or multiple pulse widths etc, as this both helps to distinguish different nonlinearities (with
perhaps multiple being present simultaneously) and yields more physical insight into the NLO response(s) of
the material under study.

3. Data tables and discussion

After having listed the most common NLO technique families and their best practices, we present here the
actual data tables for bulk materials, 0D—1D-2D materials, metamaterials, fiber waveguiding materials,
on-chip waveguiding materials, and hybrid waveguiding systems. The tables contain NLO data of
representative experimental papers published since 2000 that we selected after verifying both the general best
practices and the best practices specifically for the NLO techniques used in these works. In some cases,
publications missing just one important parameter as specified in the best practices could not be included,
although they seemed technically sound. The NLO coefficients that we searched for in the literature since
2000 are: X, degr, X', 12,086 Vett> 02> @35 Lsat> §Raman> a0 garillouin. We particularly looked for works that
provide the most extensive NLO information, such as the dependence of the NLO coefficients on wavelength,
on pulse duration, on doping level, on material composition, etc. For some recently developed materials in
the data tables such extensive studies are yet to be performed; in those cases we selected papers that provide
at least some quantitative NLO information, e.g., a single NLO coefficient and/or conversion efficiency, while
complying with all (or almost all) the best practices. Note that no hyperpolarizabilities have been listed in the
tables as these are typically only characterized at the molecular level, and that all the considered nonlinearities
are of the second or third order, except for the 3PA coefficient ais. However, nonlinearities from, e.g.,
2PA-induced free carriers, appear as effective fifth-order nonlinearities and may possibly contribute to some
values reported in the literature. Note also that we have not included photorefractive effects, electro-optic
effects, stimulated polariton scattering, nor cascaded second-order nonlinearities. The latter can very closely
mimic bound-electronic nonlinearities but require propagation [DeSalvo1992, Torruellas1995,
Stegeman1996]. These can sometimes be difficult to separate from other NLO responses. It is also important
to keep in mind that some nonlinearities cannot properly be classified as either second or third order. As an
example, we cite absorption saturation which in principle contains all orders of nonlinearities; however, it is
often discussed as third order since at the lowest inputs it behaves that way. Furthermore, for several NLO
coefficients the ‘effective’ values are often reported in the literature. When taking the example of the
nonlinear index #,, strictly speaking it originates only from the Kerr-nonlinear response of bound electrons
in the material, but in practice the measured value can also comprise the nonlinear response from free
electrons, electrostriction, thermal effects, etc so that the terminology of an ‘effective’ nonlinear index 1, ¢ is
more appropriate [Christodoulides2010, Buckland1996]. Also, some x® values in the literature are in fact
‘effective’ x*) values containing multiple nonlinearity contributions rather than just the bound-electronic
contribution. Finally, we point out that, besides tabulating NLO coefficients, the tables also contain NLO
conversion efficiencies and bandwidths specified in works based on, e.g., SHG, THG or FWM. This way we
also pay attention to those materials for which the NLO coefficients were reported before 2000 but that
witnessed strong progress after 2000 in terms of attainable conversion efficiencies and bandwidths.

The general approach used for filling out the data tables has been to have a single entry per paper. For
example, for a paper where the wavelength dependence of a given material nonlinearity is reported, there is
typically only a single table entry, specifying a prominent nonlinearity value (in many cases the highest
value) and the corresponding wavelength, but with a special annotation in this entry that shows the paper
also contains information on the wavelength dependence. Note that a paper reporting on multiple materials
is documented in the table with multiple entries, i.e., one entry per material. Another general policy has been
to include only those parameter values that are explicitly specified in the paper. In other words, conversions
from one physical quantity to another have been avoided to rule out calculation errors from our side. As
such, when for a given entry in the tables there is no value for, e.g., pump peak power or irradiance, the paper
under consideration might have specified the pump excitation in terms of fluence or average power rather
than peak power or irradiance.

The data tables in the following subsections (sections 3.1-3.8) are presented per material category (bulk
materials, solvents, 0D-1D-2D materials, metamaterials, fiber waveguiding materials, on-chip waveguiding
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materials, and hybrid waveguiding systems) and include those parameters that are most important for the
material category under consideration. The entries in these tables present NLO data at optical excitation
wavelengths, and some of the tabulated works report on THz generation through, e.g., DFG of two optical
excitation beams. However, for those papers where THz radiation was used as the excitation source, we
added a dedicated THz table!” at the end of the manuscript (see section 3.8). The different data tables are
accompanied by an introductory text addressing relevant background information prior to 2000, followed by
a discussion of the general trends seen in the data tables (e.g., how the new post-2000 data represent an
advancement) and some recommendations for future NLO research. Each of the subsections

(sections 3.1-3.8) starts with the names of the contributing co-authors in alphabetical order (‘team’) and the
team leader.

We would like to emphasize again that it has not been our goal to include a comprehensive overview of
papers but rather a representative set of works in these data tables. The current version of the tables contains
papers with a publication date up to May 2021. Also, we point out that the existing literature already provides
very valuable review papers that give an overview of NLO works for a specific material or material category,
with a detailed discussion of the underlying physics. We refer to several of these recent review papers in the
introductory texts and discussions below.

3.1. Bulk materials: data table and discussion
Team: Adam Ball, Philippe Boucaud, Georges Boudebs, Ksenia Dolgaleva, Daniel Espinosa, Anderson Gomes,
Nathaniel Kinsey (team leader), Rich Mildren, Ray Secondo, Eiji Tokunaga, Eric Van Stryland

3.1.1. Introduction

3.1.1.1. Bulk materials and their NLO applications

The bulk materials category is a highly diverse segment that presents NLO data on macroscopic 3D-material
samples (ranging from thin films of ~100 nm thickness to crystalline material samples on the scale of cm’s),
where material structuring (see metamaterials category in section 3.4) and quantum size effects (see
0D-1D-2D materials category in section 3.3) are not important. The properties of bulk materials are
typically measured using free-space diffracting beams (usually one or two-beam experiments). Most
experiments are performed with sample lengths less than the diffraction length (Rayleigh range) to allow for
simple analysis.

Many bulk materials themselves are key for applications including frequency synthesis, stimulated
scattering, ultrafast pulse characterization, and lasers. In addition, bulk materials generally serve as a starting
point for the investigation of new materials before they are integrated into devices for applications across
fields such as optoelectronics and fiber optics including uses in sensing, optical communications, and fiber
lasers, as well as other types of active fibers and integrated photonics technology.

The listed materials, which include high-purity as well as impurity-doped materials, have been grouped
into three sub-categories of insulators, semiconductors, and conductors. Within these groups, we focus our
efforts on the development of inorganic materials only. Solvents are included in a separate section of this
article (see section 3.2), and we also draw attention to section 3.8 on the characterization of material
nonlinearities in the THz regime, many of which are bulk materials. These works have been separated to
account for their unique considerations and in view of the rising area of THz NLO. However, works which
utilize optical beams to generate THz waves remain in this section.

In keeping with this article’s focus on post-2000 developments, the listed NLO materials emphasize those
featured in research since 2000 but is not all-inclusive, giving priority to those publications that contain the
most experimental information (see best practices in section 2).

3.1.1.2. Background prior to 2000

3.1.1.2.1. Background for insulators/dielectrics

When the laser was invented in 1960 EO crystals were already in use. Nevertheless, the terminology of
‘nonlinear optics’ was not typically employed in this context. The first use of dielectrics for NLO is
considered to be the wavelength conversion experiment in the seminal work of [Franken1961]. Some

of the most important NLO materials are insulating crystals such as lithium niobate [Midwinter1968,
Schaufele1966, Smith1965], beta-barium borate [Chen1987], and potassium titanyl phosphate
[Bierlein1989], to name a few. Works from the earliest days of NLO have demonstrated efficient nonlinear

19 The focus of the THz table is on the intrinsic THz NLO properties of various materials. It is useful to note that active electronic devices,
such as Schottky diodes, high electron mobility transistors, resonant tunneling diodes, etc can also generate (sub-)THz radiation when
paired with appropriate in- and out-coupling structures. However, due to the fundamentally different nonlinear mechanisms of these
devices, they are not included in this manuscript.
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actions accompanied by well-developed theories of nonlinear light-matter interaction and crystal optics
[Boyd2020, Stegeman2012, Sutherland2003]. Thus, these nonlinear crystals have been key enablers for many
past and current technologies including harmonic generators, OPO/OPG/OPA, optical modulators and
switches making use of numerous second- and third-order nonlinear phenomena such as the Pockels effect,
parametric mixing, and Raman scattering. In addition, efforts worked to improve the efficiency limits of
phase matching by introducing periodically poled crystals with QPM [Lim1989, Myers1997, Wang1999]. In
this regard lithium niobate is by far the most developed. Of course, much work went into the study of glasses
as well. For example, the laser fusion program developed low nonlinear index glasses to prevent optical
damage from catastrophic self-focusing in laser host glasses as well as other glass optical elements
[Agrawal2013, Tollefson2021]. Another interesting development was the measurement of third-order

effects in popular second-order NLO crystals [Sheik-Bahae1997a] using Kerr lens autocorrelation
[Sheik-Bahae1997b]. While third-order nonlinearities are generally masked by second-order processes, and
thus might be neglected, certain applications can be limited by third-order effects such as self-focusing
within the nonlinear crystal. Thus, understanding and correcting for these higher-order nonlinearities is a
key feature for high-power applications or scenarios requiring especially large crystals.

Another key advance occurred during the late 1960s to 1970s with the invention of the laser diode, and
the development of optical fibers. Together these opened new avenues to pursue all-optical devices aimed at
applications in communications [Willner2019], and motivated studies of the nonlinearities in fused silica
and other optical glasses [Agrawal2013]. Despite the small nonlinearity of silica-based glasses, the low
propagation loss in fused silica fibers provided a platform to explore various nonlinear phenomena with
appreciable efficiency including pulse compression [Dietel1983, Palfrey1985], temporal soliton propagation
[Agrawal2013, Boyd2020, Stegeman2012], and all-optical switching [Agrawal2013, Boyd2020,
Mollenauer1980, Stegeman2012] that have led to applications in fiber lasers [ Ter-Mikirtychev2014] and
communication systems [Willner2019] (see fiber waveguiding materials category in section 3.5 for more
information). Similarly, efforts also focused on increasing the typically weak nonlinearity of glasses by
employing doped glasses [Alekseev1980, Ekimov1988, Kityk2002], photorefractive glasses [Hall1985] (not
included in the table), and more recently ChGs [Asobe1997]. Models to describe the nonlinearities in these
dielectrics also evolved alongside experimental studies [Agrawal2013, Boyd2020, Stegeman2012]. The linear
dispersion can be used in a semi-empirical way to predict nonlinear index changes in low-loss optical glasses.
This so-called ‘BGO’ model, named after Boling, Glass and Owyoung [Boling1978] was found to be valid to
estimate n, of many glasses. This includes ChGs [Fedus2010] despite the presence of NLA. It was also noted
that for dielectrics, the bandgap determines the NLA spectrum as well as the dispersion of the NLR
[DeSalvo1996, Sheik-Bahae1990a, Sheik-Bahae1991]. Thus, the BGO model and bandgap scaling are
complementary.

3.1.1.2.2. Background for semiconductors
Bulk semiconductors from groups II-VI, III-V, or IV, like ZnSe, GaAs, or Si, respectively, have been a
mainstay in NLO since the invention of the laser. While the study of such materials in their bulk form has
been a key starting point for the study of new semiconductors, structuring and combining semiconductors in
novel ways has continually ignited many unique and important technologies such as detectors, lasers, and
amplifiers. Much of this research excitement in semiconductors originated from the near-gap resonant
nonlinearities which produced large NLO responses, with potential application in all-optical switching,
all-optical computing, etc, albeit with limited bandwidth and recovery times [Hardy2007, Miller2010].
Applications involving resonant nonlinearities have included semiconductor optical amplifiers [Olsson1989,
Urquhart2011], laser diodes [Bhattacharya1997], and more recently the generation of broadband infrared
and THz waves [Krotkus2010, Shan2004]. Additionally, the introduction of quantum well structures
provided large second-order nonlinearities, able to be engineered by altering the layer stack
[Schmitt-Rink1989] (see the 0D—1D-2D materials category in section 3.3 for more information). Such
approaches have led to several useful technologies including SESAMs [Jung1997, Keller1996, Kim1989],
which have directly enabled ultrashort mode locked laser technologies, and SEEDs [Miller1989]. Theoretical
descriptions for the response of resonant nonlinearities in semiconductors evolved similarly, encompassing
effects such as band-filling, saturation, bandgap renormalization, and exciton resonance [Garmire1998].
Similarly, below-gap non-resonant nonlinearities including harmonic generation, and wave mixing were
also studied [Boyd2020, Stegeman2012], and while they provide nearly an instantaneous response, these
were noted as being weaker than their resonant counterparts and challenging to phase match due to the
limited anisotropy of many semiconductors. Through fabrication advances, these challenges were addressed
via the use of QPM approaches [Armstrong1962, Gordon1993, Thompson1976, Hum2007]. Another key
advance in semiconductor nonlinearities came from a unified model of the nonlinear refractive index. In the
case of direct bandgap semiconductors in their transparency range, they were understood in terms of
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nonlinear Kramers—Kronig relations [Hutchings1992, Sheik-Bahae1991] as a consequence of the NLA
mechanisms of 2PA, Raman, and AC-Stark effects. Through this, it was noted that as the incident photon
energy moves from resonant linear absorption saturation near the bottom of the conduction band to a
non-resonant transition, the nonlinearity smoothly transitions from real saturation to ‘virtual” saturation
otherwise known as the AC-Stark effect. Scaling rules and nonlinear dispersion relations based on the
material bandgap were subsequently developed which supplied theoretical models to predict NLO
coefficients, and to analyze the variety of reported NLO data [Hutchings1992, Sheik-Bahae1990a,
Sheik-Bahae1991, Wherrett1984]. Since 2000, Dinu’s [Dinu2003a] and Garcia’s [Garcia2012] models have
been widely used for similar descriptions of indirect bandgap semiconductors.

3.1.1.2.3. Background for conductors

Nonlinearities in metals and conducting materials have been studied for nearly as long as NLO with early
works examining harmonic generation in thin films [Bloembergen1968, Bloembergen1969, Sipe1980] as well
as in percolated or random films [Shalaev1998]. The majority of research focused on elemental metals such
as Au [Sun1994], Ag [Bloembergen1968], Cu [Elsayed-Ali1987], etc, and was closely tied with the fields of
transient thermoreflectance to measure the thermal properties of metals [Brorson1990, Hohlfeld2000].
While bulk metals have exhibited large nonlinearities, they have not led to many applications in large part
due to their high loss and propensity to be damaged under the high irradiances needed for NLO. One key
exception to this has been surface enhanced nonlinearities, useful for achieving large improvement in
processes such as Raman scattering [Wang2020b]. Yet due to their limitations, the study of bulk metals was
largely relegated to fundamental measurements and understanding of various light-induced effects such as
so-called ‘Fermi-smearing) interband transitions, and free-electron photoionization [Allen1987,
Anisimov1974]. More recently, metals are finding great interest in areas including plasmonics [Maier2007,
Maradudin2014], metamaterials and nanoparticles embedded in dielectrics [Cai2009] (see metamaterials
category in section 3.4), as well as in the closely related area of ENZ effects [Liberal2017, Reshef2019]

(see section 3.1.2.1.2).

3.1.1.3. Considerations for bulk materials when performing NLO measurements

For solid materials, attention should be paid to thermal effects when using high-repetition-rate lasers or with
materials showing linear absorption. Thermal effects may build up collectively over many pulses or arise
within the pulse width depending upon the loss of the material. As a result, one must clearly identify the
different roles of thermal and non-thermal nonlinearities [Bautista2021, Falconieri1999]. Also, the role of
the pulse duration is very important in determining the origin of the nonlinearity being exploited
[Christodoulides2010, De Aratjo2016] and should be considered accordingly. Additionally, in many cases,
bulk materials are explored as thin films grown on substrates. In this scenario, researchers should carefully
characterize and remove the response of the substrate. Works should contain a detailed description of how
the substrate contribution was removed as well as a report of the substrate-only response for comparison. In
addition to these specific considerations for bulk materials, also the best practices described in section 2
should be taken into account when performing NLO measurements.

3.1.1.4. Description of general table outline

Tables 2A and B show a representative list of, respectively, the second- and third-order NLO properties
reported since 2000 for our range of bulk materials, across our three subcategories. The works included in
tables 2A and B were selected based upon the best practices in section 2 and the considerations outlined
above. Table 2B lists, besides third-order nonlinearities, also 3PA coefficients. Each entry in the tables
contains information about the material and its properties, linear optical properties, NLO technique used,
the excitation parameters, and the resulting NLO parameter(s).

The entries are arranged in alphabetical order, and within each material, entries are ordered by NLO
technique (referred to as ‘Method’ in the tables). The works that report dispersive datasets or dependences of
the NLO parameter on multiple parameters (e.g., thickness, doping, composition, etc) are denoted by "’
respectively, in the Tables. The papers included in the Tables nominally report data obtained at room
temperature, unless denoted otherwise by > The works reporting different compositions or material
variations are split into different entries where applicable. For papers with multiple thicknesses of the same
material, the thickest material is reported. The data is sub-divided into ‘Material properties’, ‘Measurement
details’ and ‘Nonlinear properties’. Measurements using two beams have the properties of the pump and
probe beam listed separately, where provided, while single beam measurements are contained within the
pump column. Units are contained within the table unless noted in the header. Within each column the
information is given in the order of the header description. If dispersive values for the NLO parameter were
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provided, the cited value represents the peak value for the material within the stated measurement range. For
works that report tensor components, the component is shown as a leading number followed by a colon and
the value (e.g., Y#15=1x 1072 (m V~!) = 15: 1 x 1072 (m V—!)). Indices are shown as listed in the
original paper. Lastly, some papers relied on non-standard NLO measurement techniques (e.g., method
listed as ‘Other’) or have notes associated with their measurement/analysis (e.g., identifying the definition
used for the conversion efficiency 7). These values and information are listed within the ‘Comments’ column
with the value and unit identified.

3.1.2. Discussion

3.1.2.1. Advancement since 2000 and remaining challenges

3.1.2.1.1. Advancement and challenges for insulators/dielectrics

Dielectrics are one of the most well-developed and well-understood NLO material platforms. While several
works have continued to refine the understanding of nonlinearities in dielectrics such as fused silica (see
section 1.1) and sapphire [Nikolakakos2004] due to their use as reference materials, after 2000 most of the
advancement has been focused on applications, providing new devices and enhancing performance of
existing methods, including pushing the efficiency of cascaded NLO processes (not included in tables). While
new material research is still ongoing, it has been more focused. In particular, advance in IR NLO materials
such as ChGs, pnictide, and oxides has been realized, driven by emerging lasers, spectroscopy, sensing, and
imaging applications in the mid- to far-IR. Among them, ChGs have received attention due to their ability to
be integrated with optical fiber [Dudley2009, Knight2003]. When doped with rare earth elements such as Er,
Nd, Pr, etc or undoped, many applications of active and passive optical devices have been proposed
[Mairaj2002, Sanghera2009, Ta’eed2005, Yan2016]. The high optical nonlinearities of these glasses have been
studied over a wide range of wavelengths to optimize their compositions for applications related to
all-optical switching or optical limiting [Chen2020, Cherukulappurath2004, Ensley2019, Fedus2010,
Petit2009]. Furthermore, experiments have been made on mid-IR SCG by pumping bulk or fiber ChG with
fs pulses [Gattass2012, Granzow2011, Marandi2012, Mller2015, Petersen2018, Yu2013, Yu2014]. Similar
advances in bulk form have been realized for cm-scale materials such as CdSiP, and lead oxyhalides, wherein
lead oxides demonstrate both high transparency and strong SHG [Abudurusuli2021].

We also note the continued expansion of organic and organic-crystal materials for NLO applications
from the mid-1990s and well into the 2000s [Bosshard2020, Nalwa1997]. While our effort here focuses on
the development of inorganic materials, advances in organic nonlinearities have nonetheless constituted a
major effort since 2000. For more information we direct the reader to reviews on organic NLO [Wang2012,
Yesodha2004].

3.1.2.1.2. Advancement and challenges for semiconductors

Major advancements in semiconductor nonlinearities have been made largely due to improved fabrication
and characterization methods. New measurements were completed on many semiconductors, such as Si,
diamond, GaN, AIN, GaAs, GaP, InN, and InSb over a wide range of wavelengths, and compared to existing
models of the NLR and NLA coefficients, leading to better understanding of the 3rd-order NLO coefficient’s
spectral behavior [Almeida2019, Bristow2007, Chen2017b, Fishman2011, Hurlbut2007, Lin2007,
Oishi2018a, Oishi2018b, Olszak2010, Wang2013]. A unifying theory of 3PA has also been reported and
compared to Wherrett’s scaling model for most binary II-VI and [II-V semiconductors [Wherrett1984,
Benis2020].

Due to these advances in fabrication and characterization, new potential applications of semiconductors
have begun to emerge. For example, QPM techniques in OP GaAs and GaP have surpassed the strict
constraint of birefringent phase-matching to produce efficient SHG, DFG, OPO, and OPG. As a result, a
wide range of IR (wavelengths from 2500 nm to 14 200 nm) [Feaver2013, Kuo2006, O’Donnell2019,
Smolski2018, Vodopyanov2014] and THz (from 0.4 THz to 4.5 THz) frequencies [Kiessling2013,
Schaar2008] can be generated.

Spurred by parallel advancements in plasmonics and metamaterials, in the last 5 years, another key area
of advancement has been in the study of semiconductors that exhibit ENZ or NZI properties [Kinsey2019,
Liberal2017, Reshef2019] occurring from either free-electrons or phononic resonances (see also the
metamaterials category in section 3.4). Although optically lossy, which must be carefully considered for its
impact upon applications, homogeneous ENZ materials have demonstrated extraordinarily large index
modification (An ~ 0.5-1) [Alam2016, Benis2019, Caspani2016, Clerici2017, Kinsey2015a], enhanced
harmonic generation [Capretti2015a, Capretti2015], negative refraction [Bruno2020], optically defined
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surfaces [Saha2020], and recently temporal interfaces and interactions such as frequency shifting
[Khurgin2020, Shaltout2016, Zhou2020b]. While initial works demonstrated effects through experimental
efforts, more recently theory has followed to provide a deterministic and predictive explanation of
nonlinearities in popular ENZ materials [Khurgin2021, Secondo2020, Solis2021]. Currently, efforts have
focused on the exploration of doped oxides such as Dy:CdO, Al:ZnO, and Sn:InO in the near-IR
(~1300-1600 nm) but undoubtedly other materials will be explored in the future expanding into the mid-
and far-IR spectral ranges.

3.1.2.1.3. Advancement and challenges for conductors

Since 2000, the growth of NLO research in plasmonics, metamaterials, metal nanoparticles, and
nanophotonics [Maier2007, Maradudin2014] has brought a renewed interest in the study of nonlinearities in
bulk metals and conducting materials [Kauranen2012]. The ability to nanostructure metals with ultra-tight
light confinement has led to studies that make use of the inherent metal nonlinearity [MacDonald2009,
Mayer2011, Mesch2016] as well as for enhancing the NLO response of an external material [Lee2014]. One
key application has been in the enhancement of Raman interactions for sensing and material study
[Jiang2010]. This has been the primary advance in the study, application, and understanding of metals in
NLO since 2000 (see metamaterials category in section 3.4 for more information). Ignited by materials
exploration within the field of plasmonics, another advancement in conductors was the expansion of studied
materials for optical applications, with many heavily doped semiconductors, conducting ceramics, and alloys
being investigated [Saha2020]. These compound metallic materials provided additional benefits such as
robustness, tunability of the NLO response, and new potential applications in sensing [Golubev2018,
Robert2016] while exhibiting similar NLO responses to previously explored materials.

Similarly, the rise of topological materials and topological photonics has also affected NLO in the 21st
century. While the area is closely linked to low dimensional materials (see 0D-1D—-2D materials category in
section 3.3), some multilayer or bulk variants have also been studied. In particular, large second-order NLO
effects have been reported in Weyl semimetals such as TaAs, TaP, and NbAs [Osterhoudt2019, Patankar2018,
Wu2017, Yan2017], as well as enhanced surface nonlinearities in Dirac nodal-line ZrSiS semi-metals
[Chi2020].

While the losses that occur in conducting materials and their propensity for damage remain a primary
concern for the broad adoption of bulk conductors in NLO applications, the expansion of available materials
combined with new physical understanding and physics may provide the ingredients for metals to make a
contribution to the NLO field. Regardless, they remain key supporting materials for various fields of
photonics, and understanding their inherent nonlinearities remains an important task for the field of NLO.

3.1.2.2. Recommendations for future works on bulk materials

As lasers and various methods of measurement continue to advance, our ability to characterize materials
evolves in parallel. Systems with several tunable excitation beams, supercontinuum probes, variable
repetition rates, etc are expanding characterization capabilities and allowing more flexibility, which before
2000 was difficult to put into practice. We encourage future NLO works to embrace these new capabilities,
exploring characterization and datasets which include more than just single wavelengths and pulse widths.
Among various parameters, temporal and spectral information are perhaps the most useful information to
be added for bulk materials, although this depends upon the application area of the material. In addition, the
more thorough characterization will support an improved understanding of the NLO interactions at play,
helping to delineate the roles of unwanted effects such as thermal nonlinearities and nonlinear scattering,
and improving the reliability of results.

Another area of recommendation for the community is in the reporting of key experimental metrics. In
many cases, papers are missing certain parameters of the experiment (peak/average power, beam waist,
repetition rate, pulse width, etc, see tables) or do not report the method for calculation (flat top, Gaussian,
full-width-half-max, etc). This can lead to difficulty when interpreting the results as well as invoke questions
as to the experimental rigor. By meticulously reporting the metrics of experiments, we can improve the trust
in the results, aid in reproducibility, and help to avoid errors.

Lastly, the new millennium has seen an explosion in new materials available for study. In many cases, it
can be observed that works jump directly to the demonstration of example applications without performing
rigorous characterization of the material’s NLO response. While such studies are useful, we remind the
community that carefully conducted experiments and reporting of inherent NLO coefficients (x*?), n,,
ZRaman- €tc) is of key importance to the field as new materials and applications continue to be explored.
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3.1.3. Data table for bulk materials

Table 2A. Second-order NLO properties of bulk materials from representative works since 2000. Legend for superscripts: see below the table.

Second-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe
Material ~ Method Thickness Index Crystallinity Wavelength Wavelength x? (mv—1)d d(mVv—1)y 7 (%) e Comments
Fabrication Abs. coeff. Bandgap Peak power Peak power
Substrate Wavelength Doping level or or Reference
irradiance irradiance
Pulse width Pulse width
Rep. rate
Conductors
NbAs? SHG — — Monocrys. 800 nm — — 33:2.7+107° — —
Vapor transport 5pum™! — — —
— 800 nm — 100 fs — (Wu2017]
TaAs? SHG — — Monocrys. 800-2500 nm — — — — Nonlinear conductivity
Vapor transport 5 ym™! — — — oc=5+10"%(0R-Vv)~!
— — — 50 fs —
o o [Patankar2018]
TaAs*¢  SHG — — Monocrys. 800 nm — — 33:3.6 £ 1077 — —
Vapor transport 5 ym™! — — —
— 800 nm — 100 fs — (Wu2017]
TaAs Other (see — — Monocrys. 10600 nm — — — — Method: Bulk Photovoltaic
comments) Chemical vapor — — — — Effect
transport — N, = 8.08 + 102? CW —

Nonlinear conductivity

— Np=9.35+10t2m—? —
Oaae = 154 ~ 17 pA V2

[Osterhoudt2019]

(Continued.)

sulysiiand dol

100S€0 (£€207) § somor0yd “shyd *[

10 72 U9[MIUWLIDA N



0¢

Table 2A. (Continued.)

Second-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe
Material Method Thickness Index Crystallinity Wavelength Wavelength x? (mv—1y d(mV—hy 1 (%)% ¢ Comments
Fabrication Abs. coeff. Bandgap Peak power Peak power
Substrate Wavelength Doping level or or Reference
irradiance irradiance
Pulse width Pulse width
Rep. rate
Tap? SHG — — Monocrys. 800 nm — 33:324+107° — —
Vapor transport 5 ym ™! — — —
— 800 nm — 100 fs — (Wu2017]
ZrSiS SHG — — Monocrys. 1300 nm — 4.78 £107° — 0.011 —
Chemical vapor ~ — — 7.6 MW m—2 — )
transport — — 120 fs — [Chi2020]
— 1 kHz
Semiconductors
AlygsGagaN®  SHG 980 nm — Monocrys. 1064 nm — — 31: 145+ 10712 — —
MOCVD — — — — 15:1.45 £ 10712 )
(0001) c-Sapphire — — 5ns — 33 2941012 [Passeri2004]
14 Hz
AlysGagsN SHG 63 nm — Monocrys. 1064 nm — — 33:1.20 + 10— 12 — —
MOCVD — — — — _
(0001) c-Sapphire — — 5ns — [Larciprete2006]
13 Hz
Al,Ga, N ® SHG 2.13 um — Monocrys. 1064 nm — 31:534+ 10712 — — —
MOCVD and — — — — 33:
HVPE - o o o 744+ 10-12 [Sanford2005]
(0001) c-Sapphire 82 MHz
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AIN SHG 340 nm — Monocrys. 800 nm — — 3224£10712 — —
MBE — — 360 kW —
Sapphire o o 7 fs - [Kobayashi2007]
80 MHz
AIN® SHG 620 pm — Monocrys. 1030 nm — — 31:9.55 £ 1071 — —
PVT 60m™! — 22TWm™—2 — — o
— 1030 nm — 10 ns — 33:43+ 1071 [Majkic2017}
1 kHz
DB-GaAs® DFG 5.05 mm — — 2100-2130 nm 2130-2160 nm — — 0.012 Optical-to-THz Conversion
— — — — — 1.2 Eff.
— — — 6 ps —
50 MHz Quantum Eff.
DFG was also performed in
OC-GaAs and OP-GaAs
samples.
[Schaar2008]
PI-GaAs DFG 653 pm — — 2119.6 nm 2138.4 nm — — 431+107> DFG Conversion Eff.
— — — — — 0.0103
- o o 4.6 ns 46 ns Quantum Eff.
24kHz [Mei2016]
OP-GaAs  DFG 1.8 mm — — 1053 nm — — — 0.6 DFG Energy/Pump Energy
— — — — — 42
o o o 17 ns - Quantum Conversion Eff.
2kHz [Boyko2018]
GaAs® SHG — — Monocrys. 852 nm — 7.50 + 10710 — —
— — 1.42 eV — —
- o o 14 ps o [Bergfeld2003]

(Continued.)
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Table 2A. (Continued.)

sulysiiand dol

Second-Order Nonlinearities

100S€0 (£€207) § somor0yd “shyd *[

Material Properties Measurement Details Nonlinear Properties
Pump Probe
Material Method Thickness Index Crystallinity Wavelength Wavelength x® (mv—1yd d(mVv—1)y 7 (%)de Comments
Fabrication Abs. coeff. Bandgap Peak power Peak power
Substrate Wavelength Doping level or or Reference
irradiance irradiance
Pulse width Pulse width
Rep. rate
OP-GaAs  SHG 500 pm — — 4135 nm — — 1.09 £ 10710 33 —
MBE and HVPE §m~! — — — .
o 4135 nm o 63 s o [Skauli2002]
25 Hz
OP-GaAs®  Other (see 1 mm — — 1952 nm — — — 22,5 Method: Optical parametric
comments) — — — — — generation
— — — 46 ps — .
1 MHz OPA Power Conversion Eff.
[Fu2018]
OP-GaAs®  Other (see 1 mm — — 1992 nm — — — 32.6 Method: Optical Parametric
comments) — — — 150 GW m™—2 — Oscillation
o o o 95 ps o [Fu2020b]
100 MHz ¢
DB-GaAs®  Other (see — 3.33 — 4400 nm — — — 0.087 Method: Optical
comments) MBE and HVPE ~ — — 100 TW m™—2 — 3.3 Rectification
— 4400 nm — 100 fs — Internal Ovtical-to.TH
1 kiz nternal Optical-to-THz

Conversion Eff.

Internal Photon Conversion
Eff.

[Vodopyanov2006]
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OP-GaAs  Other (see 500 pem — — 3250 nm — 51 Method: Optical parametric
comments) MBE and HVPE — — — 15 generation
- - - Lps Slope Eff.
External Conversion Eff.
[Kuo2006]
OP-GaAs  Other (see 400 pm — — 1980 nm — 1.60 £10~* Method: Parametric down
comments) MBE and HVPE — — — 4.70£10~* conversion
o o o 120fs Optical-to-THz Conversion
100 MHz
Eff.
Internal Optical-to-THz
Conversion Eff.
[Imeshev2006]
OP-GaAs  Other (see 250 pm 3.01 — 1000 nm — 25 Method: Half-Harmonic
comments) — — — — Generation
- 4200 nm - 70fs Slope Conversion Eff.
250 MHz
[Sorokin2018]
GaN® SHG 229.67 um — Monocrys. 1064 nm 31:5.7 £ 10712 — —
MOCVD and — — — 33:
HVPE — — — 9.2+ 1012 [Sanford2005]
Free-standing 82 MHz
GaN® SHG 4.2 pm 2.2978 Monocrys. 1064 nm ZXX: — —
— — — — 1534+ 1071 .
Sapphire 1064 nm — 10 ns XZX: (Fujita2000]
10 Hz 148+ 10712
222:
30.3 £ 107"
GaN SHG 3.5 um — — 1980 nm 2.80 4 10! — —
MBE — — —
(0001) c-Sapphire ~— — 6 ns [Nevou2006]
30 Hz

(Continued.)
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Table 2A. (Continued.)

Second-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe
Material ~ Method Thickness Index Crystallinity Wavelength Wavelength x? (mv—1yd d(mv—1yd 1 (%)% ¢ Comments
Fabrication Abs. coeff. Bandgap Peak power Peak power
Substrate Wavelength Doping level or or Reference
irradiance irradiance
Pulse width Pulse width
Rep. rate
GaN SHG 2 pm — Monocrys. 1064 nm — — 31:2.4 + 10712 — —
MOCVD — 3.42 eV — — 15: 1.8 £ 10712 )
(0001) c-Sapphire  — — 51s — 33 37410712 [Passeri2004]
14 Hz
GaN SHG 302 nm — Monocrys. 1064 nm — — 33:4.82+ 10712 — —
MOCVD — 3.42eV — — )
(0001) c-Sapphire — — 5ns — [Larciprete2006]
13 Hz
GaN SHG 340 nm — Monocrys. 800 nm — — 1.59 £ 1071 — —
MBE — — 360 kKW — _
Sapphire o o 7 fs o [Kobayashi2007]
80 MHz
GaN SHG 1 pm 2.29 Monocrys. 1064 nm — — 31:5.45 4+ 10712 — —
MOCVD — 34eV — — 33: 1107+ 107"
(0001) c-Sapphire 1064 nm — 7 ns — 15:5.48 & 1012 [Kravetsky2000]
10 Hz
GaN SHG Imaging 2.5 um — — 1230 nm — 3.00 £ 10712 — — —
: : : ;0 f : [Sun2000]
125 MHz
ITO? SHG 37 nm — — 1100 nm — xzx: 54 1071 3.00£10~"* Photon Conversion Eff.
Sputtering — — 420 GW m—2 — zz2:1.8 £ 1071 )
Silicon o o 150 fs o [Capretti2015a]
81 MHz
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(110)-GaP® DFG 663 pm — — 1074 nm 1064 nm — 0.182 THz/Input
— — — 1.3TWm—? 1.5 MW 39.6
Photon Conversion Eff.
— — — 5ns 10 ns
10 Hz [Jiang2011]
(110)-GaP DEG 663 pm 3.217 — 1064 nm — — 0.22 Internal Eff.
— 220m™! — — 1.2TWm 2 25 )
o 120 000 nm o 10 ns 5 s Photon Conversion Eff.
- [Jiang2010]
OP-GaP?* DFG 1 mm — — 1550 nm 1800-1960 nm — 19 Photon Conversion Eff.
- - - 110 fs 60 fs [Lee2017]
93.4 MHz
OP-GaP® DFG 1.7 mm — — 1064 nm 1748 nm — Pump-to-DFG Eft.
— 32m~! — — — 2.5 )
o 1064 nm o 23 s o Photon Conversion Eff.
80 kHz [Wei2018]
OP-GaP DFG 1.7 mm — — 1064 nm 1748 nm 1.30 &£ 1071 1.2 —
— — — 23 ns 16 ns [Wei2017]
80 kHz
OP-GaP Other (see 1 mm — — 1048 nm — — 8.6 Method: Optical Parametric
comments) — — 2.27 eV — — 28.9 Oscillation
— — — 140 fs —
80 MHz Idler Slope Conversion Eff.
Quantum Eff.
[O’Donnell2019]
OP-GaP Other (see 500 pm 3.3 — 1000 nm — — 59 Method: Half-Harmonic
comments) — — 2.26 eV — — Generation
— 4200 nm — 70 fs — )
250 MHz Slope Conversion Eff.
[Sorokin2018]

(Continued.)
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Table 2A. (Continued.)

Second-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe
Material ~ Method Thickness Index Crystallinity Wavelength Wavelength x? (mv-1yd d(mv—1yd 1 (%)% ¢ Comments
Fabrication Abs. coeff. Bandgap Peak power Peak power
Substrate Wavelength Doping level or or Reference
irradiance irradiance
Pulse width Pulse width
Rep. rate
4HSIC  SHG — 2.54 Monocrys. 1064 nm — — 31: 6.5+ 10712 — —
— — — 3.71GW m—2 — 15:6.7 £ 10712
sic 1064 nm — 100 ns — 33 11741070 [Sat02009]
5kHz
6HSIC  SHG — 2.54 Monocrys. 1064 nm — — 31: 6.7 £ 10712 — —
— — — 3.71GW m—2 — 15:6.5 £ 10712
sic 1064 nm - 100 ns — 33 125+100 [Sat02009]
5kHz

2 Multiple wavelengths reported.

> Multiple parameters (e.g., thickness, crystal orientation) reported.

¢ Measurement taken at a temperature other than room temperature.

d Units as illustrated unless otherwise indicated in table.

¢ See Comments for a description of conversion efficiencies.
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Table 2B. Third-order NLO properties of bulk materials from representative works since 2000. In addition, 3PA coefficients are provided at the end of the table. Legend for superscripts: see below the table.

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe
Material Method Thickness Index Crystallinity Wavelength Wavelength X m?2v=2)d oy (m2wh) Comments
Fabrication Abs. coeff. Bandgap Peak power or Peak power or ay (mW—he
Substrate Wavelength Doping level irradiance irradiance a3 (m®* W—2) Reference
Pulse width Pulse width
Rep. rate
Conductors
TiN Z-scan 52 nm 2.66 Polycrys. 1550 nm — 59+ 107" 3.70 £ 10715
Sputtering 35 um™! — 14.1 TW m—? — il.7 1071 6.60 +107%¢ )
Fused Silica 1550 nm — 150 fs — — [Kinsey2015b]
1 kHz
TiN Beam Defl. 30 nm — Polycrys. 800 nm 650 nm — 470+ 1071 —
Sputtering 54.8 pum™! 5eV — — 215+ 1077
Fused Silica 650 nm — 55 fs 110 fs _ [George2019]
1 kHz
Insulators
Al, O3 7-scan 1 mm — Monocrys. 550 nm — — 330+ 102 —
— — 7.3 eV — — — [Major2004]
_ — _ 1ps _ _
1kHz
As,S3 Z-scan — — — 2000 nm — — 2.50 + 10718 —
Amorphous — — 20 TW m—2 — —
Mat. Inc. — — 90 fs — — [(Ensley2019]
— 26 Hz
AsSe Z-scan — — — 2000 nm — — 6.20 £ 10718 —
Amorphous — — 20 TW m—2 — —
Mat. Inc. — — 90 fs — — (Ensley2019]
— 26 Hz

(Continued.)
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Table 2B. (Continued.)
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Third-Order Nonlinearities
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Material Properties Measurement Details Nonlinear Properties
Pump Probe
Material Method Thickness Index Crystallinity Wavelength Wavelength x® (m?v—2)d ny (m*> W—1) Comments
Fabrication Abs. coeff. Bandgap Peak power or Peak power or a; (mW—1)e
Substrate Wavelength Doping level irradiance irradiance as (m* W2) Reference
Pulse width Pulse width
Rep. rate
(Bi203)025 Z-scan — — — 532 nm — — 3.00 + 10718 —
(Zn0)0.375(B203)0.375 Melt Quench — — — — 5.50 & 10!
o o o 80 ps o o [Gomes2007]
10 Hz
GajoSnagSero Z-scan — 2.65 — 1064 nm — — 6.50 + 1017 —
Melt Quench 1000 m ™! 1.58 eV 10 TW m—2 — 1.14 410710
— 1064 nm — 17 ps — — [Chen2020]
10 Hz
Geo.18Gag.os Z-scan — — — 1064 nm — — 4.60 + 1018 —
Sbo.07S0.3S€0.4 Melt Quench — 1.66 eV 20 TW m™? — 9.00 £ 10712 ]
o o o 15 ps o o [Petit2006]
10 Hz
Geg.1Asg.1Seos Teoo Z-scan — 2.9 — 1064 nm — — 2.00 4+ 1017 —
Melt Quench 317m~! 1.23 eV 14 TW m—2 — 8.00 + 1011
o 1064 nm o 15 ps o - [Cherukulappurath2004]
10 Hz
Geo,115A30,24 360,545 Z-scan — 2.265 — 1550 nm — — 7.90 = 10718 —
Melt Quench — 1.75eV 10 TW m—2 — <1.00 £ 1071
— 1550 nm — 260 fs — — [Wang2014a]
1 kHz
Geo.155bg.15€0.75 Z-scan — 2.598 — 1550 nm — — 7.50 410718 —
Melt Quench — 1.72 eV 10 TW m—? — <1.00 £ 1071
- 1550 nm - 260 fs - - [Wang2014a]
1 kHz
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Geo.16Sbo.14S0.7 Z-scan — 2.31 — 1064 nm 2,10+ 10718 —
Melt Quench — 2.1eV 20 TW m™? <1.00 £ 10712 )
— 1064 nm — 15 ps o [Petit2009]
10 Hz
Geo.23Sbo.07Seq.7 Z-scan —_ 2.58 —_ 1064 nm 1.03 £ 10~ —
Melt Quench — 1.66 eV 5TWm™—? 2.40 + 1071 )
— 1064 nm — 15 ps o [Petit2007]
10 Hz
Geo33A80.125€0.55 Z-scan — — — 2000 nm 3.80 4+ 10—18 _
Amorphous — — 20 TW m—2 —
Mat. Inc. — — 90 fs _ [Ensley2019]
- 26 Hz
Geo33A80.125€0.55 Z-scan — — — 3900 nm 750 4 10—18 o
Amorphous — — 20 TW m—2 —
Mat. Inc. — — 240 fs _ [Ensley2019]
- 10 Hz
(GeS2)0.1(Sb2S3)0.75 Z-scan — 2.8 — 1064 nm 8.10 £ 1078 —
(CsDo.15 Melt Quench — — 20 TW m—2 1.20+ 10— 11
— 1064 nm — 17 ps . [Fedus2010]
0.1 Hz
(NaPO3)g.4(BaF,)o1 Z-scan — — — 532 nm 6.00 £10" —
(WO3)os Melt Quench — — — 5.00 4+ 1012
— — — 80 ps o [Falcao-Filho2004]
10 Hz
(Pb(PO3)2)04 (WO3)os  Z-scan — 1.93 — 1064 nm 450 +£ 107" —
Melt Quench 116 m—! — 50 TW m™2 <2.00+1071
s 1064 nm — 17 ps . [Oliveira2010]
10 Hz
(PbO)0.46(Ga203)0.1 Z-scan — 2.3 — 1064 nm 1.60 £ 10718 —
(Bi203)0.426 (Ba0)o.014 Melt Quench — — 30 TW m ™2 <1.00 4 1012 B
— 1064 nm — 15 ps o [De Arajo2005]
10 Hz

(Continued.)
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Table 2B. (Continued.)

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe
Material Method Thickness Index Crystallinity Wavelength Wavelength X (m?2v=2)d oy (m2wh) Comments
Fabrication Abs. coeff. Bandgap Peak power or Peak power or ay (mW—he
Substrate Wavelength Doping level irradiance irradiance as (m* W2) Reference
Pulse width Pulse width
Rep. rate
(TeO3)0.7(GeO1)o.15 Z-scan — 2.1 — 1064 nm — — 7.50 4+ 10—20 —
(K20)0.05(Biz03)o.1 Melt Quench 11m~! 3.08 eV 50 TW m™—2 — <2.00£ 10713
o 1064 nm o 17 ps o o [Oliveira2014]
10 Hz
Semiconductors
Al:ZnO Nonlin. R/T 900 nm — — 785 nm 1258 nm 8§+ 1072 3.50 £ 1071
PLD — — 13000TWm~—?% — +i24+107% 2.50 + 10~ 10¢ )
- o o 100 fs 100 fs o [Caspani2016]
100 Hz
Al:ZnOP Nonlin. R/T 900 nm — — 787 nm 1120-1550 nm 35+107Y 5.20 4+ 1071°
PLD — — 900 TW m > — 24+107" 7.10 £107%¢
o o o 100 fs o - [Carnemolla2018]
100 Hz
Diamond Brillouin laser 5 mm — Monocrys. 532 nm — — — ZBrillouin = 6.0 £ 1070 mw—!
threshold CVD — — — — —
_ o 40 ppb cw o o Brillouin Shift = 167 GHz
- [Bai2020]
Diamond I-scan 100 pm — Monocrys. 250 nm — — — —
Natural — — 500 TW m™? — 2.20£107"
o - o 100 fs o o [Gagarskii2008]
Diamond Nonlin. R/T 100 pm — Monocrys. 273 nm 410 nm — — —
Type Ila — — 90 TW m~—? — 240 + 101
o o . 150 fs . o [Roth2001]
1 kHz
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Diamond Nonlin. R/T 300 pm Monocrys. 800 nm — — 7.30 £ 1072 —
CVD _ — — 9.00 £ 1013
o o 40 fs o o [Motojima2019]
100 kHz
Diamond Nonlin. R/T 300 pm Monocrys. 800 nm — — 1.20 10720 —
CVD — — — 1.75 4+ 10712 B
- Nion iy =2 £ 1011 40 fs — _ [Motojima2019]
cm™? 100 kHz
Diamond Nonlin. R/T 300 pm Monocrys. 800 nm — — 242 +107Y —
CvVD — - — 101 +10-2 )
o N e = 1 1012 40 fs o o [Motojima2019]
cm™? 100 kHz
Diamond SRS 8 mm Monocrys. 1864 nm 2480 nm — — ZRaman = 3.8 £ 107 mwW!
pump-probe CVD — 100 kW 3.75kW —
o . 4ns 4ns - Raman Shift = 1.33 4 107> m~!
- [Sabella2015]
Diamond THG 1 ym Nanocrystalline 1055 nm — 5.00 4+ 102 — Conversion Eff. = 5.6 + 107° %
CVD — 150 GW m™—2 — —
si o 90 fs o - [Trojanek2010]
1 kHz
Diamond Z-scan 300 pum Monocrys. 800 nm — — 416 £ 10720 —
CVD — — — 9.93 + 101
o o 40 fs o o [Motojima2019]
100 kHz
Diamond Z-scan 300 pm Monocrys. 800 nm — — 5.50 4+ 1020 —
CcVD _ — — 1.61 £ 1071 .
o Niop e = 1 £ 1012 40 fs o o [Motojima2019]
cm™? 100 kHz
Diamond Z-scan 1 pm Nanocrystalline 580 nm — 4.00 £ 107" 2.00 + 107" —
CVD — 2500 TW m ™2 — —
si o 90 fs o o [Trojdnek2010]
1 kHz

(Continued.)
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Table 2B. (Continued.)

sulysiiand dol

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties

(43

Pump Probe
Material Method Thickness Index Crystallinity Wavelength Wavelength x® (m?v—2)d ny (m*> W—1) Comments
Fabrication Abs. coeff. Bandgap Peak power or Peak power or a; (mW—1)e
Substrate Wavelength Doping level irradiance irradiance as (m* W2) Reference
Pulse width Pulse width
Rep. rate
Diamond Z-scan — — Monocrys. 310 nm — — — —
CVD — — 700 TW m™~? — 9.00 £ 10~ 12
o o o 100 fs o o [Kozdk2012]
1 kHz
Diamond Z-scan — — Monocrys. 350 nm — — 9.00 £ 10~% —
CVD — — — — —
o o o 100 fs o o [Kozdk2012]
1 kHz
Diamond Z-scan 530 pm — Monocrys. 260 nm — — — —
CVD — — 400 TW m™—2 — 230+ 1071
o o o 120 fs o o [Almeida2017]
1 kHz
Diamond Z-scan 530 um — Monocrys. 427.5 nm — — 1.70 £ 107" —
CVD — — 400 TW m—2 — —
o - o 120 fs o - [Almeida2017]
1 kHz
Diamond Other (see 700 pm — Polycrys. 351 nm 515 nm 2.70 + 102! 1.40 £107Y Method: Phase Object Pump-Probe
comments) CVD — — — — —
— — — 200 fs 200 fs — (Zhang2017b]
Diamond Raman 500 pm — Monocrys. 808 nm — — — Raman Linewidth = 150 m ™!
linewidth CVD — — — — —
(TCUPS ) - — <1ppm N, 80 s — — [Lee2010]
78 MHz
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Diamond Raman 250 pm — Monocrys. 808 nm — — Raman Linewidth = 190 m ™!
linewidth Natural — — — — —
(TCUPS ) - — <1ppmN; 80 fs — — (Lee2010]
78 MHz
Diamond Raman 420 pm — Monocrys. 808 nm — — Raman Linewidth = 190 m ™!
linewidth HPHT — — — —
(TCUPS ) — — 10-100 ppm N, 80 fs — (Lee2010]
78 MHz
Diamond SRS 6.5 mm — Monocrys. 532 nm 573 nm — GRaman = 4.2 £ 1070 mwW!
pump-probe CVD — — — — —
- - - 8 ns 8 ns o Raman Shift = 1.33 £ 107> m~!
- [Savitski2013]
GaAs Nonlin. R/T — — — 8700 nm 900 nm — —
— — 1.42 eV — — 5.00 £ 1077
o o o 10 ps 10 ps o [Fishman2011]
10 Hz
(001)-GaAs Nonlin. R/T 425 pm — Monocrys. 1305 nm 0.5,1,2 THz — —
— — — 1.09 TW m—2 — 4.254+10710
o o o 68.1 fs o o [Tiedje2007]
1 kHz
GaAs SPM/XPM 1 mm — — 1064 nm — 2.834+ 1070 esu —
: : : ; ps : : [Garcia2000]
100 MHz
GaAs Z-scan 350 pm — Monocrys. 1680 nm — 3.00 + 10717 —
— — 142 eV 29 TW m~? — 2.50 + 1071
o - - 111 fs o o [Hurlbut2007]
1 kHz
GaAs Other (see 700 pm — Monocrys. 810 nm — — Method: Optical-Pump THz-Probe
comments) — 1.33 pm~! — — — (110): 2.2+ 107°
— 800 nm — 55 fs — (100): 1.8 £ 10~° [Kadlec2004]
1 kHz —

(Continued.)
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Table 2B. (Continued.)

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe
Material Method Thickness Index Crystallinity Wavelength Wavelength x® (m?v—2)d ny (m*> W™1) Comments
Fabrication Abs. coeff. Bandgap Peak power or Peak power or a; (mW™1)e
Substrate Wavelength Doping level irradiance irradiance as (m* W—2) Reference
Pulse width Pulse width
Rep. rate
GaNP® THG Imaging 2.5 um — — 1230 nm — 1.00 + 10720 — —
- - - o - - (5un2000]
125 MHz
GaN Z-scan 10 um — — 800 nm — — 2,804+ 10718 —
MOVPE — 3.39eV — — — )
Sapphire — 1£10T2 m—3 120 fs — — [Almeida2019]
GaN Z-scan 10 pm — — 550 nm — — — —
MOVPE — 3.39eV — — 2,90 4+ 10~ )
Sapphire — 14102 m—3 120 fs — — [Almeida2019]
GaN Z-scan 500 pm — Monocrys. 724 nm — — 2,50 + 10718 —
HVPE — — 90 TW m > — 9.00 £ 10"
GaN o 1+ 10+23 m_3 o . o [Ch€n2017b]
GaN Z-scan 1 mm — Monocrys. 760 nm — — 1.554+ 10718 —
HVPE — 3.39eV 200 TW m 2 — —
GaN — — 190 fs — — (Fang2015]
20 Hz
(100)-GaP? Nonlin. R/T 350 um — — 650; 800 nm 650; 800 nm — 2410718 —
— — 226eV — — 4+10"18 )
— 610-745; — 7fs 7fs 341071 [Grinblat2019]
760-980 nm — §+10~ !
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(100)-GaP? Z-scan 350 um — — 800 nm — — 1.60 £ 10~ —
— — 2.26eV 14 TW m—2 — 8.00 £ 10!
o o o 7t o o [Grinblat2019]
(100)-GaP»® Z-scan 500 yum 3.1 — 1040 nm — — 7.00 + 10718 —
— — 2.27eV — — —
— 1040 nm — 61 fs — — (Liu2010]
52 MHz
(100)-GaP®b Z-scan 500 pm — — 800 nm — — — —
— 2.2mm™! 2.27eV — — 416410~
— 800 nm — 37fs — — (Liu2010]
100 MHz
InN®P FWM 680 nm 2.78 — 1400 nm — 420+ 1071 —
PAMBE 1.2 um™! 0.82 eV 35 TW m~—? — esu —
GaN-on- 1400 nm — 100 fs — — [Naranjo2007]
sapphire 1 kHz
InN® FWM 1 um 2.95 Monocrys. 1500 nm — 8.00 + 10710 — —
PAMBE 870 mm ™! 0.75 eV — — esu 3.40 + 10710
GaN-on-Si 1500 nm 14+107» m—3 100 fs — — [Naranjo2009]
1 kHz
InN Nonlin. R/T 750 nm — Polycrys. 1550 nm 1550 nm — — —
Sputtering — 1.74 eV 153 TW m—2 15.3 TW m~2 1.67 +107°
GaN-on- — 141072 m—3 100 fs 100 fs — [Valdueza-Felip2012]
Sapphire 100 MHz
InN Z-scan 250 nm 2.45 — 790 nm — — — Nonlinear Absorption Cross Section:
MBE 8.7 yum~! 0.8 eV 26 TW m—2 — — 441072 m?
AIN on 790 nm 55+ 10t m—3 200 fs — —
c-Sapphire 80 MHz (T5ai2009]
InN Z-scan 1.4 pm — Monocrys. 1500 nm — — 1.90 + 1071 —
PAMBE — 0.65 eV 20 TW m—2 — 47541078
AIN/GaNon — — 1.4+ 1012 m—> 120 fs — — [Ahn2014]
R-sapphire —

(Continued.)
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Table 2B. (Continued.)

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe
Material Method Thickness Index Crystallinity Wavelength Wavelength x® (m? v—2)d ny (m* W) Comments
Fabrication Abs. coeff. Bandgap Peak power or Peak power or o (mW—1)e
Substrate Wavelength Doping level irradiance irradiance as (m* W2) Reference
Pulse width Pulse width
Rep. rate
Inp®P I-scan 2 mm — — 1064 nm — — — —
— — — 6 TW m™? — 2.554+ 1071
o o o 10 ps o o [Gonzalez2009]
(001)-InP:Fe Nonlin. R/T 350 um 3.1 — 1640 nm — xxxx: 2.066 = 10718 —
— — — 5TW m—2 — xxyy: 3.11 £ 107" 3.70 £ 10710
— 1640 nm — 250 fs — xyyx: 1231 £ 10718 — [Matsusue2011]
50 MHz
(001)-InP:Fe Nonlin. R/T 365 pm — Monocrys. 1305 nm 0.5,1,2 THz — — —
— — — 1.42TW m™? — 7.03£1071°
o o o 68.1 fs o o [Tiedje2007]
1kHz
(001)-InP:Fe Nonlin. R/T 310 um — Monocrys. 1600 nm 1600 nm — — —
— 2m~! — LITWm™2 — 330+ 1071 )
— 1600 nm — 160 fs 160 fs — [Vignaud2004]
(001)-InP:S Nonlin. R/T 310 pm — Monocrys. 1600 nm 1600 nm — — —
— 490 m™! — 1L1TWm™?2 — 2.60 £ 10710 )
— 1600 nm 741042 m=> 160 fs 160 fs — [Vignaud2004]
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(001)-InP:Zn Nonlin. R/T 310 pm — Monocrys. 1600 nm 1600 nm — — —
— 2.83mm™! — 1L1TWm? — 3.10£ 10710 )
— 1600 nm 15410724 m—> 160 fs 160 s — [Vignaud2004]
(001)-InP:Fe Z-scan 579 pm 3.147 — 1640 nm — XXXX: — —
— — — — — 26194+ 10718 22010710 o
— 1640 nm — 194.7 fs — XXYy: — [Oishi2018b]
47.8 MHz 49241071
xyyx:
1.531 £ 10718
(001)-InP:Fe Z-scan 581 um 3.147 — 1640 nm — 2,65+ 10718 — —
— — — — — 230410710 o
- 1640 nm — 194.7 fs — — [Oishi2018a]
47.8 MHz
InSb Nonlin. R/T 1 mm — — 10 600 nm — — — Nonlinear Free Carrier Refraction
— — 0.18 eV — — — Cross Section: 4.5 £+ 107" m?
— 10 600 nm — — _
o [Dubikovskiy2008]
InSb Z-scan 540 pm — Monocrys. 9000 nm — — — —
— — 0.18 eV — — 290+ 108
— — 9.00+10M m=>  370fs — — [Olszak2010]
1kHz
InSn:0 Beam Defl. 310 nm — — 1242 nm 1050 nm — 5.50 £ 1017 —
Float Glass — — 100 fs — — [Benis2017]
1kHz
InSn:0 THG 37 nm — — — — 3.50 £ 10718 — —
Sputtering — — 400 GW m—2 — — )
Silicon 1550 nm — 150 fs — — [Capretti2015a]
81 MHz

(Continued.)
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Table 2B. (Continued.)
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Third-Order Nonlinearities

100S€0 (£€207) § somor0yd “shyd *[

Material Properties Measurement Details Nonlinear Properties
Pump Probe
Material Method Thickness Index Crystallinity Wavelength Wavelength x® (m?v—2)d ny (m*> W—1) Comments
Fabrication Abs. coeff. Bandgap Peak power or Peak power or a; (mW—1)e
Substrate Wavelength Doping level irradiance irradiance as (m* W2) Reference
Pulse width Pulse width
Rep. rate
Silicon®" Z-scan 675 pm — Monocrys. 2600 nm — — 250 £ 10718 —
— — — 570 TW m > — —
— — 141042 m—? 150 fs — 20041077 [Wang2013]
1 kHz
Silicon Z-scan 125 pm — Monocrys. 1220 nm — — 470 £ 10718 —
— — 112eV 78 TW m > — 210+ 1071 )
— — Intrinsic 200 fs — — [Bristow2007]
1 kHz
Silicon Z-scan 480 pm — Monocrys. 1540 nm — — 450 £ 10718 —
— — — 7TWm—? — 7.90 £ 10712 )
— — 10 (£2-cm) 130 fs — — [Dinu2003b]
76 MHz
Silicon Z-scan 500 pm — Monocrys. 1550 nm — — 5.00 + 10718 —
— — — — — 1.03 + 101 .
— — Intrinsic 190 fs — — [Gai2013]
1 kHz
Silicon Z-scan 500 pm — Monocrys. 1501 nm — — 220410718 —
— — — — — 4.80 £ 10712 ]
B B 20 (Q-cm) B B - [Lin2007]
500 Hz
4H SiC? Z-scan 498 um — Monocrys. 530 nm — — 3.19 £ 107" —
— — 3.25eV — — 2.00 4+ 10712
o - o 123 fs o - [Guo2021]
50 kHz
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6H SiC? Z-scan 258 um — Monocrys. 800 nm 3.88 £ 107 —
— — 2.99 eV — 3.954+ 1071
o o o 176 fs o [Guo2021]
50 kHz
6H SiC? Z-scan 340 pm Monocrys. 780 nm 475+ 107Y —
— 3.10 eV — 6.40 1013
o 1.00 = 102! m—3 160 fs o [DesAutels2008]
41 Hz
6H SiC? Z-scan 220 pm Monocrys. 780 nm 4.00+107Y —
— 3.10 eV — 5204101
o 2.5+ 102 m—3 160 fs o [DesAutels2008]
41 Hz
Three photon absorption
Al,Se;5S15 Z-scan — 2.7 — 1550 nm — —
— — 1.74 eV — —
— 1550 nm — 150 fs 5.50 + 10726 [Shabahang2014]
1 kHz
CdS Nonlin. R/T — 2.34 — 1064 nm — —
— — 2426V — — .
— 1064 nm — 30 ps 1.50 4+ 102 [Benis2020]
CdS Z-scan — 2.34 — 1200 nm — —
— — 2426V — — _
— 1200 nm — 150 fs 1.10 + 1072 [Benis2020]
1 kHz
CdSe Z-scan — 2.5 — 1500 nm — —
— — 1.9 eV — — )
— 1500 nm - 150 fs 240 £ 107 (Benis2020]
1 kHz
CdTe Z-scan — 2.7 — 1750 nm — —
— — 1.44 eV — — )
— 1750 nm - 150 fs 1.20 £ 10~ [Benis2020]
1 kHz

(Continued.)
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Table 2B. (Continued.)
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Third-Order Nonlinearities
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Material Properties Measurement Details Nonlinear Properties
Pump Probe
Material Method Thickness Index Crystallinity Wavelength Wavelength x® (m?v—2)d ny (m*> W—1) Comments
Fabrication Abs. coeff. Bandgap Peak power or Peak power or a; (mW—1)e
Substrate Wavelength Doping level irradiance irradiance as (m* W2) Reference
Pulse width Pulse width
Rep. rate
GaAs? Z-scan — 34 — 2600 nm — — — —
— — 142 eV — — — .
— 2300 nm — 15 ps — 9.00 4 10~ (Benis2020]
1kHz
GaAs? Z-scan — 34 — 2600 nm — — — —
— — 142 eV — — — .
— 2300 nm — 150 fs — 7.50 + 10~ [Benis2020]
1 kHz
GaAs Z-scan — 34 — 2300 nm — — — —
— — 1.42 eV — — —
— 2300 nm — 100 fs — 350 £ 1072 (Hurlbut2007]
1 kHz
InSb © Z-scan — 3.95 — 12000 nm — — — —
— — 0.228 eV — — — _
— 12000 nm — 10 ps — 2.50 + 10720 (Benis2020]
1 kHz
4H SiC Z-scan 498 pm — Monocrys. 990 nm — — — —
— — — 177 fs — 1.90 & 10=% [Guo2021]
50 kHz
6H SiC Z-scan 258 pm — Monocrys. 990 nm — — — —
- - - 177 fs - 4,00+ 10~ (Guo2021]
50 kHz
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ZnO Nonlin. R/T — 1.94 — 1064 nm — —
— — 3.7 eV — —
— 1064 nm — 30 ps 2204+ 107 [Benis2020]
ZnO Z-scan — 1.95 — 900 nm — —
— — 3.7 eV — —
— 900 nm — 100 fs 5.40 + 10 [He2005]
1 kHz
ZnS?* Z-scan — 2.3 — 960 nm — —
— — 3.54 ¢V — _
— 800 nm — 30 ps 1.60 + 10~ [Benis2020]
1 kHz
7ZnS Z-scan — 2.3 — 800 nm — —
— — 3.54 ¢V — —
— 800 nm — 100 fs 1.70 + 10~ [He2005]
1 kHz
ZnSe? Nonlin. R/T — 2.48 — 1064 nm — —
— — 2.67 eV — —_
— 1064 nm — 30 ps 150 + 102 [Benis2020]
ZnSe Nonlin. R/T — 2.48 — 1350 nm — —
— — 2.67 eV — —_
— 1064 nm — 30 ps 9.10 4+ 10~ [Cirloganu2008]
ZnTe Z-scan — 2.8 — 1200 nm — —
— — 228 eV — _
— 1200 nm — 150 fs 2.00 + 1026 [Benis2020]
1 kHz

* Multiple wavelengths reported.

b Multiple parameters (e.g., thickness, crystal orientation) reported.
¢ Measurement taken at a temperature other than room temperature.
d Units as illustrated unless otherwise indicated in table.

¢ A negative value of o, represents saturable absorption.

fTCUPS: transient coherent ultrafast phonon spectroscopy.
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3.2. Solvents: data table and discussion
Team: Eric Van Stryland (team leader), Eiji Tokunaga

As mentioned in section 3.1 on bulk materials, we include here a separate section dedicated specifically to
solvents. In table 3, we show a list of the 3rd-order nonlinearities of a variety of liquids, mainly organic
solvents at room temperature, taken from representative experimental works in the literature. These are
included primarily because our understanding of their NLO responses has advanced and one of them,
carbon disulfide (CS,) is often used as a reference. Besides reporting the values of the effective nonlinear
refractive indices, 1, .f, where listed in the original works, we report the 2PA coefficient, c,, and the 3PA
coefficient, 3. However, in most of the publications the 2PA is not listed since the wavelengths used are with
photon energies where such absorption is not energetically possible and 3PA is also extremely small or not
energetically allowed.

These solvent nonlinearities are important not only because CS, is used as a reference material, but also
because of the many measurements of organic dye nonlinearities in the literature (not included in the
current data tables) as well as for measurements of particle suspensions, as they are usually performed for
these materials dissolved or dispersed in various solvents. A lack of knowledge of the nonlinearities of the
solvents can potentially confuse interpretation of such measurements. We also refer the reader to section 3.7
on hybrid waveguiding systems that includes, amongst others, hollow fibers filled with solvents.

The primary difficulty in reporting the solvent nonlinearities in table 3, is that it is now known that there
are four separate physical processes leading to the reported NLR, i.e., the bound-electronic nonlinearity,
which can be considered instantaneous for any pulse widths reported in this publication, and three nuclear
contributions whose temporal characteristics depend on the solvent but are on the order of femtoseconds to
picoseconds. These nonlinearities are reorientational, librational, and collisional [McMorrow1988,
Reichert2014]. For nanosecond and longer pulses, other nonlinearities of electrostriction and thermal origin
also become important. We restrict ourselves here to the subnanosecond range. Using single-beam
measurements, it is problematic to separate the various nonlinearities. Excite-probe experiments are needed
for this. The bound-electronic and collisional nonlinearities can be separated from the rotational and
librational nonlinearities by their symmetries given the signals using different relative polarizations of the
excitation and probe beams. The nuclear nonlinearities have both rise and fall times and each has an
associated response function given, e.g., in [Reichert2014]. Thus, the response is quite complicated. In rare
cases the NLR response is dominated by a single nonlinearity. In fact, this only occurs in the case of extremely
short pulses (usually a few femtoseconds) where only the bound-electronic response is activated. Even in 3D
symmetrical molecules, the nuclear collisional nonlinearity is still present for pulses longer than a few
femtoseconds. Thus, the overall NLO response depends on the pulsewidth used for the experiment. This has
led to difficulties in reported nonlinearities of multiple materials since CS,, included in this table, has often
been used as a reference standard for measurements of other materials. In this regard, we point out
[Miguez2017, Zhao2018, Reichert2014] where measurements of CS, include the nuclear components. The
effective nonlinearity can be calculated from the values of the four nonlinear responses along with their
temporal responses as in [Zhao2018, Reichert2014]. We show results for CS, in figure 1 taken from
[Reichert2014] because of its wide use as a reference material. [Ganeev2004] shows a dependence consistent
with that of [Reichert2014] for several pulsewidths from 110 fs to 75 ns. The fast and slow nonlinearities
referred to in [Miguez2017] are combinations of the four nonlinearities; thus, attempts to combine
information from [Miguez2017, Zhao2018, Reichert2014] which are the only ones in table 3, reporting the
separate nuclear nonlinear responses, into a single table are problematic. Therefore, the reader will have to
consult the original papers to get the full details of the NLR [Miguez2017, Zhao2018, Reichert2014]. The two
values of 1, reported in table 3 for [Zhao2018, Reichert2014] are the predicted bound-electronic n, that
would be measured using few femtosecond pulses along with an estimate of the effective nonlinear refractive
index, 1, .f, that would be measured in a single beam experiment such as Z-scan using pulses of >100 ps,

i.e. long compared to the rise and fall times of the nuclear nonlinearities but short compared to times where
electrostriction and thermal effects become important. These values are estimated from the temporal
dependence plots given in those works [Zhao2018, Reichert2014]. These values can be compared to the
predictions from [Miguez2017] where pulses from 60 fs to 2 ps were used to measure the nonlinearities and
separate slow and fast responses. In table 3 we report the 2 values for the slow and fast components. The sum
of these components should give the same long pulse limit as the 2nd value given in the table for [Zhao2018,
Reichert2014].

There is one final set of data that does not fit on this table, and that is the dispersion of the NLO response.
The data in the table only covers wavelengths from 532 nm to 1064 nm so little dispersion information is
shown. However, the dispersion of the three nuclear contributions to the NLR should be small [Reichert2014,
Alms1975, Zahedpour2015]. On the other hand, the bound-electronic nonlinearity should follow similar
dispersion to other materials having UV resonances [Hutchings1992]. For CS,, the short pulse limit values
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Figure 1. Results of BD experiments for CS, yielding the four nonlinearities with their response functions to calculate the
predicted ¢ in a Z-scan experiment (solid red line), along with Z-scan measurements at various pulse widths and two
wavelengths namely 700 nm (black circles) and 1064 nm (green triangles). Reprinted with permission from [Reichert2014]
© 2014 Optica Publishing Group.
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Figure 2. Z-scan measurements of bound-electronic n, (black circles—labeled as 1, ) for femtosecond pulses with
non-instantaneous components subtracted, and c, (blue triangles) for CS,. Curves represent model fits as described in
[Reichert2014]. Reprinted with permission from [Reichert2014] erratum © 2016 Optica Publishing Group.

for 11, show essentially no dispersion between 1064 nm and 700 nm (see figure 1). However, [Reichert2014]
performed both open and closed aperture Z-scans over a much larger wavelength range from 390 nm to
1550 nm using the shortest pulsewidths available which resulted in signals dominated by bound-electronic #,
and/or 2PA. Furthermore, the values of the nuclear contributions at these pulsewidths could be confidently
subtracted resulting in the plot of 1, along with o as a function of wavelength as shown in figure 2.

Future work on solvents could include measurements of the 2PA spectra along with the dispersion of the
bound-electronic #, to test theory as done in figure 2, as well as measurements verifying the lack of
dispersion of the nuclear contributions, and the inclusion of more solvents. Additionally, there are few
measurements of solvents in spectral regions where there is significant linear loss [Marble2018,
Bautista2021]. Determination of the influence of polar versus nonpolar solvents on the second-order
hyperpolarizabilities could also be of interest to spur theoretical calculations for some of these molecules.
This could also test local field effects as was done for CS, in [Reichert2014].
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Table 3. NLO measurement results for solvents. The methods used are Z-scan, BD, ER, and THG. All liquid samples reported in this
table were held in either 1 or 2 mm internal thickness cuvettes and were at room temperature. The X values specified in the table are in
fact X ¢ values containing multiple nonlinearity contributions rather than just the bound-electronic contribution. Legend for
superscripts: see below the table. The following abbreviations have been used: DMSO = dimethyl sulfoxide;

ODCB = o-dichlorobenzene; DCM = dichloromethane; BS = butyl salicylate; ACN = acetonitrile; NB = nitrobenzene;

CB = chlorobenzene; THF = tetrahydrofuran; CH = cyclohexane; CCly = carbon tetrachloride; CS, = carbon disulfide;

D, 0O = deuterated water; lin = linear polarization; cir = circular polarization.

2:y
(mw~")
x® x 107 x® X 1072 ny 5 X 1072 3:cx5 Apump T pump Aprobe T probe
Material Method (esu) mwW=hH  mwh m*w™?) (nm) Rep-rate (nm) (fs)* Reference
CCly Z-scan 20.8 28 1064 16 ps 10 Hz [Rau2008]
THG 11.1 15 1064 16 ps 10 Hz
Chloroform  Z-scan 27.8 38 1064 16 ps 10 Hz [Rau2008]
THG 9.77 13.3 1064 16 ps 10 Hz
DCM Z-scan 26.8 37 1064 16 ps 10 Hz [Rau2008]
THG 8.56 11.8 1064 16 ps 10 Hz
CH Z-scan 14 19 1064 16 ps 10 Hz [Rau2008]
THG 9.03 12.2 1064 16 ps 10 Hz
n-Hexane Z-scan 11.2 17 1064 16 ps 10 Hz [Rau2008]
THG 6.17 9.35 1064 16 ps 10 Hz
Acetone Z-scan 14.9 23 1064 16 ps 10 Hz [Rau2008]
THG 6.55 10.1 1064 16 ps 10 Hz
Methanol Z-scan 11.1 18 1064 16 ps 10 Hz [Rau2008]
THG 4.16 6.74 1064 16 ps 10 Hz
Ethanol Z-scan 11.5 18 1064 16 ps 10 Hz [Rau2008]
THG 4.82 7.57 1064 16 ps 10 Hz
DMF Z-scan 29.8 42 1064 16 ps 10 Hz [Rau2008]
THG 7.78 11 1064 16 ps 10 Hz
‘Water Z-scan 8.7 14 1064 16 ps 10 Hz [Rau2008]
THG 391 6.28 1064 16 ps 10 Hz
CB Z-scan 95.9 117 1064 16 ps 10 Hz [Rau2008]
THG 14.8 18.1 1064 16 ps 10 Hz
Toluene Z-scan 73.4 93 1064 16 ps 10 Hz [Rau2008]
THG 13.7 17.4 1064 16 ps 10 Hz
CS, Z-scan 289 310 1064 16 ps 10 Hz [Rau2008]
THG 32.1 34.5 1064 16 ps 10 Hz
Toluene Z-scan lin 5.7 800 125fs [Yan2012a]
cir3.3 1kHz
ODCB Z-scan lin 4.8 800 125fs [Yan2012a]
cir 2.8 1kHz
DMF Z-scan lin 4.0 800 125fs [Yan2012a]
cir2.2 1 kHz
Acetone Z-scan  20.5 43.7 2:6.0 x 101 532 30ps10Hz [BalaMuraliKrishna2013]
Z-scan  4.37 9.34 3:7.8x 107 800 100 fs 1 kHz
Chloroform  Z-scan  27.6 51.9 2:1.25 x 10712 532 30 ps10Hz [BalaMuraliKrishna2013]
Z-scan  4.96 9.37 3:52x 1072 800 100 fs 1 kHz
DMF Z-scan 245 47 2:122x 107" 532 30ps10Hz [BalaMuraliKrishna2013]
Z-scan  5.37 10.4 3:97x 1072 800 100 fs 1 kHz
THEF Z-scan  20.1 40.1 2:5.70 x 1071 532 30ps10Hz [BalaMuraliKrishna2013]
Z-scan  6.46 12.9 3:150 X 107% 800 100 fs 1 kHz
Toluene Z-scan  25.4 42.7 2:3.20 x 10712 532 30 ps10Hz [BalaMuraliKrishna2013]
Z-scan  7.95 14 3:20.5 % 1072 800 100 fs 1 kHz
CS, Z-scan 762 1130 2:2.00 x 107" 532 30ps10Hz [BalaMuraliKrishna2013]
Z-scan 12 17.8 3:747 x 1072 800 100 fs 1 kHz
Ethanol Z-scan  5.11 10.9 3:21.0 x 102 800 100 fs 1 kHz [BalaMuraliKrishna2013]
CCly Z-scan  6.31 11.7 3:18.2 x 1073 800 100 fs 1 kHz [BalaMuraliKrishna2013]
CS; Z-scan  87.1 122 519 532 35ps10Hz [Mliopoulos2015]
Z-scan  0.668 0.932 3.97 800 40 fs 10 Hz
NB Z-scan  23.3 32.6 153 532 35ps10Hz [Mliopoulos2015]
Z-scan  0.151 0.21 0.988 800 40 fs 10 Hz
DB Z-scan  18.6 26 122 532 35ps10Hz [Miopoulos2015]
Z-scan  0.158 0.22 1.03 800 40 fs 10 Hz
Aniline Z-scan  17.8 24.9 112 532 35ps10Hz [Tliopoulos2015]
Z-scan  0.165 0.23 1.03 800 40 fs 10 Hz
Toluene Z-scan 153 21.4 108 532 35ps10Hz [Mliopoulos2015]
Z-scan  0.143 0.2 1.01 800 40 fs 10 Hz
Benzene Z-scan  12.6 17.5 88 532 35ps10Hz [Miopoulos2015]
Z-scan  0.246 0.343 1.72 800 40 fs 10 Hz
Chloroform Z-scan 4.4 6.1 33 532 35ps10Hz [Hiopoulos2015]
Z-scan  0.11 0.153 0.827 800 40 fs 10 Hz

(Continued.)
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2:y
(mw™1)
x(s) X 10~ 14X(3) X 107 e X 10720 i3 Apump T pump Aprobe T probe
Material Method (esu) mwW= Y @m*w™ (m> W2) (nm) Rep-rate (nm) (fs)* Reference
DMF Z-scan 4.3 6 33 532 35ps10Hz [Tliopoulos2015]
Z-scan  0.101 0.141 0.781 800 40 fs 10 Hz
DCM Z-scan 4.1 5.7 32 532 35ps10Hz [Mliopoulos2015]
Z-scan 0.1 0.14 0.781 800 40fs 10 Hz
DMSO Z-scan 3.9 5.4 28 532 35ps 10 Hz [Miopoulos2015]
Z-scan  0.102 0.142 0.735 800 40fs 10 Hz
Acetone Z-scan 2.6 3.6 22 532 35ps10Hz [Mliopoulos2015]
Z-scan  0.075 0.105 0.528 800 40 fs 10 Hz
ACN Z-scan 2.3 3.2 20 532 35ps10Hz [Miopoulos2015]
Z-scan  0.0474 0.0661 0.413 800 40fs 10 Hz
n-Hexane Z-scan 2 2.8 17 532 35ps10Hz [Miopoulos2015]
Z-scan  0.0496 0.0692 0.413 800 40fs10Hz
THF Z-scan 1.4 1.9 11 532 35ps10Hz [Tliopoulos2015]
Z-scan  0.0721 0.101 0.574 800 40 fs 10 Hz
CS; BD 15.05 275° 800 50 fs1kHz 650 158 [Reichert2014]
CS, Z-scan 15.0; 3004 1064 65 fs-25 ps [Reichert2014]
1kHz
CS, Z-scan 15.0; 300¢ 700 32 fs-8 ps [Reichert2014]
1kHz
CS, Z-scan BEn, = 30 2:2.0 x 107" 420° 1KHz
BEn, = 60 2:0.7 x 10711 545° 1kHz [Reichert2014]
Toluene BD 6.0; 49¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
NB BD 6.0; 77¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
Benzene BD 6.0; 44° 800 150 fs 1 kHz 700 150 [Zhao2018]
p-Xylene BD 6.2; 52¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
Pyridine BD 6.0; 53¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
ODCB BD 6.0; 51¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
DCM BD 3.05 15¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
Chloroform BD 4.1;16¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
CCly BD 4.8;6.8° 800 150 fs 1 kHz 700 150 [Zhao2018]
Acetone BD 4.05 12¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
ACN BD 3.5 11¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
DMF BD 4.0;21¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
BS BD 3.8; 26° 800 150 fs 1 kHz 700 150 [Zhao2018]
THF BD 3.2;6.2° 800 150 fs 1 kHz 700 150 [Zhao2018]
Hexane BD 3.2;7.0¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
CH BD 3.5; 5.9 800 150 fs 1 kHz 700 150 [Zhao2018]
Methanol  BD 3.0; 4.4° 800 150 fs 1 kHz 700 150 [Zhao2018]
1-Octanol  BD 4.0; 4.9 800 150 fs 1 kHz 700 150 [Zhao2018]
1-Butanol  BD 3.3;4.4° 800 150 fs 1 kHz 700 150 [Zhao2018]
Ethanol BD 3.2;4.2°¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
CS; BD 15.05 275° 800 150 fs 1 kHz 700 150 [Zhao2018]
DMSO BD 4.5; 8.2¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
D,O BD 2.8;3.7 800 150 fs 1 kHz 700 150 [Zhao2018]
H,O BD 2.5;3.2¢ 800 150 fs 1 kHz 700 150 [Zhao2018]
CS, ER 23.9; 260° 790 Fast ~fs [Miguez2017]
Slow ~ps
Toluene ER 11.5; 45.2° 790 Fast ~fs [Miguez2017]
Slow ~ps
DMSO ER 9.15;5.23 790 Fast ~fs Slow ~ps [Miguez2017]
Chloroform ER 5.45;9.1° 790 Fast ~fs Slow ~ps [Miguez2017]
Acetone ER 5.66; 9.6° 790 Fast ~fs Slow ~ps [Miguez2017]
Methanol ~ ER 4.62; 1.44° 790 Fast ~fs Slow ~ps [Miguez2017]
Ethanol ER 4.43;1.02° 790 Fast ~fs Slow ~ps [Miguez2017]
H,0 ER 3.35; 1.06" 790 Fast ~fs Slow ~ps [Miguez2017]

2 Repetition Rate for the probe is the same as for the pump.

b The 1st entry is the sum of the fast components, and the 2nd entry, which is the sum of the slow entries, is also the predicted n, ¢ for
pulses >100 ps as described in [Miguez2017].
¢ The two entries are the predicted bound-electronic #,, and the predicted 1, ¢4 for pulses >100 ps.

4 The Ist entry is the predicted bound-electronic 1, while the 2nd is from measured Z-scan data for the longest ps pulses. See figure 1.

¢ The peak 2PA is at 420 nm, and the peak bound-electronic n; is at 545 nm. Depending on the wavelength, the minimum pulse width

varies from 32 to 165 fs.

45



10P Publishing J. Phys. Photonics 5 (2023) 035001 N Vermeulen et al

@
@
&

@
9

/\/‘
%

0D 1D
Spheres, Clusters | Nanorods, wires |Nanofilms, plates

Figure 3. A typical representative diagram of 0D-1D-2D NSM, as used in this text. Reprinted under CC BY license from
[Sajanlal2011].

3.3. 0D-1D-2D materials: data table and discussion
Team: Cecilia Campos, Ksenia Dolgaleva, Daniel Espinosa, Anderson Gomes (team leader), Mikko Huttunen,
Dragomir Neshev, Ldzaro Padilha, Jingshi Yan, Nathalie Vermeulen

3.3.1. Introduction

3.3.1.1. 0D—1D-2D materials and their NLO applications

Among the ways to categorize nanomaterials or NSMs, at least two approaches can be followed [Ngo2014].
In one case, the bulk material is the starting point, and one employs the general definition that a
nanomaterial contains at least one dimension of 100 nm or less. Thus, a thin film whose thickness is 100 nm
or less is a nanomaterial, such as a nanofilm or a nanoplate. If two dimensions are under 100 nm, then they
are named nanowires, nanofibers or nanorods. Finally, under the above definition, if all three dimensions are
smaller than 100 nm, it is a nanoparticle. An alternative way becomes relevant if one looks at the material
nanostructure. In this case, the dimensionality of the nanoscale component leads to the definition. When the
nanostructure has a length larger than 100 nm in one direction only, it is 1D (wire, fiber or rod, for instance).
If no dimension is larger than 100 nm, it is 0D (nanoparticle), and a thin film, with two dimensions larger
than 100 nm, is a 2D nanostructure (this holds as well for plates and multilayers). A typical representative
diagram of the subcategories 0D—1D-2D for NSMs, as used in this text, is shown in figure 3 (adapted from
[Sajanlal2011]). Besides these general definitions, we note that the dimension shorter than 100 nm might
confine the movement of free charge carriers and produce a quantum confinement effect [Fox2001]. In this
case, the optical properties of the material would become size-dependent. 0D, 1D and 2D materials
presenting quantum confinement effects are called QDs, quantum wires, and QWs, respectively.

There is a myriad of NLO and other applications for 0D—1D-2D NSMs, which can be revisited in
[Liu2017, Zhang2017a, Xu2017, Autere2018a, Jasim2019, Eggleton2019, Liu2019a, Wang2020, Ahmed2021].
Based upon the already known and well-established fundamental understanding, and upon the NLO
applications in bulk materials, researchers have demonstrated that most NLO effects could also occur at the
nanoscale or can be engineered in different ways [Zhang2021] when they take place in nanoscale dimensions.
Although the practical applicability of 0D-1D-2D NSMs is at times limited by e.g. fabrication quality issues
and/or losses, the NLO properties of 0D—1D-2D NSMs have already been exploited in LEDs, nanolasers,
nanobiosensors, imaging, as well as in nonlinear microscopy, photoacoustics, photocatalysis, energy
harvesting, optical limiting, and saturable-absorber-based mode-locked lasing. Nonlinear nanoplasmonics is
another field where NLO in 0D-1D-2D materials has been gaining much attention. The field of
nanoplasmonics deals with the study of optical phenomena and applications in the nanoscale neighborhood
of dielectric—metal interfaces [Stockman2011]. It goes ‘beyond’ plasmonics—with decreasing interaction
dimension—aiming at focusing light below the diffraction limit, determined by the Abbe diffraction
formula, which can be roughly approximated by A/2, where ) is the wavelength of light being used in the
light — matter interaction. Physically, it is performed by converting photons into localized charge-density
oscillations—so-called surface plasmons—on metallic nanostructures. Further reviews on nanoplasmonics
and applications can be found at [Barbillon2017, Panoiu2018, Krasavin2019]. Finally, it should be noted that
0D-1D-2D NSM can also feature unusual NLO properties in the THz domain. Whereas this section focuses
on the nonlinearities of 0D-1D-2D NSMs at optical wavelengths, further details on the THz nonlinearities
are provided in section 3.8.
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3.3.1.2. Background prior to 2000

The history of NSMs has been traced back to the 9th century and several other examples of ancient artifacts
using nanocomposites emerged throughout the centuries, which of course were only explained after the 19th
century with the availability of electron microscopes capable of measuring in the nanoworld [Heiligtag2013].
But the general nanoscience and nanotechnology scientific history and first publication date back to 1857
with Michael Faraday’s work [Faraday1857]. Then came Feynman’s lecture (1959), Taniguchi’s
‘nanotechnology’ (1974) and Drexler (1981), as reviewed in [Heiligtag2013]. Thereafter, the broad field of
nanoscience and nanotechnology flourished. Nowadays the material subcategories described here have
become a reality, and the study of their NLO properties is a continuously growing research field.

3.3.1.2.1. Background for 0D materials

The first studies about the optical properties of so-called semiconductor microspheres date back from the
early 1980s after the works from Efros and Efros [Efros1982] and Brus [Brus1984]. Those nanomaterials
were nano-sized semiconducting spheres embedded in a glass matrix. However, they exhibited poor optical
quality, mostly due to the difficulties in controlling the particle size distribution and in eliminating surface
trap sites. Later, in the early 1990s, colloidal semiconductor QDs were first synthesized, narrowing the size
distribution and improving the optical properties after surface treatment with organic ligands [Murray1993].
Major breakthroughs were achieved after the control over the optical properties in II-VI QDs and the field
grew rapidly in the late 1990s and early 2000s. During this period, the scientific interest moved from simple
core-only nanospheres to more complex nanostructures, including nanorods, nanoplatelets, tetrapods, and
core-shell heterostructures, reaching an unprecedented level of control over the optical and electronic
properties of those semiconductors by manipulating their sizes, compositions, and shapes. At this stage, the
NLO properties of those nanomaterials came to the spotlight as they emerged as promising candidates for a
number of applications including bio-labeling, all-optical signal processing, light detectors, and lighting
technologies [Kairdolf2013, Garcia de Arquer2021].

3.3.1.2.2. Background for 1D materials

Unidimensional structures of different materials were fabricated before 2000. Single-crystalline nanowires
made of semiconductors such as GaN, SnO,, ZnO, and Si, as well as carbon nanotubes were particularly
attractive for photonics applications. The confinement of light and the cavity-like resonances in the
nanowires are interesting features to realize nanolasers, LEDs, frequency converters, solar cells,
photodetectors, and sensors [Pauzauskie2006]. Some linear optical characterizations of the 1D structures
were performed before 2000, but there were no extensive experimental measurements of the optical
nonlinearities, although some specific works started exploring NLO responses in unidimensional materials
in 2000 [Kishida2000, Ogasawara2000]. In 2002, the first measurement of the NLO properties of a single
semiconductor nanowire was reported [Johnson2002]. In the same year, the saturable absorption
nonlinearity of SWCNTs was demonstrated for the first time [Chen2002]. Generally speaking, prior to 2002,
if the information on the NLO coefficient of a particular 1D material was needed, one usually had to rely on
the bulk value.

3.3.1.2.3. Background for 2D materials

The potential of semiconductor QW structures for efficient third-order NLO processes has been explored
since the early 1980s, especially GaAs-AlGaAs multiple quantum wells (MQWs). Resonant excitonic effects
near the band edge region provide the mechanism for NLA and NLR in these materials [Chemlal985]. By
2000, the importance of semiconductor QWs had already been established, with various applications in
optoelectronics, such as laser diodes, LEDs, solar cells, modulators, and detectors [Fox1996].

Single-layer 2D materials, as we know today, have had very little or almost no scientific impact before
2000. As pointed out in [Mir62014], according to classical physics, at any finite temperature they would be
thermodynamically unstable due to thermal lattice fluctuations (see [Mir62014] and references therein). The
major experimental breakthrough came only in the post-2000 years, after the 2004 publication by Novoselov
et al [Novoselov2004] who first isolated a single-layer 2D material, namely graphene, through the Scotch
tape exfoliation of graphite. After 2004, the field of single-layer 2D materials grew rapidly, with many novel
materials beyond graphene [Lv2015, Zhang2015a], and among the several review articles that have been
published, we highlight those related to NLO in 2D materials published in recent years [Liu2017,
Autere2018a, You2018, Eggleton2019, Yamashita2019, Zhou2020a, Ahmed2021, Vermeulen2022]. Several
other excellent review articles on different aspects of 2D materials can be found in the literature and have not
been indicated here.
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3.3.1.3. Considerations for 0D—1D—-2D materials when performing NLO measurements

Assessing NLO properties in photonic materials, regardless of their dimensions, requires a great amount of
scientific care and proper planning regarding the optical source to be employed, the chosen technique, and
whether the technique will adequately address the desired information. From the optical material point of
view, preferably all the morphological and optical information should be known in order to perform a
proper analysis of the results. Regarding 0D—1D-2D materials, further considerations must be taken into
account. For 0D materials, size and shape must be properly characterized, and the same holds for the
environment in which the 0D material is embedded, e.g., a solvent, in the case of suspensions, a matrix, or a
substrate. It is very important to characterize the NLO properties of the solvent, matrix or substrate. This is
also valid for 1D and 2D materials. Another aspect to be considered, in the case of 0D—1D-2D materials in
suspension, is the scattering, both linear and nonlinear. Therefore, when measuring the linear absorption,
the researcher should also insure the knowledge of the extinction coefficient and, in turn, the scattering
coefficient of the sample. During the NLO measurement, the influence of nonlinear scattering can contribute
to the NLO properties in an undesirable manner. We also point out that for some materials such as graphene,
the level of doping strongly influences the NLO response [Jiang2018b] and as such needs to be specified in
order to correctly interpret the measurement data. When working with 0D—1D-2D materials in a free-space
excitation setup, it is often preferred to use ultrashort excitation pulses (picosecond, femtosecond) to avoid
damage to the sample. We point out that the short propagation distance of the excitation beam through
nanometer-thick 0D—1D-2D materials typically rules out the need for phase matching in NLO experiments.
It is also worth noting that some works on 2D materials report x?/x® values either considering sheet
susceptibilities or bulk-like susceptibilities, as differentiated in the tables below. The units are different for
both cases, as the bulk-like susceptibility is typically assumed to be the sheet susceptibility divided by the
monolayer thickness [Autere2018a]. Finally, we point out that the nonlinearities can also be expressed in
terms of conductivities 0®/o® rather than susceptibilities [Cheng2014]. In addition to these specific
considerations for 0D—1D-2D materials, also the best practices described in section 2 should be taken into
account when performing NLO measurements.

3.3.1.4. Description of general table outline

Tables 4A and B show a representative list of, respectively, second-order and third-order NLO properties of
0D, 1D and 2D materials taken from the literature since 2000, with the entries arranged in alphabetical order.
Based upon the best practices in section 2, tables 4A and B were put together using inclusion criteria for
publications that clearly state the required technical information for an unambiguous and clear identification
of the NLO properties being evaluated. In some cases, publications missing only one important parameter
could unfortunately not be considered, although they were technically sound. The tables are subdivided into
‘Material properties, ‘Measurement details’ and ‘Nonlinear properties’. The same set of columns was used for
0D, 1D and 2D materials. Within each column the information is given in the order of the header
description. The NLO technique used is provided in the ‘Method’ column. Some papers relied on
non-standard NLO measurement techniques (e.g., method listed as ‘Other’) or have notes associated with
their measurement/analysis. These values and information are listed within the ‘Comments’ column. The
works included in the tables nominally report data obtained at room temperature, unless denoted otherwise
in the ‘Comments’ column. For works that report dependences of the nonlinearity on parameters such as
wavelength/energy, polarization, sample size, input fluence, doping level, pulse length/peak power, and
concentration, these dependencies are denoted by ! 234567 respectively, in the ‘Comments’ column. If
dispersive values for the NLO parameter were provided, the cited value represents the peak value for the
material within the measurement range. The tables are restricted to optical nonlinearities up to the third
order, and although higher orders have become of interest [Reyna2017], they are not covered here.

3.3.2. Discussion

3.3.2.1. Advancement since 2000 and remaining challenges

3.3.2.1.1. Advancement and challenges for 0D materials

Since 2000, as the field of 0D semiconductor nanomaterials was growing, stable, monodisperse nanoparticles
were becoming available, and the interest in investigating their NLO response has increased. This was mainly
due to the initial excitement created by the predictions that the NLO response in 0D materials would be
highly enhanced as compared to bulk semiconductors [Brunhes2000a] since the quantum confinement
should enhance the oscillator strength as the nanomaterial size was reduced. Thus, several groups started to
experimentally study distinct optical properties regarding QDs, including the second-order susceptibility
[Brunhes2000b, Sauvage2001], third-order susceptibility [Valdueza-Felip2008], NLR [Wang2019], and NLA
[Pu2006, Wang2019, Alo2020]. The first reports on the magnitude of the 2PA cross-section indicated that,
for spherical nanomaterials, the magnitude of this process was linearly dependent on the nanoparticle
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volume [Pu2006, Padilha2007, Makarov2014]. Strategies to better control the NLO response in 0D materials
have involved band-structure optimization, obtained with PbS QDs [Padilha2011], and shape control
[Scott2015]. In the last decade, a fair amount of effort has been put into gaining further control over the
electronic and optical properties of these nanostructures by developing sophisticated heterostructures, and
by shape control. Strong enhancement of 2PA cross-sections has been reported in CdSe nanoplatelets, with
superlinear dependence on the volume [Scott2015]. On the other hand, sublinear volume dependence has
been recently reported for core/shell heterostructures [Alo2020]. By shape controlling and heterostructuring
these nanomaterials, it is expected that one can obtain further control over the nanomaterials’ NLO response
towards the development of tailored nanostructures for on-demand NLO.

3.3.2.1.2. Advancement and challenges for 1D materials

Since the year 2000, NLO characterizations of 1D structures in various arrangements and shapes were
reported. We give several examples in the following. While many studies focused on experiments involving
many nanowires with a distribution of dimensions, a few involve only single nanowires. SHG and SRS
measurements were performed on individual GaP nanowires [Wu2009, Sanatinia2014]. SHG was also
evaluated in a single GaAs nanoneedle [Chen2010] or even in areas within a single GaAs nanowire with
different crystal phases [Timofeeva2016]. Often, the NLO technique is applied to a collection of 1D
structures, either random or spatially ordered. For example, SHG was measured in an array of GaP nanowires
embedded in a polydimethylsiloxane matrix [Fedorov2020] or grown on a GaP substrate [Sanatinia2012].
Also, Z-scan experiments were performed in single-walled carbon nanotubes (SWCNTs) deposited on a glass
substrate as a thin-film [Se02006] or dispersed in a colloidal suspension [Shi2019a]. In the latter case, the
authors reported that a semiconductor-SWCNTs colloid exhibits a lower saturation irradiance and a lower
2PA coefficient as compared to a mixture of metallic-SWCNTs and semiconducting-SWCNTs [Shi2019a].

One exciting feature of 1D materials is the optical nonlinearity dependence on the structure dimensions
due to resonances or surface effects. For example, in GaP nanowires (with a diameter of 210 nm), the SHG
efficiency increases with increasing equivalent thickness (total volume of nanowires per unit area)
[Fedorov2020], while the SRS irradiance decreases with increasing length [Wu2009]. Furthermore, the SHG
irradiance in GaP nanopillars (with diameters from 100 nm to 250 nm) presents a strong dependence on the
pillar diameter [Sanatinia2012]. Moreover, polarization-dependent measurements can be used to distinguish
between the second-harmonic light generated in bulk or on the surface [Johnson2002, Sanatinia2012,
Sanatinia2014, Sanatinia2015]. Indeed, by using polarization-dependent measurements, the nonlinear
coefficient at the surface of a GaP nanopillar was observed to be approximately 15 times higher than that
from the bulk [Sanatinia2015]. Conversely, the SHG light from a wurtzite (WZ) GaAs single nanoneedle was
shown to be primarily originating from the bulk [Chen2010].

Advances in SHG polarimetry also allow studying the crystal structure of a nonlinear material because
the SHG is sensitive to crystallographic symmetry. A per-pixel analysis of SHG images was used to
distinguish between GaAs nanowires in the pure WZ, pure zinc blende (ZB), WZ-ZB mixed phases, or with
7B rotational twins [Timofeeva2016].

Despite the advancements reported on SHG measurements, this material category is far from being
thoroughly characterized. There is still room to use other second- and third-order NLO techniques to exploit
the large surface-to-volume ratio and strong Mie and Fabry-Perot resonances of the 1D structures.

3.3.2.1.3. Advancement and challenges for 2D materials
The study of NLO in quantum-well structures post-2000 emphasizes the effects of ISBTs rather than
excitonic effects. GaN-AIN and GaN-AlGaN MQW structures have been shown to be particularly suitable for
both second-order and third-order processes resonant at the ISBT frequency [Rapaport2003, Nevou2006].
The advancements in single-layer 2D materials, which can be considered a novel field of research with less
than two decades of R&D, have been outstanding both from the point of view of scientific understanding and
applications. Both refractive and absorptive nonlinearities have been investigated. Particularly, graphene has
been shown to exhibit extremely strong third-order nonlinearities and a low saturable absorption threshold
[Chen2015, Mia02015, Dremetsika2017, Jiang2018b, Soavi2018. Thakur2019], and there are several other
2D materials and particularly TMDs such as MoS, that feature a pronounced second-order NLO response as
well (see, e.g., [Woodward2016, Autere2018b]). Nevertheless, in view of the large family of 2D materials,
further characterization will be required to get the full picture of their NLO behavior, including the
contributions from exciton resonances, free carriers, etc, in order to fully exploit their application potential
in, e.g., optoelectronics [Sundaram2018]. The progress made so far has been promoted by advances in the
2D materials synthesis and proper morphological characterization. Also, the tunability of the NLO response
using electrical gating [Jiang2018b, Soavi2018] is an important advantage for the practical use of both the
refractive and absorptive nonlinearities in, e.g., wavelength converters and saturable-absorption-based
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modelocked lasers, respectively [Vermeulen2022]. Nevertheless, further fabrication improvement is
necessary to achieve large-area films on a wide range of substrates, easy placement of contact points, proper
etching, and advanced metrology control. The NLO characterization might also provide metrology methods
to control parameters of interest for practical NLO applications of 2D materials.

3.3.2.2. Recommendations for future works on 0D—1D-2D materials

The future of NLO in 0D—1D-2D materials relies on a more in-depth NLO characterization of the already
existing materials and on the development of novel materials. A multidisciplinary approach will also be
required to further exploit their optical nonlinearities. Among the novel 0D—1D-2D materials, we highlight
nanodiamonds, nanoporous materials, core—shell nanoparticles, perovskite nanostructures, silicene,
antimonene, MXenes, 2D metal-organic framework nanosheets, boron nitride nanosheets, and metal-based
nanomaterials [Baig2021]. Metal-based nanomaterials are at the basis of nanoplasmonics, and the field of
nonlinear nanoplasmonics is also a flourishing and promising area, opening new avenues for future works
[Panoiu2018, Krasavin2019]. Further NLO research on 0D materials could benefit, amongst others,
biosensing applications [Wang2020]. Regarding 1D materials, assemblies of 1D nanomaterials have been
recently introduced, and their NLO properties need to be further understood [Chen2019a]. 2D materials also
have significant potential for future study and applications. For instance, 2D rare-earth based materials are
opening new avenues [Chen2021], since rare-earth materials are quite well studied and have already found a
great deal of applications. Also, various methods to enhance the NLO response, including plasmonics, gating,
and functionalization [Wei2019] can be further explored. That said, to enable further progress in the overall
understanding of 0D-1D-2D materials, it will be important that future works report in detail both the
fabrication aspects, the material properties and the NLO experiments carried out with the materials.
Parameters such as the linear absorption loss (which is typically quite high in 0D-1D-2D materials) and the
doping level are often overlooked, yet essential to properly evaluate the observed NLO behavior
[Vermeulen2022]. In addition, great care is needed to adequately extract and describe the actual NLO
coefficients that underpin the measurement data, especially when the dependence of the NLO coefficients
on, e.g., wavelength is also being studied. Only such a systematic approach allows building up an extensive
and in-depth understanding of the NLO physics of this promising category of materials and the potential
they hold for NLO applications.
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3.3.3. Data table for 0D—1D-2D materials

Table 4A. Second-order NLO properties of 0D—1D-2D materials from representative works since 2000. Legend for superscripts: see below the table.

Second-Order Nonlinearities

Measurement
Material Properties Details Nonlinear Properties
Pump
Material Method Fabrication Width Crystallinity Wavelength x(2) Reference
Peak power
Substrate Number of Bandgap Peak irradiance degt Additional parameters and comments
layers Beam spot size
Doping level Pulse width
Rep. rate
0D materials
InAs/GaAs SHG MBE — — 7381 nm 120+ 10 mV~! [Brunhes2000b]
QDb GaAs 40 — - o , — Nonlinearity dependence® 2 shown in figure 2 of
_ 200£107"Wm reference paper.
- InAs QD height/diameter = 0.2
- (diameter = 2.3 £ 10~% m)
@
1241072 m V~! (sample)
2+107"m V! (1QD layer)
Pump polarization:
TE (in the layer plane)
InAs/GaAs SHG MBE — — 20000 nm 250+ 10" °m V™! [Sauvage2001]
QD (001)-GaAs 30 — - — x@ for 1 QD layer

1.00+ 1072 Wm—?
150+ 10"*m

1 layer:

InAs QD height of 34+ 1077 m

InAs QD base length 1.5 4 10~% m
GaAs barrier thickness of 5 4= 1078 m

Pump polarization:
50% in the layer plane along [110] direction,
50% along z-growth axis

Temperature: 10 K

(Continued.)
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Table 4A. (Continued.)

Second-Order Nonlinearities

Measurement
Material Properties Details Nonlinear Properties
Pump
Material Method Fabrication Width Crystallinity Wavelength x(2) Reference
Peak power
Substrate Number of Bandgap Peak irradiance defe Additional parameters and comments
layers Beam spot size
Doping level Pulse width
Rep. rate
1D materials
GaP SHG Nanosphere 1.504+ 107" m Monocrystalline 840 nm — [Sanatinia2012]
nanopillars litho- —
graphy/ — 2.26 eV o — Nonlinearity dependence® shown in figure 2(b) of
RIE/ 1.00 4 107% m reference paper
CAIBE 1.00 4 10~ s n=200£107"%
8.20 4 10+7 Hz The efficiency is for the SHG light generated by
GaP (100) the array of nanopillars. The authors did not take
into account the light collection efficiency of the
microscope objective
GaP SHG MBE/ 1.50£10""m Monocrystalline 1048 nm — [Fedorov2020]
nanowires G-coating o o — - n=1.00+10-20%
i - Nonlinearity dependence! shown in figure 2(c) of
ohieon - 500 £ 1070 m the referenc); aper ) “
(i 150 + 10713 bap
8.00 + 1017 Hz
WZ-GaAs SHG MOCVD 1.50£107°m Monocrystalline 806 nm 530+ 107" mV~! [Chen2010]
nanoneedle — .
Silicon (111) — — . _ Diameter:
: 1.5+ 10~° m (base)
sapphire —7
— 300107 m 2410~ mto4 % 10~° m (tip)
120+107 s

7.60 + 1077 Hz

@
aca:53+ 107" mv—!
ccc: 1154+ 10710 mv—!
caa:2.6 =10~ mv—!
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WZ-GaAs SHG MBE 1+£107"m Monocrystalline 820 nm — [Timofeeva2016]
nanowires imaging Silicon (111)/ o o - dis=dy=42+10""mV-! Nonlinearity dependence? shown in figure 5 of
. . - —des — —11 -1 the reference paper
Si3Ny thin o 250+ 10~ m ds; =d;=2.1 %}3 I?IV pap
film 1.00 £ 10" 1B di3 =115£10""mV While they did not extract the tensor elements’
8.00 + 1017 Hz values from the data, the values were used in the
theoretical model that fitted well the experimental
data
The deposition substrate was silicon (111), but
the nanowire was transferred to the Si3Ny thin
film substrate to perform the SHG measurement
2D Materials
Alg0sGagor N/ SHG MOCVD — Monocrystalline 1064 nm — [Passeri2004]
GaN QW — .
GaN-on- 10 — o ds; =224+1072mvV—! Thickness for 1 layer Alg.osGag.ooN/GaN:
(0001)-c- o dszs= 4.80+£1072mV~! 14+£107%m/24+£10"°m
sapphire 500£1077s The authors also provided information for
1.40 4+ 107! Hz Alp15Gag ssN/GaN QW and
Alp0sGagopN/GaN with different thickness
Pump: p and s-polarization
GaN-AIN SHG MBE — — 1980 nm 1.14 4+ 10" 9mv—! [Nevou2006]
+3
Qw AlN-on-c- 200 o 250 £107 W _ Thickness for 1 layer GaN-AIN:
; - 25934+ 107" m/3+10 " m
sapphire . 1.50 & 104 m
6.00 4+ 10~"° s Nonlinearity dependence! shown in figure 3 of

3.00 £ 101! Hz

reference paper

The nonlinear conversion efficiency in MQW
sample was 16 times higher compared to that in a
reference bulk GaN sample

Pump: p-polarization

(Continued.)
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Table 4A. (Continued.)

Second-Order Nonlinearities

Measurement
Material Properties Details Nonlinear Properties
Pump
Material Method Fabrication Width Crystallinity Wavelength x(2) Reference
Peak power
Substrate Number of Bandgap Peak irradiance detr Additional parameters and comments
layers Beam spot size
Doping level Pulse width
Rep. rate
Graphene DFG CVD — — 547 nm 300£107"mV—! [Constant2016]
Quartz Monolayer _ : _ DFG enhanced through plasmonic excitation
03 eV 3.00 £ 10~ m Probe parameters:
1.00£107 s A =615nm
1.00 + 1073 Hz Pulse duration: 1.00 + 107 s
Polarization: p-polarization
Pump: p-polarization
Graphene SHG CVD — Monocrystalline 1035 nm 3.00+ 107" mVv~! [Zhang2019a]
Fused silica Monolayer — : — Electric-quadrupole SHG
Pump: p and s-polarization
0.9 eV - Nonlinearity dependence® in figure 4 of the
200£1071 s reference paper
8.00 + 1017 Hz pap
MoS, SHG Micromechanical 0.654+10"m — 1560 nm 540 £ 1072 mVv—! [Autere2018b]
exfoliation — 2.70 £ 10T W
Monolayer o o — Nonlinearity dependence? in figure 5 of the
Si/SiO; o reference paper
(285 nm) 150 £ 1071 s
5.00 + 1077 Hz
MoS$, SHG Mechanical — — 870 nm 8§+107m2vV—! [Malard2013]
exfoliation —
Monolayer — o — Nonlinearity dependence! shown in figure 3(e) of
Si/SiO; - 6.00 + 10~7 m reference paper.
140 + 10-13 5 Specified second-order nonlinearity is the sheet

8.00 + 1017 Hz

susceptibility
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MoS, SHG Micromechanical —— 1560 nm 220+1072mvVv—! [Sdynitjoki2017]
. 10+3 L .
cleavage Monolayer 800+ 107w _ Nonlinearity dependence®* © in figures 3(c),
$/Si - 4 and 5 of the reference paper
SISIO; 9304+ 10" m bap
150 £ 10~ B s The authors also provided information for 2 and
5.00 + 1077 Hz 5 layers at 1560 nm
Neony = 6.47 £ 107°%
MoS; SHG CVD 7.00+£10"m 1560 nm 290+ 107" mvVv—! [Woodward2016]
imaging . — o .
Si0,/Si Monolayer 1.004 1015 W m—2 — Nonlinearity dependence! shown in figures 3(a)
(300 nm) 1.80 + 10~ m and (b) of the reference paper
1.50 1078
8.90 + 107> Hz
MoSe; SHG Micromechanical 0.65+10"°m 1560 nm 370+ 10" mvVv—! [Autere2018b]
exfoliation 270 £ 103 W
Monolayer o — Nonlinearity dependence? in figure 5 of the
Si/Si0; o reference paper
(285 nm) 150 £ 10~ s
5.00 + 1077 Hz
WS, SHG Micromechanical 0.65+10"°m 1560 nm 1.624+ 10" " mv—! [Autere2018b]
exfoliation 270+ 103 W
Monolayer - — Nonlinearity dependence? in figure 5 of the
Si/Si0; o reference paper
(285 nm) 150 £ 10715
5.00 + 1077 Hz
WS, SHG CVD 6.50+10""m 832 nm — [Janisch2014]
— 450+10"" mV~!
SiO,/Si Monolayer o —
1.80 £ 10~ m
1.06 £107 s
8.80 + 1077 Hz
WS,-MS SHG CVD — 804 nm — [Li2019]
Sapphire Monolayer : — The authors reported a 20-fold enhancement of
400410~ m the optical SHG from WS, monolayers by
8.00+10-15 ¢ cooperating with SiO; dielectric microspheres

8.00 + 1017 Hz

(MSs)

(Continued.)
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Table 4A. (Continued.)

Second-Order Nonlinearities

Measurement
Material Properties Details Nonlinear Properties
Pump
Material Method Fabrication Width Crystallinity Wavelength x(2) Reference
Peak power
Substrate Number of Bandgap Peak irradiance det Additional parameters and comments
layers Beam spot size
Doping level Pulse width
Rep. rate
WSe, SHG Micromechanical 0.65+10"°m — 1560 nm 1.65+ 10" mVv—! [Autere2018b]
exfoliation 270 £ 10T W
Monolayer — o — Nonlinearity dependence? in figure 5 of the
Si/SiO; o reference paper
(285 nm) 150 £10~ 1 s
5.00 £ 10+7 Hz
WSe; SHG CVT 7.00+10" " m — 816 nm — [Ribeiro-Soares2015]
SiO,/Si Monolayer — : 500+ 10" mV~! Nonlinearity dependence? in figure 3 of the
(300 nm) o reference paper
1.074+10" s
8.80 + 1077 Hz
WSe, SHG Micromechanical 1.174£10"m — 1546 nm (0.7 ~0.09) £10~ Y m?> v—! [Rosa2018]
exfoliation —
Monolayer 1.65 eV — Nonlinearity dependence®? in figures 2 and 4 of

Fused silica

(0.8~0.1)+10"°m

200£107 s
8.00 + 1017 Hz

the reference paper

The authors also provided information for 4, 5, 6
and 9 layers at 1546 nm

Specified second-order nonlinearity is the sheet
susceptibility

Superscripts indicate the work reports the nonlinearity dependence on 'wavelength/energy, >polarization, *sample size (width, diameter, thickness, number of layers), *input fluence, *doping level, ®pulse length/peak power,

7concentration.
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Table 4B. Third-order NLO properties of 0D-1D—-2D materials from representative works since 2000. The x® values specified in the table might in some cases be x®) . values containing multiple nonlinearity contributions rather

than just the bound-electronic contribution. Legend for superscripts: see below the table.

Third-Order Nonlinearities

Measurement
Material Properties Details Nonlinear Properties
Pump
Material Method Fabrication Width Index Crystallinity Wavelength x(3) Reference
Peak power
Solvent/ Number of Abs. coeff. Bandgap Peak irradiance 1) cff Additional parameters and comments
Substrate layers Beam spot size
Wavelength Doping Level Pulse width [e%3
Rep. rate
0D materials
CdSe QDs Other (add in Organic 6.00+ 107" m — — 800 nm — [Al02020]
comments) Chemical Route —
— — — - — 2PA cross-section in GM (107°° cm* . s .
Toluene photon™1)
— 1.96 eV - 2.00 £ 10 GM
8.00 £ 1075 The authors also provided NLO parameters for
1.00 £ 107 Hz different diameters (3 + 1072 m, 4+ 10" m
and 5 4+ 1077 m) and doping levels
The technique is called MPAPS. The bandgap is
defined as the excitonic peak position in figure
S1 of reference paper
CdSe QDs Other (add in Organic 4804+ 10" m — — 800 nm — [Pu2006]
comments) Chemical Route —
— — — - — 2PA cross-section in GM (107" cm* . s .
Toluene photon—1)
— 2.04 eV - 1.03 £ 1074 GM
1.00 £ 1072 s

8.20 £ 1017 Hz

The authors also provided NLO parameters for
different diameters (2.4 & 10~? m to
464107 m)

Nonlinearity dependence® shown in figure 1 of
the reference paper

Two-photon excited photoluminescence

(Continued.)
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Table 4B. (Continued.)

Third-Order Nonlinearities

Measurement
Material Properties Details Nonlinear Properties
Pump
Material Method Fabrication Width Index Crystallinity Wavelength x(3) Reference
Peak power
Solvent/ Number of Abs. coeff. Bandgap Peak irradiance 2eff Additional parameters and comments
Substrate layers Beam spot size
Wavelength Doping Level Pulse width [e%)
Rep. rate
CdSe/CdZnS Other (add in Organic 124+ 108 m — — 800 nm — [Al02020]
QDs comments) Chemical Route —
— — — . — 2PA cross-section in GM (107 cm* . s .
Toluene photon™1)
— 2.03 eV - 2.70 £ 10 GM
8.00 107" Nuclei diameter: 4.0 nm
1.00 + 10+° Hz Shell thickness: 4.2 nm
The authors also provided NLO parameters for
shell thicknesses of 1.2 nm, 2.5 nm, and 3.0 nm
Nonlinearity dependence! shown in figure 4 of
the reference paper
The technique is called MPAPS. The bandgap
defined as the excitonic peak position is shown
in figure S1 of the reference paper
CdTe QDs Other (add in Organic 540 £ 10" m — — 840 nm — [Pu2006]
comments) Chemical Route —
— — — . — 2PA cross-section in GM (107°° cm* . s .
Toluene photon™")
— 1.8eV - 7.96 £ 101 GM
1.00£10"5s

8.204+ 1017 Hz

The authors also provided NLO parameters for
different diameters (4.4 + 10~ m to
5.2 4+ 10~? m) and doping levels

Nonlinearity dependence® shown in figure 1 of
the reference paper

Two-photon excited photoluminescence
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GaN-AIN QD FWM MBE — — — 1500 nm 1.3+ 10 % esu [Valdueza-Felip2008]
AlIN-on-sapphire 20 — — : — The authors also provided NLO parameter for
o 200 layers GaN-AIN QD
—13
1.00 £ 10+3 $ For 1 layer: GaN QD heightis 1.1 & 10~ m and
1.00 £ 107 Hz AIN barrier thickness is 3 &= 107° m
Graphene QDs ~ Z-scan — <5+107°m — — 355 nm — [Wang2019]
Water — 253+ 10 m~! — ;6 4 10+ W m—2 (5.7~1.2) Details regarding fabrication: www.strem.com/
230 +£ 10+ m +107 Y m>wW-! catalog/v/06-0334/44/nanomaterials_1034343-
- - n 98-0
1.00 £ 10Jrl s 1.40 + 10— m W—!
1.00 £ 107" Hz Peak irradiance: 2.5 £ 1073 Wm™2 to
26+ 1078 Wm™2
No NLO response is presented at 532 nm and
infrared regions. At 355 nm, authors have
brought out a clear saturable absorption effect
1D materials
GaP nanowires SRS Pulsed Laser 21041077 m — Monocrystalline 514.5 nm — [Wu2009]
Threshold Vaporization —
(PLV) — — — o — Authors studied stimulated Raman scattering
4004 10~"m from GaP NWs as a function of their length
Silicon cw

Raman shift (m™!):
3.62 4+ 10T* (TO)/3.98 + 10T* (LO)

The quality factor for the nanowire segment was
measured as Q 18 000 by assuming

gRaman = 10 cm/GW (the gain coefficient for
GaP bulk material from Rhee et al [Rhee1984])

(Continued.)
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Table 4B. (Continued.)

Third-Order Nonlinearities

Measurement
Material Properties Details Nonlinear Properties
Pump
Material Method Fabrication Width Index Crystallinity Wavelength x(3) Reference
Peak power
Solvent/ Number of Abs. coeff. Bandgap Peak irradiance 1 eff Additional parameters and comments
Substrate layers Beam spot size
Wavelength Doping Level Pulse width a;
Rep. rate
s-SWCNT Z-scan CoMoCAT 0.6+10"°m — — 1064 nm — [Shi2019a]
catalytic CVD to . — S o .
process 11410~°m 22.6 % — 3204102 Wm—2 — Saturation irradiance: 2.13 + 107" W m
(SigmaAldrich) . 1064 nm — - . 290 £ 1072 mw~! 14% non-saturable absorption
4.004+107"s
Petroleum ether 1.00 + 10+ Hz
SWCNT Z-scan HIPCO SWNT 1.00 £ 10° m — — 532 nm ( 14+1075 4+ [Se02006]
_ ; —16Y 12 V-2
Glass — 840+ 10T m~! — #IEA0T eV —
: 1.60 £ 10710 Wm—2
530 nm _ 120+£107°m -
—9
8.00510"%5 710107 mW~!
1.00 £ 107! Hz
SWCNT Z-scan CoMoCAT — — — 1064 nm — [Shi2019a]
catalytic CVD —
process 17.2 % — 320 £ 102 Wm—2 — Saturation irradiance: 2.95 4 10712 W m—2
(SigmaAldrich) 1064 nm — - 5204+ 1072 mwW™! 12% non-saturable absorption

Petroleum ether

4004107
1.00 &+ 10+ Hz
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2D materials

AlGaN-GaN Nonlinear MBE — — 1500 nm 5004 1071 m> v—2 [Rapaport2003]
QW transm./refl. _
- i _ =17 2 Ww—! NLO parameters are for GaN/Al 65Gag 35N/GaN
c-Sapphire 100 7.00 £ 1010 W m—2 24107 m* W p 0.65G20.35
o — 4004 10-10 m W—! The technique used to measure 1, was
1.004+ 103 cross-phase modulation. a; is due to SA
+3
1.00 &+ 107 Hz The saturation irradiance was measured using
many different pump wavelengths (see figure 3
of the reference paper)
Beam radius of 8.5 4= 10> m for the saturation
irradiance measurement
Pump and probe polarization: p-polarized
Thickness for 1 layer of GaN/Alg 65 Gag 35N/GaN
124107 m/1.5+ 10" m/7.8 £ 107" m
[(+£3 periods) barrier]
Information also for GaN/Alg15Gag ssN/GaN
Black THG Exfoliated 950+ 10°m — 1560 nm 1.64 £ 10~ m? v—? [Autere2017]
phosphorus — o )
Glass + AlOx 20 7.00 £ 1077 m~! 558 4 1015 W m—2 Nonlinearity dependence? in figure 4(b) of the
encapsulation 520 2004 10~5m - reference paper
1.00 £ 10755
8.00 4+ 107° Hz
Black Z-scan Solvent exfoli- — — 800 nm 3.01 £ 10" % esu [Xu2017b]
phosphorus ation + gradient —
centrifugation 13t 15 3.86 4+ 1072 m~! 3544 10+ Wm—2 207% 1072 m? w! Saturation irradiance: 6 £ 10713 W m—2
NMP 800 nm - — Nonlinearity dependence? in table 1 of the

1.00+10" s
1.00 + 1013 Hz

reference paper
Real part of x©®)

28.5% non-saturable absorption

(Continued.)
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Table 4B. (Continued.)

Third-Order Nonlinearities

Measurement
Material Properties Details Nonlinear Properties
Pump
Material Method Fabrication Width Index Crystallinity Wavelength x(3) Reference
Peak power
Solvent/ Number of Abs. coeff. Bandgap Peak irradiance 1 eff Additional parameters and comments
Substrate layers Beam spot size
Wavelength Doping Level Pulse width a
Rep. rate
Black Z-scan Nanoplatelets 30+ 10" mto — — 800 nm — [Zheng2015a]
phosphorus obtained by 604+ 107" m . — s
grinding bulk around 7% - 130+ 1016 w2 120 £ 1077 mo W -
. 50 to 100 _
material and 500 nm to o 4004+ 107> m 450+ 10—19 m w—!
then dispersed 2000 nm 1.00 10755
1.00 + 1073 Hz
NMP/PVA
Electrochemical ~ Z-scan Electrochemical 3.00+ 107" m >2.0 above — 800 nm — [Ren2016]
graphene oxide method/ Thin film 350 nm 0.88 eV o 3.63+ 10" B m2wW-! Nonlinearity dependence* in figures 3 and 4 of
(GO) Vacuum —
. _ B the reference paper
filtration o 1.00+ 10> m 700 + 10— m W-!
- ; —13 2 w1 427 m—2
300 nm to 850+ 10715 17i83.63 107 m> W' at8 £ 1072 Jm
- 1800 nm 1.00 & 104 Hz 115282+ 107 P m2W—lat1+ 10t Jm—2
mis .91+ 107 ¥ m?> W at2 £ 1073 Jm~2
mis0.57 £ 10" ¥ m> W at4 £ 1073 Jm~2
Nonlinear absorption coefficient is
7+107" mWat4+ 1073 Jm~?
GaN-AIN QW Nonlinear MBE — — — 1550 nm 550 £ 10~ ¥ m?v—2 [Hamazaki2004]
transm./refl AlN-on- 292 — — o — Saturation irradiance: 2.7 £ 1014 W m—2
(0001)sapphire 110 £ 10+ Wm™

1.00+ 1075
1.00 £ 1075 Hz

Thickness for 1 layer of GaN-AIN:
11+107° m/2.8 £107° m

Probe parameters:

A = 1550 nm

Irradiance = 1.1 + 1072 W m—2
Pulse width =14+ 10755
Polarization: p-polarized

Pump polarization: p-polarized
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GaN-AIN QW FWM MBE — — — 1500 nm 2.40 £ 1077 esu [Valdueza-Felip2008]
AIN-on-sapphire 100 — — : — Thickness for 1 layer of GaN-AIN QW:
. 15+£10°m/1.5+ 10 m
_ _ . _
1.00 £ 10+3 $ Pump polarization:
1.00 & 10™° Hz p-polarized
Graphene Z-scan CVD — — — 435 nm to 1100 nm — [Chen2015]
Quartz Monolayer 7.14+10T" m~! — 2_00 L0t Wm—2 — Saturation irradiance:
to 254 10-5 m t 23+10"T8Wm 210215+ 104 Wm™2
105+ 10+ m—1  02¢V : 5m o 3.6+107°mW~! to
35410 1Isn 86+10°mw! Nonlinearity dependence! in figure 3 and in
435 nm to L50 £107"s table S1 of the reference paper
1100 nm 1.00 £ 107 Hz
Authors confirmed via email that a equals
7.1 £ 10" m~" t0 10.5 & 1077 m~! (typo in
the exponent in suppl. info)
Graphene Other (add in CVD — — — 1600 nm (6 i9.6)£107m? V=2 [Dremetsika2017]
comments) —
Glass Monolayer — — 5004+ 102 W m—2 (1 i1.6) 107 m>W~! Technique: optically-heterodyne-detected optical
B 036V to 2004 10=5 m B Kerr effect
0.2eV 1.80 £ 10;? S Probe parameters:
8.20 = 107" Hz A = 1600 nm
Irradiance = 3 4+ 10T W m™2
Pulse width =1.8 £ 107 s
Beam radius = 1.5+ 10> m
Specified x® values are for Xy + Xogyx
Graphene FWM CVD — — — 1040 nm 3.00 4+ 1077 m?v—2 [Jiang2018b]
Fused silica Monolayer — — : — Nonlinearity dependence® in figure 5(d) of the
0ev o reference paper
_ e _
200+ 107 s

8.00 + 1077 Hz

Probe parameters:
A = 1300 nm

Pulse width = 2.00 £ 1072 s

(Continued.)
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Table 4B. (Continued.)

Third-Order Nonlinearities

Measurement
Material Properties Details Nonlinear Properties
Pump
Material Method Fabrication Width Index Crystallinity Wavelength x(3) Reference
Peak power
Solvent/ Number of Abs. coeff. Bandgap Peak irradiance 1 eff Additional parameters and comments
Substrate layers Beam spot size
Wavelength Doping Level Pulse width (e %)
Rep. rate
Graphene Z-scan CVD — — — 1930 nm — [Mia02015]
Quartz 6t08 14.9 % — 5_75 410+ wm-2? +58%E 10" m>w—! Saturation irradiance: 1 + 10710 W m—2
1000 nm to 0eV 3.50 £ 10_;“‘ — Nonlinearity also at 1562 nm specified in the
2500 nm 2.80£10 $ reference paper
323+ 107 Hz
Graphene THG CVD — — — 3100 nm 8.00 107" m>V—2 [Soavi2018]
Sapphire Monolayer 2.3% — ;10 L 10t2Wm—2 — Nonlinearity dependence’® in figures 3(b) and
_ (d) of reference paper
1250 nm 0.25eV 470 £10 lm — pap
3.00£ 107" s n:14+ 10" 0%
8.00 + 1077 Hz
Graphene Z-scan CVD — — — 900 nm — [Thakur2019]
Quartz Monolayer — — 4_59 L0+ wm—2? 108E 107 2m>wW—! Nonlinearity dependence® ¢ in figures 2(b)
v and 5(b) of the reference paper
N Oe - N

1.00 £ 10755
8.00 + 1077 Hz
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Graphene oxide ~ Z-scan Modified 1.00+£107°m — — 1560 nm — [Xu2017a]
(GO) Hummers —
method/ Thin film — — 380 + 10+2 Wm—2 430+ 1074 m?w-! Nonlinearity dependence® in figure 4(a) of the
Self-assembly/ - - _ . reference paper
Vacuum 6.70 £ 107 s
filtration process 2.00 £ 1077 Hz
H,S04/
H,0,/deionized
water/methanol
mixture
Graphene oxide ~ Z-scan Self-assembly 8§+ 10" mto — — 800 nm — [Zheng2014]
(GO) 24+107°m —
H,S0,/ — — - — 0 i54.00 £ 107" m W' at 32 uJ cm 2
H,0,/deionized  Thin film 6
— — 250 £107°m 400+ 107" mW™! Nonlinearity dependence* in figure 4(a) of
water/methanol 1.00 4+ 1013
. : $ reference paper
mixture o
Information also for reduced Graphene Oxide
(rGO)
Graphene Z-scan Vacuum 1.00+£107°m — — 800 nm — [Fraser2015]
oxide (GO) with filtration process —
gold Thin film <20% — o 2404+ 1071 m>w—! Nonlinearity dependence’ in figure 4 of the
. Water reference paper
nanoparticles 800 nm _ — 1.00 4 10—% m W—!
- n, of reference GO film is 4 & 10~ m? W—!
o, of reference GO filmis 1.7 £ 10~ m W—!
Input fluence is 1.4 4+ 1072 J m—2
Mogs W55, Z-scan CVT 2204107 m — Polycrystalline 1064 nm [ (418~232)+10"% [Bikorimana2016]
— +1i(5.73 ~ 1.12) £ 10~ "] esu
: —2
Glass Multilayer 6.22 + 107~ (-) — 850 & 10—16 W m—2 —
- (8.73 ~ 1.47)
1064 nm — 410~ m2w-!

2.50 £ 107 s
2.00 4+ 107! Hz

(191 ~0.78) 21079 mwW—!

(Continued.)
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Table 4B. (Continued.)

Third-Order Nonlinearities

Measurement
Material Properties Details Nonlinear Properties
Pump
Material Method Fabrication Width Index Crystallinity Wavelength x(3) Reference
Peak power
Solvent/ Number of Abs. coeff. Bandgap Peak irradiance 1) eff Additional parameters and comments
Substrate layers Beam spot size
Wavelength Doping Level Pulse width [e%)
Rep. rate
MoS, THG Micromechanical 065+£10°m  — — 1560 nm 3.60 107 m> V2 [Autere2018b]
exfoliation 270 £10 W
Monolayer — — o — Nonlinearity dependence? in figure 5 of the
Si/§i0; - reference paper
(285 nm) n N 150 107" N
5.00 £ 10%7 Hz
MoS, THG Micromechanical —— — — 1560 nm — [Sdynitjoki2017]
cleavage 8.00 £ 10T W o )
Monolayer Close to 0 — o — Nonlinearity dependence* * ¢ in figures 4 and 5
Si/Si0, —7 of reference paper
1560 nm _ 9.30+1077 m _ e
150 £ 1071 s - 4. o
5.00 £ 10" Hz
Mo$S; THG imaging ~ CVD 7.00 £ 107" m — — 1560 nm 240+ 107 m? V2 [Woodward2016]
Si0,/Si Monolayer o o - o Nonlinearity dependence! shown in figures 3(a)
- and (b) of the reference paper
(300 nm) _ _ 1.80 £ 106 m _ pap
150 £ 10— B The authors provided also the sheet
8.90 & 10+ Hz susceptibilities
MoS, Z-scan Liquid-phase >8+10""m — — 532 nm [ (141~65)+10"1 [Wang2014a]
exfoliation — (9.9 ~3.3) £ 107 !%] esu
technique 15 2574107 m~!  Indirect: 1.2 eV/ o Saturation irradiance:
5 direct: 1.8 eV (2.5~ 1.2) (1.13~0.52) £ 10t Wm—?2
532 nm - — —
Cyclohexyl 10 +107 1 m>w—!
. — 100107 7s The authors also provided NLO parameters for
pyrrolidinone 1.00 & 10+ H
. z (26.2 ~ 8.8) measurements at 515 nm, 800 nm, 1030 nm and
+107" mw™! 1064 nm

sulysiiand dol

100S€0 (£€207) § somor0yd “shyd *[

10 72 U9[MIUWLIDA N




L9

MoS, I-scan with CVD — — — 1030 nm — [Li2015]
microscopic -
. . Si0,/Si and 1,4,6 — — — Saturation irradiance:
imaging — s .
quartz (300 nm) B B 1734+ 10~5m (7,62~ 0.15) (64.5~1.53) = 107° Wm
3.40£107 s 410~ ¥ mw-!
1.00 + 1073 Hz
MoS, Z-scan CVT 250+ 10°m — Polycrystalline 1064 nm (8.71 ~ 1.59) & 1010 [Bikorimana2016]
) — i(1.50 ~ 0.88) £ 107! esu
Glass Multilayer 5.034+ 107" (-) — 5.66 4 10—15 W m—2 a, due to SA
(1.88 ~ 0.48)
1064 nm — - —16 2 W1
250 £107 1 s £107FmTwW
2.00 £ 107! Hz (3.8~ 0.59)
+ 107" mw!
MoSe; THG Micromechanical ~ 0.65+107°m — — 1560 nm 2204+ 107 m>vV—? [Autere2018b]
exfoliation 270 £ 103 W
Monolayer — — o — Nonlinearity dependence? in figure 5 of the
Si/Si0, o reference paper
(285 nm) 150 £ 1013 s
5.00 + 10177 Hz
MoSe; Z-scan Liquid-phase — — — 800 nm 1(1.45 ~ 0.34) [Wang2014a]
exfoliation — + 107 esu
. Mono or triple  7.93 41072 m~! Indirect: 1.1 eV/ Saturation irradiance:
technique _
Direct: 1.5 eV o — (590 ~225) £ 1071 Wm™—2
Cyclohexyl 800 nm 1004 10-13 _
pyrrolidinone — : “ $ (2.54 ~ 0.60) The authors also provided NLO parameters for
1.00 £ 107 Hz + 107 ¥ mw—! measurements at 515 nm, 532 nm, 1030 nm and
1064 nm
MoTe, Z-scan Liquid-phase — — — 1064 nm [ (0.92~0.15)+ 101 [Wang2014a]

exfoliation
technique

Cyclohexyl
pyrrolidinone

Mono or triple

1.07+ 1072 m~!

1064 nm

_ i(2.27 ~0.39) &+ 10~ 12] esu
Indirect: 1.0 eV/

direct: 1.0 eV B (0.160 ~ 0.027)
—16 2 —1
o 1.00£107 10 107 m=wW
4
1.00 + 10T Hz (2.99 ~ 0.52) +
10" " mw™!

Saturation irradiance:
(0.19 ~ 0.04) + 1073 Wm—2

The authors also provided NLO parameters for
measurements at 515 nm, 532 nm, 800 nm and
1030 nm

(Continued.)
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Table 4B. (Continued.)

Third-Order Nonlinearities

Measurement
Material Properties Details Nonlinear Properties
Pump
Material Method Fabrication Width Index Crystallinity Wavelength x(3) Reference
Peak power
Solvent/ Number of Abs. coeff. Bandgap Peak irradiance 1) cff Additional parameters and comments
Substrate layers Beam spot size
Wavelength Doping Level Pulse width [e%3
Rep. rate
Reduced GO Z-scan Self-assembly 84+ 107" mto — — 800 nm — [Zheng2014]
—6 .
(rGO) H,S0,/ 2£1070m _ _ 1.00 + 10~ 3 m2 W—! Fully rGO with no oxygen-containing group for
ioni i - optical fluence > 50 1] cm 2
H,0,/deionized Thin film B B 2504+ 10~5 m B P 0}
W?ter/ methanol 1.00 4+ 10" Nonlinearity dependence* in figure 4(a) of
mixture — reference paper
Information also for Graphene Oxide (GO)
WS, THG Micromechanical 065+£10°m  — — 1560 nm 240+ 107" m?vV—? [Autere2018b]
exfoliation 270 £ 10T W
Monolayer — — o — Nonlinearity dependence? in figure 5 of the
Si/Si0, o reference paper
(285 nm) - N 150 £ 1071 s N
5.00 £ 10" Hz
WS, Z-scan CVT 2.00£107°m — Polycrystalline 1064 nm [(2.31~0.21)+ 1078 [Bikorimana2016]
) . — i(1.75 ~ 0.11) & 10~ "] esu
Glass Multilayer 2.54+1071 (-) — 230+ 10~15 W m—2 @, due to SA
(5.83 ~ 0.18)
1064 nm — -

2504+ 107"
2.00 £ 101! Hz

+107 5 m2w!

(5.1 ~0.26)
+107 ' mw™!
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WS, Z-scan Vapor phase 7.50 £ 1071 m — 1040 nm (4.82 41077 + [Dong2016a]
sulfurization of P — 11.49 £ 107%) esu ) ) S
metal films — 7.174+ 107" m — 235 4 10+ W m—2 Nonlinearity dependence’ in table 2 and
B 1.28 £107 ¥ m? w—! figure 4(d) of the reference paper
Quartz 1040 nm — 3404 10-13
. S 30710  mW™!
1.00 & 1072 Hz
WS, Z-scan Vapor phase — — — 1030 nm i4+10"%esu [Zhang2015b]
sulfurization of . . — ) ) .
metal films 1to3 717 £10t" m— — 3804+ 104 Wm—2 — Nonlinearity dependence' in table 2 of the
reference paper
1030 nm — - 1.00 £ 107" mW—!
Fused quartz 3.40 4+ 10~
: - S In reference paper, also values for pump and
1.00 £ 107" Hz probe at 800 nm and 515 nm
WS, Z-scan CVD 7.00+107""m — — 800 nm — [Zheng2015b]
Sapphire Monolayer 8.88 £ 10T m~! — : 8104+ 107 m>w—! —
800 nm — 400£1077 m 370 41076 m W~
1.00£107 s
1.00 £ 1013 Hz
WSe, THG Micromechanical ~ 0.65+107°m — — 1560 nm 1.00 £ 10~ m? v—? [Autere2018b]
exfoliation 270 £ 10T W
Monolayer — — o — Nonlinearity dependence? in figure 5 of the
Si/SiO, o reference paper
(285 nm) 150 10715
5.00 £ 10" Hz
WSe, THG Micromechanical 1.17 £107°m — — 1546 nm (0.9 ~0.2) [Rosa2018]
exfoliation — +107 28 m>v—?
Monolayer — 1.65 eV Nonlinearity dependence®? in figures 2 and 4 of

Fused silica

(0.8~0.1)£10"°m
2004+ 10" s
8.00 £ 1017 Hz

the reference paper

The authors also provided information for 4, 5,
6, and 9 layers at 1546 nm

Specified third-order nonlinearity is the sheet
susceptibility

(Continued.)
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Table 4B. (Continued.)

Third-Order Nonlinearities

Measurement
Material Properties Details Nonlinear Properties
Pump
Material Method Fabrication Width Index Crystallinity Wavelength x(3) Reference
Peak power
Solvent/ Number of Abs. coeff. Bandgap Peak irradiance M eff Additional parameters and comments
Substrate layers Beam spot size
Wavelength Doping Level Pulse width a
Rep. rate
WSe, Z-scan CVT 220£10"°m — Polycrystalline 1064 nm (9.74 ~ 1.19) 107 [Bikorimana2016]
— + 1(6.35 ~ 1.35)
Glass Multilayer .55+ 107" (-) — 850 4+ 10~ Wm—2 + 10~ esu —
1064 nm - 5504+ 10-11 s (247 ~ 1.23)
2.00 + 10+ Hz 1072 m* W
(1.9~ 0.57)
£ 107" mw—!
WSe, Z-scan Vapor phase 1.144+107%m — — 1040 nm (724107104 [Dong2016a]
sulfurization of — i2.44+107%) esu
metal films — 1134108 m~!  — 8114 10+13 W m—2 Nonlinearity dependence® in table 2 and
1.87 £107 " m? W—! figure 4(d) of the reference paper
Quartz 1040 nm — - s
340+ 107 "s 480+ 10~8 m W—!

1.00 4 1072 Hz

Superscripts indicate the work reports the nonlinearity dependence on 'wavelength/energy, *polarization, *sample size (width, diameter, thickness, number of layers), *input fluence, *doping level, ®pulse length/peak power,
7 .
concentration.
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3.4. Metamaterials: data table and discussion
Team: Adam Ball, Ksenia Dolgaleva, Daniel Espinosa, Nathaniel Kinsey, Mikko Huttunen (team leader),
Dragomir Neshev, Ray Secondo

3.4.1. Introduction

3.4.1.1. Metamaterials definitions

Efficient NLO interactions are essential for many applications in modern optics. However, they typically
require high-irradiance laser sources or long interaction lengths. These requirements cannot be satisfied in
the small-footprint optical devices used in many applications. With the growing importance of PICs and
ultracompact nanostructured optical devices, enabling efficient NLO interactions at the nanoscale is
essential. This may be achieved in nanostructured optical devices with engineered NLO responses. Along
these lines, metamaterials offer several advantages such as the ability to confine light for enhanced
nonlinearities as well as to shape and control scattered light in new ways [Chen2018, Minovich2015,
Husu2012, Litchinitser2018, BinHasan2014, Kauranen2012, Smirnova2016, Chang2018b, Butet2015,
Huang2020, Gigli2019a, Reshef2019, DeAngelis2020]. It is also worth noting that in ultra-thin metasurfaces
the phase-matching condition is largely relaxed. It is expressed in the form of transverse phase matching,
together with mode-matching that replaces the conventional longitudinal phase matching for propagating
waves in bulk materials. Recent work also demonstrates that stacked metasurface structures can be
longitudinally phasematched by utilizing phase-engineered metasurfaces [Stolt2021].

In this section, we focus on highlighting recent achievements in the broader field of NLO metamaterials
and NSMs. Metamaterials are artificial nanostructures comprised of building blocks called meta-atoms,
which serve as their structural units. The constituent materials can be metallic [Kauranen2012, Husu2012,
BinHasan2014, Litchinitser2018], semiconducting [Vabishchevich2018, Shcherbakov2017] or dielectric
[Sain2019, Gigli2019a, Yan2020]. Moreover, one can choose the arrangement geometry of the building
blocks in such a way as to change the enhancement mechanism. The structural units can be positioned
in a regular or irregular 2D array to form a 2D metamaterial or a metasurface [Kauranen2012,
Saad-Bin-Alam2021a]. Alternatively, they can comprise 3D metamaterials through structures such as
extruded 2D arrays, multi-layer films [Stolt2021, Suresh2021], or fully 3D nanostructure arrays [Kadic2019].
The latter requires far more sophisticated fabrication approaches and is not discussed in this work. We focus
instead on the NLO performance of more practical metasurfaces and planar nanostructures made of metal,
semiconductor and dielectric materials.

Since metamaterials are manmade artificial materials different from all other material types considered in
this article, a short tutorial on metamaterials is provided below.

3.4.1.2. Mechanisms of nonlinearity enhancement

The power of artificial nanostructures resides in their ability to manipulate the flow of light in a manner not
accessible in bulk materials by engineering optical confinement, scattering and interference on a
subwavelength scale. An artificial nanostructure thus represents a new material comprised of the structural
elements (meta-atoms), which has an optical response that can be very different from that of its constituent
materials. There are several mechanisms responsible for the enhancement, suppression and/or sign reversal
of the NLO effects attainable in nanostructures. Although most of the mechanisms are based on the
resonances associated with the meta-atoms, the origin and type of resonance differ depending on the type of
metasurface, as discussed below. Moreover, there are some additional mechanisms of enhancement one can
explore, which are briefly described as well.

Metal-dielectric nanostructures with meta-atoms built of noble metals, such as silver and gold, exhibit
surface plasmon polaritons and localized surface plasmon resonances (LSPRs) associated with the
meta-atoms (often referred to as antennae) [Chen2018, Gomes2020, Lis2014, Wurtz2008, Minovich2015,
Krasavin2018, Husu2012, Litchinitser2018, BinHasan2014, Deka2017, Kauranen2012, Smirnova2016,
Chang2018b, Butet2015, Huang2020, Gwo2016]. LSPRs are responsible for the localization, and subsequent
increase, of the electric field strength in the vicinity of the meta-atoms, which contributes to the
enhancement of the NLO interactions. While the metallic meta-atoms can themselves exhibit nonlinearities
due to the strong fields outside of the meta-atom, plasmonic structures are typically employed to enhance
the electric field within another nonlinear medium, such as lithium niobate or a nonlinear polymer. This
allows for the separation and optimization of the confinement and nonlinear material. Yet, the Q- factors of
LSPRs are generally very low (<10) due to high absorption losses associated with metals. High ohmic losses
and Joule heating limit the applicability of the noble metal metasurfaces in practical NLO devices unless
other mechanisms of enhancement are explored in addition to LSPRs [Reshef2019a, Saad-Bin-Alam2021a,
Huttunen2019, Khurgin2013]. For example, in regular metal-dielectric metasurfaces, there exist collective
resonances called surface lattice resonances (SLRs) [Michaeli2017], which exhibit much higher Q-factors on
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the order of 10° [Saad-Bin-Alam2021a]. SLRs arise from the coherent scattering of light where the periodic
structure introduces interference to amplify the resonance and its associated Q-factor. In this way, the
collective scattering of the entire lattice, as opposed to the enhancement provided by a single meta-atom,
contributes to the NLO processes much more efficiently.

Dielectric metasurfaces, including those made of semiconductors, have appeared in recent years as a
solution to overcome limitations associated with the high losses of metals [Smirnova2016, Gigli2019a,
Yan2020, Hopkins2015, Shcherbakov2017, Sain2019, Vabishchevich2018]. Dielectric metasurfaces are
typically divided by the values of their refractive indices into high-index (n > 3.5), such as Si, GaAs, Ge,
mid-index (2 < n < 3.5), such as TiO,, Se, SiC, Si3Ny, and low-index (n < 2), such as silica- and
polymer-based metasurfaces, which are not commonly used in NLO due to their poor confinement or weak
NLO characteristics [Yan2020]. The primary mechanisms of enhancement of the NLO interactions in
dielectric metasurfaces are electric and magnetic Mie resonances associated with their individual building
blocks. These resonances result in moderate Q-factors of 10-100, depending upon the index [Rybin2017],
and fields localized within the antenna, enabling enhanced effective NLO responses. In this sense, their
nonlinearity is derived from the nanoantenna’s constituent material, coupling the linear index and
nonlinearity. While this coupling generates some restrictions in the case of second-order nonlinearities, for
third-order effects, higher index (needed for high-Q) materials also generally exhibit larger nonlinearities
[Sheik-Bahae1990a]. High-quality-factor phase-gradient dielectric metasurfaces with a Q-factor around
2500 have recently been demonstrated and hold the potential for NLO applications and on-chip lasing
[Lawrence2020]. Moreover, the NLO performance of dielectric metasurfaces can be boosted by exploiting
multimode interference, resulting in Fano resonances [Hopkins2015] or non-radiative anapole modes
[Yang2018a]. Dielectric metasurfaces hold promise for infrared imaging [Camacho-Morales2021], harmonic
generation and other areas of application of NLO processes [Yan2020].

Photonic bound states in the continuum (BIC) structures create localized eigenstates with an infinite
lifetime coexisting with the continuous spectrum of radiative modes [Bykov2020] and complement the more
general photonic topological insulating structures [Khanikaev2013]. Localized types of practical BIC
nanostructures are a subgroup of dielectric metamaterials where a special type of resonance, having an
ultra-high Q-factor on the order of 107 and higher, is employed [Koshelev2019a, Wang2020a,
Koshelev2019b, Koshelev2020, Bernhardt2020, Liu2019b, Azzam2021]. They represent localized states with
energies embedded in the continuum of the radiating states. The basic idea behind BICs is the lack of
coupling between the resonant mode and all the radiation channels of the surrounding space. Different BICs
can be categorized based on the radiation suppression mechanisms. In practice, infinitely high Q-factors of
BICs are limited by finite sample sizes, material absorption, symmetry breaking and fabrication
imperfections. These limitations result in quasi-BICs with large but finite Q-factors, rendering the
opportunity for radiation collection, important for practical nonlinear photonic devices. Dynamical
nonlinear image tuning via polarization and wavelength tuning in BIC nanostructures has been
experimentally demonstrated [Xu2019], opening the door for application of such nanostructures in tunable
displays, nonlinear holograms and other areas.

Epsilon-near-zero (ENZ) nanostructures [Reshef2019, Neira2015, Alam2018, Suresh2021, Wen2018,
Deng2020, Yang2019] represent a new group of metamaterials designed in such a way that the real part of the
effective dielectric permittivity is vanishingly small at a certain wavelength called zero-permittivity
wavelength Apnz. In contrast, near-zero-index (NZI) metamaterials have the effective refractive index reg
vanishing at a specific wavelength called zero-index wavelength Az;. Such materials are generally achieved
through the combination of metal and dielectric constituents or through the use of resonant structures
[Kinsey2019]. There are several mechanisms of enhancement of the NLO interactions acting as the basis of
ENZ and NZI metamaterials. First, near the ENZ/NZI wavelength, the strong dispersion of the index gives
rise to slow-light propagation, which results in temporal compression and enhancement of the electric field
[Khurgin2010]. Second, the small magnitude of the permittivity in the ENZ region gives rise to additional
electric field-enhancement, through the continuity of the normal component of the displacement field D | .
Lastly, ENZ and NZI provide reduced phase advance within the bulk and facilitate easier phase matching.
However, it should be noted that these properties result primarily from slow light effects and are not present
in NZI schemes which maintain a finite group velocity [Khurgin2019, Khurgin2020].

3.4.1.3. Historical development

The precursors to the rise and development of the field of metal—-dielectric NLO metasurfaces were the earlier
demonstrations in the 1980s of the benefit of surface roughness in surface-emitted second- and third-order
NLO processes [Chen1981, Shalaev1998] exhibiting several-orders-of-magnitude enhancement in
comparison to harmonic generation from a smooth surface. Experiments on hyper-Rayleigh scattering
(HRS), reported at the end of the 1990s, have served as the first formal demonstrations of incoherent SHG
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from spherical gold and silver nanoparticles [Dadap1999, Vance1998]. Noble metal nanoparticles of different
dimensions and shapes have been explored in later HRS studies [Ha02002, Nappa2006, Butet2010a,
Butet2010b], performed in the 2000s, with an emphasis on the interplay between multipoles [Nappa2006,
Butet2010a]. SHG from non-spherical plasmonic objects [Bouhelier2003, Nahata2003, Danckwerts2007,
Hanke2012] (before 2012) and more advanced 3D plasmonic nanostructures [Zhang2011, Cai2011, Pu2010,
Park2011] (after 2010) have also been investigated.

Structured plasmonic surfaces for efficient NLO interactions were proposed [Wokaun1981,
Reinisch1983] and later experimentally demonstrated [Wokaun1981, Coutaz1985] in the 1980s by SHG
generation off an extended metal grating into the first order of diffraction. The first experimental
demonstration of the NLO effects in a plasmonic array of meta-atoms was SHG in an array of L-shaped gold
nanoparticles [Lamprecht1997, Tuovinen2002, Canfield2004] (late 1990s—early 2000s), followed by a
split-ring resonator (SRR) metasurface with magnetic resonances [Linden2012, Klein2006, Feth2008]
(2006-2012). These works laid the foundation to the rapidly evolving field of plasmonic metasurfaces for
efficient NLO interactions.

The study of resonant dielectric nanostructures is a relatively new research direction in the field of
nanophotonics that started a decade ago [Zha02009, Schuller2007]. Employing sub-wavelength dielectric
nanoparticles with Mie resonances for engineering optical metasurfaces with strong NLO responses resulted
in the demonstration of enhanced SHG, THG, FWM and other NLO interactions without paying the cost of
high losses associated with metal-dielectric nanostructures [Minovich2015, Smirnova2016, Liu2018a,
Liu2018b, Kivshar2018, Grinblat2017a, Grinblat2017b]. Mie-resonant silicon and AlGaAs nanoparticles have
received considerable attention for nonlinear frequency generation [Liu2018a, Liu2018b].

Spurred by developments in solid-state physics, work in dielectric metasurfaces has more recently
broadened to encompass the physical effects of optical topology, enabling robust unidirectional propagation
and control over scattering [Khanikaev2013]. Such effects have been explored in the nonlinear regime to
realize devices such as lasers [Bandres2018] and switches [Shalaev2019] for integrated photonics (see
on-chip waveguiding materials category in section 3.6). Among the many physical effects being explored,
BIC structures represent a special case for NLO due to their ability to achieve high Q-factors [Koshelev2019a,
Wang2020a, Koshelev2019b, Koshelev2020, Bernhardt2020, Liu2019b, Azzam2021] and are being actively
explored. Although BICs were mathematically predicted a long time ago and were investigated in other fields
of physics in the 1960s—1970s [Fondal1963, Cumpsty1971], the first experimental demonstrations of
BIC-based photonic devices were performed only in 2016 [Hsu2016].

ENZ and NZI metamaterials represent other emerging classes of NSMs for efficient NLO interactions.
The research in the field started in the 2010s with a plethora of theoretical works [Ciattoni2010a,
Ciattoni2010b, Vincenti2011, Ciattoni2012] predicting enhanced NLO interactions in media with vanishing
permittivity, which preceded the first experimental demonstrations both in homogeneous thin films and
effective ENZ metastructures [Alam2016, Kinsey2015a, Luk2015, Capretti2015, Caspani2016]. Following
these works, ENZ nanostructures have been proposed, offering tunability and unprecedented strength and
tailorability of NLO interactions [Neira2015, Alam2018, Suresh2021, Wen2018].

3.4.1.4. Metamaterial-related best practices and considerations when performing NLO measurements

Among the best experimental practices for a proper assessment of the NLO performances of a metamaterial,
the following rules-of-thumb can be recommended. If possible, one needs to provide information about the
estimated values of the nonlinearities per meta-atom. Since some of the described systems are fragile and can
melt under even moderate levels of optical power in a free-space excitation setup, one must follow
precautions to avoid optical damage, and to ensure reproducibility of the obtained NLO results. Additionally,
as efforts to realize higher Q-factor structures emerge, analysis should also account for the strong dispersion
near these resonances. For example, not all of the incident excitation power may be captured by the resonator
[Shcherbakov2019] and the effect of pulse chirp near the resonance will begin to play a role in the analysis
and extraction of effective NLO parameters. In the end, the caveats and best practices are the same as those
listed in section 2, with enhanced focus on damage, thermal nonlinearities, etc due to the relatively strong
absorption of plasmonic structures.

3.4.1.5. Description of general table outline

Tables 5A and B show a representative list of, respectively, second-order and third-order NLO properties of
metamaterials taken from the literature since 2000, with the entries arranged in alphabetical order. Our aim
has been to compile the most relevant advances in NLO metamaterials since 2000. Because numerous studies
have been performed during the last two decades, not all of them could be tabulated and/or referenced here.
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Figure 4. SEM images of metamaterial devices with second-order nonlinear properties. The labels of the sub-figures correspond
to the labels given in table 5A. Panels (a)—(d), (g), (k), (1), (p), and (r)—(t) are reprinted with permission from [Liu2016a, Xu2020,
Sautter2019, Marino2019a, Camacho-Morales2016, Cambiass02017, Anthur2020, Czaplicki2018, Wen2018, Bernhardt2020,
Semmlinger2018], ACS. Panels (m) and (o) are reprinted with permission from [Lee2014, Celebrano2015], Springer Nature.
Panels (i) and (n) are reprinted under CC BY license from [Liu2018a, Wolf2015]. Panels (e), (f), (j) and (q) are reprinted with
permission from [Gili2016, Gigli2019b, Wang2020a, Klein2007], ©2007, 2016, 2019, 2020 Optica Publishing Group. Panel (h) is
reprinted with permission from [Koshelev2020], AAAS.

Instead, the studies highlighted here are only representative works, where extra care has been taken in the
characterization of the investigated metamaterial following the recommendations in the section above and
the best practices in section 2. Furthermore, our focus is on the studies that report NLO coefficients (e.g.,
x%, x®, 1y(eff)> O12, €tc). Many studies exist where the investigated metamaterial has been shown to result in
enhancement of NLO signals when compared to some reference material/system. In order to restrict our
scope, we chose not to tabulate works providing only enhancement factors, but instead focused on
investigations also reporting NLO coefficients and/or conversion efficiencies. An interested reader is referred
to [Chen2018, Minovich2015, Krasavin2018, Husu2012, Litchinitser2018, BinHasan2014, Kauranen2012,
Smirnova2016, Chang2018b, Butet2015, Huang2020, Gigli2019a, Reshef2019, DeAngelis2020] for a broader
perspective of the topic.

Tables 5A and B are subdivided into ‘Material properties, ‘Measurement details’ and ‘Nonlinear
properties. The main material properties that we have tabulated are the material(s), fabrication technique,
sample thickness, material crystallinity, substrate and reference to the sub-figure in figures 4 and 5 showing
the fabricated device. All reported experiments have nominally been performed at room temperature.
Figure 4 shows SEM pictures of devices with second-order NLO responses, while figure 5 shows SEM
pictures of devices with third-order NLO responses. The main pump parameters have also been tabulated,
along with the enhancement mechanism utilized in the sample. Within each column the information is given
in the order of the header description, and the NLO technique used is provided in the ‘Method’ column. In
table 5A, we list the overall conversion efficiency 1 and/or absolute value of the effective susceptibility as the
NLO parameters of key importance. In table 5B, in addition to the above parameters, the effective 1, and a,
values have also been listed where relevant.
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Figure 5. SEM images of metamaterial devices with third-order nonlinear properties. The labels of the sub-figures correspond to
the labels given in table 5B. Panels (a), (b), (e), (g), (h), and (i) are reprinted with permission from [Zubyuk2019, Suresh2021,
Grinblat2017b, Yang2015, Koshelev2019b, Shcherbakov2014], ACS. Panel (c) is reprinted with permission from [Melentiev2013],
©2013 Optica Publishing Group. Panel (d) is reprinted with permission from [Lee2014, Celebrano2015], Springer Nature. Panel
(f) is reprinted under CC BY license from [Liu2019b].

3.4.2. Discussion

3.4.2.1. Advancements and remaining challenges for metamaterials

Because most of the early works were focused on metallic nanoparticles, de facto metamaterials of that era, a
major advancement in the field of metamaterials can be seen to be the gradual shift from metals to the
lower-loss semiconductors and dielectric nanomaterials [Grinblat2017a, Grinblat2017b, Semmlinger2018,
Koshelev2019b]. New mechanisms of enhancement, associated with these new kinds of metamaterials,
including ENZ, BIC and Fano resonances, have clearly diversified from the early approaches that were almost
solely based on material resonances [Czaplicki2018, Koshelev2020]. Apart from the fundamental studies of
NLO phenomena, dielectric metasurfaces have enabled the observation of such challenging effects as SPDC.
Recently, for the first time, the generation of photon pairs via SPDC in lithium niobate quantum optical
metasurfaces [Santiago-Cruz2021] and in a single AlGaAs nanocylinder [Marino2019b] has been
demonstrated. By engineering the quantum optical metasurface, the authors demonstrated tailoring of the
photon-pair spectrum in a controlled way [Santiago-Cruz2021]. These achievements lay the foundation for
the application of dielectric metasurfaces in quantum light generation.

Furthermore, a generally progressing trend is visible in the achieved NLO parameters where newer NLO
metamaterials seem to (clearly) outperform their earlier counterparts. As an example, many of the recent
investigations of dielectric and semiconducting metasurfaces demonstrate conversion efficiencies on the
order of ~1072 % for SHG [Lee2014, Gili2016, Sautter2019, Xu2020] and on the order of ~10~* % for THG
[Grinblat2017b, Koshelev2019b]. In contrast, conversion efficiencies achieved in earlier works have been
around 2 x 107° % for SHG and 3 x 107'° % for THG [Klein2008].

NLO metasurfaces have recently started gaining popularity as efficient sources of THz radiation, as this
frequency range is not easily attainable by conventional methods of light generation. There is a growing
number of works where THz generation by DFG off a metasurface is reported [Luo2014, Keren-Zur2019,
Polyushkin2011, Tal2020, McDonnell2021]. These results compare favorably with the more standard
method of THz generation by DFG in bulk crystals. Specifically, the measured sheet NLO susceptibility
~107'® m? V™! far exceeds that of thin films and bulk non-centrosymmetric materials [Luo2014]. On the
other hand, the extraction of the associated NLO coefficients has only been performed in [Luo2014], leaving
this a development area for future studies. There is very little knowledge about NLO parameters of
metamaterials at THz frequencies, and it is highly advisable for research works to report such values for this
frequency window.

On the design side, significant improvements have been made in the development of new analytical
[Saad-Bin-Alam2021b] and numerical [Butet2016, Blechman2019, Noor2020] methods for designing NLO
metasurfaces optimized for some specific NLO interactions.

Further work is in progress to make NLO metamaterials functional in real-life applications. A partly
connected challenge is to develop nanofabrication techniques to the level where fabrication of 3D NLO
metamaterials becomes a routine task [Stolt2021]. When these achievements can be combined with recent
advances in phase-engineered metasurfaces [Chen2018], one could envisage 3D phase-matched
metamaterials that could potentially boost efficiencies up to the levels adequate for practical applications. We
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note that at that stage, linear absorption/scattering losses would start playing a role [Stolt2021], and actions
to mitigate their detrimental effects should be taken.

3.4.2.2. Recommendations for future works on metamaterials

It would be extremely beneficial if future publications would in general report more extensive details of the
experimental parameters alongside the NLO parameters of the studied metamaterials (see our earlier
recommendations for ‘best practices’). For example, oftentimes publications report only the relative NLO
enhancement factors of the metamaterials, making it difficult to estimate the potential importance of the
studies. Therefore, we recommend that, in future works, at least the parameters listed in the tables reported
here be properly quantified and reported.

In many cases, it would also be important to quantitatively characterize individual meta-atoms acting as
the building blocks in the metamaterials (see, for example, [Saad-Bin-Alam2021b]). If such information
becomes more abundantly available, designing next-generation NLO metamaterials would become an easier
task. Furthermore, such data would improve the transparency of the work because it would facilitate
estimating the success of the demonstrated enhancement mechanism and the potential importance of the
performed study.

Finally, we recommend the community to continue their effort to estimate the damage thresholds of
various metamaterial platforms and to study their possible damage mechanisms. We consider such efforts
particularly useful when NLO metamaterials reach the level of maturity where applications start to emerge.
At that stage, the relevant parameters should not be limited only to conversion efficiency/susceptibility/n,
values, but can include the measured power of frequency-converted light. In this case, such information
becomes critical for an application-oriented researcher to be able to estimate whether the studied
metamaterial system could be scaled up in area to be used with high-power pump lasers.
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3.4.3. Data table for metamaterials

Table 5A. Second-order NLO properties of metamaterials from representative works since 2000. Legend for superscripts: see below the table.

Second-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump
Material SEM Method Wavelength n (%)* |X<2)| (mV—1)3 Enhancement Additional Reference
Substrate image Peak irradiance mechanism parameters and
Fabrication Beam waist comments
Thickness Pulse width
Crystallinity Rep. rate
GaAs/AlGaO Figure 4(a) SHG 1020 nm 24 1073%/ — Magnetic dipole — [Liu2016a]
GaAs 3.4 410 MW m™2 1.5+ 1078wt resonance
MBE/e-beam lithography 3 pm
0.3 pm 0.12 ps
Monocrystalline/monocrystalline 80000 kHz
(110)-GaAs Figure 4(b) SHG 1450 nm 3.00 £ 1073 — — — [Xu2020]
Fused silica 1.2+ 10" MW m™?
MOCVD/e-beam lithography 2 pm
0.4 pm 0.255 ps
Monocrystalline 80000 kHz
(111)-GaAs Figure 4(c) SHG 1556 nm 4.80 £1073 — — — [Sautter2019]
Fused silica 1.0 + 10" MW m™?
MOCVD/e-beam lithography —
0.4 pm 0.1 ps
Monocrystalline 80000 kHz
Alp.18Gag.s2As/AlOx — SHG 1550 nm 14 1073%/ — — — [Ghirardini2017]
GaAs 1.6 4+ 10’ MW m™—2 1541077 W™!
MBE/e-beam lithography —
0.4/1.0 pm 0.15 ps

Monocrystalline/amorphous

(Continued.)
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Table 5A. (Continued.)

Second-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump
Material SEM Method Wavelength 7 (%)* | x<2>| (mV—1)3 Enhancement Additional Reference
Substrate image Peak irradiance mechanism parameters and
Fabrication Beam waist comments
Thickness Pulse width
Crystallinity Rep. rate
Al 18Gag g2 As/AlOx Figure 4(d) SHG 1550 nm 24+ 107°W! — — — [Marino2019a]
GaAs 5+ 10° MW m™?2
MBE/e-beam lithography 25 pm
0.4/1.0 pm 0.16 ps
Monocrystalline/amorphous 1000 kHz
Alp.15Gag g2 As/AlOx Figure 4(e)  SHG 1554 nm 1.10+ 1073 — — — [Gili2016]
GaAs 1.6 £ 10" MW m™?
MBE/e-beam lithography —
0.4/1.0 pm 0.15 ps
Monocrystalline/amorphous —
Aly15Gag g2 As/AlOx Figure 4(f)  SHG 1550 nm 65+10"°wW—! — — — [Gigli2019b]
GaAs —
MOCVD/e-beam lithography 2.36 pm
0.35/1.0 pm 0.16 ps
Monocrystalline/amorphous 1000 kHz
Alp>GaggAs Figure 4(g)  SHG 1556 nm 8.50 + 103 — — — [Camacho-Morales2016]
Fused silica 7.0 £ 10" MW m—?
MOCVD/e-beam lithography 1.1 pm
0.3 pm 0.5 ps
Monocrystalline 5000 kHz
AlGaAs Figure 4(h) SHG 1570 nm 1.3+107°W™! — Quasi-BIC, Mie — [Koshelev2020]
Si0,/ITO/SiO, — resonance
e-beam lithography 1.8 pm
0.635 pm 2 ps
Monocrystalline 5144 kHz
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GaAs/AlGaO Figure 4(i) SHG 1570 nm 230+ 104 — — [Liu2018a]
GaAs —

MBE/e-beam lithography 1.5 pm

0.45 pm 0.04 ps

Monocrystalline/monocrystalline 1 kHz

GaN Figure 4(j) SHG 1543.55 nm 24+1072W! — Quasi-BIC at [Wang2020a]
Silicon — SH and cavity

MOCVD, PECVD, e-beam lithography — resonance at

0.2 pm CwW FH

Monocrystalline —

GaP nanoantennas Figure 4(k) SHG 910 nm 2 4 107 4%/ — Scattering resonance [Cambiass02017]
GaP 24+ 10° MW m—2 441077 W! and surface effect

e-beam lithography —

0.2 pm 0.18 ps

Monocrystalline 100 kHz

GaP nanodimers Figure 4(1) SHG 1190-1220 nm 24 107°%/ — Quasi-BIC in arrays [Anthur2020]
Sapphire 100 MW m—2 5+ 1077 W—! with slight asymmetry

MOCVD on GaAs then transfer-bonded to 50 pm in nanoparticles

Sapphire, e-beam lithography CW

0.15 pum —

Monocrystalline

GaP nanodimers Figure 4(1) SHG 1190-1220 nm 441073%/ — Quasi-BIC in arrays [Anthur2020]
Sapphire 1.0 £ 10° MW m 2 1+1073w™! with slight asymmetry

MOCVD on GaAs then transfer-bonded to 50 pm in nanoparticles

Sapphire, e-beam lithography 0.2 ps

0.15 um —

Monocrystalline

Gold/InGaAs/AllnAs MQW Figure 4(m) SHG 8000 nm 2.00 £ 1074 55 4+ 1078 (yyy) MQW enhancement [Lee2014]
InP 150 MW m—?2

MBE 17.5 ym

0.1/0.03/0.656 pm 400000 ps

Amorphous/monocrystalline/ 250 kHz

monocrystalline

(Continued.)
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Table 5A. (Continued.)

Second-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump
Material SEM Method Wavelength n (%)* |x<2)| (mV—1)? Enhancement Additional Reference
Substrate image Peak irradiance mechanism parameters and
Fabrication Beam waist comments
Thickness Pulse width
Crystallinity Rep. rate
Gold/InGaAs/InAlAs MQW Figure 4(n) SHG 10100 nm 234+ 107 WW—2 — Resonators on MQWs — [Wolf2015]
InP —
e-beam lithography 50 pm
1 pum 12000 ps
Amorphous/monocrystalline/ 1 kHz
monocrystalline
Gold nanoantenna Figure 4(0)  SHG 1560 nm 5410710 wW! - Multiresonant — [Celebrano2015]
Fused silica imaging 1.69 & 107 MW m~? antenna
Focused ion beam lithography 0.7 pm
0.04 pm 0.12 ps
Monocrystalline 80000 kHz
Gold nanoparticle arrays Figure 4(p) SHG 1150 nm 2.50 £ 1077 — Collective lattice effect — [Czaplicki2018]
Fused silica 1.2 £ 10° MW m—?2
e-beam lithography —
0.02 pm 0.2 ps
Amorphous 80000 kHz
Gold nanoparticles — SHG 794 nm — 1£107% (esu)  — — [Butet2010b]
Embedded in gelatin matrix imaging —
e-beam lithography —
0.15 um 0.18 ps
— 76 000 kHz
Gold split-ring resonators Figure 4(q) SHG 1500 nm 2.00 £107° — — — [Klein2007]

Fused silica

e-beam lithography

0.025 pm
Amorphous

0.0077 MW m—?

0.17 ps
81000 kHz
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TiN Figure 4(r) SHG 1040 nm — — LSPR at the [Wen2018]
Sapphire 1.2 4 108 MW m—2 fundamental

Pulsed laser deposition/e-beam lithography 2 pm frequency, ENZ at the

0.05 pm 0.2 ps SH frequency

Monocrystalline 80000 kHz

WS,/Silicon Figure 4(s) SHG 832 nm — — Quasi-BIC [Bernhardt2020]
BK-7 —

PECVD, e-beam lithography 6 pm

-/0.16 um 0.08 ps

Monocrystalline 80000 kHz

ZnO nanodisks Figure 4(t) SHG 394 nm 7.00 + 1077 9.6+ 101 Magnetic dipole [Semmlinger2018]
Soda lime glass 1.68 4+ 107 MW m™—2 (d-coefficient) resonance

Sputtering/focused ion beam lithography 8.5 um

0.15 um 0.205 ps

Polycrystalline 250 kHz

2 Units as illustrated unless otherwise indicated in the table.
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Table 5B. Third-order NLO properties of metamaterials from representative works since 2000. Legend for superscripts: see below the table.

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties

Pump
Material SEM Method Wavelength n (%)* x® (m2V—2)*  Enhancement mechanism Additional Reference
Substrate image Peak ny (m?> W) parameters
Fabrication irradiance oy (mW™h and
Thickness Beam waist Comments
Crystallinity Pulse width

Rep. rate
(100)-GaAs/AlGaO Figure 5(a) I-scan 830 nm — — Higher free-carrier generation Saturation irradiance: [Zubyuk2019]
GaAs 2.54 10" MW m—2 — rate 1.6 =107 MW m—2
MBE/e-beam lithography 10 pm —
0.3 pm 0.06 ps
Monocrystalline 80 000 kHz
Ag nanoantenna/SiO, Figure 5(b) Z-scan 410-560 nm — — ENZ — [Suresh2021]
Fused silica — 12410712
e-beam evaporation — 1.5+ 107°
0.016/0.065 pm 28 ps
Amorphous 0.05 kHz
Al split hole resonator/- Figure 5(c) THG 1560 nm 1.0+£1073 — Plasmon resonance and — [Melentiev2013]
40 nm of fused silica 10 MW m—2 — — lightning-rod effect
e-beam lithography/FIB 2.15 pm — —
0.2 pm 0.2 ps
Amorphous 70000 kHz
Au nanoantenna/ITO Figure 5(d) Z-scan 1240 nm — — ENZ + optimized field — [Alam2018]
Fused silica 1.5 4 10° MW m~2 3741078 coupling and enhancement by
e-beam lithography — 2441077 antennae
0.05 um 0.14 ps
Au nanoparticle — Z-scan 600 nm — (0.28-1.48i) ENZ + Au interband x® for 600 nm at 60° [Neira2015]
Fused silica 8.0 + 108 MW m—?2 244107 41071 transition resonance and
Electrodeposition 1.5 um 9.97 1078 (0.18-1.48i)4 10~
0.15 pm 0.05 ps for 550 nm at 20°
Amorphous —
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Ge nanodisk Figure 5(e) THG 1650 nm 1.0£1073 2.8+ 1071 Higher-order (anapole) modes [Grinblat2017b]
Borosilicate glass 0.8 MW m—2 —

e-beam lithography — —

0.2 pm 0.18 ps

Amorphous 100 kHz

Si nanoblock Figure 5(f) THG 1587 nm 1.4+1078 W2 — Quasi-BIC in arrays with slight [Liu2019b]
Quartz — — asymmetry in nanoparticles

e-beam lithography — —

0.5 pm 5ps

Monocrystalline —

Si nanoantenna Figure 5(g) THG 1350 nm 1.2+1074 — High-Q Fano resonance [Yang2015]
Quartz 0.32 MW m—? —

LPCVD/e-beam lithography — —

0.12 pm 0.25 ps

Polycrystalline 1 kHz

Si nanoantenna Figure 5(h) THG 1425 nm 1.0+ 1074 — Quasi-BIC in arrays with [Koshelev2019b]
Fused silica — — broken symmetry

PECVD, e-beam lithography — —

0.538 pm 0.2 ps

Amorphous 80000 kHz

Si nanodisk Figure 5(i) THG 1260 nm 0.8 +107° — Magnetic response [Shcherbakov2014]
SOI 0.5 MW m™? —

E-beam lithography — —

0.26 um 0.2 ps

Monocrystalline 80000 kHz

2 Units as illustrated unless otherwise indicated in the table.
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3.5. Fiber waveguiding materials: data table and discussion
Team: John Ballato (team leader), Peter Dragic

3.5.1. Introduction

3.5.1.1. Background information

Our understanding and use of NLO are very much intertwined with the history and development of fiber
optics. This is because optical fibers are unique tools for studying and utilizing NLO phenomena due to their
combination of low loss, long lengths, small core sizes and resulting small mode diameters. Indeed, the first
observations of nonlinearities [Stolen1972, Ippen1972, Stolen1974, Hill1974] in fibers are contemporaneous
with the first low loss fibers themselves [Keck1972a, Keck1972b]. Furthermore, phase matching of NLO
processes in optical fibers can be achieved in more than one way [Stolen1974, Stolen1981]. First, in the case
of a multimode fiber, different optical modes across a wide span of wavelengths, for example the signal and
idler in FWM, may be found which possess the same propagation constant. Alternatively, the design of the
fiber can be suitably tailored to control (e.g., ‘flatten’) the dispersion curve of a given mode (such as the
fundamental mode) to compensate for bulk chromatic dispersion. Such fibers can take the form of both solid
multilayered conventional and microstructured waveguides.

From a practical perspective, a key driver of nonlinear fiber optics was the concurrent development of
commercial communications networks. As noted by Stolen, a pioneer in nonlinear fiber optics, ‘Fiber
nonlinear optics has grown from a novel medium for the study of nonlinear optical effects, through a period where
these effects appeared as system impairments, to the present day where optical nonlinearities are an integral part
of high-capacity optical systems’ [Stolen2008]. This sentiment is well-reflected in the history of nonlinearities
and communication systems [Smith1972, Chraplyvy1990, Zhang1994, Li2001, Hasegawa2017, Winzer2018,
Essiambre2021].

Other applications of modern consequence where fiber NLO is critical include fiber sensors and high
power/high energy fiber lasers. Fiber lasers, of considerable interest for defense, security, remote sensing, and
manufacturing uses, generally demand reduced nonlinearities, particularly those that are considered
parasitic to power-scaling and beam quality [Richardson2010, Zervas2014, Dawson2008], such as stimulated
Brillouin, Raman, and thermal Rayleigh scattering (which manifests as transverse mode instabilities)
[Dong2013, Smith2011, Jauregui2020, Zervas2019], as well as thermal lensing [Dong2016b]. Fiber-based
sensors, on the other hand, including distributed systems [Lu2019b] such as those designed for structural
health [Barrias2016] and down-hole and geological [Schenato2017] temperature and pressure monitoring,
tend to favor higher nonlinearities for enhanced signal-to-noise ratio and therefore higher measurement
sensitivity [Bao2012]. ‘Linear’ systems, namely those based on fiber Bragg grating technology and Rayleigh
scattering, have found wide commercial success, as have those based on the Raman scattering nonlinearity.
The latter systems work on the principle that the ratio of the anti-Stokes to Stokes Raman scattered signals is
a strong function of temperature, and therefore Raman scattering primarily is used for distributed
temperature sensing. Both temperature and strain sensing are possible with Brillouin scattering, since the
scattering frequency is a strong function of both the fiber thermal and mechanical environments.
Unfortunately, Brillouin-based systems have not found wide commercial success due to their complexity and
cost [Dragic2018].

3.5.1.2. Considerations for fibers when performing NLO measurements

All this said, care must be taken in assessing nonlinearities in optical fiber. This is because the measured
nonlinearity is contributed to by both the materials comprising the fiber and the design of the fiber itself.
Being a waveguide, the latter is important because fiber design influences the spatial (modal) and spectral
(dispersion) properties of the propagating light. This, in turn, influences the relative contributions of the
core and clad materials to the nonlinearities through their respective NLO coefficients. Representative
examples of such fiber design influences on, for example, the nonlinear refractive index, n1, can be found in
[Kato1995a, Boskovic1996]. To this point, even the n, value of fused silica, the most canonical and
well-studied fiber optic material, is not as precisely known as one would expect given the half-century since
the first low loss fibers were reported (see section 1.1). Another case where considerable care is required
when applied to waveguides is Brillouin scattering. Namely, the Brillouin gain coefficient gpyijiouin has both
material and waveguide influences. Depending on the waveguide design, one may dominate the other, or
they may play a more cooperative role, often making it difficult to distinguish between the two. Materially,
ZBrillouin depends on refractive index, transverse photoelasticity, isothermal compressibility, Brillouin
linewidth, and acoustic velocity such that each of these values should be carefully measured and reported for
true completeness. More commonly, publications report the Brillouin shift and linewidth/lineshape but these
can strongly be impacted by the fiber itself. These include factors such as the number of acoustic modes
present and their relative confinement, whether the waveguide is acoustically anti-guiding or guiding, fiber
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quality (loss) and length, and birefringence, to name just a few. All waveguide effects broaden the spectrum
and reduce the observed Brillouin gain relative to the bulk material. In addition to these specific
considerations for fibers, also the best practices described in section 2 should be taken into account when
performing NLO measurements.

3.5.1.3. Description of general table outline

Table 6 provides a representative list of NLO properties of fiber waveguiding materials taken from the
literature since 2000. Our goal has been to compile and highlight advancements in nonlinear materials in
fiber form since 2000 with the above-mentioned caveats and the best practices of section 2 in mind. The
publications included in table 6 were selected based on their representing measurements on fibers across the
spectrum of reasonably common materials and respective nonlinearities. The included works nominally
report data obtained at room temperature. The Table is subdivided into ‘Fiber properties, ‘Measurement
details’ and ‘Nonlinear properties’ Within each column the information is given in the order of the header
description, and the NLO technique used is provided in the ‘Method’ column. The Table compiles
representative values for the following fiber material sub-categories: telecommunications-grade silica
[Oguama2005, Oguama2005b, Deroh2020, Evert2012], silicate [Tuggle2017, Dragic2014, Lee2005,
Cavillon2018], non-silica oxide (e.g., phosphate [Lee2007] and tellurite [Deroh2020]), and non-oxide (e.g.,
chalcogenides [Deroh2020, Florea2006, Tuniz2008, Fortier2008] and fluoride [Fortin2011,
Lambin-Lezzi2013, Deroh2020]) optical fibers. For the more conventional silica and silica-based glass fibers,
trends in Brillouin, Raman, and n, for a wide variety of dopants are provided in [Cavillon2018a] and
references therein. Also noted are NLO properties of representative specialty optical fibers including polymer
[Mizuno2010] and crystalline core optical fibers such as those made from sapphire [Harrington2014,
Yin2008, Kim2008] and semiconductors [Ren2019, Shen2020]. Since second-order nonlinearities are
generally precluded by symmetry in glass and cubic crystalline core fibers, the focus here is on third order
x®) wave-mixing as well as nonlinear scattering (e.g., Raman and Brillouin) phenomena. For completeness,
second order nonlinearities in poled glass optical fiber also are noted [Canagasabey2009].

Two last points are noteworthy. First, the focus here is on the materials and material nonlinearities in
conventional core-cladding configurations and not specifically on nonlinearity contributions from advanced
waveguide design (e.g., microstructured or photonic-crystal fibers (PCFs), see, for example [Cordeiro2005,
Dudley2009, Hu2019, Nizar2021]) as the range of those enabled influences is virtually endless. Indeed, one
can make a very strong case that understanding/quantifying the relevant properties of a material should
precede any attempts to design a waveguide from it. Second, nonlinearities can be materially enhanced or
reduced (even negated), depending on the application. As such, both are generally treated here by way of
discussing trends and ranges. The more fundamental materials science of optical nonlinearities in fibers has
been recently reviewed [Ballato2018, Cavillon2018a].

3.5.2. Discussion
3.5.2.1. Advancements and remaining challenges for fibers
Not surprisingly, the range of NLO parameter values measured from optical fibers as shown in table 6 is
nearly as expansive as the range of materials from which they are made. Ironically, it is this plenty that
precludes an equally abundant coverage of all materials and values. Unless otherwise noted, table 6 is meant
to provide generalized values, ranges, and trends for each fiber material family and associated nonlinearity.
Over the past twenty years, since approximately 2000, the dominant trend one observes is in the range of
(strong and weak) NLO materials contained within or integrated into the fibers. Some of this growth is due
to the expansion in applications employing fibers, such as power-scaled high energy lasers and sensors, as
well as in new fiber processing methods that permit the fiberization of materials previously not possible
[Sazio2006, Ballato2018a]. Arguably, this renaissance in fiber materials has driven rapid progress in the range
of NLO parameter values. This said, beyond telecommunications grade silica, losses are still relatively high in
most glass and crystal core fibers, thus potentially reducing their efficiencies and range of applications.
However, markedly higher NLO parameter values offset issues of loss in some cases, such as with the
semiconductor core optical fibers since a very large material nonlinearity shortens, often by several
orders-of-magnitude, the required fiber lengths.

3.5.2.2. Recommendations for future works on fibers

The aforementioned renaissance in optical fiber materials has opened two particularly intriguing doors to
the world of NLO. First, the wide range of new materials has greatly expanded the achievable range of NLO
parameter values. When coupled with fiber design (e.g., microstructured fibers and PCFs) and
post-processing (e.g., tapering), unquestionable benefits to future applications arise [Sylvestre2021]. Second,
the availability of new fiber materials has generated new insights and concepts relevant to nonlinear fiber
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optics. These include, for example, zero nonlinearity values based on carefully balanced fiber compositions.
For instance, in the case of Brillouin scattering, positive and negative transverse photoelasticities
[Ballato2018, Cavillon2018a] are balanced such that no spontaneous scattering occurs, thereby obviating its
stimulated form. Such opportunities are not possible based only on fiber design. Needless to say, there are
great possibilities ahead for fiber optics, both in terms of uniquely high and low nonlinearities. The Periodic
Table can be construed to be a rich palette from which new materials with novel properties may be derived.
Continued characterization sheds light on how to combine the base materials to achieve a desired outcome,
be it using a hybrid or designer material approach. That being said, too few literature works go the extra mile
to derive the relevant NLO material values from a system-level demonstration. For example, there are
numerous examples of supercontinuum generation (SCG) from novel fibers/materials, but a large
proportion of these papers lack sufficient detail from which the relevant nonlinearities may be quantified.
Many other works, especially those in the area of hybrid fibers (see section 3.7), refer back to bulk values for
the nonlinearities. It is important to remember that many materials, including glasses, undergo very different
thermal histories when found in either bulk or fiber form. If a material’s structural properties depend on its
fabrication history, this may have a significant impact on its NLO behavior. In the case of hybrid materials,
secondary effects such as material inter-diffusion during fabrication may have a similar impact.

It is fortunate that many of the works cited herein set out from the beginning to quantify the
nonlinearities in fibers made from novel materials, but the difficulty in doing so is evident from table 6. The
vast majority, with some exceptions, focus on one nonlinearity, while none have included three (i.e. n,,
Raman, and Brillouin together in the same work). That said, and even where there is a focus on a single
nonlinearity, there are still gaps that can be seen in the table, though not following any particular trend,
where information is lacking but desirable. Included in the Table are those parameters that generally are most
important to be included in publications reporting NLO measurements in fibers. In other words, we consider
the reporting of these parameters to be a ‘best practice’, in addition to the more general best practices
described in section 2. To further complicate things, additional fiber-specific measurement complexities can
arise from such characteristics as the number of propagating modes (not just a V-number alone), fiber
splicing efficiency, fiber uniformity, attenuation at the operating wavelength(s), mode field diameter, mode
index, dispersion, etc that can have a strong impact on the strength of a nonlinearity and deserve discussion
where relevant. For completeness, it is ideal to also include the compositional profile across the core since
each chemical constituent influences a given nonlinearity in differing ways; see, for example, table 1 in
[Cavillon2018a], which qualifies changes in Raman, Brillouin, and #,-mediated wave-mixing for a wide
variety of glass components often used in silica-based optical fibers. This further epitomizes the need for all
relevant data to be provided, through which a reader can at least formulate their own estimates of the NLO
coefficients, or at least in the case of hybrid systems, an effective value for the nonlinearity (see section 3.7).
Such data is of critical importance, as it is key to the design of next-generation fibers.
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3.5.3. Data table for fiber waveguiding materials

Table 6. NLO properties of fiber waveguiding materials from representative works since 2000. Legend for superscripts: see below the table.

Fiber Properties Measurement Details Nonlinear Properties
Material Method Length Core index contrast Wavelength Rep. rate efi gRaman EBrillouin Reference
Loss Cladding material Peak power Pulse width Frequency shift Frequency shift
Core size Linewidth

Effective area

Commercial telecommunications fiber

Pure SiO, IGA/SPM/SRS 20 m — 1064 nm 100 MHz 1.81£107 2 m>W—! 078+ 10" mw! — [Oguama2005b]
Threshold 0dBm™! SiO, 5-25 W 50-70 ps — —
50 pm?
SMF-28 SpBS 500 m — 2000 nm CW 2444107 m>W—! — 25254+ 107 mw—! [Deroh2020]
Linewidth 0.022dBm™"! SiO, — — 8.40 GHz
8.2 um 15 MHz
101 pm?
SMF-28 SpBS 500 m — 1550 nm CW — — 2262+ 107 " mw—! [Deroh2020]
Linewidth 0.0002 dBm~! SiO, — — 10.85 GHz
8.2 um 28 MHz
78 pm?
DCF IGA/SPM/SRS 20 m — 1064 nm 100 MHz 2.674+107 X m?W—! 147 107 mw—! — [Oguama2005b]
Threshold 0dBm™! Si0, 5-25W 50-70 ps — —
10.61 pom?
EDFAs IGA/SPM 20 m — 1064 nm 100 MHz 1.82 to — — [Oguama2005]
0dBm™! SiO, 5-25W 50-70 ps 3.0+ 107 m>W—! — —
8.9-27.2 um?

(Continued.)

sulysiiand dol

100S€0 (£€207) § somor0yd “shyd *[

10 72 U9[MIUWLIDA N



88

Table 6. (Continued.)

Fiber Properties Measurement Details Nonlinear Properties
Material Method Length Core index contrast Wavelength Rep. rate 1 eff gRaman ZBrillouin Reference
Loss Cladding material Peak power Pulse width Frequency shift Frequency shift
Core size Linewidth
Effective area
GeO, doped SpBS 20 m <541073 1534 nm CW — — 0534+ 10" mw™! [Evert2012]
SiO, Reference Fiber® 0.082 dB m™! SiO, — — 10.71 GHz
40 pm 80 MHz
Silicate glass fibers
Y,03-AL0,-Si0;  FWM/SpBS 4m 473,329+ 1073 1542 nm CW 1.8 to — 0.125 to [Tuggle2017]
Reference Fiber 0.78,0.47dBm~! SiO, 850 W 20+£107 0 m2wW—! — 0.139 + 10" mw—!
11.2,20.7 pm 11.40 to 12.5 GHz
— 200 to 500 MHz
La,03-AL,0,-Si0,  SpBS 2m 100 + 1073 1534 nm CW — — 0.26 10~ mw~! [Dragic2014]
Reference Fiber 1.0dBm™! SiO, — — 11.476 GHz
16 pm 82.0 MHz
5.8 pm MFD
Bi,05-Si0, Nonlinear phase 1 m — 1550 nm CwW 8.17+£107 Y m>wW! — 643+ 107" mwW! [Lee2005]
shift/SBS 0.8dBm~! SiO, — — —
Pump-Probe — —
3.08 um?
Other oxide glass fibers
P,0s-based SBS 1.245m 0.144 NA 1064 nm — — — 21+107 " mw—! [Lee2007]
Threshold 5.47dBm™! Phosphate <60 W 1 us — 27.7 GHz
27.7 pm 219 MHz
Oxyfluoride SpBS 800 m 3541073 1540 nm — 34+107 X m>wW! 048+ 10" B mWwW! 056 £ 10" " mw—! [Cavillon2018]
Reference Fiber, 0.65dB m™! SiO, 430 W — — 10.75 GHz
SpRS, FWM 18.6 um 52 MHz
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Heavy metal oxides glass fibers

GeO,-Si0; SpBS 3m — 2000 nm CW 49741070 m>W—! 7454+ 1072 mwW—! [Deroh2020]
Linewidth 0.1dBm™! SiO, — 6.00 GHz
2 pm 76 MHz
5 um?
GeO,-Si0, SpBS 3m — 1550 nm CW — 1.05+ 10" mw—! [Deroh2020]
Linewidth 0.2dBm™! SiO, — 7.70 GHz
2 pm 98 MHz
3.5 um?
TZN (TeO, SpBS 2m — 2000 nm CW 38410 m>wW—! 13+107 " mw—! [Deroh2020]
based) Linewidth 0.5dBm™! Tellurite — 6.17 GHz
4 pm 15 MHz
10 pm?
TZN (TeO, SpBS 2m — 1550 nm CW — 1610 " mw—! [Deroh2020]
based) Linewidth 0.5dBm™! Tellurite — 7.97 GHz
4 pm 21 MHz
8 um?
Chalcogenide glass fibers
As,S;3 SBS 0.1m 0.33 NA 1548.4 nm — — 39410 mwW—! [Florea2006]
Threshold 0.57dB ! — <0.03W — —
4.2 pm —
As,S3 SpBS 2m 0.26 NA 2000 nm CW — 1174+ 1077 mW™! [Deroh2020]
Linewidth 02dBm™! As-S glass — 6.21 GHz
6.1 pm 25 MHz
26 pum?
As,S3 SpBS 2m 0.26 NA 1550 nm CW — 154+ 10 mwW—! [Deroh2020]
Linewidth 0.2dBm™! As-S glass — 7.96 GHz
6.1 pm 33 MHz
20 pm?
As;Ses3 SBS 0.1 m 0.14 NA 1548.4 nm — — 675+ 10 mwW—! [Florea2006]
Threshold 0.9dBm™! — <0.133 W — —
6.5 pm —

(Continued.)
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Table 6. (Continued.)

Fiber Properties Measurement Details Nonlinear Properties
Material Method Length Core index contrast Wavelength Rep. rate M eff gRaman EBrillouin Reference
Loss Cladding material Peak power Pulse width Frequency shift Frequency shift
Core size Linewidth
Effective area
As,Ses SPM, XPM 0.25m Single mode, 1560, 1503, 100 MHz 1.10 to 2t03+ 107" mw™! — [Tuniz2008]
1dBm™! As-Se glass 1470 nm 15 ps 0.75+ 1077 m?wW—! 7 THz —
— 73W —
21 pm?
Ge-Sb-S SpBS, SRS 1.5m — 1553 nm — — 1.8 4107 " mw—! 8§+1070mw! [Fortier2008]
Pump-Probe 55dBm™! PCF <25W 10 ns 9.7 THz 8.2 GHz
50 pm —
Fluoride glass fibers
Fluoride SBS 29 m 0.23 NA 1940 nm CW — 3.25to — [Fortin2011]
Threshold 0.02dBm™! — <TW 3524+ 1074 mw™! —
6.5 um 17.35 THz —
ZBLAN SBS 10.4 m 0.17 NA 1550 nm CW — — 4~3+£1072mw! [Lambin-Lezzi2013]
Pump-Probe 0.25dBm™! Fluoride glass <5W — 7.76 GHz
— <38 MHz
ZBLAN SpBS 5m — 2000 nm CwW 2934107 m>w! — 5281072 mw—! [Deroh2020]
Linewidth 0.25dBm™! Fluoride glass — — 6.00 GHz
9 pm 35 MHz
66 pm?
ZBLAN SpBS 5m — 1550 nm CW — — 495+ 1072 mwW! [Deroh2020]
Linewidth 0.125dBm™! Fluoride glass — — 7.75 GHz
9 pm 59 MHz
55 pm?
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Representative specialty core phase fibers

Perfluoro SBS 100 m 0.185 NA 1550 nm CW — — 309+ 107" mwW! [Mizuno2010]
polymer Threshold 0.15dBm™! Polymer <1IW — 2.83 GHz
120 pm 105 MHz
Sapphire SCG 0.001 m® — 784 nm 1 kHz 34107 m?w—! — — [Yin2008]
Unclad — 150 fs — —
60 pm —
Sapphire SCG 0.035 m® — 2000 nm — 284107 m?w—! — — [Kim2008]
Unclad 3-16 MW 150 fs — —
115 pm —
Silicon SPM 0.008 m 3.9 NA 1540 nm — 34+107 8 m>w—! — — [Ren2019]
0.2to3dBcm™! SiO, 0.04-1.2 kW 700 fs — —

Depends on taper _

Silicon SPM 0.0l m 3.9 NA 2400 nm — 1+£107 " m>W—! — — [Shen2020]
2dBcm™! SiO, — 100 fs — —
Depends on taper —

Poled SHG 0.32m 0.11 NA 1541 nm 3 MHz XP e = 0.054 pm V1, 15.2% conversion efficiency [Canagasabey2009]
germanosilicate 0dBm™! Si0, 200 W —
6 um

* Sometimes the value of 1, .r should be multiplied by 9/8 when comparing to bulk measurements to account for the effects of polarization randomization that occurs for fibers longer than several meters [Buckland1996]
(see section 1.1 on fused silica).

> The Brillouin gain coefficient was determined by comparing the strength of Brillouin scattering to a reference fiber of known ggsiiiouin-

¢ Not noted in stated reference but attenuation values of 0.3 dB m ™! at a wavelength of 2.94 ym have been reported [Harrington2014].
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3.6. On-chip waveguiding materials: data table and discussion
Team: Philippe Boucaud, Ksenia Dolgaleva, Daniel Espinosa, Rich Mildren, Minhao Pu (team leader),
Nathalie Vermeulen, Kresten Yvind

3.6.1. Introduction

3.6.1.1. On-chip waveguiding materials and their NLO applications

Integrated photonics deals with miniaturization of bulk-component optical setups including all their key
components (light-emitting devices, light-steering optics and detectors) and functionalities on small chips,
typically with dimensions < 1 x 1 cm?. The on-chip miniaturization of photonic components allows
building compact photonic integrated circuits (PICs) with high complexity, small footprint and potentially
low cost when produced in large volumes. Thanks to the strong advancement in manufacturing technology
over the past decades, a wide variety of materials can be combined nowadays through heterogeneous
integration and bonding, thus covering a very wide spectral range and optimizing the performance of both
active and passive devices by selecting the appropriate material platform for each on-chip functionality.
Alternatively, monolithic photonic integration where active and passive integrated optical components are
built on the same platform, with some variation of the material composition depending on the device
functionality, is also possible using III-V semiconductor platforms.

Nonlinear integrated photonics exploits the NLO response of on-chip components. Some examples of
on-chip nonlinear photonic structures include straight passive waveguides, micro-ring resonators or other
compact structures, such as photonic-crystal waveguides. Fabrication of waveguides with dimensions smaller
than the wavelength of operation [Karabchevsky2020] has enabled strong light confinement and, as such,
high irradiances beneficial for efficient NLO interactions. Ultra-compact waveguides with large refractive
index contrasts between the core and cladding can also exhibit strong waveguide dispersion, enabling
dispersion engineering useful for establishing, e.g., phase-matched SHG or FWM. Finally, besides basic
waveguide cross-sections consisting of three material layers (guiding layer or core, substrate and cladding),
more advanced quantum-well waveguide geometries featuring enhanced NLO interactions have also
emerged over the years [Wagner2009, Hutchings2010, Wagner2011].

In case the waveguide core material lacks inversion symmetry, NLO interactions of the second order can
take place; otherwise, the waveguide will only exhibit a third-order NLO response. These two waveguide
subcategories offer quite different NLO functionalities: whereas waveguides with a second-order nonlinearity
allow, e.g., on-chip frequency doubling, DFG and EO modulation (the latter is not included in the tables),
those with a third-order nonlinearity enable Kerr-based supercontinuum generation, Raman amplification,
all-optical switching, etc. These functionalities are finding practical use in a wide variety of applications,
ranging from on-chip biosensing, spectroscopy and LIDAR to optical datacom, signal processing, and
quantum computing.

3.6.1.2. Background prior to 2000

The NLO properties of the majority of materials used for on-chip integration were already studied in bulk
form well before 2000, and many NLO experiments in waveguide configurations were reported before the
turn of the century. These early studies were primarily concerned with determining effective NLO
coefticients of the materials in waveguide arrangements. Furthermore, efforts in optimizing the light
confinement and tailoring various phase-matching techniques in waveguides already began before the new
millennium. Nevertheless, the field has still experienced tremendous growth after 2000 facilitated by the
maturing fabrication technologies for PICs [Ottaviano2016, Roland2020].

3.6.1.2.1. Background for on-chip waveguide materials with second-order nonlinearity

Second-order NLO effects generally require non-centrosymmetric materials. Although it is possible to
induce these effects in centrosymmetric materials by means of strain [Cazzanelli2011], by applying
all-optical poling techniques [Nitiss2022] or by exploiting surface effects, the strongest second-order
nonlinearities are generally found in materials that intrinsically lack inversion symmetry. Before 2000, the
following non-centrosymmetric crystalline waveguide materials were used for establishing x? effects: III-V
semiconductors, aluminum gallium arsenide (AlGaAs) and gallium arsenide (GaAs) [Anderson1971,
VanDerZiel1974, VanDerZiel1976, Yo01995, Ramos1996, Fiore1997a, Street1997a, Street1997b, Xul997,
Fiore1998, Fiore1997b, Yo01996, Bravetti1998, Xu1998]; IlI-nitrides, aluminum nitride (AIN) and gallium
nitride (GaN) [Blanc1995, Zhang1996]; and some II-VI semiconductors such as zinc selenide (ZnSe), zinc
telluride (ZnTe), and zinc sulfide (ZnS), grown epitaxially on a GaAs substrate [Angell1994, Wagner1995,
Wagner1997, Kuhnelt1998]; as well as some other materials [Sugital999, Chuil995, Azouz1995]. Most of the
I1I-V semiconductor optical waveguides used to demonstrate x(? effects before the 1990s [Anderson1971,
VanDerZiel1974, VanDerZiel1976] as well as all AIN, GaN [Blanc1995, Zhang1996] and II-VI waveguide
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demonstrations [Angell1994, Wagner1995, Wagner1997, Kuhnelt1998] were in slab waveguides with 1D
confinement. As the means and tools for nanofabrication experienced further development, it became
possible to routinely fabricate AlGaAs/GaAs channel or ridge waveguides with 2D confinement, exhibiting
more efficient NLO interactions [Yo01995, Ramos1996, Fiore1997a, Street1997a, Street1997b, Xul997,
Fiore1998, Fiore1997b, Yoo1996, Bravetti1 998, Xu1998]. Among the specific second-order NLO effects in
AlGaAs and GaAs, there were numerous experiments on SHG in the near-IR [VanDerZiel 1974,
VanDerZiel1976, Yoo1995, Fiore1997a, Street1997a, Street1997b, Xul997, Fiore1998], mid-IR
[Anderson1971], and visible (SHG of blue light) [Ramos1996]. There were also some DFG reports with
generation of mid-IR [Fiore1997b, Bravetti1998], as well as near-IR radiation using 770 nm pump light
[Yoo1996] and SEG of 780 nm red light with a near-IR pump [Xu1998]. AIN and GaN III-nitride and II-VI
slab dielectric waveguides enabled the observation of SHG in the visible [Blanc1995, Zhang1996].

While crystalline birefringence is often used in bulk crystals to phase-match the widely spaced
wavelengths in second-order NLO processes, other techniques are needed for materials that do not possess
natural birefringence, such as GaAs and AlGaAs. Phase-matching techniques used to enhance the efficiency
of second-order NLO effects include dispersion engineering of the slab waveguide structure [Anderson1971],
and modal phase matching where the fundamental radiation occupied a lower-order mode and the second
harmonic populated a higher-order mode for effective refractive index matching [VanDerZiel 1974,
Blanc1995, Wagner1995]. Most of the demonstrations of phase-matched x'? effects employed various QPM
approaches [VanDerZiel1976, Yoo1995, Fiore1997a, Street1997a, Street1997b, Xu1997, Yoo1996, Xu1998,
Angell1994, Wagner1997, Kuhnelt1998, Azouz1995, Sugital999]. Specifically, many reports explored
periodic domain inversion (PDI) where the sign of x*) was periodically modulated by crystalline domain
reorientation achieved through wafer bonding and subsequent epitaxial (MOCVD or MBE) regrowth of the
structure with the domain orientation following that of the template [Yo01995, Xu1997, Yoo1996, Xu1998,
Angell1994]. This approach featured high propagation losses of 50120 dB cm ™!, except for one study
reporting much lower propagation losses of 5.5 dB cm ™! at the 1460 nm fundamental and 25 dB cm ™! at the
730 nm second-harmonic [Yoo1995]. QPM by PDI through proton exchange followed by thermal annealing
in LiTaO3 [Azouz1995] and by periodic electric-field poling of MgO:LiNbO; (with a very high efficiency of
31%) [Sugital999] were also demonstrated. QPM by a periodic modulation of the refractive index was
achieved via a corrugation formed by a grating etched in one of the waveguide heterostructure interfaces
[VanDerZiel1976]. Furthermore, QPM by periodic modulation of the values of x? (their periodic
suppression) was achieved via asymmetric coupled quantum-well reorientation [Fiore1997a], quantum-well
intermixing [Street1997a, Street1997b] selective wet oxidation of AlAs in AlGaAs/GaAs structures
[Fiore1998, Fiore1997b, Bravetti1998], and maskless focused-ion-beam implantation in ZnTe and ZnSe
waveguides [Wagner1997, Kuhnelt1998]. Thanks to the highest modulation contrast of x®’ achievable
through PDI, this method has been shown to result in the highest conversion efficiencies despite the largest
propagation losses. Some specific conversion efficiency figures are 1040% W~ cm ™2 for SHG [Xu1997] and
810% W' cm~2 for DFG [Xu1998] (PDI AlgGag 4As core with Aly;Gag3As claddings, fundamental
wavelengths around 1550 nm). Some other promising results include 190% W~ [Fiore1998] (AlGaAs/AlAs
with form birefringence by selective wet oxidation), 450% W~! [Azouz1995] (LiTaO; formed by proton
exchange), and 1500% W™! [Sugita1999] (SHG of 426 nm in MgO:LiNbO; waveguide with a periodically
patterned domain structure).

3.6.1.2.2. Background for on-chip waveguide materials with third-order nonlinearity

Third-order NLO interactions demonstrated in waveguide platforms before 2000 include a wide variety of
phenomena such as SPM, XPM, THG, Raman, Brillouin and FWM. The dominant number of experimental
demonstrations were performed in the 1990s in III-V semiconductor optical devices based on AlGaAs
[Espindola1995, Peschel1999, Millar1999, Le1990, Hamilton1996, Kang1996Db, Islam1992, Stegeman1994,
Kang1995, Kang1998, Villeneuvel1995a, Villeneuvel995b Villeneuvel995c, Le1992] and InGaAsP
[Nakatsuharal998, Day1994, DOttavil995, Donnelly1996, Darwish1996, Tsang1991]. Waveguides of planar
configuration (featuring 1D confinement) [Kang1996b, Day1994, Kang1998] and channel/rib waveguides
(with 2D confinement) [Espindola1995, Stegeman1994, Nakatsuhara1998, Villeneuve1995c¢, DOttavil 995,
Hamilton1996, Donnelly1996, Islam1992, Peschel1999, Le1990, Millar1999, Villeneuvel995b] were
considered. The majority of studies were performed in waveguides with 2D confinement, while 1D structures
were primarily used for spatial soliton demonstrations [Kang1996b, Kang1998]. The NLO phenomena
studied in I1I-V semiconductors included SPM and XPM [Kang1996b, Day1994, Hamilton1996, Kang1998,
Tsang1991, Villeneuvel995b], FWM [Espindolal1995, DOttavil995, Donnelly1996, Le1990, Darwish1996,
Le1992], and other demonstrations of the third-order optical nonlinearity [Islam1992, Peschel1999,
Millar1999].
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InGaAsP-based works feature optical devices with both resonant [Day1994] and nonresonant
[Nakatsuharal998, DOttavil995, Donnelly1996, Darwish1996, Tsang1991] nonlinearities in the vicinity of
the bandgap. In contrast, AlGaAs-based works primarily concentrated on operation at wavelengths below
half of the bandgap energy, typically the telecom C-band wavelengths, where it is possible to eliminate 2PA
by manipulating the material compositions of the waveguide heterostructures [Kang1996b, Villeneuvel1995c,
Stegeman1994, Peschel1999, Kang1998, Villeneuvel995b]. InGaAsP- and AlGaAs-based quantum-well
devices have been shown to exhibit strong nonlinearities due to band-filling and excitonic effects [Day1994,
Donnelly1996, Darwish1996, Tsang1991, Islam1992].

Most of the studies on the third-order nonlinearities in III-V semiconductor waveguides before 2000
were focusing on measuring nonlinear coefficients such as m,f) and ;. The values of 1) in AlGaAs of
various material compositions at various wavelengths have been reported to fall within the range between
2.1 x 107¥ and 3.3 x 10717 m? W1, with the most cited values near half-the-bandgap of
(1.3-1.5) x 10717 m?> W~ ! in the telecom C-band [Espindola1995, Stegeman1994, Hamilton1996,
Islam1992, Aitchison1997]. The 2PA coefficients a; of AlGaAs below half-the-bandgap have been reported
to span between 2.6 x 107 and 6 x 107> m W~! [Espindola1995, Islam1992, Aitchison1997]. The values
of 11(efr) (in the range between 6 X 1077 and 9.5 x 107 m?* W) and a; (3 x 107" t0 6 x 107" m W)
typically measured in the vicinity of the bandgap, have been reported in InGaAsP waveguides
[Donnelly1996, Darwish1996, Tsang1991]. The values of X in AlGaAs [Le1990] and InGaAsP
[Donnelly1996] waveguides have also been measured. A few studies report the conversion efficiencies for
FWM processes in AlGaAs [Le1990, Le1992] and InGaAsP [Donnelly1996, Darwish1996] waveguides.

Organic polymers in waveguide configurations (not included in the data table) represent another large
group of materials that has been extensively studied before 2000 [Prasad1987, Grabler1997, Rossil991,
Huang1999, Okawal991, Chon1994, Muto1992, Hosoda1992, Driessen1998, Bartuch1997, Malouin1996,
Malouin1998, Muratal998, Marques1991, Asobe1995, Lee1993, Konig1999]. Many studies report the
effective values of x*) of a variety of polymer-based waveguides [Huang1999, Okawa1991, Chon1994,
Rossi1991, Hosoda1992, Lee1993]. The typical value ranges for the nonlinear coefficients 7, of these
waveguide materials are between 2.7 x 10718 and 1.7 x 107!®* m?> W~1, while v, ranges between 8 x 10~
and 5.8 x 107! m W~! [Chon1994, Driessen1998, Bartuch1997, Malouin1998, Murata1998, Marques1991,
Asobe1995, Malouin1996, Grabler1997]. Thanks to the wide transparency windows of the majority of the
polymer waveguide platforms, most of these measurements have been performed in the visible wavelength
range.

There were a few reports demonstrating third-order NLO interactions in waveguides made of other
materials, namely: Si3Ny [Bertolotti1999], QPM KTP waveguides [Sundheimer1993], gelatin-gold
nanoparticle composites [Bloemer1990], SiO,-TiO, [Toruellas1991], and ChGs [Cerqua-Richardson1998].
Notably, there was also a series of works on planar iron-doped and titanium-indiffused LiTaO3 and LiNbO3
waveguides where phase conjugation by anisotropic FWM and two-wave mixing has been demonstrated
[Kip1994, Popov1992, Normandin1979, Kip1992, Fujimural999, Kip1995].

The dominant driver behind studying the third-order phenomena in waveguide configurations before
2000 was the potential of developing all-optical signal processing devices for optical communication
networks and optical information processing. As the fastest response time associated with most of the
nonresonant third-order processes is at the sub-femtosecond time scale, high-speed switching at moderate
optical powers is possible. Many proof-of-principle all-optical-switching devices such as nonlinear
directional couplers and asymmetric Mach—Zender interferometers [Kang1995, Stegeman1994,
Villeneuvel995a] have been demonstrated before 2000. Optical bistable devices in various waveguide
platforms have also been realized [Nakatsuharal1998, Huang1999]. Yet, despite this interest in datacom and
information processing applications, the NLO properties of Si waveguides remained largely unexplored
before 2000.

3.6.1.3. Considerations for on-chip waveguides when performing NLO measurements
Determining the irradiance inside the on-chip waveguide is not straightforward and can represent the main
source of error in NLO measurements. Apart from the determination of the optical beam characteristics such
as the pulse width and the peak power, a careful evaluation of the coupling efficiency and the effective mode
area is crucial for the irradiance determination. If the waveguide’s cross-sectional dimensions change along
the propagation direction, as in the case of devices with tapers, the subsequent change in the irradiance and
phase matching conditions must also be accounted for.

The propagation loss must be properly evaluated. It includes the linear absorption, which depends only
on the constituent materials, the scattering off the waveguide’s walls and the field leakage. The determining
factors in the loss characteristics are the waveguide’s fabrication process, its geometry, material composition,
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and the quality of the substrate. Although most of the selected waveguide materials do not exhibit 2PA at the
wavelength of interest in their bulk states, the large surface area of the waveguides may give rise to linear
absorption from impurities and defects generating free carriers and/or excited impurity or defect states that
subsequently absorb. This 2-step process mimics 2PA making it difficult to experimentally separate its effects
from direct 2PA. However, this is a fluence dependent rather than an irradiance dependent process, and thus
its effects are reduced in short-pulse measurements [Lin2007a, VanStryland1985, Christodoulides2010].
Using CW or long pulse high-repetition-rate sources helps to determine this contribution.

An effective NLO coefficient measured in heterostructure waveguides usually results from an
irradiance-weighted average of the NLO coefficients of different layers. The contribution of the guiding layer
is dominant in most cases. However, the precise effective NLO coefficient values depend on the confinement
factor [Grant1996]. For this reason, the waveguide’s NLO coefficients might deviate from the corresponding
bulk values.

As for the measurements of the efficiency of the NLO process, the approach used to perform the
calculation must be explicitly given. For example, one should state whether the power used in the calculation
is the average or peak power, external or internal (coupled in), at the input or output of the device.

In multi-beam experiments, the group velocity mismatch (GVM) and phase mismatch, which depend on
the material and waveguide dispersions, should also be properly quantified because for several NLO
processes, such as FWM, these are some of the most crucial factors in determining the efficiency of the
process. GVM is responsible for separating the probe pulse from the pump pulse in time as they propagate
along the waveguide, while the phase mismatch between different wavelength components involved in the
NLO process determines the coherence length of the process [Tishchenko2022]. The beauty of on-chip
waveguides is that some of them enable dispersion engineering with the possibility of zero GVD at the
wavelengths of interest to improve the efficiency of a NLO process [Pu2018, Dolgaleva2015, Meier2007].
Estimating the efficiency of the NLO process in a waveguide from the theoretical models that account for the
dispersion, the irradiances, and NLO coefficients, and comparing it to the measured value is also a good
practice [Espinosa2021a, Pu2018, Foster2007].

On-chip waveguides used in NLO are often quite short (<1 cm). For waveguide materials that are not
highly nonlinear, one should test/account for possible nonlinearities in the rest of the characterization system
by performing reference measurements. This is especially true for tapered fiber-coupled devices where a
reference measurement without the device can be performed with the input power corrected for the
insertion loss.

Besides the special considerations outlined here, also the general best practices of section 2 should be
taken into account when performing NLO measurements with on-chip waveguides.

3.6.1.4. Description of general table outline

Tables 7A and B show a representative list of, respectively, second-order and third-order NLO properties of
on-chip waveguiding materials taken from the literature since 2000. The selection of the papers included in
the Tables has been based on the best practices in section 2 and the considerations outlined above. Table 7B
has the entries grouped into five subcategories to facilitate the search for a specific waveguide composition:
III-V semiconductors; silicon and silicon carbide, nitride, and oxide; ChGs; diamond; tantalum oxide and
titanium oxide. Within each subcategory, the entries are ordered alphabetically. Tables 7A and B are
subdivided into ‘Material properties’, ‘Measurement details’ and ‘Nonlinear properties. Within each column
the information is given in the order of the header description. ‘Material properties’ include the waveguide
dimensions (length and cross-section), fabrication methods, propagation loss, refractive index, and a
reference to the sub-figure in figures 6 and 7 showing the fabricated device. Figure 6 shows SEM pictures of
devices with second-order NLO responses, while figure 7 shows SEM pictures of devices with third-order
NLO responses. The peak power values in the Tables are nominally incoupled powers as specified in the
papers. The table entries cover various material platforms and compositions, as well as various waveguide
configurations and phase-matching techniques. In some instances, the waveguide structure was rather
complex, and it was difficult to fit its detailed description in the Tables. In these cases, simplified descriptions
were provided with references to the more detailed descriptions in the corresponding papers. The NLO
technique used in each of the papers is provided in the ‘Method’ column. Lastly, some papers specify the
dependence of the NLO parameters or conversion efficiency 7 on wavelength, waveguide dimension,
temperature, etc or have notes associated with their measurement/analysis. This information is listed within
the ‘Comments’ column. The works included in the Tables nominally report data obtained at room
temperature, unless specified otherwise in the ‘Comments’ column. If dispersive values for the NLO
parameter were provided, the cited value represents the peak value for the material within the stated
measurement range.
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Figure 6. SEM images of integrated photonic devices for second-order nonlinear interactions. The labels of the sub-figures
correspond to the labels given in table 7A. Panels (a)—(j) are reprinted with permission from [Xiong2011, Wang2018b, Yu2005,
Duchesne2011, Scaccabarozzi2006, Han2009, Morais2017, Savanier2011b, Ozanam2014, Stanton2020], ©2005, 2006, 2009, 2011,
2014, 2017, 2018, 2020 Optica Publishing Group.

3.6.2. Discussion

The data in tables 7A and B indicate a clear trend towards the development of high-confinement waveguides
because of the benefit of enhanced NLO interactions for both the second- and third-order NLO processes.
Novel and improved fabrication procedures have been developed to ensure high-quality materials and low
surface roughness. Several new waveguide material platforms have been entering the scene, bringing about
excellent NLO performance. These platforms will further stimulate the development of practical NLO
integrated devices.

3.6.2.1. Advancement since 2000 and remaining challenges

Over the past twenty years, there have been significant advancements in the methods of micro- and
nanofabrication. Apart from the major progress in photo-lithography and electron-beam lithography, novel
nanofabrication approaches and techniques have appeared, and also photonic foundries offering
multi-project wafer runs at a reduced cost per chip have facilitated the field’s growth. In the early 2000s, the
NLO community turned its attention to silicon-on-insulator (SOI) photonics as a promising nonlinear
platform because of its potentially lower cost and high compatibility with CMOS technology. Various SOI
components for parametric amplification, wavelength conversion, and Raman lasing have been
demonstrated in the telecom wavelength range.

The success of silicon photonics, inspired by CMOS silicon electronics, relies on the tight light
confinement enabled by the combination of a high-index material (Si) surrounded by a low-index oxide
cladding. Not surprisingly, this semiconductor-on-oxide approach has also been applied to other material
systems, such as AlGaAs, resulting in NLO devices with improved performances. Another enabling factor in
the new platform development is significant progress in bonding and substrate removal technologies,
opening the route to various types of heterogeneous integration. Nonlinear photonics with suspended
semiconductor membranes has consequently emerged. Below we provide more detailed insight into the
progress since 2000, the remaining challenges and the applications of on-chip waveguides with second- and
third-order NLO effects.

3.6.2.1.1. Advancement and challenges for on-chip waveguiding materials with second-order nonlinearity

There were many improvements in lowering the propagation losses and increasing conversion efficiencies of
the second-order NLO interactions in the existing AlGaAs waveguide technologies. Specifically, selectively
oxidized AlGaAs/Al,O, multilayer stacks with 2D-confined ridge waveguides with much lower propagation
losses of 1.5-5 dB cm ™! featuring much higher conversion efficiencies ranging between 2.7 and 5% W™!
were demonstrated [Savanier2011b (SHG), Savanier2011a (SFG), Ozanam2014]. Moreover, 2D-confined
AlGaAs waveguides with symmetric Bragg reflectors in their top and bottom claddings have been realized
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Figure 7. SEM images of integrated photonic devices for third-order NLO interactions. The labels of the sub-figures correspond
to the labels given in table 7B. Panels (a), (b), (d), (e), (h), (i), (1), (n), (0), (q), (s), (t) and (v) are reprinted with permission from
[Liu2011, Wang2012b, Wathen2014, Apiratikul2014, Chiles2019, Dave2015a, Evans2013, Zheng2019b, Wu2015, Gajda2012,
Kruckel2015a, Madden2007, Jung2013], ©2007, 2011, 2012, 2013, 2014, 2015, 2019 Optica Publishing Group. Panels (c), (j), (k),
(p), (r), and (u) are reprinted with permission from [Ferrera2008, Colman2010, Wilson2020, VanLaer2015, Kittlaus2016,
Hausmann2014], Springer Nature. Panel (f) is reprinted with permission from [Espinosa2021a], Elsevier. Panels g and m are
reprinted under CC BY license from [Stassen2019] and [Hammani2018].

[Han2009, Bijlani2008, Han2010, Abolghasem2009], exhibiting SHG and SFG conversion efficiencies
around 9% W~! [Han2009, Bijlani2008] and DFG conversion efficiencies of 5.2 x 107%% W~! [Han2010].
Fabrication of QPM AlGaAs waveguides by PDI [Yu2005, Ota2009, Yu2007] and by a periodic suppression of
X' (periodic domain disorientation) achieved through quantum-well intermixing [Wagner2011,
Hutchings2010, Wagner2009] have seen significant improvements. PDI waveguides with propagation losses
aslow as 5 dB cm ™! and SHG conversion efficiencies over 40% W~! [Yu2007] have been demonstrated.

Another advancement in the established AlGaAs waveguide technologies resides in the capability to
fabricate deeply etched waveguides with sub-micrometer dimensions. An example of such a waveguide has
been demonstrated in [Duchesne2011] where 300-1000 nm-wide ultracompact AlGaAs waveguides with
tight light confinement were used for SHG with modal phase matching. The normalized conversion
efficiency was moderate, 1.4 x 10°% (W m~2)~!, due to the high propagation losses of 18 dB cm ™!
characteristic to such devices with exposed guiding-layer sidewalls.

In addition to the existing AlGaAs waveguide technologies, there appeared new waveguide platforms
where an AlGaAs or GaAs guiding layer is surrounded by an insulator such as SiO, [Stanton2020,
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Chang2019, Chang2018a] or air [Morais2017, Roland2020]. The propagation loss of 1.5-2 dB cm ™! in
AlGaAs on SiO; is similar to that of the conventional AlGaAs strip-loaded waveguides, while conversion
efficiencies as high as 40% W~! [Stanton2020] and 250% W~! [Chang2018a] in the CW regime have been
reported. Simple type-II phase matching between a fundamental transverse-electric (TE) mode and a
high-order second-harmonic transverse-magnetic (TM) mode was implemented, combined with directional
QPM in [Morais2017]. Further advancements in the reduction of the propagation losses will lead to even
more efficient AlGaAs devices for second-order NLO interactions. However, there exists another factor
limiting the conversion efficiencies of longer waveguide structures. The narrow phase-matching bandwidth
combined with an extreme sensitivity of the phase-matched wavelength to the waveguide dimensions (a
precision on the order of a few nm is required) makes phase matching over a long distance technologically
difficult [Stanton2020].

There are several reports on other waveguide platforms used for phase-matched second-order NLO
interactions, among which are AIN on SiO, [Bruch2018], GaP on SiO, [Wilson2020], GaN on SiO,
[Xiong2011], AlGaN [Gromovyi2017], and periodically polled LINbO3 [Wang2018b]. A remarkably high
SHG conversion efficiency of 17 000% W ™! for the fundamental wavelength around 1550 nm has been
achieved in a 2D-confined AIN ring resonator [Bruch2018]. The 2D confinement represents the most
significant advancement in AIN- and GaN-based waveguides since only structures with 1D confinement
(slab dielectric waveguides) were accessible before 2000. It was not until recently that the fabrication of
2D-confined channel waveguides based on these platforms became possible. AIN and GaN represent
wide-bandgap semiconductors exhibiting large hardness and posing challenges in both epitaxial growth and
defect-free nanofabrication. Further mitigation of the threading-dislocation density by optimizing the
epitaxial growth and substrate choice [Awan2018] is expected to result in a significant improvement and
more widespread use of such platforms in nonlinear photonics.

The observation of the second-order NLO interactions in waveguides is not limited to SHG or SFG.
Spontaneous parametric down-conversion (SPDC) generating correlated photon pairs for applications in
quantum technologies has been demonstrated in AlGaAs waveguides [Guo2017, Sarrafi2013]. OPO based on
second-order processes has been demonstrated in GaAs/AlGaAs waveguides [Savanier2013], and, more
recently, in AIN ring resonators [Bruch2019]. Supercontinuum generation (SCG) [Lu2019a, Zheng2021,
Okawachi2020] and frequency comb generation [Zhang2019b] based on second-order processes have also
been reported.

To illustrate the wide variety of components discussed here, figure 6 shows SEM images of some
integrated waveguide devices used for second-order NLO interactions (see table 7A).

3.6.2.1.2. Advancement and challenges for on-chip waveguiding materials with third-order nonlinearity

There have been significant improvements in mitigating the propagation losses, optimizing the waveguide
geometries, and achieving higher conversion efficiencies in the existing third-order nonlinear optical
waveguide platforms, such as AlGaAs. Furthermore, there is a plethora of new works featuring novel
waveguide materials that appeared after 2000 or waveguide materials that already existed but were not yet
considered for NLO experiments until after 2000. These include various silicon-based platforms (SOI
[Claps2002, Tsang2002, Liu2004, Rong2005, Zlatanovic2010, Turner-Foster2010, Liu2011, Kuyken2011,
Liu2012b, VanLaer2015, Zhang2020b], Si3sN4 [Levy2009, Tien2010, Kruckel2015b, Wang2018a], silicon-rich
nitride [Wang2015, Kruckel2015a, Lacava2017, O0i2017], SiC [Zheng2019b, Xing2019], amorphous silicon
[Wang2012a, Wang2012b, Lacava2016, Girouard2020]), various ChGs [Madden2007, Lamont2008,
Gai2010], TiO, [Evans2013, Guan2018, Hammani2018], Hydex glass [Ferrera2008, Ferrera2009,
Duchesne2009], diamond [Hausmann2014, Latawiec2015, Latawiec2018], and additional III-V
semiconductor platforms not previously explored for nonlinear photonic devices (GaP [Wilson2020],
InGaAs/AlAsSb [Tsuchida2007, Cong2008, Lim2010, Feng2013]). The overall trend indicates that higher
effective nonlinearities can be obtained in high-index-contrast waveguides, often with a low-index dielectric
like silica or sapphire below the waveguide core. High-index-contrast silicon-based waveguides typically
feature sub-micron dimensions [Wang2015, Lacava2017, O0i2017, Turner-Foster2010, Kuyken2011,
Liu2012b, VanLaer2015]. Furthermore, ultracompact AlGaAs waveguides with sub-micron dimensions,
appearing after 2000, have also shown superior efficiencies of NLO interactions in comparison to their more
conventional low-index-contrast counterparts [Apiratikul2014, Dolgaleva2015, Espinosa2021a]. Moreover,
the SOI approach has been extended to other semiconductor platforms, enabling an increase in their
refractive index contrasts and a decrease in the waveguide dimensions. Among those are
AlGaAs-on-insulator (AlGaAs-OI) [Stassen2019, Pu2016, Pu2018, Kaminski2019, Hu2018, Ottaviano2016,
Zheng2019a], GaP-OI [Wilson2020], and InGaP-OI [Colman2010, Dave2015a, Dave2015b]. Thanks to the
strong light confinement, it became possible to push the effective nonlinear coefficient 7. to the level of
720 m~! W~ in NLO waveguides based on these material platforms [Stassen2019]. Further enhancement of
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the NLO interactions has been achieved through resonant effects in microring resonators [Absil2000, Li2021,
Ramelow2019, Shi2021, Fu2020a, Zheng2019a, Zheng2019b, Ottaviano2016] and photonic-crystal
structures [Jandieri2021, Monat2009 Liu2007, Zhu2006, Monat2010, Martin2017, Corcoran2009].

The effective nonlinearity is only one of the critical elements that determine the overall device
performance. Another crucial parameter is propagation loss: the linear loss limits the effective nonlinear
interaction length, while the nonlinear loss limits the maximum pump power that can be used for the
specific NLO process. Significant efforts have been put into lowering both types of losses. As the linear loss is
dominated by the scattering loss associated with the waveguide surface roughness and the refractive index
contrast between the core and cladding, various approaches have been proposed to smoothen the waveguide
surfaces (see, for example, [Awan2018, Lia02017]) and to passivate the waveguide surface for scattering
reduction [Apiratikul2014, Wathen2014]. The nonlinear loss induced by multiphoton absorption is
determined by the bandgap of the nonlinear material. The latter can be mitigated by using an appropriate
material platform that lacks 2PA in the wavelength range of interest, which stimulated an effort in developing
wide-bandgap NLO material platforms such as SiN, Hydex, Ta,Os [Wu2015], SiC, AIN, and GaN. Some of
the aforementioned platforms also exhibit modest index contrast compared to that associated with SOI and
similar platforms. Although the effective nonlinearity that can be achieved in such low-index-contrast
platforms is relatively low, their propagation losses are also extremely low. Ultra-low loss waveguides (with
propagation losses <0.5 dB cm™!) can be easily realized, allowing for much longer propagation lengths and
ultra-high-Q microring resonators, thereby magnifying the efficiency of the NLO interactions. In contrast,
the propagation losses in most high-index-contrast waveguides are much higher (>1 dB cm™') and do not
permit long-length devices. Nevertheless, superior waveguide compactness and dispersion-management
capability make them efficient NLO material platforms. Mitigating propagation losses, and improving
waveguide designs, fabrication procedures, and NLO efficiencies continue to be the challenges on the path
towards more practical integrated NLO devices.

Among the third-order NLO processes investigated after 2000, there are SPM, XPM, FWM, Raman
effects, and Brillouin processes. If the works published before 2000 were focusing on determining the
effective NLO coefficients of various waveguide structures, the trend after 2000 was partially shifted towards
achieving higher NLO efficiencies with lower incident powers. The underlying idea is to push the
proof-of-concept demonstrations towards practical implementations. In many emerging platforms,
including AlGaAs-OI [Pu2016, Zheng2019a], SiN [Ramelow2019, Wu2021, Xue2016], Hydex [Reimer2014],
SiC [Shi2021], and AIN [Jung2013, Jung2016], ultra-high-Q resonators have been realized to demonstrate
FWM-based Kerr frequency comb generation, which has a wide variety of applications in spectroscopy,
metrology, telecommunication, and quantum information processing. Furthermore, ultra-broadband (larger
than half an octave) FWM bandwidths have been demonstrated [Pu2018, Moille2021], and supercontinuum
generation (SCG) spanning more than an octave [Porcel2017, Lu2019a, Zhao2015, Liu2016b, Yu2019] has
also been achieved in different waveguide platforms. All-optical signal processing operations and optical
logic gates have been demonstrated [Pelusi2008, Willner2014, Koos2009, Yan2012b, Jandieri2018, Ma2016,
Eggleton2012], targeting applications in optical communication networks and optical computing. An
emerging application of on-chip nonlinear photonic devices that appeared after 2000 is to generate
correlated photon pairs for use in quantum optics [Ma2018, Shi2019b, Kultavewuti2016, Kultavewuti2019].

To illustrate the variety of structures discussed above, figure 7 displays SEM images of some integrated
waveguide devices used for third-order NLO interactions (see table 7B).

3.6.2.2. Recommendations for future works on on-chip waveguiding materials

Most papers noted in tables 7A and B present the measurements of one physical effect, e.g., SPM-induced
spectral broadening, Raman scattering or harmonic generation. We encourage researchers to take into
consideration the category-specific recommendations outlined above as well as the best practices in

section 2. Following these tips will help eliminate possible errors encountered in the process of determining
the values of NLO coefficients and conversion efficiencies.

We recommend that the authors of papers reporting on the NLO performance of waveguides specify at
least those parameters that are included in tables 7A and B. Furthermore, the completeness of such works
could benefit from adding additional information. For example, it is instructive to separate the absorption
and scattering losses, and to add the thermo-optic coefficients in resonator structures, whenever it is
possible. Self-heating is an important consideration in resonator-based applications, while these parameters
are rarely provided in waveguide characterization papers.

Another point of concern is nonlinear losses. The parameter v, in the Tables is most often attributed to
the ‘instantaneous’ 2PA that would have been retrieved from low-duty-cycle pulsed-source experiments. The
highly nonlinear semiconductor waveguides with high refractive index contrast present a special challenge
due to the high field amplitudes at the surfaces where surface states may be present [Espinosa2021b,
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Viswanath2001]. The same applies to amorphous/polycrystalline materials where surface effects may
dominate the losses [Wronski1981, Grillanda2015, Girouard2020]. In all cases, a detailed description of the
fabrication and surface passivation (if performed) should be provided. These surface effects can result in
significant linear absorption creating free carriers and/or excited impurity or defect states which may have
long lifetimes. These carriers/excited states can subsequently absorb resulting in an effective 2PA process not
easily distinguished from direct 2PA [Espinosa2021b, Grillanda2015]. Such processes may be best
characterized using long pulses with high repetition rates and/or CW sources, where the average power
makes these nonlinear processes dominant [Grillanda2015]. In addition, if energetically allowed, direct 2PA
can also lead to free-carrier generation which results in a higher-order nonlinearity [VanStryland1985,
Christodoulides2010].

Although many of the NLO PICs aim in the end to use integrated lasers which have a limited output
power, it would be good if the authors report damage thresholds of the waveguides. Special attention should
also be paid to quantifying the actual incoupled powers inside the waveguides rather than the incident
powers.

Most of the NLO measurements performed in waveguide structures yield an effective NLO coefficient,
which represents an irradiance-weighted average over various waveguide constituents [Grant1996]. We
recommend performing an ‘inverse’ calculation to estimate nonlinear material parameters from the
measured values. By comparing this result to the known bulk-material nonlinear coefficients, one can
validate the model and determine a possible need for improvement.
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3.6.3. Data table for on-chip waveguiding materials

Table 7A. Second-order NLO properties of on-chip waveguiding materials from representative works since 2000. Legend for superscripts: see below the table.

Second-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe/Signal
Core Method Length® Growth/ Refractive index Wavelength Wavelength x® (mv—T) Reference
Cross-section®  Deposition Peak power Peak power d(mVv—h
Cladding Phase . Width ‘ Propagation loss Pulse width Pulse width n Additional parameters and comments
Substrate matching Height© Lithography Wavelength Polarization Polarization Normalized n
SEM image? Other Rep. rate Bandwidth
fabrication
Alp19GagsiAs  SHG 1.46 mm MBE — 1596 nm — — [Morais2017]
Figures 1 and 2 8.0+ 1074 W — —
E\ir s B}ilrefringent 0.9 um E}-lbea?q,h ) 4.5,( - 1 cw o 1.2% W—1 Periodically bent (snake-like) waveguide.
suspende: phase photolithography 64 cm™ ) )
matching 0'. 123 pim TE - - Conversion efficiency dependence on pump
GaAs (001) Figure 6(g) — 1593 nm - — wavelength shown in figure 4(b) of the reference
paper.
Alp19GaggiAs  SHG 1 mm MBE — 1593 nm — — [Morais2017]
) o Figures 1 and 2 8.0+ 1074 W — — ) )
E\w s B;lrefrmgent 0.9 um E;lbeaT}l ) ;.87,(SHG) 1 cw o 2.7 0% W1 Straight waveguide.
suspende phase photolithography cm~
matching e e T o Conversion efficiency dependence on pump
GaAs (001) - — 1593 nm - — wavelength shown in figure 4(b) of the reference
paper.
Alp,GapgAs  SHG 1.26 mm — — 1582.6 nm — — [Duchesne2011]
Figure 1 1.6+ 107*W — —
Aly;Gag3As Modal‘phase 0.65 um E-beam 18.3dBcem™! cw - -
Gaasor) NP 05 um _ 1582 TE and T™M — 1.4+ 1045 05 (Wxn?) !
Figure 6(d) — —

(Continued.)
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Table 7A. (Continued.)

Second-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe/Signal
Core Method Length® Growth/ Refractive index Wavelength Wavelength x? (mv~T) Reference
Cross-section®  Deposition Peak power Peak power d(mV~h
Cladding Phase ‘ Width . Propagation loss Pulse width Pulse width n Additional parameters and comments
Substrate matching Height® Lithography Wavelength Polarization Polarization Normalized 1
SEM image? Other Rep. rate Bandwidth
fabrication
Aly4GaggAs SHG 2.12 mm MOCVD — 1600 nm — — [Bijlani2008]
Figure 1 ) . — — —
AlysGag4As Bragg . 3 um Photolithography 5.9 cm 2.0+ 10~ 12 s(FWHM) — 8.6 % Wl The uI')per and low'er reflectors ar.e made of 8 and
and reﬂecn(?n 4pum B 1555 0m TE o 2.1 4 1076 % (Wm?)~! 10 periods, respectively. Each period: 278 nm of
Aly,GaggAs waveguide 76+ 107 Hz 5.3 4+ 101! Hz (FWHM) AlysGag4As and 118 nm of Alg,GaggAs.
GaAs
AlpsGapsAs/  SHG 0.6 mm MBE — 1570 nm — — [Scaccabarozzi2006]
ALO, o Figure 1 . 23+107°W — — ) )
multilayer Birefringent 0.8-1 pum E-beam 23 dBcm cw o 50, W—le Conversion efficiency dependence on pump
phase TE wavelength shown in figure 2(b) of the reference
. - — 1550 nm - -
AlLO, matching Figure 6(c) o o paper.
— The reported pump power is taken at the
waveguide’s output.
The Al O, layers are obtained by thermal
oxidation of the Alyg3Gag o7As layers.
Alps1GagzeAs DFG 1.5 mm MOCVD — 775 nm 1545.9 nm — [Han2010]
— _ — 2941073 W — _
Alp70Gags0As  Bragg . 44 um Photolithography 2 (TE), B 204 10-12s cw 124 10-% 0 W—If The symmetric tO.P and bottom Bragg reflectors
and reﬂectlt?n 3.6 um B 2.2 (TM) cm ™ TE 5.4 4+ 10+ 9% (Wm?)~! are made of 6 periods of Aly70Gag30As/
Alp25Gag7sAs  waveguide o 1550 nm 7.6+ 107 Hz ~54+ 10712 Hz Alp25Gag 75 As.
GaAs (100)
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Alys1GagzeAs DFG 1.5 mm MOCVD — 775 nm 1545.9 nm — [Han2010]

— ) . — 294107 W — )
Aly70Gags0As  Bragg . 44 um Photolithography 2 cm 2041012 cw 504 10— 9% WLt The symmetric tqp and bottom Bragg reflectors
and reﬂecn(?n 3.6 um - 1550 TE TE 2.3 4 1042 % (Wim2)~! are made of 6 periods of Aly70Gag30As/
Alo‘sza0,75AS wavegulde o 7.6 :t 10+7 Hz >5 + 10+12 Hz A10,25GaoA75AS.
GaAs (100)
Alys1GagzeAs DFG 1.5 mm MOCVD — 775 nm 1545.9 nm — [Han2010]

— . 63+ 1072 W 294107 W — .
Aly70Gags0As  Bragg . 44 um Photolithography 2 (TE), ~ cw cw 1741049 w—1f The symmetric toP and bottom Bragg reflectors
and reﬂecn(?n 3.6 um - 2.2 (TM) cm ™ TE 7.6 £ 10+1 % (Wim?)~! are made of 6 periods of Aly70Gag30As/
A10‘25Ga0,75AS wavegulde o 1550 nm o >5 + 10+12 Hz A10,25GaoA75AS.
GaAs (100)
Alys1GagzeAs DFG 1.5 mm MOCVD — 775 nm 1545.9 nm — [Han2010]

— . 1 63+ 1072 W 294+107°W — )
Aly70Gag30As  Bragg . 44 um Photolithography 2cm™ cw cw 134 10-% 0p W—1f The symmetric toP and bottom Bragg reflectors
and reﬂecn(?n 3.6 um - 1550 i TE TE 5.8 £ 10+2 % (Wim?)~! are made of 6 periods of Aly70Gag30As/
A10‘25Ga0‘75AS wavegulde o o >5 + 10+12 Hz A10,25GaoA75AS.
GaAs (100)
Alp61GapszgAs SFG 2.2 mm — — 1555 nm 1552-1556 nm — [Han2009]

Figure 1(b) 424+107°W 35+ 1074 W 4.00+ 10— 1 )
Aly70Gags0As  Bragg . 4.4 um — 2 (TE), » cw cw 2.9+ 10-2% The effective mo_dle2 arezas:
and reﬂecn(?n 3.6 um - 2.2 (TM) cm ™ TE 3.0 4 106 (% (Wxn2)—1)e Pump: 6.7 = 10712 m2
Alp2sGag7sAs  waveguide Figure 6(f) 1550 nm o >7.5 + 10712 Hz (FWHM) Probe: 6.6 £ 107 * m
GaAs (100) The symmetric top and bottom Bragg reflectors

are made of 6 periods of Aly70Gag30As/
Alp2sGag 75 As.
Aly7GagssAs  SHG 8 mm MBE — 1550 nm — — [Yu2007]
) ) Figure 1 3941077 W — — ) )
Aly70Gags0As  Orientation 7 E-beam 5.5,25-45 cw o 43+ 10+ 0 W1 Conversion efficiency dependence on sample
patterned 11 (SHG) dBcm ™! length shown in figure 4(b) of the reference

Ge-on-GaAs -Lpm — - -

1550 nm

paper.

Quasi-phase matching periods from 4.7 4= 10~°
t04.9+ 10 °m.

(Continued.)
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Table 7A. (Continued.)

sulysiiand dol

Second-Order Nonlinearities

—
3
=
o~}
Material Properties Measurement Details Nonlinear Properties §
=
Pump Probe/Signal &
Core Method Length?® Growth/ Refractive index Wavelength Wavelength x? (mVv~1 Reference /S
) Cross-section®  Deposition . Peak power Peak power d(mV~1) i 2
Cladding Phase Width Propagation loss Pulse width Pulse width n Additional parameters and comments N
. . (=3
Substrate matching Height* Lithography Wavelength Polarization Polarization Normalized 7 §
SEM image? Other Rep. rate Bandwidth =
fabrication
A10‘67Ga033As SHG 5 mm MBE — 1559.1 nm — —_— [Yu2005]
o Figure 1 ) 1L9+107° W — —
Aly7Gag3As  Periodic 6 um Photolithography 6-7 dBcm™! cw . 23 4+ 10+ 06 W—!
domain 11 TE
GaAs (001) disorderi Lpm — 1550 nm - -
isordering  pio e 6(c) o o
AlGaAs/AlO,  SHG 1.5 mm MBE Figure 1 4420 nm — — [Ozanam2014]
multilayer o Figure 1(a) 1.6 £ 1072 W — — ) )
Birefringent 15.3 um E-beam lcm™! 3.04+10~7s o o The multilayer is formed by Aly19Gags1As, GaAs
GaAs phisi. o - 4500 nm TE o 444 1072 (% (Wim2)~1)b and AlO,.
matchin, . .
GaAs & Figure 6(i) - - The AlO, layers are obtained by oxidation of the
Alp.ogGag.p2As layers.
AlGaAs/AlO, DFG 0.5 mm MBE — 773.2 nm 1559 nm — [Savanier2011a]
multilayer — — — —
Birefringent 4 um — 1.6cm™! cw cw o The multilayer is formed by Aly,GaggAs/AlOy
GaAs phase}:l. o B 1580 nm TE TE 9.7 £ 107 (% (Woxn?)~ )i and Alg25Gag75As/AlOx.
matchin
GaAs & - — — The AlOj layers are obtained by selective
oxidation of the AlyosGag.o2As layers.
AlGaAs/AlO,  SFG 0.5 mm MBE — 1543 nm 1550.4 nm — [Savanier2011a]
multilayer — 14+107°W 1.9+ 107 W —
Birefringent 4 um — 1.6cm™! cw cw 2.7 0% W1 The multilayer is formed by Al ,Gag s As/AlO,
GaAs phas;. o - 1580 nm TE TE L1+ 10%7 % (Wxn?)~! and Al 5 Gag 75As/AlO,.
matchin
GaAs & - 7.2nm (at 3 dB) The AlO, layers are obtained by selective

oxidation of the AlyosGag.o2As layers.
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AlGaAs/AlO,  SHG 0.5 mm MBE Figure 1 1550 nm — [Savanier2011b]
multilayer o Figure 4 1.6+ 1072W — ) )
Birefringent 4 um —_ 1.13cm ™! cw 2.8% W1 The multilayer is formed by Aly>GaggAs/AlOy
GaAs phas;. o - 1550 nm TE 114 1077 % (Wxn?)~! and Al 25Gag 75As/AlO,.
matchin .
GaAs & Figure 6(h) - 2.9nm (at 3 dB) The AlO, layers are obtained by post-etching
lateral oxidation of the AlggsGag.o2As layers.
AIN SHG 0.188 mm MOCVD — 1590 nm — [Bruch2018]
— 261074 W —
Sapphireand ~ Temperature 12-1.3 um E-beam — cw 17 4+ 10+ 0 W—1le Conversion efficiency dependence on
SiO; tuning 1.1 gm - - ™ o temperature shown in figure 3(b) of the reference
paper.
Sapphire - — —
c-plane
AIN SHG 0.188 mm MOCVD — 1556 nm 6.20 £ 10~ 12 [Bruch2018]
— 261074 W —
Sapphireand ~ Temperature 12-1.3 um E-beam — cw 15 4+ 10+ 0 W—le Conversion efficiency dependence on
SiO; tuning 1.1 ym - - ™ o temperature shown in figure 3(b) of the reference
paper.
Sapphire — - -
c-plane
GaAs SHG 2.9 mm MBE — 1968 nm — [Stanton2020]
Figure 4(a) — 1.80 + 10710
Air and SiO, B}ilrefringent o E-beam 1.5dBcm™! cw 3.95 + 1073 9% W—le Con\;ersio}rll eff:liciency dependehnce on p;mp ;
ase wavelength and temperature shown in figure 7 o
Silicon fnatchin 0.158 pm Wafer bonding 1968 nm TE - the refergence aver P &
8 Figure 6(j) — 1.48 £ 107! Hz papet.
The linear loss at the SH wavelength is one order
of magnitude larger than that at the FF
wavelength.
GaAs SHG 1.4 mm MOCVD — 2009.8 nm — [Chang2018a]
Figure 1(a) 25+107°W —
SiO, Mod;l phase 1.53 um DUV 2dBcm~! cw 254+ 1072 96 W Con\;ersio}rll e}fﬁciency tfie[:n?nd(er;CCfolf1 purfnp
matchin —1\h wavelength shown in figure 4(c) of the reference
Silicon & 0.15 pm Wafer bonding 2000 nm TE 1341078 (% (Wxm?)™h) & &

0.93 nm (at 3 dB)

paper.

(Continued.)
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Table 7A. (Continued.)

Second-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe/Signal
Core Method Length® Growth/ Refractive index Wavelength Wavelength x? (mVv~1 Reference
) Cross-section®  Deposition ) Peak power Peak power d(mv—1) .
Cladding Phase . Width . Propagation loss Pulse width Pulse width n Additional parameters and comments
Substrate matching Height® Lithography Wavelength Polarization Polarization Normalized 7
SEM image? Other Rep. rate Bandwidth
fabrication
GaAs SHG — MOCVD — 2000 nm — — [Chang2019]
) ) Figure 1(a) . 61+107°W — — ) ) )

Si0, Ring resonator 1.3 um DUV 2dBcm cw o 4%, 6.5+ 10+ 9o W—! The efficiency reported is for a ring resonator

phase 0.15 TE device.
Silicon . -0 pm Wafer bonding 2000 nm - -

matching o o o
GaAs/Alygs DFG 1 mm MBE — 792.9 nm 1535-1555 nm — [Wagner2011]
Gag.15As o Figure 1 3.1+ 1072 W 524+ 1072 W —
superlattice Perloqlc 3 pm — 1.8 (TE), 317 cw cw o 14:14 Ga{%s:AloAgsGao‘l sAs monolayers

domain 0.6 um B (TM) cm TE TE and T™ 12 4 1042 (% (W2)—1)i superlattice.
Alys6GagsAs, disordering o o o
Alp.s0Gag.40As 1550 nm
and
Algs5Gag.15As
GaAs
GaAs/Alj g5 DFG 1 mm MBE — 791.7 nm 1535-1555 nm — [Wagner2011]
Gag,15As o Figure 1 24+1072W 49+ 1072 W —
superlattice Perloc.hc 3 um — 1.8 (TE), 317 cw cw o 14:14 Ga{\s:Alo,ssGao,lsAs monolayers
o . jf)mz;m . 0.6 um - (TM) cm ™ TE 7.2 4 10+2 (% (Wxn2)—1)i superlattice.

0.563a0.44 1S, isorderin b
& - 1550 nm — >12.5 41071 Hz The conversion bandwidth is the maximum

Alo.60Gag.a0As
and separation between the signal and idler.
Alos5Gag.15As
GaAs
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a 4 mm > — 1263 nm — romovyi2017
GaN SHG MBE, MOVPE (G vyi ]
Figure 3 9.0+ 10T W —
Alge5Gap3sN Modal.phase - — 1dBem™! 404 10-0 s 2%
Sapphire matching 1.2 um _ 1260 nm ™ 15+ 10+ % (Wxn?) !
— 1.0 £10 Hz —
a — s 2.3 1550 nm 1.60 = 10~ Xiong2011
GaN SHG MOCVD, PECVD + 1 [Xiong ]
) Figures 2(b) 1.24+107'W —
Si0, - and 4(b), (c) E-beam - CcW 32+107% %
Silicon 0.86 pm Wafer bonding 1550 nm - -
0.4 pm — —
Figure 6(a)
LiNbO; SHG 4 mm — — 1550 nm — [Wang2018b]
Figures 1(a) and 24107224+ 107'W —
Airand SiO,  Periodically (b) Photolithography, ~ 2.5dBcm™! cw o Conversion efficiency dependence on pump
poled 14 e-beam T +7 (0 2y—1yh wavelength shown in figure 3 of the reference
N-on. 4 pm 1550 nm E 2.6+ 1017 (% (Wxn?) ™)
insulator 0.6 ym _ — 7nm (at 3 dB) paper.
Figure 6(b)

 The length of ring resonators was calculated from the ring radius.

b Figure of the reference paper showing the cross-section geometry.

¢ For heterostructure waveguides, the reported height is the guiding layer thickness.

4 Selected SEM images presented in this work for each geometry and material platform.

¢ Conversion efficiency formula: n = PSH/PﬁF [SH—Second Harmonic, FF—Fundamental Frequency].

f Conversion efficiency formula: = Ppp/(PpPs) [DF—Difference frequency, P—Pump, S—Signal].

8 Conversion efficiency formula: 7 = PspAsp/(PsAs) [SF—Sum frequency, P—Pump, S—Signal].

h Normalized conversion efficiency formula: )y = Psp/(PprL)? [SH—Second Harmonic, FF—Fundamental Frequency, L—Length].
 Normalized conversion efficiency formula: 1y = Ppg/(PpPsL?) [DE—Difference frequency, P—Pump, S—Signal, L-Length].
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Table 7B. Third-order NLO properties of on-chip waveguiding materials from representative works since 2000. Legend for superscripts: see below the table.

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe/signal
Core Method Length? Crystallinity Refractive index Wavelength Wavelength ny Reference
. Cross section® . Propagation loss Peak power Peak power o) .
Cladding Width Growth/deposition Wavelength Pulse width Pulse width - Additional parameters and
Substrate Height® Lithography Bandgap Polarization Polarization n comments
SEM image? GVD Rep. rate Rep. rate Bandwidth
Other fab Dispersion curve® Effective area Effective area
III-V semiconductors
AIN FWM 0.376 mm — — — — 23+107 Y m?w—! [Jung2013]
) Figure 1(c) ) — 50+ 107'W — —
SI02 3.5 um Sputtering 1555 nm cw — —
Silicon 0.65 pm — — TE s s
Figure 7(v) — — — —
- Figure 1(a) 1.3£107 2 m? —
Alp12GagggsAs FWM 0.81 mm — — 1566 nm 1564 nm — [Zheng2019a]
) — 1.2dBcm™! 3.8+ 1074 W — — o
SiO, 0.4 jim MOVPE 1550 m cw cw . Tl.le device is a r'acetrack resonator,'
Sapphire 03 yim E-beam . TE . 19.8 dBe with 17 pm-radius cu.rved waveguhlde
and 700 pm-long straight waveguide
Wafer bonding, o o o parts.
substrate removal
Alp1sGaggAs  FWM 1 mm Monocrystalline — 1470-1540 nm 1540-1560 nm — [Espinosa2021a]
Figure 1 2dBem™! — 28 +1072W —
Alg.65Gag35As 0.9 um — 1520 nm 304 10-12 cw 51410+ m—lw-! The length of the 900 nm-wide part
and 0.8 jim E-beam . S(FWHM) TE 15.80h is 1 mm, but the total length is
Alp35Gag.esAs o 10+ 10-24 & m—1 TE o 32 4+ 10+12 Hy 5.26 mm, which includes the
GaAs - Figure 5 7.7 £ 1077 Hz — (at 20 dB) 2 pm-wide couplers.
(100) L4+107 7 m? Conversion efficiency dependence on

pump-probe detuning shown in
figure 9 of the reference paper.
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Aly18GaggpAs FWM 2 mm Monocrystalline — 1470-1540 nm 1540-1560 nm — [Espinosa2021a]
Figure 1 40dBcm™! — 28+ 1072 W — )
Alps5GagzsAs 0.6 pm — 1520 nm 304 1012 cw 1.8+ 1072 m—1w—1 The length of the 600 nm—wu.ie part
Gads 1.4 um E-beam o S(FWHM) TE 31.69%h is 2 mm, but .the .total length is
[100] o 754 10-25 62 m—! TE o 384 10+12 Hy 5.33 mm, which includes the
— Figure 5 7.7 +10%7 Hz — (at 20dB) 2 pm-wide couplers.
—13 .2
32+£107 7 m Conversion efficiency dependence on
pump-probe detuning shown in
figure 9 of the reference paper.
Alp1sGaggrAs  FWM 1 mm Monocrystalline — 1470-1540 nm 1540-1560 nm — [Espinosa2021a]
Figure 1 7dBcm™! — 284+ 1072 W — ) )
Alp.65Gag.35As 0.8 um — 1520 nm 304 1012 cw 9.0+ 10+ m—1w-! The length of the 800 nm V\.’lde part is
Gaks 0.7 um E beam o S(FWHM) TE 12.6%b 1 mm, but the total length is
(100] Figure 7(f) 15410~ ¢ m—! TE o o 5.87 mm, which includes the
— Figure 5 7.7 £ 1017 Hz - 2 pm-wide couplers.
—13 .2
7.3£107" m Conversion efficiency dependence on
pump-probe detuning is shown in
figure 9 of the reference paper.
Aly1sGagsaAs  FWM 25 mm Monocrystalline — 1550.5 nm 1551.9 nm 1.1+ 1077 m2w—! [Apiratikul2014]
Figure 1 1.9dBcm™! 8.0+ 107'W — 50+ 1078 mw™! ) )
Alp;Gag3As 1.2 um MBE 1550 nm cw cw o Conversion efﬁc:ncy dep;ndence (f)n
i i 40
1.7 pm - 1.64 eV TE TE 10%f pump power s shown In figure
GaAs - Photolithography 0.0 & 10— & -1 B o - the reference paper.
— — 7.3+£107 "7 m? —
Aly1sGagsoAs  FWM 25 mm Monocrystalline — 1550.5 nm 1551.9 nm 7.0+ 1078 m2w—! [Apiratikul2014]
Figure 1 0.56 dB cm™! 8.0+ 107'W — 30107 P mw! )
Aly7GagsAs 1.35 um MBE 1550 nm cw cw o Pho.toreswt reflow \ivas used to
Gads 1.7 ym Photolithography L64 eV TE TE 22.9%F achieve smoother sidewalls.
— 9.0£107® ¢’ m™! — — —
Reflown resist Figure 6 8.2 4+ 10— 13 m? o
Aly18GaggpAs FWM 5 mm Monocrystalline — 1550.5 nm 1551.9 nm — [Apiratikul2014]
Figure 1 — 8.0+ 107'W — —
Aly7Gag3As 0.69 um MBE 1550 nm cw cw o Uncoated.
GaAs 1.7 pim Photolithography 1.64 eV TE TE 0.16%"
— 224107 ¥ m™! — — 8.0+ 10712 Hy
— Figure 6 44+10" B m? — (at 3dB)

(Continued.)
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Table 7B. (Continued.)

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe/signal
Core Method Length® Crystallinity Refractive index Wavelength Wavelength ny Reference
Cladding Cross section Growth/deposition Propagation loss Peak power Peak power o Additional parameters and
Width Wavelength Pulse width Pulse width Vet
Substrate Height© Lithography Bandgap Polarization Polarization n comments
SEM image? GVD Rep. rate Rep. rate Bandwidth
Other fab Dispersion curve® Effective area Effective area
Alp1sGaggAs FWM 5 mm Monocrystalline — 1550.5 nm 1551.9 nm — [Apiratikul2014]
Figure 1 — 8.0+ 107'W — —
Aly7Gag3As 0.69 um MBE 1550 nm cw cw o Coated with SiN,.
GaAs 1.7 pm Photolithography 164 eV TE TE 0.25%"
figure 7(e) 444107 >m™! — — 5.5+ 10712 Hz
— Figure 6 4.7 £107 % m? — (at 3dB)
Aly0GaggoAs Nonlinear 10 mm Monocrystalline — 1550 nm — — [Dolgaleva2011]
transm./refl. Figure 1 3.2dBcm™! 1541072 W — —
Aly50Gags0As 2 pm MOCVD 1550 nm 204 1012 o o 3PA coefficient =
and 1.2 pm _ o S(FWHM) o o 8 £+ 1072° m® W2 at 1550 nm.
Alg24Gag7sAs E-beam, —24 2 1
- photolithography 12107 s m - - -
GaAs _ — 3.6 £ 1017 Hz —
44+107 "7 m?
Alp1Gag79As FWM 9 mm — — 1549.5 nm — — [R0s2017]
Figure 1 1.5dBcm™! L1+107'W — —
SiO; and 0.63 um Epitaxy, PECVD 1549.5 nm cw o o Conversion efficiency dependence on
HSQ 0.29 ym E-beam 1.69 eV TE — 12 dB! lfngth’ pump power and )
sol o 250 ps (nmkm) ! o . 55 nm signal—pump spacing shown in
Wafer bonding figure 3 o o (at 3dB) figure 5 of the reference paper.
Aly23Gag77As  FWM 10.8 mm Monocrystalline — 1538-1563 nm 1565 nm — [Mahmood2014]
Figure 1 51dBecm™! 12+107'wW 32+1072W —
Aly7Gag3As 0.2-1 pm — 1550 nm cw cw - Conversion efficiency dependence on
and SiNy 2.1 um o o ™ ™ 0.206) pump—probe detuning shown in
o l?m)ectlon o o o 10+ 1012 H figure 2 of the reference paper.
GaAs lithography : z
— 6.2+ 107 m? — (at 3dB)
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Alp26Gag7sAs SRS Pump 1 mm Monocrystalline — 1550 nm 1605.8 nm — [Oda2008]
PhC Probe — 9.1 cm™! 44 W 28+ 1074 W — u .

— - 1606 nm 50410712 cw — &Ramant 3.1 & 1077 m W™=

Air . B TE TE o Raman shift: 2.85 & 1074 m~!
. - . 2.0 4+ 10+ Hz - . Linewidth: 3.6 &= 1072 m~!
- - - - - The lattice constant, thickness, and

hole diameter are 452, 260, and
120 nm, respectively.

Alp3,GagesAs  SPM/XPM 4 mm Monocrystalline — 1560 nm — —_ [Chiles2019]

spectral Figures 1(a) 0.45dB cm™! — — —

Air broadening and (b) Epitaxy 2400 nm 6.14 10— o o The reported bandwidth is for the
supercontinuum generation (from

Silicon 0.48 um E-beam 1.82 eV TE — — . & )

0.54 1m 20 ps (nmkm) ! 1.6 £ 1078 Hz — 1200 nm nmto nmj.

Figure 7(h) Wafer bonding Figures 4(c) and 5(c) 2241078 m? — (at 20dB) Supercontinuum generation
bandwidth dependence on pulse
energy shown in figure 4(a) of the
reference paper.

Alp3GaggsAs  SPM/XPM 2.3 mm Monocrystalline — 3060 nm — — [Chiles2019]
spectral Figures 1(a) 0.45dB cm™! — — —
Air broadening and (b) Epitaxy 2400 nm 8541014 o o The reported bandwidth is for the
supercontinuum generation (from
Silicon o E-beam S o _ > 2300 10 6500 im)

0.54 pm 20 ps (nmkm) ! 1.0+ 107 Hz — 4200 nm 0 :

Figure 7(h) Wafer bonding Figures 4(c) and 5(c) 1241072 m? — (at 20dB) Supercontinuum generation
bandwidth dependence on pulse
energy shown in figure 5(a) of the
reference paper.

AlGaAs FWM 10 mm Monocrystalline — 1552.45 nm 1551.9 nm 23+1077 m? w! [Wathen2014]

Figures 1 and 2 1.5dBcm™! Lo+ 107'W — 33+£107 " mw!

Aly7Gag3As o — 1550 nm cw cw o The 2PA coefficient was measured at
Gads o - 1.6 eV TE TE 1.6%F 1550 nm by the nonlinear

Figure 7(d)

1.1£107#2m™!

transmittance technique with:
Pulse width: 1.26 4+ 10712 s
Rep. rate: 1 &= 1077 Hz

Peak irradiance:

<35+ 1078 Wm—?

(Continued.)
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Table 7B. (Continued.)

Third-Order Nonlinearities

Material Properties

Measurement Details

Nonlinear Properties

Pump Probe/signal
Core Method Length® Crystallinity Refractive index Wavelength Wavelength n Reference
Cladding Cross section Growth/deposition Propagation loss Peak power Peak power o Additional parameters and
Width Wavelength Pulse width Pulse width Yeff
Substrate Height© Lithography Bandgap Polarization Polarization n comments
SEM image? GVD Rep. rate Rep. rate Bandwidth
Other fab Dispersion curve® Effective area Effective area
AlGaAs FWM 10 mm Monocrystalline — 1552.45 nm 1551.9 nm 1.5+ 1077 m> W—! [Wathen2014]
Figures 1 and 2 0.74 dB cm ™! Lo+ 107'W — —
Aly7Gag3As o — 1550 nm cw cw o 3PA coefficient =
Car . 1.66 eV TE TE 0.6%¢ 8.3+ 1072° m®> W2 at 1550 nm,
s Figure 7(d) - o o o o measured by nonlinear transmittance
o o o o with:
Pulse width: 1.26 + 10712 s
Rep. rate: 1 £ 1017 Hz
Peak irradiance <8 £ 1073 W m—2
AlGaAs FWM 25 mm Monocrystalline — 1552.45 nm 1551.9 nm 9.0+ 10 ¥ m?>W! [Wathen2014]
Figures 1 and 2 0.56 dB cm™! L0+ 107w — —
Alo7Gao3As - - 1550 nm cw cw - -
GaAs — _ 1.77 eV TE TE 22.9%"
Figure 7(d) — — — 1.6+ 10112 He
— — — (at 3dB)
AlGaAs FWM 5 mm Monocrystalline - 1552.45 nm 1551.9 nm 8.5+ 10" ¥ m>wW-! [Wathen2014]
Figures 1 and 2 3dBcm™! 1.0+107'wW — —
Alo7Gao3As — - 1550 CW cw - -
GaAs — _ 1.79 eV TE TE 0.4%"
Figure 7(d) 45+107¥ >m~! — — 5.5+ 1012 Hz
— — — — (at 3dB)
AlGaAs FWM 3 mm — — 1543.6 nm 1538.2 nm — [Stassen2019]
SiO, and Figure 1(c) MOVPE, PECVD 2dBem™ _ _ - o The nonlinear coefficient was
0.465 pm 1545 nm CW cwW 724102 m~Iw—! . .
HSQ measured on a straight waveguide
0.29 um E-beam — TE TE 16 dB . . A
SOI Figure 7(g) . . o - 130 nm (at 3 dB) device, while the FWM efficiency was
Wafer bonding, measured on a microring. The

substrate removal

conversion bandwidth is the same for
the waveguide and microring.
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AlGaAs FWM 3 mm — 3.3 1550 nm 1549 nm — [Pu2018]
Figure 1(b) 1.3dBcm™! 40+107'W 1.0+ 1074 W —
$i0; and 0.64 pim MOVPE, PECVD — cw cw 6341012 m—1w—!
HSQ 0.28 um E-beam — TE TE 4.2dB
SOl — 46 ps (nmkm) ! — — 750 nm (at 3 dB)
Wafer bonding, _ _ _
Substrate removal
AlGaAs FWM 9 mm — — 1550 nm 1545 nm — [Kaminski2019]
— 8dBcm™! 1.6+ 107'W — —
SiO; and o MOVPE, PECVD o cw cw 3541072 m—lw—! Conversion efficiency dependence on
HSQ o o TE TE 15 dB signal wavelength shown in figure 4
ol o E-beam 164 ps (nmkm) ! o o o of the reference paper.
Wafer bonding, — — - The authors also reported a
Substrate removal conversion efficiency of 23 dB fora
3 mm-long waveguide.
AlGaAs SPM/XPM 5 mm — — 1542 nm — — [Hu2018]
spectral Figure 1(b) 1.5dBcm™! 5.6 W — —
SiO; and broadening 0.6 um Epitaxy, PECVD 1542 nm 15+ 1012 - o The generated comb wavelength
HSQ 0.28 um E-beam o S(FWHM) o 66%% ranges from 1520 nm to 1539.8 nm,
sor o o TE o 44 nm and from 1546.1 nm to 1570 nm, as
Wafer bonding, Figure S1 1.0+ 1011 Hz — (at 20dB) informed in the supplementary
Substrate removal _ material.
GaAs/Alygs SPM/XPM 5.7 mm Monocrystalline — 1545 nm — 7541078 m2w—! [Wagner2009]
Gag15As spectral — 0.65 cm™! 40+ 102 W - -
superlat- broadening 3 pum MBE 1550 nm 2 £ 10712 s(FWHM) — — Nonlinearities dependence on
tice 1 pm - o TE, TM o o wavelength shown in figure 3 of the
o o 764 10+ Hy o o reference paper.
Alo56Gag.aaAs _ _ 454 10—12 m? _
and
Alo.60Gag.40As
GaAs
GaAs/AlAs SPM/XPM 12 mm Monocrystalline — 1545 nm — 32+107 m? w! [Wagner2007]
superlat- spectral Figure 1 0.25cm™! 3.0+ 102 W — 204107 mw—! o
tice broadening 3 um MBE 1500-1600 nm 24+ 1012 s(FWHM) — — Nonlinearities dependence on
0.8 um Photolithoeran o TE o o wavelength shown in figures 2, 5, 8
Al s6Gag.asAs o graphy 10410~ ¢ m—! 76+ 1077 Hz o o and 10 of the reference paper.
and — — 9.7-112 4 10712 m? —
Alg.60Gag.40As
GaAs

(Continued.)
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Table 7B. (Continued.)

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe/signal
Core Method Length? Crystallinity Refractive index Wavelength Wavelength n Reference
Claddi Cross section” G b/d . Propagation loss Peak power Peak power a; Additional d
adding Width rowth/deposition Wavelength Pulse width Pulse width Yeff 1t10nta parameters an
Substrate Height® Lithography Bandgap Polarization Polarization n comments
SEM image? GVD Rep. rate Rep. rate Bandwidth
Other fab Dispersion curve® Effective area Effective area
GaAs/AlAs SPM/XPM 12 mm Monocrystalline — 1545 nm — 1.7+ 107" m>wW—! [Wagner2007]
superlat- spectral Figure 1 0.7cm™! 3.0+ 1072 W — 1.0+ 107" mw™! o
tice broadening 3 pm MBE 1500-1600 nm 2410712 s(FWHM) — — Nonlinearities dependence on
08 ) ™ wavelength shown in figures 2, 5, 8
Al G -0 pm Photolithography - - -
0.56Gaga4As o o 76+ 107 Hz o o and 10 of the reference paper.
and — — 16-24 4 10712 m? —
Alo.60Gag.40As
GaAs
Ings3Gag.a7As/  SPM/XPM 0.25 mm — — 1560 nm 1360 nm — [Cong2008]
AlAs)56Sboas  spectral Figure 1 — — — — ) .
CDQW broadening 3 um - — 204107125 cwW — XPM efficiency = 2.0 + 10" rad J™".
o - — - ™ o TE - See the reference paper for quantum
— — 1.0+ 1071 Hz - - well layers thicknesses.
InP - - - -
InGaAs/ SPM/XPM 0.24 mm — — 1550 nm 1539.67 nm — [Lim2010]
AlAs/AlAsSb  spectral — 278 cm ™! — — — ) o .
CDQW broadening — - 1600 nm 7.04+107 s cwW — XPM efficiency = 5.2 + 10 rad J
InAlAs - — - ™ . TE - See the reference paper for quantum
dInpP — — 8.0+ 107" Hz - - well layers thicknesses.
andn — Figure 2 — — —
InP It =197 m™2
InGaAs/AlAs/  SPM/XPM 0.24 mm — — 1550.1 nm 1559.9 nm — [Tsuchida2007]
AlAsSb spectral — — — — — ) . .
CDQW broadening 2 pm - — 23410725 CW — XPM efficiency = 4.9 £ 10" rad J~
— — — ™ TE - See the reference f t
InAlAs paper for quantum

1.0+ 10110 Hz

well layers thicknesses.
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InGaAs/ SPM/XPM 0.25 mm — — 1560 nm 1541 nm — [Cong2009]
AlAsSb spectral Figure 1(b) 400 cm ™! — — — ) . »
CDQW broadening 2 ym - 1560 nm 204107125 cwW — XPM efficiency = 3.3 & 107" rad ]
o o ™ TE o See the reference paper for quantum
AlGaAsSb o - o 1.0 + 10+10 Hy o o well layers thicknesses.
and InP _ Figures 2(d) and (¢) o o XPM efficiency dependence on
doping density shown in figure 2(c)
InP of the reference paper
InGaAs/AlAsSb SPM/XPM 1 mm — — 1560 nm 1545 nm — [Feng2013]
CDQW spectral — — — — — ) . .
broadening 1.3 um MBE o 244 10-12 s cw o XPM efficiency = 9.3 £ 10" rad ]~
InP ™ TE .
- E-beam — o - The experimental setup and the
InP - — 1.0+ 1077 Hz - - waveguide fabrication details given in
_ - - - Feng et al [Feng2012].
GaP FWM 0.314 mm Monocrystalline 3.1 1560 nm — 114+107" m>wW—! [Wilson2020]
) Figure 2(d) 1.2dBcm™! — — —
$i0, 0.5 um LS A 1560 nm cw 2441072 m-tw—!
Silicon 0.3 pum _ 2.1eV — —_— —
Figure 7(k) — — — —
Wafer bonding Figure 2(e) 1.5+ 1078 m? —
InGaP SPM/XPM 1.3 mm — 3.13 1551 nm — — [Colman2010]
) spectral Figure 1(a) 10dBem™! — — — ) )
$i0, broadening ~ — - 1544 nm 32410712 — 924102 m—tw—!  The GVDinthe table s for
- — - 19eV S(FWHM) — — 1555 nm.
Figure 7(j) 1.1+1072 2m™! — — —
— Figure 1(b) 2241017 Hz —
InGaP FWM 2 mm — — 1552.4 nm 1551.1 nm — [Dave2015a]
) Figure 1 12dBem™! 38+1072W 15+107°W — )
Si0; 0.63 m MOCVD 1540 nm cw cw 4841072 m—tw—! 3PA£°efﬁ°;nt3:W ,
‘ 25410726 m3 W~
Silicon 0.25 um E-beam 1.9 eV TE TE 0.08%
Figure 7(i) 50+10"®s>m~! — — —
Wafer bonding figure 2 2.4 +107 1B m? 244107 m?

(Continued.)
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Table 7B. (Continued.)

Third-Order Nonlinearities
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Material Properties Measurement Details Nonlinear Properties
Pump Probe/signal
Core Method Length?® Crystallinity Refractive index Wavelength Wavelength m Reference
Claddi Cross section” Growth/d i Propagation loss Peak power Peak power a; Additional . d
addmg Width rowticeposition Wavelength Pulse width Pulse width Yeif ftional parameters an
. s L comments
Substrate Height® Lithography Bandgap Polarization Polarization n
SEM image? GVD Rep. rate Rep. rate Bandwidth
Other fab Dispersion curve® Effective area Effective area
InGaP SPM/XPM 2 mm — — 1550 nm — — [Dave2015b]
) spectral Figures 1 and 3 12dBem™! L14+10TW — — ) i
$i0; broadening 0.7 pm MOCVD 1550 nm 1.74+1071 — — Eupzrc?dnﬁljiuum ieneratlon
andwidth dependence on
Silicon 0.25 pm E-beam - s(FWHM) - - . . .
o 6.0410-25¢2 m—! TE o 1.6+ 1014 Hz waveguide width shown in figure 2 of
Wafer bonding figure 1 8.2+ 1017 Hz _ (at 30dB) the reference paper.
21+107 P m?
Ing.e3Gag37 FWM 8 mm Monocrystalline 3.4 1568 nm 1551 nm 1.0+ 107" m>wW—! [Saeidi2018]
ASglgPO‘z Figure 1 3dB cm_l 9.0 W 5.0+ 10_1 W —
1.7 ym MOCVD 1568 nm 304 10-12 cw o Conversion bandwidth calculated as
InP 0.9 um Eb o ™ ™ 0.001%F the maximum signal-to-idler
: -beam : .
InP — 2241072 ¢ m™! 7.6 1077 Hz — 554+ 10112 Hz wavelength separation
— — L1£107 2 m? —
Ing¢3Gag 37 Nonlinear 8 mm Monocrystalline 3.4 1568 nm — — [Saeidi2018]
AsosPoo transm./refl. Figure 1 3dBcm™! 484+ 1011w — 190 £ 1010 mWwW—!
MOCVD —12
1P 1.7 pm 1568 nm 30£107 s — —
n
0.9 pm E-beam — ™ — —
InP — 2241072 ¢ m™! 7.6+ 1017 Hz — —
— — 1.1+£107 2 m? —
InGaAsP FWM 10 mm Monocrystalline — 1548 nm 10-nm shift — [Thoen2000]
QW — — 25+ 1072 W — —
o — o cw cw o 10 nm-thick InGaAsP quantum wells
InP o 0.83 eV o o 0.16% with 15 nm InP barriers centered in
P o o o o o o InGaAsP guiding layer
n
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Silicon and silicon carbide, nitride, and oxide

a-Si FWM 18.3 mm — 3.39 1602 nm 1-nm shift 1541077 m>W—! [Girouard2020]
— 6dBcm™! 2341071 W — —
$i0, 0.48 um PECVD 1550 nm cw cw —
Silicon 0.225 pm E-beam - TE — 3.39%"
a-Si FWM 1 mm — — 1550 nm 1550.5 nm — [Lacava2016]
) Figure 1 4.7dBem™! 70+ 1072 W — —
$i0, 0.48 um PECVD 1550 nm cw cw 8.0+ 1012 m— 1w~
Silicon 0.22 pgm E-beam — TE TE 0.25%"
— 48+ 107 &2 m™! — — 6.0+ 1012 Hz
— — — — (at 3dB)
a-Si FWM 8 mm — — 1540 nm — 7441077 m2w—! [Wang2012a]
Figure 1 72dBcm™! 301074 W — —
SiO, 0.5 um PECVD 1550 nm cw cw o Conversion efficiency depend.ence on
- 0.205 um E-beam - TE TE 0.1%F converted wavelength shown in
o 16+ 10-2 & m—! o o 204 10+ Hy figure 2 of the reference paper.
— — — — (at 3dB)
a-Si FWM — — — 1560 nm 1540 nm 74+1077 m? w! [Wang2012a]
— 72dBcm™! 134£1072W — —
$i0; 0.5 ym PECVD 1550 nm 2.8+£107 125 28+£107 125 —
Silicon 0.205 pim E-beam — TE TE 5%f
— — 1.0+ 1071 Hz 1.0+ 1071 Hz 2.0+ 1018 Hz
— — — — (at 3dB)
a-Si FWM 6 mm — — 1550 nm 1560 nm — [Wang2012b]
figure 1 3.5dBcem™! 63+ 1072 W 8.0+ 1074 W —
$i0; 0.5 um PECVD 1550 nm 194107125 21410712 3.0+ 100 m—tw—!
Silicon 0.198 pum E-beam — TE TE 5%F
Figure 7(b) 1.3£1072 s> m™! 1.0+ 10710 Hz 1.0 £ 10T Hz —

Figure 1

(Continued.)
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Table 7B. (Continued.)

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe/signal
Core Method Length? Crystallinity Refractive index Wavelength Wavelength ny Reference
. Cross section® . Propagation loss Peak power Peak power o) .
Cladding Width Growth/deposition Wavelength Pulse width Pulse width - Additional parameters and
Substrate Height® Lithography Bandgap Polarization Polarization n comments
SEM image? GVD Rep. rate Rep. rate Bandwidth

Other fab Dispersion curve® Effective area Effective area
Si and PIN FWM 40 mm — — 1552.5 nm — — [Gajda2012]

. — 2dBcm™! 40+107'W — 9.0+ 1072 mw!

$i0, and 0.5 um - 1552.5 nm CcW CW 201012 m~Iw!
SisNy 0.22 pm Photolithography — TE TE 79.4%
Silicon Figure 7(q) 1.3+£107# 2 m™! — — —
Si Nonlinear 24 mm Monocrystalline — 1560 nm — — [Claps2003]
transm./ — 0.46 cm™! 40+102 W — 4441072 mw!

- refl. — - — 9.0£107"s — —
o — o 1560 nm — — —

— — 2.5+£10% Hz — —

— — 8.1+ 10712 m? —

Si SBS Pump 2.9 mm Monocrystalline — 1550 nm — — [Kittlaus2016]

) Probe Figures 1 0.18 dB cm™! 62+ 1072 W — — o o
Air (sus- (a)~(g) — 1550 nm cw o o Forward Brillouin amplification
pended) 1 pm Eb _ TE _ _ o g1

-beam YBrillouin = 1152 m™" W
Silicon 0.08 pm - - - - Brillouin shift = 4.35 GHz

Figure 7(r) o - - - Linewidth = 7 MHz.
Free-carrier lifetime = 2.2 107 s
Si SBS Pump 2.7 mm Monocrystalline — 1550 nm — — [VanLaer2015]
Probe Figure 1(c) 2.6dBcm™! 25+ 1072 W — —
Air and 0.45 um — 1550 nm cw o o Forward Brillouin amplification.
$i0, 0.23 pm Photoli — TE — — o —1 w1
otolithography YBrillouin = 3218 m ™! W

Silicon Figure 7(p) - - - - Brillouin shift = 9.2 GHz

Linewidth = 30 MHz
Free-carrier lifetime = 5.7 £ 1077 s
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Si SBS Pump 20 mm Monocrystalline — 1550 nm — — [VanLaer2015]
Probe Figure 1(c) 2.6dBcm™! 1.2£1072W — —
Air and 0.45 um — 1550 nm cw o o Backward Brillouin amplification.
SiO, 0.23 . TE
- Hm Photolithography - - Vhrillowin = 359 M~ W—!
Silicon Figure 7(p) - - - - Brillouin shift = 13.66 GHz
o - - — Linewidth = 15 MHz
Free-carrier lifetime = 5.7 107" s
Si SRS Pump 48 mm Monocrystalline — 1545 nm 1680 nm — [Liu2004]

] Probe Figure 1 0.22dBcm™! 4.7 +£107'W 20£107° W — o .
$i0; and 1.52 um - 1550 nm 1.7 410~ cw — ghaman = 103107 m W
air 1.45 um Photolithoeranh o S(EWHM) ™ o Raman shift =5.2 + 107" m

N sraphy TE Pump peak irradiance =
Silicon — - - - 1 s

— — 1.0 £ 10+ Hz 14410712 m? 3107 Wm
1.6+ 10-12 m2 Free-carrier lifetime = 2.5+ 10" % s
Si SRS Pump 48 mm Monocrystalline — 1536 nm — — [Rong2005]

) Probe Figure 1(a) 0.35dB cm ™! 20W — — T .
$i0; and 1.5 um - 1550 nm 1341077 — — &raman =75 £ 107 m W
air 155 10% Raman shift = 5.2 £ 10t* m~!

22 pm Photolithography - - - ° F s _s
4 ree-carrier lifetime =1+ 107° s
Silicon - — 1.0 £ 107* Hz — _
_ —12 2
- 1L6+£107“m - The conversion efficiency is the slope
efficiency of average Raman lasing
output vs average input power.
Si SpRS cross- 24 mm Monocrystalline — 1427 nm — — [Claps2002]
) section Figure 2 2.8dBcm™! LOW — —
Si0; and 5 um — 1542 nm cw o o ZRaman = 7.6 £ 1070 m W1
air 25 um B TE o o Raman shift = 5.2 & 1074 m~!
Silicon - - - - -
Si Raman 2.8 mm Monocrystalline — 1240 nm — — [Zhang2020b]

) Laser Figure 1(f) 0.51 dBcm™! 1.0£1073W — — o .
$i0, and Threshold 2 pm o 1325 nm CW — — 8Raman = 3.66 £ 107" m W
air Raman shift = 5.2 + 1074 m~!

0.22 pm Photolithography - TE - -
Silicon - - - - - Gain dependence on pump
— — 3.7+£107 P m? —

wavelength shown in figure 6(b) of
the reference paper.

(Continued.)
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Table 7B. (Continued.)

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe/signal
Core Method Length? Crystallinity Refractive index Wavelength Wavelength ny Reference
. Cross section® . Propagation loss Peak power Peak power o) .
Cladding Width Growth/deposition Wavelength Pulse width Pulse width - Additional parameters and
Substrate Height® Lithography Bandgap Polarization Polarization n comments
SEM image? GVD Rep. rate Rep. rate Bandwidth
Other fab Dispersion curve® Effective area Effective area
Si Nonlinear 4 mm Monocrystalline — 2200 nm — — [Liu2011]
transm./refl. Figures 1(a)- 4.5-7.0dBcm™! 6.0 W — 30+£107 B mw—!
S%Oz and © — 1800-2300 nm 204 1012 o o Nonlinearity depen.dence on
SizNy 0.6 im Photolithography o S(FWHM) o o wz;velength shown in table 1 of the
Silicon 0.22 pm . TE o o reference paper
Figure 7(a) — — 7.6 +£ 10177 Hz —
Si FWM 20 mm — — 1946 nm 2440 nm — [Liu2012b]
Figure 1(b) 2.6dBcm™! 3.7+ 101 W 35+£107° W —
$10; 0.9 pm - 1810-2410 nm 20410725 CW 284102 m~'w! The conversion efficiency refers to
Silicon 0.22 pim _ — TE TE 8912.5% the parametric gain
- 50£107% ¢ m™! 7.6 £ 1077 Hz - 6.2 4 107" Hz Parametric gain dependence on
- Figure S4(b) - - wavelength shown in figure 2 of the
reference paper
Si FWM 20 mm — — 2173 nm 2209-2498 nm — [Kuyken2011]
— 2.8dBem™! L4+ 10w 6.0 107> W —
Si0; 0.9 um — 2173 nm 2041012 cw 15+ 1072 m—'w—! The conversiﬁ)n ef'ﬁciency refers to
Silicon 0.22 ym _ — TE TE 1000 000% the parametric gain
- 6.0 107 ¢ m™! 7.6 £ 1077 Hz - 580 nm Parametric gain dependence on
- - - - wavelength shown in figure 3 of the
reference paper
Si FWM 3.8 mm — — 2025 nm 1912-1994 nm 1.1+1077 m>w—! [Zlatanovic2010]
Figure S1 2.8dBcm™! 1.8+ 1071w — —
SiO; 1.06 um — 2025 nm 1.0+10~%s cw 9.7+ 10+ m—1w—! Convers'ion efﬁcien'cy depende.nce on
Silicon 0.25 um E-beam o TE TE 0.5% pump-signal detuning shown in
o o 1.0 + 10+ Hz o 292 nm (at 3 dB) figure 2(b) of the reference paper

— 354107 m? —
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Si FWM 15 mm — — 1554 nm 1555-2078 nm — [Turner-Foster2010]
Figure 1 — L1+107twW 254+ 1074 W —
Si0, 0.55 um — 1554 nm cw cw o Conversion efficiency dependence on
' ted wavelength shown in
T 0.3 ym i — TE TE 1.58%" conver §
Silicon o E-beam o - o 9.7 4+ 10+ Hy figure 2 of the reference paper
— — — — (at 3dB)
Si Nonlinear 17 mm Monocrystalline — 1540 nm — — [Tsang2002]
) transm./refl.  Figure 1 0.1dBcm™! 204+ 100w — 4541072 mw™!
$i0; — - 1540 nm 5441071 — —
Silicon - — - s(FWHM) - -
— 1.24+107#s>m™! — — —
— Figure 5 — —
62+10" 2 m?
4H-SiC FWM 3 mm — 2.4 1565 nm — 6.0+ 107 m>W! [Zheng2019b]
— — 13+1071wW 1.0+£1073W —
SiO; 0.51 ym — 1565 nm cw o 74m—Tw-! Nonlinearity dependence on
Silicon 0.5 um E-beam S24eV TE TE 0.00032%F waveguide width shown in figure 4 of
Figure 7(n) 325 ps (nmkm) ! — — 1.6+ 10113 He the reference paper
Wafer bonding Figure 5(a) — — (at 3dB)
a-SiC SPM/XPM 12 mm — 2.45 1550 nm — 48+107 ¥ m>wW! [Xing2019]
) spectral Figure 2(a) 3dBcm™! 1.3+ 100w — —
$i0; broadening 1.2 um PECVD 1550 nm — — 40+10T m—'w—!
Silicon 0.35 pm E-beam 2.3eV - - -
— 400 ps (nmkm) ! — — —
— 424+107Bm? —
Si3Ny FWM 1000 mm — — 1563 nm 1562 nm — [Kruckel2015b]
) Figure 1(a) 0.06 dB cm ™! 21 W 7.7+£1072W —
$i0; 2.8 um - 1550 nm cw cw 29410 ' m—tw!
Silicon 0.1 pim _ — TE TE 0.245%"
— 50+ 10" s> m~! — — 6.2+ 107! Hz
_ _ _ — (at 3dB)

(Continued.)
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Table 7B. (Continued.)

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe/signal
Core Method Length® Crystallinity Refractive index Wavelength Wavelength ny Reference
Claddi Cross section® Growth/d " Propagation loss Peak power Peak power o) Additional . d
adding Width rowth/deposttion Wavelength Pulse width Pulse width Yeff ! 1ont parameters an
Substrate Height® Lithography Bandgap Polarization Polarization n comments
SEM image? GVD Rep. rate Rep. rate Bandwidth
Other fab Dispersion curve® Effective area Effective area
Si3Ny FWM 22 mm — — 1550 nm 1550.8 nm 69+10" Y m>W! [Wang2018a]
) Figure 2(a) 0.58dBcm™! 1.6E£107'W 1.1+107'W —
$i0, 2 pm 2 1550 nm cw cw 2.6m— W
Silicon 0.72 um Photolithography 3.7 eV TE TE 0.00012%/
— — L1£107"2 m? —
SizNy FWM 61 mm — — 1550 nm 1470-1630 nm 254107 m2w—! [Levy2009]
Figure 2(a) 0.5dB cm™! 244101 W - -
SiO, 1.45 um LPCVD, PECVD 1550 nm 1.0+ 10~ s cw o The reported conversion efficiency is
’ ; 3 the parametric OPO gain achieved in
Silicon 0.725 pim E-beam — TE TE 229% P &
— 6441077 2 m~! 1.0 4 101° Hz — 150 nm microresonators
- Figure 2(a) - - (at 3.6dB) Signal gain dependence on
wavelength shown in figure 2(b) of
the reference paper
SizNy SPM/XPM 6000 mm — — 1549.9 nm 1550.3 nm 9.0+107" m? w—! [Tien2010]
) spectral Figure 1(a) — 4.0+ 107'W 4.0+107'W — o
SiO; broadening 2.8 um LPCVD 1550 nm cw cw 6.04+10-2 m—w—! Nonlinearity dependence on core
0.08 TE TE thickness shown in figure 2 of the
Silicon -Uo pm — - -
o o o o o reference paper
SizN3 FWM 7 mm — 3.1 1555 nm — — [00i2017]
— 45dBecm™! 23+1072W 231074 W —
SiO; 0.55 um PECVD 1550 nm cw cw 5041072 m— w1 Conversion efficiency dependence on
pump wavelength shown in
Silicon 0.3 ym E-beam 2eV TE TE 0.323% by of i ;
o 25410252 m—! o o 224 10+ Hy igure 3(b) of the reference paper
— Figure 2(b) — — (at 3dB)
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SizN; SPM/XPM 7 mm — 3.1 1550 nm — 28+107 " m>W! [Wang2015]
) spectral — 10dB cm™! L4+ 102 W — —
$i0, broadening 0.6 um PECVD 1550 nm 184107125 — 55+ 1072 m~Iw—!
Silicon 0.3 pm E-beam 2.05eV TE _ _
— 2441072 m™! 2.0+ 1017 Hz — 7.7+ 10t8 Hz
— Figure 2(c) 2.1+107 8B m? — (at 30dB)
SixN, FWM — — 2.49 1550.1 nm 1550 nm 1.6+ 107 ¥ m>w—! [Lacava2017]
— 1.5dBcm™! 32+107'W 324+1072W 8.0+10"2mwW!
SiO, 0.7 um PECVD 1550 nm cw cw 1.6+ 10+ m—1w~—! Conver?ion e.fﬁciency dePendence on
- 0.22 um £ beam o TE TE 0.0032%F waveguide width shown in figure 6 of
o o o o o the reference paper.

o - 40+107" m? — The reference paper also reports the
nonlinearities for a standard Siz Ny
waveguide, and for a Si,N, waveguide
with a different silicon content.

SixN, FWM 9.4 mm — 2.1 1563 nm 1562 nm 1.4+107 8 m>w—! [Kruckel2015a]
Figure 1(b) 1.2dBcm™! 1.OW 79+1072W —
$i0, 1.65 um PECVD 1570 nm cw cw 6.1 m— W
Silicon 0.7 pim E-beam 23eV TE TE 0.016%"
Figure 7(s) 20410722 m~! — - 204+ 1012 Hz
— Figure 3(b) 9.0+ 10~ 1B m? — (at 3dB)
Hydex FWM 0.3 mm Amorphous 1.7 1553.38 nm 1558.02 nm 124107 m>w—! [Ferrera2008]
Figure 1 0.06 dB cm™! 50+ 107° W 55+ 1071 W — )
S.iOz and 1.5 pm CVD 1550 nm cw cw 23410~ m-lw-! Ring radius around 48 pm,
air 1.45 um Photolithography o ™ ™ 0.0013% Q—factor of 65000, FSR 575 GHz.
Si0, Figure 7(c) — — — —
— — 20£107"2 m? —
Hydex FWM 0.85 mm Amorphous 1.7 1551 nm 1553 nm — [Ferrera2009]
— 0.06 dB cm ™! 88+10°W 1.3+£107°W —
S‘iOz and o CVD 1550 nm cw cw o Ring radius 135 pm, FSR 200 GHz.
o - Photolithography - TE TE 0.25%
SiO, — 1.0+ 107 ¢ m™! — — —

Figure 3

(Continued.)
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Table 7B. (Continued.)

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
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Pump Probe/signal
Core Method Length® Crystallinity Refractive index Wavelength Wavelength 1y Reference
Claddi Cross section” G h/d . Propagation loss Peak power Peak power a; Additional d
adding Width rowth/deposition Wavelength Pulse width Pulse width Yeff 1t10nt parameters an
Substrate Height* Lithography Bandgap Polarization Polarization n comments
SEM image? GVD Rep. rate Rep. rate Bandwidth
Other fab Dispersion curve® Effective area Effective area
Hydex SPM/XPM 450 mm Amorphous 1.7 1560 nm — 1L.1+107Y m? w™! [Duchesne2009]
) spectral Figure 1 0.06 dB cm™! 3.9+ 10T W — — o
Si0; broadening 1.5 um CvD 1550 nm 1.7+ 10712 — 224107 m~iw! Peak 1rradf?3ce .
SiO, 1.45 im Photolithography - s(FWHM) - - < ELTTWm
— 24107 s> m™! — — —
— — 1.7 £ 1077 Hz —
201072 m?
Chalcogenide glasses
AsyS3 SPM/XPM 60 mm Amorphous 2.38 1550 nm — — [Lamont2008]
) spectral Figure 1 ) 0.6 dBcm™! 68+ 10T'W — 62+10" P mw!
$i0; broadening 2 ym Thermal evaporation 1550 nm 6.1+ 1071 — 1.0+ 10t m~Tw—!
Silicon 0.87 pm o — s(FWHM) — —
— 37+£107% 2 m™! ™ — 750 nm
— Figure 2 1.0+ 1017 Hz - (at 30dB)
12+107 2 m?
As,S;3 FWM 70 mm Amorphous 4dBcm™! 1547 nm 1554-1564 nm — [Pelusi2010]
Figure 1(a) 1550 nm 135+ 107 'W — —
SiO; 2 pm Thermal evaporation o cw cw 10 m—1w—! Broadband all-optical wavelength
— ion of high-speed Differential
4 0.85 um - 28 ps (nmkm) ! — — 37.8dB conversion o
Silicon o Photolithography o o o o Phase-Shift Keyed and On-Off Keyed
o o o 14+ 10-12 m? o signals with bit rates of 40-160

Gb s~! was demonstrated
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Gey15A824Se645 FWM 18 mm Amorphous 2.66 1550.8 nm 1552.6 nm — [Gai2010]
Figure 3(a) 2.6dBcm™! 1354+ 1073 W 28+107°W 93+ 10" “mw!
SiO, and 0.63 um Thermal evaporation 1550 nm cw cw 136+ 10+2 m—1W—1 ny = 8.6+ 10~ cm? W—! quoted
polymer 0.5 um o ™ ™ o from other paper
- o E-beam o o - - Supercontinuum generation in the
Silicon o o 027 + 10~12 m> o range between 1200 and 2400 nm
was demonstrated.
Diamond
Diamond Raman 0.188 mm Monocrystalline — 750 nm — — [Latawiec2018]
) Laser Figure 2(a) — 20+ 1072 W — —
$i0; and Threshold 0.3 um - — CW — — ZRaman = 3.2 £ 107 m W
air Raman shift = 1.33 £ 107> m~!
0.3 um E-beam 5.5eV TE — 1.7%
Silicon - - - - - The conversion efficiency is the
o — - - external Raman lasing slope
efficiency.
Diamond FWM 0.125 mm Monocrystalline — 1600 nm — 82+107 m>W! [Hausmann2014]
Figure 1(a) 0.34dBcm™! 7.8+ 1072 W — —
SiO, 0.875 um HPHT 1545.1 nm cw o o OPO based on FWM.
|
Silicon 0.85 um E-beam 5.5¢eV TE — 5%
Figure 7(u) — — — —
— Figures 1(b) and 5 5.0+ 1071 m? —
Diamond Raman 0.6 mm Monocrystalline — 1575 nm — — [Latawiec2015]
] Laser Figure 1(b) — 85+102W — —
SI02 Threshold 0.8 um CvD — CW _ _ SRaman =2.5F 107" mW—!
Raman shift = 1.33 £ 107> m~!
Silicon 0.7 pm E-beam 5.5eV TE — 0.43%

The conversion efficiency is the
external Raman lasing slope
efficiency.

(Continued.)
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Table 7B. (Continued.)

Third-Order Nonlinearities

Material Properties Measurement Details Nonlinear Properties
Pump Probe/signal
Core Method Length? Crystallinity Refractive index Wavelength Wavelength n Reference
Claddi Cross section” G b/d . Propagation loss Peak power Peak power a; Additional d
adding Width rowth/deposition Wavelength Pulse width Pulse width Yeff 1t10nta parameters an
Substrate Height® Lithography Bandgap Polarization Polarization n comments
SEM image? GVD Rep. rate Rep. rate Bandwidth
Other fab Dispersion curve® Effective area Effective area
Tantalum oxide, titanium oxide
Ta,Os5 FWM 12.6 mm — 2.1 1555.465 nm 1556.08 nm 1.0+107 8 m?>w—! [Wu2015]
) Figure 1 ] 15dBem™! 35+1072 W 40+£107°W —
Si0; 0.7 pm Sputtering, PECVD 1550 nm cw cw 52m~ W
Silicon 0.4 pm E-beam — TE TE 0.001%’
Figure 7(0) 1400 ps (nmkm) ! - _— _—
— Figure 5(a) 7.7+ 10713 m? —
TiO, FWM 11 mm — 2.31 1550.1 nm 1551.3 nm 3.6 107 ¥ m>W—! [Guan2018]
) Figure 2 ) 5.4dBcm™! 6.0+ 1071W 1.9+ 1072W —
Si02 1.15 um Sputtering 1550 nm cw cw 34410+ m~lw!
f
Silicon 0.38 um E-beam 3.4eV TE TE 0.024%
— 50 ps (nmkm) ! — _ _
— Figure 7 43+107 P m? —
TiO, SPM/XPM 22 mm — 2.35 1640 nm — — [Hammani2018]
) spectral Figure 1 ) 55dBcm™! 13+ 107 W — —
Si0; broadening  1.345 um Sputtering 1640 nm 9.0+ 10 s — —
Silicon 045 pim Photolithography 34eV TE - -
Figure 7(m) 20 ps (nmkm)~! 8.0+ 1017 Hz — 860 nm
— Figure 4(a) 54410713 m? — (at 20dB)
TiO, SPM/XPM 9 mm — 2.4 1565 nm — 1.6+ 107" m>w—! [Evans2013]
) spectral Figure 1 ] 8dBcm~! 29+ 10T W — — )
SiO; broadening 0.9 um Sputtering 1560 nm 174105 s o 15 m—lw—! Broadening factor 3.8 at 15 dB
Silicon 0.25 pm E-beam 3.1-33eV TE — —
Figure 7(1) 1.5+£107# 2 m™! 8.0+ 1017 Hz — —
— — 434107 m? —
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TiO; SPM/XPM 6 mm — 2.4 794 nm
) spectral Figure 1 ) 8dBcm™! 29+ 107 W
$i0; broadening 0.9 um Sputtering 794 nm 854+107"s
Silicon 0.25 um E-beam 3.1-3.3eV ™
Figure 7(1) 1.5+10#s2m™! 1.1+ 1017 Hz
— — 1.6 £107 P m?

1.6+ 107 m>w!
7.0+£107 2 mwW!
79+ 10T m—'w—!

[Evans2013]

Broadening factor 3.8 at

15dB

? The length of ring resonators was calculated from the ring radius.

b Figure of the reference paper with the cross-section image or drawing.

¢ For heterostructure waveguides, the reported height is the guiding layer thickness.

4 Selected SEM images presented in this work for each geometry and material platform.
¢ Figure of the reference paper showing a dispersion curve.

f Conversion efficiency formula: n = Py, output/Ps, output [I-Idler, and S—Signal for this and the following formulas].
8 Conversion efficiency formula: 1 = 10log (P, output/Ps, input)-

h Conversion efficiency formula: ) = Py, output, peak/Ps, input-

! Conversion efficiency formula: 7 = 10log (Py, output/Ps, output)-

J Conversion efficiency formula: ) = Py, output/Ps, input-

k Conversion efficiency formula: 7 = XPyji comb lines/ Ppump-

! Conversion efficiency formula: 77 = ¥ Pgq. bands/ Ppump-
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3.7. Hybrid waveguiding systems: data table and discussion
Team: John Ballato, Peter Dragic, Minhao Pu, Nathalie Vermeulen (team leader), Kresten Yvind

3.7.1. Introduction

3.7.1.1. Hybrid waveguiding systems and their NLO applications

Optical fibers and on-chip waveguides are often employed for NLO applications as the strong light
confinement enabled by these waveguiding structures benefits the efficiency of NLO phenomena. At the
same time, NLO researchers have been exploring whether fibers and on-chip waveguides, typically made of
glasses or semiconductor materials, can be combined with very different materials, such as low-dimensional
materials, metals, organic solids, liquids, gasses, etc. The goal of adding other materials to the waveguiding
structures is to modify, and in most cases to enhance, the efficiency of a given NLO process. The resulting
hybrid waveguiding systems find applications in the same domains as their ‘bare’ counterparts (see

sections 3.5 and 3.6) but can also acquire other NLO functionalities, depending on the properties of the
added material. For example, whereas ‘bare’ fibers have always been the preferred medium when targeting
low-loss NLO applications, hybrid fibers enhanced with low-dimensional materials such as carbon nanotubes
or graphene can also fulfill absorptive functionalities such as fiber-based saturable absorption in laser cavities
with pulsed operation [Liu2020, Teng2020]. As such, the development of hybrid fibers and hybrid on-chip
waveguides has allowed combining the best of both worlds, i.e. the intrinsic strengths of the bare waveguiding
structures plus the special NLO properties of the added materials. Further details on the importance of NLO
hybrid fibers and NLO hybrid on-chip waveguides can be found in several recent review papers (see, for
example, [Li2018, Debord2019, Guo2019, Liu2020, Teng2020, Tuniz2021, Steglich2021, Vermeulen2022]).

3.7.1.2. Background prior to 2000

3.7.1.2.1. Background for hybrid fibers

Research on NLO hybrid fibers started already in the 1970s, with a focus on hollow fiber capillaries filled
with NLO solids [Stevenson1974, Babail977]. Around the same period, light guidance in fiber capillaries
with liquid cores was demonstrated by several groups [Ogilviel1972, Payne1972, Stone1972]. In contrast, laser
transmission in fiber capillaries containing gasses became a subject of study from the 1990s onward
[Olshanii1993]. Not only can hollow fiber structures be employed for realizing NLO hybrid fibers, but also
solid-core fibers with their cross-sectional geometry modified by, e.g., side polishing or tapering can be used
for this purpose. Because of their modified cross-section the added NLO material can be brought in close
proximity to the light-guiding fiber core, such that it can interact with the evanescent tails of the fiber mode.
The first demonstrations of this concept date back to the 1980s [Bergh1980, Lamouroux1983, Lacroix1986].
Both the hybrid fibers based on hollow capillaries and those relying on side-polished or tapered solid-core
fibers were successfully employed in various NLO experiments before the turn of the century (see, e.g.,
[Stevenson1974, Kanbaral992, Nesteroval996, Lee1998]). Nevertheless, the research area of NLO hybrid
fibers has experienced the strongest growth after 2000, thanks to the emergence of new special fiber
structures as well as new exotic materials that can enhance the fibers’ NLO response (see further on).

3.7.1.2.2. Background for hybrid on-chip waveguides

Similarly as for hybrid fibers, the first hybrid on-chip waveguides developed for NLO applications comprised
NLO organics, and this approach allowed demonstrating the EO effect on a silicon chip already in the 1990s
[Faderl1995]. Also here, the evanescent tails of the waveguide mode allowed ‘sensing’ the presence of the
NLO organics deposited on top, even when working with a standard strip waveguide geometry [Faderl1995].
Due to their planar structure, photonic chips in fact provided a very suitable platform for the deposition of
NLO solids on top, whereas NLO liquids and gasses were more easily combined with hollow fiber structures.
Nevertheless, the most important breakthroughs in the development of hybrid on-chip waveguides would be
triggered by major advancements in both waveguide technology and material science shortly after 2000 (see
further on).

3.7.1.3. Considerations for hybrid waveguiding systems when performing NLO measurements

When characterizing hybrid fibers and hybrid on-chip waveguides, both the considerations for the bare
fibers/waveguides (see sections 3.5.1.2 and 3.6.1.3) and those for the added materials need to be taken into
account. For NLO measurements requiring phase matching, it is important to account for the phase
matching conditions of the entire hybrid system. Also interfacial aspects such as (lack of) adhesion of the
added materials, uniformity and/or diffusion are important to verify prior to the NLO experiments. From
the measured NLO response, the effective nonlinearity for the hybrid system as a whole can be extracted. If,
however, one wants to go one step further and assess the contributions from each constituent to the overall
NLO response, careful analysis is required: the cross-sectional distribution of the modal power in the hybrid
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waveguiding structure needs to be evaluated, and this information subsequently fed into a weighted
contributions model to extract the individual nonlinear properties of the fiber/waveguide structure and the
added material (see, e.g., [Vermeulen2016a] and appendix of [Vermeulen2016b]). Here, it is also important
to keep in mind that the different NLO contributions do not always add up. For example, when studying
NLR in a silicon waveguide covered with undoped graphene while using excitation wavelengths in the
near-IR telecom domain, the silicon will have a positive nonlinearity whereas the graphene top layer will
exhibit a negative nonlinearity [Vermeulen2016a, CastelloLurbe2020]. Therefore, in the weighted
contributions analysis, it is crucial to implement the correct nonlinearity signs for each of the constituting
media. In case the signs are not known upfront, this information can be obtained, for example, using a
phase-sensitive NLO technique such as SPM-based spectral broadening and by comparing the NLO response
of the hybrid waveguiding structure to that of the bare waveguide/fiber [Vermeulen2016a]. This allows
evaluating whether there are nonlinearities of opposite sign present in the hybrid system.

3.7.1.4. Description of general table outline

Tables 8A and B show a representative list of NLO properties of, respectively, hybrid fibers and hybrid
on-chip waveguides taken from the literature since 2000, with the entries arranged in alphabetical order. The
selection of works included in the Tables has been based on the general best practices in section 2 and the
considerations outlined above. Taking into account that an extremely large number of material combinations
are possible in hybrid systems, this selection has been limited to just a few representative works for different
combinations of bare fibers/waveguides with other media, and therefore does not provide an extensive
overview. The selection also contains a few papers with organic solids, liquids and gasses, although in this
article the focus is rather on inorganic solids, as mentioned in the general introduction. The included works
nominally report data obtained at room temperature. Tables 8A and B are subdivided into ‘Material
properties, ‘Measurement details’ and ‘Nonlinear properties’ Within each column the information is given in
the order of the header description. ‘Material properties” include the characteristics of both constituents of
the hybrid system, as well as references to the sub-figures in figure 8 showing SEM images of the fabricated
structures. The peak power values in the Tables are nominally incoupled powers as specified in the papers.
The NLO technique used in each of the papers is provided in the ‘Method’ column. As most works report on
third-order NLO effects, the focus in the Tables is on third-order NLO parameters such as |Re(7.f)| and the
effective saturation irradiance I ¢ together with the saturable loss, extracted from the hybrid system as a
whole. That said, also a limited number of papers reporting on second-order NLO parameters are included
in the Tables, with their parameter values specified in a separate ‘Comments’ column. Also included in the
‘Comments’ column are individual nonlinearity contributions that could be separately determined per
constituent material, when stated as such. Lastly, some papers specify the dependence of the NLO parameters
on wavelength, waveguide/fiber dimension, doping level expressed as Fermi level (eV) or carrier
concentration (m~2), etc or have notes associated with their measurement/analysis such as the formulas used
to calculate conversion efficiencies 7. This information is listed within the ‘Comments’ column.

3.7.2. Discussion

In view of the relatively recent emergence of low-dimensional materials, their combination with on-chip
waveguides and fibers is quite a new development with most progress being made over the last 5 to 10 years.
Within this short period of time, a wide variety of 2D materials has been explored for this purpose, as can be
seen in tables 8A and B. At the same time, the Tables also show that organic solids, liquids and gasses still are
very interesting NLO media for constructing hybrid waveguiding systems.

3.7.2.1. Advancement since 2000 and remaining challenges

3.7.2.1.1. Advancement and challenges for hybrid fibers

Table 8A for NLO hybrid fibers shows two distinct novelties as compared to the works before 2000, the first
novelty being the emergence of SiO; hollow-core photonic-crystal fibers (PCFs) [Russell2014]. In contrast to
hollow fiber capillaries which intrinsically are leaky waveguides even when filled with, e.g., gasses,
hollow-core PCFs efficiently trap light within their hollow core by exploiting the physics of photonic
bandgaps [Russell2014]. As such, various NLO effects have been demonstrated in hollow-core PCFs filled
with liquids and gasses [Baghwat2008, Russell2014], exhibiting strong NLO responses as shown by the
examples listed in the Table [Benabid2002, Vieweg2010, Renninger2016, Yang2020]. That said, combining
ultra-low loss and truly robust single-mode propagation in a hollow-core PCF still represents a challenge and
requires special design approaches [Amrani2021]. It should also be noted that, because of the intrinsic
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30 um

Figure 8. SEM images of NLO hybrid fibers and hybrid on-chip waveguides. The labels of the sub-figures correspond to the labels
given in tables 8A and 8B. Panels (a) and (e) are reprinted with permission from [Benabid2002, Nielsen2017], AAAS. Panels (b),

(f), and (g) are reprinted with permission from [Yang2020, Gu2012, Koos2009], Springer Nature. Panels (c) and (h) are reprinted
with permission from [An2020, Alexander2017], ACS. Panel (d) is reprinted with permission from [Wang2018], CLP Publishing.

simplicity of fiber capillaries as compared to PCFs, several research groups continued using capillaries after
2000 to realize hybrid fibers for different NLO functionalities [Schneebeli2013, Chemnitz2017].

A second important novelty in NLO hybrid fiber development after 2000 has been the rise of
low-dimensional materials [Liu2020]. Both 1D carbon nanotubes and 2D materials such as graphene,
graphene oxide, black phosphorus and several types of Transition Metal Dichalcogenides (TMDs) were
deposited on side-polished or tapered fibers (see, for example, [Xu2013, Park2015, Lee2015, Martinez2017,
Steinberg2018, Wang2018, Chen2019b, An2020]). The low-dimensional materials either enhanced the
already present NLO response of the bare fibers [Xu2013, An2020] and sometimes even made them tunable
by means of electrical gating [An2020], or they enriched the fiber components with additional NLO
functionalities such as frequency doubling [Chen2019b] and saturable absorption [Park2015, Lee2015,
Martinez2017, Steinberg2018, Wang2018]. The latter is particularly useful for the development of pulsed
fiber lasers [Liu2020]. Still, transferring low-dimensional materials onto side-polished or tapered fiber
surfaces can be quite challenging. Efforts for the direct growth of, e.g., graphene on dielectrics such as glass
are currently ongoing [Khan2018] and could circumvent the need for complex material transfer procedures
while improving standardization and upscaling of the hybrid fiber fabrication. To assess the quality of
fabricated hybrid fibers, careful characterization is required [Vermeulen2022]. Note that particularly for
graphene-based devices it is important to know the doping level of the graphene layer as the latter determines
whether or not a strong NLO response can be expected from the 2D sheet [CastelloLurbe2020]. Finally, as
shown in table 8A, the strong nonlinear refractive response of fibers enriched with low-dimensional materials
is often accompanied by high linear losses [Xu2013, An2020]. At the same time, taking into account that NLO
research with low-dimensional materials still is at a relatively early stage, it is remarkable how much progress
has been made over the past few years on the implementation of these materials in NLO hybrid fibers.

3.7.2.1.2. Advancement and challenges for hybrid on-chip waveguides

A first novelty seen in table 8B for NLO hybrid on-chip waveguides is that NLO organics are nowadays
combined with advanced waveguiding structures such as plasmonic or slot waveguides [Nielsen2017,
Ko00s2009]. This advancement has been enabled by the major progress in photonic chip fabrication
technology over the past decades. Both plasmonic and slot waveguides intensify the electromagnetic field in
the NLO polymer: the former by focusing the light down to the nanoscale inside a metallic structure close to
the polymer [Nielsen2017, Tuniz2021], the latter by having its waveguide mode centered around the polymer
located within the slot [Koo0s2009, Steglich2021]. These two approaches give rise to a strong enhancement of
the electromagnetic field strength yielding very high NLO efficiencies, albeit with significant propagation
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losses in the waveguides. Today’s research on hybrid plasmonic or slot waveguides mainly focuses on how to
maintain such a strong field enhancement while keeping the losses low [Tuniz2021, Steglich2021].

Hybrid on-chip waveguide development has also greatly benefitted from the emergence of NLO 2D
materials [Li2018]. Similarly to the case of hybrid fibers, the combination of on-chip waveguides with
graphene, graphene oxide, and TMDs either strengthened the already present NLO response of the
waveguides [Gu2012, Vermeulen2016a, Alexander2017, Vermeulen2018, Yang2018b, Zhang2020c, Qu2020]
and sometimes made the response electrically tunable [Alexander2017], or they introduced additional NLO
functionalities such as saturable absorption [Demongodin2019], frequency doubling [Chen2017a] and
difference frequency generation [Ya02018]. Most on-chip waveguides used in these experiments were Si or
Si3sN, waveguides with a standard strip geometry. Transferring 2D materials onto such waveguides embedded
within a planar photonic chip poses fewer practical challenges as compared to the transfer onto fiber
surfaces. Nevertheless, direct synthesis of the 2D materials on the waveguides would be beneficial from the
point of view of standardization and upscaling [Khan2018]. Just like their fiber-based counterparts, hybrid
on-chip waveguides require careful material characterization of their constituents [Vermeulen2022], and for
graphene-based devices this also includes evaluating the doping level of the 2D layer (see section above).
Finally, as shown in table 8B, the strong nonlinear refractive response of on-chip waveguides covered with 2D
materials often comes with high losses (see, for example, [Vermeulen2016a, Alexander2017, Vermeulen2018,
Yang2018b, Zhang2020c]). That said, the obtained results are promising, and further progress can be
expected in the coming years as the fabrication of photonic chips and 2D materials will continue to improve
and the fundamental understanding of the NLO physics of 2D materials will be further extended.

3.7.2.2. Recommendations for future works on hybrid waveguiding systems

Our general recommendation for future works on NLO hybrid waveguides is to report at least those
parameters that are included in tables 8A and B, as these provide essential information on the hybrid
systems. So, including these parameters in future publications can be considered as a best practice in addition
to the more general best practices described in section 2.

To maximize the impact of future works, it is of particular importance to extract the actual nonlinearity,
e.g., Yefr, of the hybrid system (rather than just specifying the relative NLO enhancement enabled by the
added material) and to study the dependence of the nonlinearity on, e.g., wavelength. Ideally, one could also
go the extra mile of determining the individual nonlinearities (magnitude and sign) of the fiber/waveguide
medium and the added medium along the considerations outlined above. By then comparing the retrieved
NLO coefficients with measurements of the same materials in a ‘stand-alone’ configuration, it is possible to
evaluate if combining them in a hybrid waveguiding system leaves their individual NLO properties
unchanged or not.

We would also like to point out the need for a detailed description of the material properties (including
the doping level when relevant) and of the linear optical properties of all constituents in the hybrid system.
This is not always done in the existing literature, which makes it difficult to properly interpret and reproduce
the reported results. For example, in addition to specifying the linear optical loss for the complete hybrid
system, one should also quantify the initial optical loss of the bare fiber/waveguide. In a similar way, the
material to be added needs to be optically characterized beforehand. To allow for reproducibility, future
works should also provide a detailed description of the fabrication procedure for realizing the hybrid system
and specify its geometrical outline, both in the cross-sectional plane and along the optical axis. The latter
comprises specifying the length over which the added material is present as well as the remaining length of
bare fiber/waveguide. This way, the reader can get the full picture of the system under study, which is
essential in view of the inherent complexity of hybrid waveguiding structures. As such, the research
community will be able to efficiently build upon state-of-the-art results so that the ‘best of both worlds’ idea
behind hybrid waveguiding systems can be exploited to its full potential.
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3.7.3. Data table for hybrid waveguiding systems

Table 8A. NLO properties of hybrid fibers from representative works since 2000. Legend for superscripts: see below the table.

Hybrid Fibers
Material Properties Measurement Details Nonlinear Properties
Constituent 1 Constituent 2 Hybrid fiber Method Pump Probe
Fiber type Added material ~ Length Wavelength Wavelength |Re(err)| Larer (Wm™2)  Saturable Additional parameters and comments  Reference
Thickness Loss/wavelength® Peak power Peak power (m~tw™h loss (%)
Fabrication Effective area Pulse width Pulse width
SEM image® Rep. rate
SiO; hollow-core B-carotene 500 mm IRS 1550 nm — — — — ZRaman: 6.00 + 1073 m W1 [Schneebeli2013]
fiber — — Pump-Probe — — Raman shift: 1.16 &= 101> m~!
Capillary — — 3 ps 8 ps 5 pm core diameter
8 ps 50 MHz
SiO; hollow-core CCly 1m IRS 1550 nm — — — — ZRaman: 1.50 £ 1072 m W1 [Schneebeli2013]
fiber — — Pump-Probe — — Raman shift: 4.59 & 1014 m~!
Capillary — — 3ps 3 ps 32 mW average pump power; 10 pm
— 50 MHz core diameter
SiO; hollow-core CS, 450 mm IRS 1550 nm — — — — ZRaman: 3.00 = 107 m w1 [Schneebeli2013]
fiber — — Pump-Probe — — Raman shift: 6.6 = 107 m~!
Capillary — — 3 ps 8 ps 1.5 mW average pump power; 2 jzm
— 50 MHz core diameter
SiO, hollow-core CS, 140 mm Other 1950 nm — 2.80 4+ 107! — — Supercontinuum generation; 14 nJ [Chemnitz2017]
fiber — — — — pump pulse energy; 4.7 pum core
Capillary — — 460 fs — diameter
— 5.6 MHz
SiO, hollow-core Air 1.61 m Two-color SBS 1535 nm — 1.60 £ 10—* — — Yhrillouin: 9-00 £ 107 * W~ m~! [Renninger2016]
fiber — — Pump-Probe 48 mW — Brillouin shift: 3.50 4+ 1017 Hz,
PCF — — CW — Linewidth: 4.00 + 10"° Hz

Forward Brillouin scattering; 1 atm air
pressure; 5.65 pm core diameter
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SiO; hollow-core  CCly 190 mm Other 1030 nm — 3.70 £ 107! — — Supercontinuum generation; 330 mW  [Vieweg2010]
fiber — — — — average pump power; 2.5 pum core
PCF — — 210 fs — diameter

— 44 MHz
SiO; hollow-core  CO, 50 m Two-color SBS 1550 nm — — — — YBrillouin: 1.68 W1 m~! [Yang2020]
fiber — — Pump-Probe 6 mW — Brillouin shift: 3.20 &= 1078 Hz,
PCF — 80 p4m? CW — Linewidth: 3.65 £ 101° Hz

Figure 8(b) — Backward Brillouin scattering; 41 bar

CO; pressure; 10 pm core diameter

SiO; hollow-core  H, 320 mm SRS 532 nm — — — — 30% pump-to-Stokes conversion [Benabid2002]
fiber — — — — efficiency for 4.5 uJ pump pulse energy;
PCF — — 6 ns — 17 bar H; pressure; 15 pm core

Figure 8(a) 20 Hz diameter
SiO; solid-core ~ Black 100 mm Nonlinear 1566 nm — — 1.25 4+ 101! 3.31 — [Park2015]
fiber phosphorus 73.6% transm./refl.  — —
Side polished 10 nm /1566 nm 1.2 ps —

Mechanical — 14.2 MHz
exfoliation —

SiO; solid-core Graphene 500 pm FWM 1561 nm 1480-1610 nm 1.14 — — Graphene doping: variable (values here  [An2020]
fiber Monolayer 47% 300 W 10 mW for 0.2 eV)
Side polished CVD /1561 nm 265 fs CcwW [XP|:8 £ 1077 m? V2

40 pm? 37.8 MHz Nonlinearity dependence on graphene

Figure 8(c) doping level shown in figure 2 of

reference paper

SiO; solid-core  Graphene 5 mm Nonlinear 1609 nm — — 2.57 £ 1012 1.06 Graphene doping: variable (values here  [Lee2015]
fiber 2 layers 8.7% transm./refl. ~ — — for 1.2V gate voltage)
Side polished CVD /1550 nm 423 fs —

— 30.9 MHz

(Continued.)
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Table 8A. (Continued.)

Hybrid Fibers
Material Properties Measurement Details Nonlinear Properties
Constituent 1 Constituent 2 Hybrid fiber Method Pump Probe
Fiber type Added material ~ Length Wavelength Wavelength [Re(~err)| Isaterf (Wm™2)  Saturable Additional parameters and comments ~ Reference
Thickness Loss/wavelength? Peak power Peak power (m~ w1 loss (%)
Fabrication Effective area Pulse width Pulse width
SEM image® Rep. rate
SiO; solid-core ~ Graphene oxide 10 mm Nonlinear 1550 nm — — — 22 Saturation fluence: 7 4= 1072 ] m 2 [Steinberg2018]
fiber 100 nm 2% transm./refl.  19.4 kW —
Side polished Modified /1550 nm 150 fs —
Hummers — 89 MHz
method —
SiO; solid-core  Carbon 100 mm FWM 1550 nm 1552 nm 1.82 — — Semiconducting nanotubes; Ippmin  [Xu2013]
fiber nanotubes 68% 1.6 W — PTFEMA
Tapered — /1550 nm CwW 0.1 ns Conversion efficiency: 0.2%
High-pressure 50 pm? — Conversion efficiency formula:
CO process — idleryy/signali,
Conversion bandwidth: 9 nm
SiO, solid-core ~ Carbon 4 mm Nonlinear 1550 nm — — — 8.5 Semiconducting nanotubes; 50% in [Martinez2017]
fiber nanotubes 34% transm./refl. — — PTFEMA; variable fiber diameter
Tapered — /1550 nm 600 fs — (values here for 3 m)
High-pressure — 25 MHz Average saturation power:
CO process — 450+ 1074 W
Nonlinearity dependence on diameter
of tapered fiber shown in table II of
reference paper
SiO; solid-core  MoTe; 10 mm Nonlinear 1572.4 nm — — 9.60 4 1010 25.5 — [Wang2018]
fiber 11.6 nm 44.6% transm./refl.  — —
Tapered Magnetron /1572.4 nm 642 fs —
sputtering — 50.12 MHz
deposition Figure 8(d)
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SiO, solid-core MoTe, 10 mm Nonlinear 1915.5 nm 1.23+ 101 22.1 — [Wang2018]
fiber 11.6 nm 43.3% transm./refl. —
Tapered Magnetron /1915.5 nm 1.25 ps

sputtering — 18.72 MHz

deposition Figure 8(d)
SiO; solid-core WS, 60 pm SHG 1550 nm — — 20-fold enhancement of SHG signalas ~ [Chen2019b]
fiber Monolayer <25% — compared to bare fiber for 50 mW
Tapered CVD /1530-1590 nm 10 ns average pump power

— 1 MHz

* Wavelength at which the specified loss has been measured.

b Selected SEM images presented in this work.
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Table 8B. NLO properties of hybrid on-chip waveguides from representative works since 2000. Legend for superscripts: see below the table.

Hybrid On-Chip Waveguides

Material Properties

Measurement Details

Nonlinear Properties

Constituent 1 Constituent 2 Hybrid wg Method Pump Probe
Waveguide (wg) Added material Length Wavelength Wavelength [Re(verr)| 1 (%) Additional parameters and comments Reference
Lithography Thickness Loss/wavelength® Peak power Peak power (m~tw—1h
Fabrication Effective area Pulse width Pulse width
SEM image® Rep. rate Polarization
Polarization
Hydex wg Graphene 15 mm FWM 1550 nm 1551 nm 9.00 + 107! 2.00 1073 Conversion efficiency formula: [Yang2018b]
Photolith. oxide 0.2dBmm~™Y/ 160 mW 160 mW idleryye/signaloue
2 layers 1550 nm CW CW Conversion bandwidth: 2.50 + 102 Hz
Solution- — — TE mode Nonlinearity dependence on wavelength
based — TE mode detuning and length shown in figure 4 of
process reference paper
Plasmonic Polymer 2 um FWM 1480 nm 1450 nm 3.09 + 1014 4.60 Im(Yegr): 7.00 £ 10> m ! W—! [Nielsen2017]
(gold) wg MEH-PPV — 30 W — Conversion efficiency formula:
E-beam lith. — — 1.04 ps 1.11 ps idleroy/signaliy
Spin-coating Figure 8(e) 10 kHz TE mode
TE mode
Si photonic- Graphene 1.5826 um FWM 1562.36 nm 1562.09 nm — 1.00 £ 107! Graphene doping: 5.00 & 10'® m—2 [Gu2012]
crystal wg Monolayer (cavity length) 0.6 mW 600 W Free-carrier lifetime: 2.00 + 10710 s
Photolith. CVD — cw cw |1y.e: 4.80 £ 10717 m? W—!
— — TE mode
Figure 8(f) TE mode
Si slot wg Organic 4 mm FWM 1548 nm 1556 nm 1.04 £+ 1012 6.00 £ 1072 Conversion efficiency formula: [K00s2009]
Photolith. molecules 1.6dBmm~'/ 375 mW — idlergy/signaloue
DDMEBT 1550 nm 3ps 3.00 ps
— — 42.7 GHz TE mode
Molecular Figure 8(g) TE mode
beam
deposition
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Siwg Graphene 400 pm SPM/XPM 1553 nm — 1.40 4+ 1013 — Graphene doping: 0.2 eV [Vermeulen2016a]
Photolith. Monolayer 132dBmm~—!/ spectral 1.68 W — 1,¢ of graphene only:
CVD 1550 nm broadening 3ps — 1+107 B m?w!
— 80 MHz —
— TE mode
Siwg MoS, 1.6 mm FWM 1550 nm 1550.4 nm — 6.00 = 1072 Conversion efficiency formula: [Zhang2020c]
E-beam lith. 3 nm 5.5dBmm™!/ — — idleroye/signaloue
CVD 1560 nm CwW CW Nonlinearity dependence on wavelength
— — TM mode detuning shown in figure 6 of reference
— TM mode paper
SizNy wg Graphene 20 mm FWM 1549 nm 1550 nm 1.31 + 10! 1.40 £ 10—* Conversion efficiency formula: [Qu2020]
Photolith. oxide 0.61dBmm™"/ 63 mW 63 mW idlerou/signaliy
Monolayer 1550 nm CW CW Conversion bandwidth: 1.25 + 10'> Hz
Solution- — — TE mode Nonlinearity dependence on
based — TE mode graphene-oxide layer number shown in
process figure 8 of reference paper
SizsNy wg Graphene 100 pm FWM 1550.18 nm 1550.7 nm 6.40 + 1073 1.00 £ 103 Graphene doping: variable (values here for [Alexander2017]
Photolith. Monolayer 50 dB mm~!/ 11.2 mW — 0.35eV,ie. 0.5V gate voltage)
CVD 1550.18 nm CW CwW Conversion efficiency formula:
— — TM mode idleroye/signaloue
Figure 8(h) TM mode Nonlinearity dependence on graphene
doping level and wavelength detuning
shown in figure 4 of reference paper
SizNg wg Graphene 3.2 mm Nonlinear 1547 nm — — — Graphene doping: 0.3 eV [Demongodin2019]
Photolith. Monolayer 12.6dBmm~!/  transm./refl. — — Free-carrier lifetime: 1.50 & 107 s
— 1540 nm 200 fs — Saturation density: 1.30 4= 10716 m—2
0.81 pum? 20 MHz — Non-saturable loss: 7.5 dB mm ™!
— TE mode
Si3N4/SiO; wg Graphene 1.1 mm SPM/XPM 1563 nm — Proportional — Graphene doping; 6.50 4= 10'® m—2 [Vermeulen2018]
Photolith. Monolayer 20 dB mm™Y/ spectral 27W — to free-carrier Free-carrier lifetime: 1.00 = 1072 s
CVD 1563 nm broadening 3 ps — refraction Free-carrier refraction coefficient:
— 80 MHz — coefficient 1.00 £ 1072 (-)
— TE mode
a-Siwg MoSe; 22 pm SHG 1550 nm — — — 5-fold enhancement of SHG signal as [Chen2017a]
E-beam lith. Monolayer — — — compared to free-space excitation of
Mechanical — 82 fs — MoSe;
exfoliation — 80 MHz — Pump irradiance: 150 TW m™?
TE mode

(Continued.)
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Table 8B. (Continued.)

Hybrid On-Chip Waveguides

Material Properties

Measurement Details

Nonlinear Properties

Constituent 1 Constituent 2 Hybrid wg Method Pump Probe
Waveguide (wg) Added material Length Wavelength Wavelength [Re(verr)| 1 (%) Additional parameters and comments Reference
Lithography Thickness Loss/wavelength® Peak power Peak power (m~'w=1)
Fabrication Effective area Pulse width Pulse width
SEM image® Rep. rate Polarization
Polarization
SizsNy wg Graphene 80 pm DFG 1531.9 nm 1593.2 nm — 4.00 £1073> W~ Plasmon-enhanced DFG [Ya02018]
Photolith. Monolayer 100dBmm™!/ 200 W 1.6 W Graphene doping: variable (values here for
CVD 1550 nm 2.2 ps CW 0.05eV)
— 39.1 MHz TM mode x®:1.20 £ 10~ % esu
— TM mode Conversion efficiency formula:

idlergy/(signal* pump)
Nonlinearity dependence on graphene
doping shown in figure 4 of reference

paper

* Wavelength at which the specified loss has been measured.

b Selected SEM images presented in this work.
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3.8. THz NLO: data table and discussion
Team: Dmitry Turchinovich

3.8.1. Introduction

3.8.1.1. THz NLO mechanisms

As already mentioned in sections 3.1.1 and 3.3.1, some materials exhibit pronounced nonlinear responses
not only at optical wavelengths but also in the THz domain. These THz nonlinearities can originate from
various physical processes. The free carrier response typically constitutes the strongest, and most broadband,
contribution to the dielectric function of materials at THz frequencies [Dressel and Griiner2002, Huber2001,
Jepsen2011, Ulbricht2011]. Consequently, the strongest NLO response at THz frequencies is also usually
dominated by free-carrier effects, and hence is characteristic of conductive materials, or materials that
become conductive under intense THz excitation (see, for example, [Blanchard2011, Cheng2020,
Deinert2021, Fan2013, Giorgianni2016, Grady2013, Hafez2018, Hafez2020, Hirori2011, Hoffmann2009a,
Hoffmann and Turchinovich2010, Hohenleutner2015, Hwang2013, Jadidi2016, Junginger2012,
Konig-Otto2017, Kovalev2020, Kovalev2021, Lee2020, Liu2012a, Matsunaga2013, Mayer2015, Mics2015,
Schubert2014, Sharma2010, Shimano2012, Turchinovich2012]). Here, the THz electromagnetic field couples
to the free carriers via optical conductivity mechanisms, leading to absorption of a part of the
electromagnetic energy by the electronic system of the material. This energy transfer from the driving THz
field to the free electrons typically results in heating of the electron population of the material, or
quasi-coherent ponderomotive acceleration of carriers within the band structure, both leading to the
concomitant temporal modification of the THz optical conductivity of the material, and hence to its
nonlinear response to the driving THz field.

THz nonlinearities may also arise from THz-driven phase transitions (e.g., [Liu2012a]), or from direct,
quasi-resonant excitation of THz intersubband transitions in semiconductor nanostructures such as
quantum wells or superlattices (e.g., [Houver2019, Kuehn2011, Raab2019, Raab2020]). IR-active optical
phonons with resonant frequencies in the THz range also contribute to the THz nonlinearity in crystals
[Dekorsy2003, Lu2021, Mayer and Keilmann1986a].

The THz nonlinearities resulting from the direct THz excitation of electrons or IR-active phonon modes
in crystals are dissipative in nature, as the driving THz field is physically absorbed by the material in the first
steps of the light-matter interaction. The materials exhibiting the strongest nonlinearities at THz frequencies
are, typically, doped semiconductors, superconductors, and doped quantum materials such as graphene,
topological insulators, and 3D Dirac semimetals (see, for example, [Blanchard2011, Cheng2020,
Deinert2021, Fan2013, Giorgianni2016, Grady2013, Hafez2018, Hafez2020, Hirori2011, Hoffmann2009a,
Hoffmann and Turchinovich2010, Hohenleutner2015, Hwang2013, Jadidi2016, Junginger2012,
Ko6nig-Otto2017, Kovalev2020, Kovalev2021, Lee2020, Matsunaga2013, Mayer2015, Mics2015,
Schubert2014, Sharma2010, Shimano2012, Turchinovich2012]). Doped graphene was shown to have by far
the strongest electronic nonlinearity at THz frequencies [Hafez2018]. Its nonlinear coefficients at THz
frequencies surpass those of all other known materials by many orders of magnitude, and this possibly holds
for other spectral ranges as well [Hafez2018, Hafez2020].

The non-dissipative THz nonlinearities such as the THz Kerr effect [Hoffmann2009a, Sajadi2015] or the
THz-driven QCSE [Hoffmann2010], also reported in the literature, are usually weaker in strength than the
dissipative electronic nonlinearities. These non-dissipative nonlinear effects are typically observed in a THz
pump—optical probe arrangement, where the strong THz field modifies the conditions of light-matter
interactions for the optical-frequency probe in the material. For THz Kerr measurements, optically
transparent solids and liquids are typically used as samples, whereas for the observation of THz QCSE,
quantum nanostructures featuring resonant absorption at the optical probe wavelength are used. A
somewhat related type of THz NLO experiment is the THz-driven side-band generation on a CW optical
carrier wave, which propagates through a THz-nonlinear material or device [Dhillon2007, Zaks2012]. These
experiments are usually performed in a quasi-CW mode, and the THz sideband generation is registered in
the spectrum of the carrier probe signal at optical frequencies.

3.8.1.2. Brief history of THz NLO research

THz NLO is a relatively young discipline. The key reason for this is the relative difficulty of generating strong
fields at THz frequencies, as compared to visible and IR optical signals. In the early works on THz NLO from
the 1980-1990s gas lasers and THz free-electron lasers (FELs) were used as sources, and the experiments
were performed in a quasi-CW mode (see, for example, [Bewley1993, Van Dantzig and Planken1999,
Dekorsy2003, Ganichev and Prettl2006, Heyman1994, Markelz1994a, Markelz1994b, Mayer and
Keilmann1986a, Mayer and Keilmann1986b, Pellemans and Planken1998, Winner12000]). Almost all these
experiments were performed on semiconductors, both bulk and nanostructured.
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Since the 1990s THz spectroscopy is dominated by the THz time-domain spectroscopy (THz-TDS)
method (see, for example, [Grischkowsky1990, Jepsen2011, Tonouchi2007, Ulbricht2011]). In THz-TDS,
single-cycle THz pulses are generated from femtosecond laser pulses in photoconductive antennas or via
optical rectification in x?)-nonlinear crystals. The detection of such THz transients in THz-TDS is enabled
via photoconductive detection, or via free-space electrooptic sampling (FEOS) in x?-nonlinear crystals
[Gallot and Grischkowsky1999, Planken2001, Zhang and Turchinovich2021]. Both of these techniques
involve a femtosecond laser pulse as a time gate, providing for the field-resolved detection of THz
electromagnetic transients with sub-cycle temporal resolution. Importantly, FEOS also permits the calibrated
detection of THz fields, yielding the temporal evolution of the instantaneous electric field strength in
absolute units within the detected THz field transient [Gallot and Grischkowsky1999, Planken2001, Zhang
and Turchinovich2021]. If certain conditions are observed, the recorded FEOS signals can be rigorously
reconstructed back to the electric field evolution in the propagating THz signal, and even to the initial
polarization or magnetization dynamics in the THz emitter (see, for example, [Hafez2018, Zhang2020a,
Zhang and Turchinovich2021]). We note that standard table-top THz generation via photoconductive
mechanisms or via optical rectification yields THz fields not exceeding a few kV cm ™! in strength, thus only
providing for spectroscopy in the linear regime.

In 2002 highly efficient strong-field THz generation via optimized optical rectification by tilted pulse
front pumping (TPFP) of x?-nonlinear crystals was proposed by Hebling et al [Hebling2002], which later
led to the demonstration of THz pulses with peak field strengths reaching 250 kV cm ™! by Yeh et al
[Yeh2007]. This demonstration paved the way to modern nonlinear THz spectroscopy using table-top
sources. Since then, the TPFP of lithium niobate (LN) crystals by mJ-level femtosecond laser pulses
dominates the table-top strong-field THz generation, typically yielding single-cycle THz pulses with the
spectrum covering the range 0-3 THz, and with (sub-)MV cm ™! peak electric fields. Amplified Ti:Sapphire
femtosecond lasers, delivering mJ-level femtosecond pulses with 800 nm central wavelength remain the most
popular pumping sources for strong-field THz generation via the TPFP method in LN, however other types
of femtosecond lasers, e.g., Yb-based [Hoffmann2007], can also be used. Other modern methods of table-top
strong-field THz generation include air-plasma THz generation [Tani2012], typically yielding
ultrabroadband single-cycle THz pulses with the spectrum covering the range of 0-20 THz or even broader,
and optical rectification in organic nonlinear crystals [Shalaby and Hauri2015]. We refer the reader to the
following reviews and article collections on modern methods of strong-field THz generation and nonlinear
THz spectroscopy [Elsaesser2019, Hafez2016, Hoffmann and Fiillop2011, Hwang2015, Kampfrath2013,
Leitenstorfer2014].

Furthermore, latest-generation relativistic accelerator-based sources, such as those at the TELBE facility
at Helmholtz-Zentrum Dresden-Rossendorf [Green2016], are also actively used in modern THz NLO
research. They deliver quasi-monochromatic multi-cycle THz pulses with peak fields currently reaching
100s kV cm ™! (and with the potential to reach MV cm ™! levels), and are precisely synchronized to a
table-top femtosecond laser [Kovalev2017], thus enabling calibrated FEOS of the THz fields in the
experiment [Hafez2018, Kovalev2021].

3.8.1.3. Considerations for THz NLO research

Since the strongest THz nonlinearities are based on the physical absorption of the driving THz field by the
electrons or polar phonons in the materials, such THz nonlinear effects are therefore dissipative.
Furthermore, almost all reported THz nonlinearities are based on field effects. Therefore, the THz field
strength is the key parameter characterizing the pump signal in THz NLO, and not the integrated THz pulse
energy, power or irradiance, as is common in ‘traditional’ NLO.

Interestingly, almost all reported strong THz nonlinearities are generally non-perturbative, i.e., they do
not follow a clear power law scaling over the entire range of applied THz peak fields, and often demonstrate
saturation behavior. However, in certain cases it is possible to observe a clear perturbative, power law scaling
over a considerable range of pumping THz field strengths, usually around the lower end of pumping
strengths. In this case it is possible to use this small-signal nonlinearity regime and establish the effective
nonlinear coefficients of the material similar to ‘traditional’ NLO [Cheng2020, Deinert2021, Hafez2018].

Owing to a generally dissipative nature of THz NLO processes, ‘classical’ phase matching between the
pump wave and the generated NLO signal is not the dominating concept dictating the conversion efficiency
in THz NLO. The conversion efficiency here is rather dependent on the efficiency of energy transfer from the
pump signal to the material itself (pump absorption), reabsorption of the generated THz NLO signal within
the material, and the outcoupling efficiency of the generated NLO signal.

Finally, and in stark contrast to ‘traditional’ NLO, most of the experiments on THz NLO are performed
using strong-field single-cycle THz pulses, usually produced via TPEP in LN. Such single-cycle pulses are per
default ultra-broadband, and contain many octaves of frequencies. This often leads to the observation of
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frequency-dependent effective nonlinearities, sometimes even of different signs (see, e.g.,
[Turchinovich2012]), co-existing within the ultrabroadband bandwidth of a single-cycle THz pulse.
However, observation of THz nonlinearities in a multi-cycle, quasi-monochromatic THz pumping regime is
also possible. Such THz pump fields are either generated at large-scale facilities such as FELs (see, e.g.,
[Jadidi2016, Konig-Otto2017, Zaks2012]) and TELBE (see, e.g., [Deinert2021, Hafez2018, Kovalev2020,
Kovalev2021]), or are produced via the monochromatization of a strong-field LN-generated single-cycle THz
pulse using bandwidth filtering [Cheng2020].

3.8.1.4. Description of general table outline

Table 9 shows a representative list of THz nonlinearities taken from the literature since 2000. As THz NLO is
quite different from ‘traditional’ NLO, table 9 has been organized in a different way as compared to the
previously presented tables and contains the following columns:

e Material type and relevant material information such as doping level (specified either as doping concentra-
tion N, or Fermi energy Ep) and type (electrons or holes)

e Additional material information if available

e Material dimensionality (dim.) which can be 0D/1D/2D/3D

e Parameters of THz pump signal used in the measurement: source type, signal type namely single-cycle/few
cycle/quasimonochromatic, central frequency (for quasimonochromatic/few cycle pulses) or frequency
range (for single-cycle THz pulses), and peak THz field strength

e Physical mechanism of THz nonlinearity

e Nonlinearity type: dissipative (diss.)/non-dissipative (non-diss.)

o Type of observed nonlinear effect, such as nonlinear absorption, high-harmonics generation (HHG) etc.

e Measured nonlinear coefficients. Note that the coefficients x" are reported for the pumping field range
corresponding to the perturbative nonlinearity regime.

Within each column the information is given in the order of the header description.

In table 9 we only listed papers presenting nonlinear coefficients of various materials, measured and
quantified in a fashion compatible with ‘traditional’ NLO (X(”) coefficients, conversion efficiency, saturable
absorption parameters, nonlinear refractive index or refractive index modulation etc). We thus did not
include papers demonstrating the nonlinear effect, but not quantifying its strength, nor papers that only
report a relative transmission change of the THz field through the material.

Furthermore, we only listed papers where the THz pump field was characterized using the calibrated
FEOS [Gallot and Grischkowsky1999, Planken2001, Zhang and Turchinovich2021] method at the sample
position, with one exception of an FEL signal where the THz field at the sample position could be precisely
calibrated from the power measurement [Konig-Otto2017]. We thus excluded papers reporting only the
integrated power/energy/irradiance as the characteristic of the pump THz signal, since it is the THz field that
is key for the THz nonlinearity. In addition, we excluded the works reporting on THz Z-scans, especially
those using single-cycle ultrabroadband THz pulses. The focal spot for such an ultrabroadband pulse is per
definition strongly frequency-dependent, and the measurement of a precise spot shape is highly nontrivial
since the THz cameras usually have a rather limited, and strongly frequency-dependent sensitivity. As a
result, the precise quantitative determination of NLO coefficients of materials using THz Z-scan is a highly
challenging task, prone to too many experimental uncertainties. Finally, we remark that the works included
in table 9 nominally report data obtained at room temperature, unless denoted otherwise.

3.8.2. Discussion

Most, and also the strongest nonlinearities presented in table 9 are dissipative and are based on nonlinear
conduction of free electrons in strong THz fields. These nonlinearities are observed directly in the THz field
interacting with the material. The non-dissipative nonlinearities such as the THz Kerr effect or THz-driven
QCSE, are rather observed in THz pump—optical probe measurements, where the THz field modifies the
propagation conditions for the optical-frequency probe in the material, such as its polarization state (Kerr
effect) or resonant absorption coefficient (QCSE).

3.8.2.1. Advancement and remaining challenges in THz NLO research

The major advancement in THz NLO since the demonstration of table-top generation of strong-field THz
pulses via TPFP of LN around 2002—2007 is the ability to implement a nonlinear THz-TDS scheme. Here
one is able to ‘look inside an optical cycle’ during the NLO interaction, i.e., to time-resolve the nonlinear
propagation of a THz field transient with sub-cycle resolution. Such a type of measurement, giving an
unprecedented direct look into the initiation and development of an optical nonlinearity at the level of the
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light field, is presently unattainable at other frequency ranges featuring much faster oscillating optical fields,
that are therefore more problematic to directly sample in the time domain.

The future progress in THz NLO will be most likely driven by the wider availability of strong-field THz
sources in combination with highly sensitive field- and time-resolved THz signal detection, the development
of novel nonlinear spectroscopy techniques, and the availability of novel nonlinear materials. The following
factors will contribute: (a) broader availability of strong-field single-cycle and multi-cycle THz field sources,
both table-top and at large-scale facilities; (b) improved sensitivity in the THz field detection, in particular by
increasing the repetition rate of the experiment using high-pulse-energy (multi-m] level),
high-repetition-rate (100 kHz or higher) femtosecond lasers; (c) development of more advanced data
acquisition and analysis protocols; (d) further development of novel nonlinear THz spectroscopy techniques,
e.g., multi-dimensional THz spectroscopy (see, e.g., [Elsaesser2019, Grechko2018, Junginger2012,
Kuehn2011, Woerner2013]), and (e) broader availability of novel nonlinear materials such as quantum
materials with higher potential for nonlinear ultrafast electron conduction.

3.8.2.2. Recommendations for future works on THz NLO research

In the future works on THz NLO, we do strongly recommend to precisely characterize the THz field at the
position of the sample via calibrated FEOS and to provide this calibrated field transient in the publication.
Once all the THz signals in the experiment—pump and nonlinear product(s)—are calibrated, it becomes
rather straightforward to quantify the parameters of the NLO interaction, such as the effective nonlinear
coefficient, in the fashion used in ‘traditional’ NLO.

For example, a broader use of quasi-monochromatic strong-field pumping, either at large-scale facilities
such as TELBE (e.g., [Deinert2021, Hafez2018, Kovalev2021]), or via table-top quasi-monochromatic
strong-field generation (e.g., [Cheng2020, Lee2020]), combined with fully calibrated FEOS [Gallot and
Grischkowsky1999, Planken2001, Zhang and Turchinovich2021] detection, should lead to more rigorously
calibrated experiments on discrete THz HHG in various materials (see [Deinert2021, Hafez2018,
Kovalev2021]). Such measurements allow in particular to extract the THz nonlinear susceptibility
coefficients x" by measuring the conversion efficiency from the pump field to the nth harmonic, over a
wide range of pumping field strengths and frequencies [Hafez2018, Hafez2020, Cheng2020].

Finally, we strongly recommend providing comprehensive information on the nonlinear material used,
on the details of the experimental setups, and on the protocols of data processing. This should allow for the
reproducibility of the THz NLO results by the broader community.
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3.8.3. Data table for THz NLO

Table 9. THz nonlinearities from representative works since 2000. Legend for superscripts: see below the table.

Material Type; Dim. THz Source; Physical Mechanism of Diss./ Observed Nonlinear Measured THz Nonlinear Reference
Fabrication; Single-Cycle/Quasimonochromatic; THz-induced NLO Effect Non-diss. Effects Coefficients
Key Material THz Pump Frequency Range (for Single
Properties; Cycle) or Central Pump Frequency (for
Quasimonochromatic);
THz Peak Field Strength Range
AlLO; 3D TPFP of LN; THz-induced Kerr effectin ~ Non-diss. Transient birefringence at ny (1THz) =07+ 10" ecm®> W15 [Sajadi2015]
Single-cycle; bulk material probed by an optical probe wavelength of ~ max. An (800 nm) = 0.6 4= 10~°
0-3 THz; 800 nm probe pulse 800 nm, measured via
max. 2.1 MV cm ™! optical polarization
evolution
Benzene (liquid) 3D TPEP of LN; THz-induced Kerr effectin ~ Non-diss. Transient birefringence at x? =0224+107"m? V2 [Hoffmann2009a]
Single-cycle; liquid, probed by an optical probe wavelength of 1, =56 £ 1071¢ cm? W1
0-3 THz; 800 nm probe pulse 800 nm, measured via K=026+10"4mV—2
30-150 kV cm ™! optical polarization (Kerr coefficient™)
evolution
CCly (liquid) 3D TPEP of LN; THz-induced Kerr effectin ~ Non-diss. Transient birefringence at x? =0104+10""m? V2 [Hoffmann2009a]
Single-cycle; liquid, probed by an optical probe wavelength of 1, =27 £ 1071 cm? W™
0-3 THz; 800 nm probe pulse 800 nm, measured via K=0124+10"4¥mV—2
30-150 kV cm ™! optical polarization (Kerr coefficient™)
evolution
CHCl; (liquid) 3D TPEP of LN; THz-induced Kerr effectin ~ Non-diss. Transient birefringence at X =0.044+107"m? V2 [Hoffmann2009a]
Single-cycle; liquid, probed by an optical probe wavelength of 1, =10 £ 1071 cm? W1
0-3 THz; 800 nm probe pulse 800 nm, measured via K=0.0454+ 10" mV~—?

30-150 kV cm ™!

optical polarization
evolution

(Kerr coefficient™)

(Continued.)
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Table 9. (Continued.)

Material Type; Dim. THz Source; Physical Mechanism of Diss./ Observed Nonlinear Measured THz Nonlinear Reference
Fabrication; Single-Cycle/Quasimonochromatic; THz-induced NLO Effect Non-diss. Effects Coefficients
Key Material THz Pump Frequency Range (for Single
Properties; Cycle) or Central Pump Frequency (for
Quasimonochromatic);
THz Peak Field Strength Range
CH,1, (liquid) 3D TPFP of LN; THz-induced Kerr effectin ~ Non-diss. Transient birefringence at x? =070 £ 107" m? V2 [Hoffmann2009a]
Single-cycle; liquid, probed by an optical probe wavelength of 1, =140 4 10710 cm? W—};
0-3 THz; 800 nm probe pulse 800 nm, measured via K=0.754+10"¥mV—2
30-150 kV cm ™! optical polarization (Kerr coefficient™)
evolution
CS; (liquid) 3D TPEP of LN; THz-induced Kerr effectin ~ Non-diss. Transient birefringence at X =2.084+10""m? V2 [Hoffmann2009a]
Single-cycle; liquid, probed by an optical probe wavelength of 1, =440 + 1071 cm?> W15
0-3 THz; 800 nm probe pulse 800 nm, measured via K=244+10"4mV~—2
30-150 kV cm ™! optical polarization (Kerr coefficient™)
evolution
Diamond; 3D TPFP of LN; THz-induced Kerr effectin ~ Non-diss. Transient birefringence at n, (1THz) =3.0+ 10" cm®> W™l [Sajadi2015]
Polycrystalline Single-cycle; bulk material probed by an optical probe wavelength of ~ max. An (800 nm) = 1.03 £ 10~°
0-3 THz; 800 nm probe pulse 800 nm, measured via
max. 2.1 MV cm ™! optical polarization
evolution
GaAs; 3D TPFP of LN; Intervalley transfer and Diss. Frequency-dependent Frequency-dependent index change [Turchinovich2012]
Doped, Single-cycle; increase of effective mass of nonlinear conductivityand ~ An = 0.13-0.08;
Ne=8+10"cm™? 0.2-2.5 THz; THz-driven free electrons saturable absorption Reduction of power absorption coefficient
(electrons), 9-292kV cm™! by ca. 50% across the whole measurement
Thickness d = 0.4 mm; spectrum
GaAs; 3D TPFP of LN; Intervalley transfer and Diss. Frequency-integrated Saturation fluence = 8.2 uJ cm~%; [Hoffmann and
Doped, Single-cycle; increase of effective mass of saturable absorption; Max. nonlinear pulse compression Turchinovich2010]
Ne=8+10"cm™? 0.2-2.5 THz; THz-driven free electrons nonlinear pulse group delay AT/T  0.1;
(electrons), 9-292kV em™! Max. group index change Ang 0.1

Thickness d = 0.4 mm;
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GaAs in external electric 3D Unspecified source; THz EFISH in static applied Diss. SHG and THG Maximum effective x? = x® *E, = [Lee2020]
field; Single-cycle, monochromatized symmetry-breaking electric 1.7 £ 1077 m V!, corresponding to
Intrinsic, photoexcited at using bandpass filter; bias field up to natural
400 nm to create Quasimonochromatic; Ep = 15kVem™! X =14+107"%-1+£10"m?> V=32
conductivity; 0.6 THz; Max power conversion efficiency
50 kVem™Y nsue 5+ 107%nme 14£107°, at
optical pump fluence Fy, =4 pJ cm™
GaP; 3D TPFP of LN; Intervalley transfer and Diss. Frequency-integrated Saturation fluence = 20.9 1] cm~%; [Hoffmann and
Doped, Single-cycle; increase of effective mass of saturable absorption; Max. nonlinear pulse compression Turchinovich2010]
Ne=14+10%cm™3 0.2-2.5 THz; THz-driven free electrons nonlinear pulse group delay AT/IT 541073
(electrons), 9-292kV ecm™! Max. group index change Ang  0.05
Thickness d = 0.3 mm;
Ge; 3D TPFP of LN; Intervalley transfer and Diss. Frequency-integrated Saturation fluence = 3.1 1] cm™2; [Hoffmann and
Doped, Single-cycle; increase of effective mass of saturable absorption; Max. nonlinear pulse compression Turchinovich2010]
Ne=14+10%cm™3 0.2-2.5 THz; THz-driven free electrons nonlinear pulse group delay ATIT 54+107%
(electrons), 9-292kV em™! Max. group index change An, 2+ 1073
Thickness d = 6 mm;
Graphene; 2D FEL (FELBE); FWM in Landau-quantized Diss. Degenerate FWM and x® 9241072 m? V2 (bulk [Konig-Otto2017]
Produced by thermal Quasimonochromatic; graphene (under 4.5 T transient grating generation susceptibility)
decomposition of SiC on 19 THz; magnetic field and 10 K Temperature = 10 K
the C-face of 4 H-SiC; max. 25 kV cm ™! cryogenic temperature)
n-doped
(inhomogeneously
within the sample)
Graphene; 2D air-plasma source; THz-driven impact Diss. Modulation of optical Optical density change AOD  0.01-0.1 at [Tani2012]
CVD-grown; Single-cycle; ionization of carriers density at 800 nm probe 800 nm
Doped, Er = 0.2 eV 0-15 THz; wavelength
(holes); 100-300 kV cm !

(Continued.)
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Table 9. (Continued.)

Material Type; Dim. THz Source; Physical Mechanism of Diss./ Observed Nonlinear Measured THz Nonlinear Reference
Fabrication; Single-Cycle/Quasimonochromatic; THz-induced NLO Effect Non-diss. Effects Coefficients
Key Material THz Pump Frequency Range (for Single
Properties; Cycle) or Central Pump Frequency (for

Quasimonochromatic);

THz Peak Field Strength Range
Graphene; 2D TELBE; Thermodynamic response Diss. HHG (o0dd): 3,5,7 x?® 1+107°m? V=3 [Hafez2018)]
CVD-grown; Quasimonochromatic; of free electrons x® 141072 m* v
doped, 0.3 THz, 0.37 THz, 0.68 THz; X7 14+107¥ mév—o;
Ne=2.1+102cm™2 0-100 kV ecm™! Max. field conversion efficiencies:
(holes), Ex = 0.17 eV THG:n=2+10"%

5HG:n=25£10"%
7HG:m =8 & 103

Graphene; 2D TPFP of LN; Thermodynamic response Diss. Frequency-dependent Power loss = 12.5%, non-saturable power [Mics2015]
CVD-grown; Single-cycle; of free electrons nonlinear conductivityand ~ loss = 12.5%
doped, 0.3-2 THz; saturable absorption
N.=6+10" cm—2 2-120kV cm ™!
(holes), Ex = 0.07 eV
Graphene 2D TPFP of LN, monochromatization Thermodynamic response Diss. THG x® 14107 m2 V3 [Cheng2020]

using bandpass filter; of free electrons

Quasimonochromatic;

0.8 THz;

12-31kVem™!
InGaAs/GaAs QD-based 0D TPFP of LN; THz-driven QCSE in QDs Non-diss. Modulation of absorption Absorption change Aa = 3% at 1040 nm [Hoffmann2010]
SESAM for 1040 nm; Single-cycle; at 1040 nm probe
MBE-grown, 80 QD 0.2-3.0 THz; wavelength
layers; 10-100 kV cm ™!
intrinsic;
LDPE (low-density 3D TPEP of LN; THz-induced Kerr effectin ~ Non-diss. Transient birefringence at ny (1THz) =20+ 107 cm> W™l [Sajadi2015]
polyethylene) single-cycle; bulk material probed by an optical probe wavelength of ~ max. An (800 nm) = 3.15 4 10~°

0-3 THz; 800 nm probe pulse 800 nm, measured via

max. 2.1 MV cm ™!

optical polarization
evolution
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LiNbO; 3D  TPFP of LN; THz DFG at 0.76 THz Diss. DFG x? >154+10mVv~! [Lu2021]
few-cycle;
0.35 THz and 1.1 THz;
max. 10 kV em ™!
Metamaterial based on 3D TPFP of LN; THz-driven intervalley Diss. Modulation of THz relative Relative permittivity change at the [Fan2013]
GaAs; Single-cycle; scattering and impact permittivity & metamaterial resonant frequency.
Metallic (Au/Cr) 0.2-1.2 THz; ionization in GaAs Doped GaAs:e = 2.5-1atf =0.82 THz,
split-ring resonators 24-400 kV cm ! THz field range 24400 kV cm™1;
deposited on n-doped Semi-insulating GaAs:e = 12.5—1 at
(Ne=1=£10%cm™?) f = 0.85 THz, THz field range
and semi-insulating GaAs. 100-400 kV cm !
Metamaterial based on 2D TELBE; Thermodynamic response Diss. THG x® 34 107% m?* V~2; Field conversion [Deinert2021]
golden grating deposited Quasimonochromatic; of free electrons; plasmonic efficiencyy 141072
on graphene; 0.7 THz; THz field concentration in
CVD-grown graphene; 5-70 kV cm ™! a grating
Doped, Er 0.1 eV (holes)
MgO 3D TPEP of LN; THz-induced Kerr effect in Non-diss. Transient birefringence at n, (1THz) =054+ 10" cm®> W™l [Sajadi2015]
Single-cycle; bulk material probed by an optical probe wavelength of max. An (800 nm) = 0.7 +10~¢
0-3 THz; 800 nm probe pulse 800 nm, measured via
max. 2.1 MV cm ™! optical polarization
evolution
Semiconducting SWCNT; 1D TPFP of LN; THz-driven QCSE and Non-diss. Modulation of absorption Absorption change Aa = 4% at [Shimano2012]
Produced by Single-cycle; interband transitions in at 1.2-1.25 eV probe energy 1.2-1.25eV
CoMoCAT-process; 0.2-3 THz; CNTs
Nominally intrinsic 50-420 kV cm ™!
Si; 3D TPFP of LN; THz-induced Kerr effect in Non-diss. Transient birefringence at 1, (1 THz) =56 £ 107 cm? W™ [Sajadi2015]
Nominally intrinsic Single-cycle; bulk material probed by an optical probe wavelength of An (800 nm) = 65+ 107°
0-3 THz; 800 nm probe pulse 800 nm, measured via

max. 2.1 MV cm ™!

optical polarization
evolution

(Continued.)
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Table 9. (Continued.)

Material Type; Dim. THz Source; Physical Mechanism of Diss./ Observed Nonlinear Measured THz Nonlinear Reference
Fabrication; Single-Cycle/Quasimonochromatic; THz-induced NLO Effect Non-diss. Effects Coefficients
Key Material THz Pump Frequency Range (for Single
Properties; Cycle) or Central Pump Frequency (for
Quasimonochromatic);
THz Peak Field Strength Range
SiN 3D TPEP of LN; THz-induced Kerr effectin ~ Non-diss. Transient birefringence at 1y (1 THz) =0.08 £ 10~ cm> W1, [Sajadi2015]
Single-cycle; bulk material probed by an optical probe wavelength of ~ max. An (800 nm) = 0.05 + 10~°
0-3 THz; 800 nm probe pulse 800 nm, measured via
max. 2.1 MV cm ™! optical polarization
evolution
TPX 3D TPFP of LN; THz-induced Kerr effectin ~ Non-diss. Transient birefringence at ny (1THz) =034+ 10" cm> W1 [Sajadi2015]
(polymethylpentene) single-cycle; bulk material probed by an optical probe wavelength of ~ max. An (800 nm) = 0.36 & 10™°
0-3 THz; 800 nm probe pulse 800 nm, measured via

max. 2.1 MV cm ™!

optical polarization
evolution

*Kerr coefficient is defined in the paper as K = An/\E%.

sulysiiand dol

100S€0 (£€207) § somor0yd “shyd *[

10 72 U9[MIUWLIDA N




10P Publishing

J. Phys. Photonics 5 (2023) 035001 N Vermeulen et al

4, Conclusion

We have identified general best practices for performing and reporting NLO measurements regardless of the
NLO technique used, and have also highlighted several technique-specific best practices. Furthermore, we
have introduced a set of tables with representative NLO data from the literature since 2000 for bulk materials,
solvents, 0D—1D-2D materials, metamaterials, fiber waveguiding materials, on-chip waveguiding materials,
hybrid waveguiding systems, and materials suitable for THz NLO. The data were selected based on the
identified best practices and on special considerations for the different material types. For each of the
material categories, we have also discussed the background prior to 2000, highlighted the recent
advancements and remaining challenges, and concluded with recommendations for future NLO studies.

As shown in the discussions, the field of NLO has gained considerable momentum over the past two
decades thanks to major breakthroughs in material science and technology. This has given rise to an
enormous growth in NLO publications. However, many of them were not included in the tables presented
here as they provided too limited information to comply with the best practices. The publications that
brought most value to the tables are those that provide one or several NLO coefficients—and possibly also
conversion efficiencies—for one or several materials, wavelengths, pulse durations, etc, measured and
reported along the best practices. The dependence of NLO coefficients on wavelength, pulse duration, etc is
very insightful information not only from a fundamental science perspective (as it allows distinguishing NLO
processes while ruling out, e.g., thermal effects) but also from an application point of view. To assess the
practical applicability of a NLO material, it is key that papers also clearly specify the material properties and
fabrication details, and provide information on both the nonlinear and linear optical characteristics, such as
the linear loss. This will allow evaluating the suitability of the material for specific NLO applications along
well-defined figures-of-merit.

We encourage the NLO community to take all these aspects into account and implement the presented
best practices in future works. In fact, there is still much to be discovered in NLO research, and in the coming
years we intend to update the data tables by considering additional NLO processes and by adding materials
that are currently not included or yet to be investigated. Hence, for those future investigations we want to
stimulate the use of the listed best practices to allow a more adequate comparison, interpretation and
practical implementation of the published parameters and as such further the fundamental understanding of
NLO as well as its exploitation in real-life applications.

5. Description of author contributions

In the order of the author list:

Nathalie Vermeulen: co-coordinated the data table initiative together with Eric Van Stryland; contributed
to the data collection and text of hybrid waveguiding systems (as team leader), on-chip waveguiding
materials, and 0D-1D-2D materials; compiled the data table for hybrid waveguiding systems; contributed to
the general introduction and conclusion; wrote the best practices sections 2.2.2.1 and 2.2.3, and the
introductory part of section 3; compiled the manuscript and contributed to the final editing of the
manuscript.

Daniel Espinosa: contributed to the data collection and text of bulk materials, 0D—1D-2D materials,
metamaterials, and on-chip waveguiding materials; compiled the data table for on-chip waveguiding
materials.

Adam Ball: contributed to the data collection and text of bulk materials and metamaterials.

John Ballato: contributed to the data collection and text of fiber waveguiding materials (as team leader)
and hybrid waveguiding systems; compiled the data table for fiber waveguiding materials; contributed to the
final editing of the manuscript.

Philippe Boucaud: contributed to the data collection and text of bulk materials and on-chip waveguiding
materials.

Georges Boudebs: contributed to the data collection and text of bulk materials.

Cecilia Campos: contributed to the text of 0D—1D-2D materials; compiled the data table for 0D-1D-2D
materials.

Peter Dragic: contributed to the data collection and text of fiber waveguiding materials and hybrid
waveguiding systems.

Anderson Gomes: contributed to the data collection and text of 0D—1D-2D materials (as team leader),
and bulk materials; contributed to the best practices section 2.2.2.4.

Mikko Huttunen: contributed to the data collection and text of metamaterials (as team leader) and
0D-1D-2D materials; compiled the data table for metamaterials; wrote the best practices sections 2.2.1.1,
2.2.1.2 and 2.2.2.6.
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Nathaniel Kinsey: contributed to the data collection and text of bulk materials (as team leader) and
metamaterials; compiled the data table for bulk materials; contributed to the best practices section 2.2.2.4.

Rich Mildren: contributed to the data collection and text of bulk materials and on-chip waveguiding
materials; wrote the best practices section 2.2.2.2.

Dragomir Neshev: contributed to the data collection and text of 0D-1D-2D materials and metamaterials.

Lézaro Padilha: contributed to the data collection and text of 0D—1D-2D materials.

Minhao Pu: contributed to the data collection and text of on-chip waveguiding materials (as team leader)
and hybrid waveguiding systems.

Ray Secondo: contributed to the data collection and text of bulk materials and metamaterials.

Eiji Tokunaga: contributed to the data collection and text of bulk materials and solvents; wrote the best
practices section 2.2.2.5.

Dmitry Turchinovich: collected the data and wrote the text for THz NLO (as team leader); compiled the
data table for THz NLO.

Jingshi Yan: contributed to the data collection and text of 0D—1D-2D materials.

Kresten Yvind: contributed to the data collection and text of on-chip waveguiding materials and hybrid
waveguiding systems.

Ksenia Dolgaleva: contributed to the data collection and text of bulk materials and 0D-1D-2D materials;
contributed to the data collection and wrote most of the text of metamaterials and on-chip waveguiding
materials.

Eric Van Stryland: co-coordinated the data table initiative together with Nathalie Vermeulen; collected
the data and wrote the text for fused silica and solvents (as team leader); compiled the data tables for fused
silica and solvents; contributed to the data collection and text of bulk materials; contributed to the general
introduction, conclusion and the best practices section 2.2.2.4; wrote the best practices section 2.2.2.3;
contributed to the final editing of the manuscript.
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