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Abstract—Space-division multiplexing is a widely used tech-
nique to improve data-carrying capacities in both wireless and
optical communication systems. However, tightly packed spatial
channels cause severe crosstalk. High data rates and large channel
counts impose severe constraints on resolving the crosstalk using
traditional digital signal processing algorithms and electronic cir-
cuits. In order to solve these issues, this paper presents a silicon
photonic system combining high-speed silicon photonic devices
with a novel blind source separation (BSS) algorithm. We first
demonstrate using photonic BSS to undo modal crosstalk in a short-
reach multimode optical fiber interconnect for intra-data-center
communications. The proposed photonic BSS system inherits the
advantages of photonic matrix processor and the “blindness” of
BSS, leading to superior energy and cost efficiency and reduced
latency, while allowing to recover the signals using a sub-Nyquist
sampling rate and in a free-running mode, and offering unmatched
agility in signal format and data rate. The feasibility of using pho-
tonic processors for mode crosstalk equalization has been recently
demonstrated, assisted with training sequences. Our approach,
photonic BSS, in contrast, can tackle the more difficult problem of
making the receiver transparent to any data rate and modulation
format, and workable with slow and cost-effective electronics. In
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addition, we find that photonic BSS has a much better scaling law
for space-division multiplexing (SDM)-based communication
systems than digital signal processing (DSP). When compared
to state-of-the-art DSP, photonic BSS can reduce system power
consumption, speed, and latency by several orders of magnitude,
particularly for high-capacity communications with high data rates
per channel and a large number of channels. Photonic BSS has the
added advantages of being agnostic to transmission content, mak-
ing it exceptional at protecting communication privacy. This paper
also discusses our previous work in demonstrating photonic BSS
for privacy protection in wireless multiple-in multiple-out (MIMO)
communications using silicon photonic micoring resonator (MRR)
weight banks.

Index Terms—Machine learning, optical signal processing,
silicon photonics, space-division multiplexing.

1. INTRODUCTION

ODAY’S world is witnessing an explosion of network
T traffic [1]. Numerous emerging services and applications,
such as cloud service, video streaming, and Internet of Things,
are accelerating the demand for high-capacity communications
even further. Space-division multiplexing (SDM) is a multi-
plexing technology used to increase data transmission capacity
by exploring the new degrees of freedom in space to establish
parallel data stream pipelines. As a result, SDM increases the
communication channel throughput without increasing band-
width usage or transmission power.

SDM based technologies have benefited both optical and wire-
less communications. In optical communications, SDM has also
been used in optical communication systems using multimode
or multi-core optical fibers (i.e. photonic Multiple-In Multiple-
Out MIMO) [2]-[5] (Fig. 1(a)). SDM promises to overcome the
problem of nonlinear Shannon limit encountered in single mode
fibers, resulting in a massive increase in data transmis- sion
capacity [6]. Similarly, in wireless communications, SDM is a
well-known Multiple-In  Multiple-Out (MIMO) technique
which uses multiple antennas to send and receive independent
and separately encoded wireless signals (Fig. 1(b)), and is the
key enabler in many modern wireless technologies such as 4G
long-term evolution (LTE) and 5G [7], [8].
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Fig. 1. Spatial division multiplexing (SDM) for (a) multi-mode fiber (MMF)

optical fiber communication system. (b) multi-antenna wireless communication
system. A is the channel state for each system. Signal processing is needed at
the receiver to undo the channel induced signal distortions.

A. Advantages of Blind Source Separation (BSS)

Dense SDM is always accompanied by crosstalks caused by
deleterious effects in transmission channels. Signal processing
techniques are needed to retrieve the transmitted data streams.
To do this, the receiver needs to estimate the channel state that
characterized the combined transmission effects (i.e., channel
estimation), and then inverts the distortions (i.e., channel equal-
ization). Least squares (LS) and minimum mean square error
(MMSE) and their numerous variations are popular channel
estimation techniques [9], [10]. However, LS and MMSE need
prior knowledge of transmitted signals or the incorporation of
training symbols [11]. The training signals obviously decrease
communications throughput, especially for time-varying chan-
nels.

Unlike previous methods, blind source separation (BSS) is an
unsupervised learning technique that requires minimal knowl-
edge of either source or channel characteristics. Instead of rely-
ing on training symbols, BSS only relies on signal’s statistical
features and estimate channels state via maximization of signal
independence [12], [13]. For this reason, unlike most algorithms,
a significant advantage of BSS is it allows to sample signals at
a far slower frequency than the Nyquist frequency, and the sam-
pling does not need to synchronize with the signal, both resulting
in significantly lower power consumption and implementation
cost. In addition, BSS is completely transparent to modulation
format, data rate, and waveforms, offering unrivaled agility in
communications systems. Algorithm details will be discussed
in Section II-A and Appendix A.
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B. Photonics versus DSP

Despite the existence of many mature algorithms for SDM-
based communication system, their hardware implementation
remains a challenging problem, because SDM-based commu-
nication systems are expected to process high-dimensional and
high-speed signals in a short period of time (i.e., low latency)
and with low energy usage. However, digital electronics is facing
harsh tradeoffs between the number of spatial channels, energy
use, and bandwidth [14]. A typical receiver for SDM based
communication systems is composed of an array of analog-to-
digital converters (ADCs) followed by a digital signal processing
(DSP) backend as shown in Fig. 2(a). In this case, the energy
use E grows in proportions with the signal bandwidth Bs and
quadratically with channel number N [15]. The processing la-
tency is ultimately bounded by the clock rate feiock, even with the
efforts on parallelism [16], which causes additional interconnect
problem [17], [18]. The processing latency of digital electronics
also increase quadratically with the channel number. Current
communication systems already have to operate at Peta (10%5)
multiply—accumulate (MAC) operations per second [19]. As
a result, as data throughput increases in the future, DSP will
confront formidable challenges in terms of processing speed
and will result in an explosion in energy consumption.

Photonics provides a completely different scaling physics
that can solve many fundamental constrains of digital electron-
ics [16], [20], [21], as shown in Fig. 2(c). Photonic processors
deal with signals in the optical domain (i.e., photonic front-end),
prior to digitization, breaking the ADC imposed limitations in
a fundamental way [21] (Fig. 2(b)). Photonic processors have a
nearly flat frequency response to the signals over 5-THz window.
As a result, the energy use of photonic processors is not affected
by the signal bandwidth Bs, and they only increase in proportion
with IV, in contrast to IV 2 in digital electronics [16]. Further-
more, the processing latency is only limited by the bandwidths of
the optical components on the signal pathway, leading photonic
processors to have much higher speeds than digital devices. For
this reason, photonics processors can offer high bandwidth with
low energies and have been used in many applications including
intelligent signal processing ([22] and this paper), neuromorphic
computing [17], [18], [23], [24], quantum computing [25]-[27],
and optimization problems such as Ising machine [28], [29].
These application systems have two major features in common:
1) the same task (especially matrix operations) needs to be done
repeatedly and needs to be done quickly; and 2) the signals to be
processed are already in the analog domain (optical, wireless)
[171, [18], [22].

C. Paper Contributions and Organizations

To address the energy and latency challenges in SDM com-
munication systems, this paper introduces photonic BSS [33],
[34], a multivariate photonic processor with high bandwidth and
low latency that handles high-dimension signal processing at the
physical layer. We propose the use of photonic BSS for multi-
mode optical fiber interconnects to solve DSP constraints and
enable high-capacity and low-power data-center interconnects
in Section II. We demonstrate that, without inserting training



HUANG et al.: HIGH-CAPACITY SPACE-DIVISION MULTIPLEXING COMMUNICATIONS

(a) DSP
ignal 1
signal 1 [ ating sge
signal 2 signal 2
ADC}
signal 3 ot
\?E’? \ ;W% signal 3
(b) Photonic matrix multiplier
(i) MRR weight bank
M Aoy o Ay
!‘_'._-_IA;-._ E BED 11
isigna ; signa
; """"""""" >OI M : ( (@) 0O~ 0O I’
1
i : ( A Ay A signal 2
E cee i M Ay Ay
i i . ..
isignal n ! signal n
gtee 1Y o =0 e~
i._._._._._._._! ’\1 A2 An
E/O Conversion MRR Weight Banks
(Optional)
(ii) MZI mesh
] MZM for Matrix Operations
. / |'_“ ) --(ADC > signal 1
: S = ~>signal 2

--»>signal 3

RPN N IS
: : G M iﬂu—%pl—a -(ADC |-> signal 4
i 4 N\
! : \_ / \ J
E/O Conversion
(Optional) }'@:"‘

B Photodiode
™ Modulator

—
3 dB splitters

............... E|ectron|cs
() MZI mode Photonics
Parameters Electronics Photonics
Energy « N2 B, a N2 (or N)
Latency o NJ/j;_‘,,,d 1/ Byon, e

Fig. 2. Building blocks of (a) DSP, (b) photonic processor for matrix mul-
tiplications. (b.i) photonic matrix operator using microring resonator (MRR)
weight banks [30] and multiport Mach-Zender interferometers (MZI) meshes
[31], [32]. If the inputs are electrical signals, the signals can be modulated
to the optical domain using an array of optical modulators before processing.
Balanced photodetector (BPD) if the inputs are optical signals, they can be
coupled to the following optical devices directly, and (c) scaling law of photonic
and electronic devices in terms of channel number NV, signal frequency fsigna,
electronic device clock feiock, optical device bandwidth of modulator By OD,
and bandwidth of photodetector Bp D.

symbols, our approach can recover multi-channel data streams
using a sub-Nyquist sampling rate running in a free-running
mode and unscramble random modal crosstalk varying with
millisecond-timescale.

In this section, we first present the principle, algorithm, and
hardware that bridge BSS with analog photonic integrated hard-
ware. We then demonstrate to recover 50 Gbaud/s per channel
pulse amplitude modulation 4-level (PAM4) data streams using a
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sub-Nyquist sampling rate of only 2 GSample/s in a free-running
mode. In Section 111, we provide comprehensive analysis show-
ing that photonic BSS has distinct benefits over DSP in terms of
energy consumption and bandwidth as the channel number and
data rate increases, showing our approach is especially important
for high-throughput interconnects. Section IV experimentally
demonstrates another application of photonic BSS for privacy
protection in wireless MIMO communications, as a review of
our previous work [20], [33]-[35]. Using these examples, we
show that the benefits of photonic BSS system from the com-
bination of a modified hardware-friendly BSS algorithm and a
reconfigurable photonic matrix operator: photonic BSS inherits
the advantages from both hardware and algorithm prospects,
and, as a result, can relieve some fundamental limitations of
digital electronics such as latency, bandwidth, energy efficiency,
agility, and throughput, in particular for high bandwidth and
high-throughput telecommunication systems.

II. PHOTONIC BSS FOR MULTIMODE OPTICAL FIBER
INTERCONNECTS

Data centers play a critical part of today information technol-
ogy (IT) services, computing and communications. Data center
traffic has increased 10 times in the past decade and this trend
would continue in the future. On the other hand, data center is
gobbling up the world’s electrical power. Data-centre is likely to
take up 8% of the global electricity use by 2030 [36]. Therefore, a
paradigm shift in optical communication technologies is needed
to improve data throughout and energy efficiency of data center
interconnects.

The use of mode multiplexing in multi-mode fibers can scale
the information capacity of an optical transmission link with the
number of spatial modes. However, modal crosstalk increases
with the number of spatial channels, limiting the achievable data
rate and transmission distance. In long-haul communication sys-
tems, power-hungry DSP is widely deployed to address modal
crosstalk using well-developed MIMO algorithms implemented
with digital electronics [37]. However, optical interconnects for
data center applications are highly sensitive to latency, energy
consumption, and cost. For this reason, DSP is typically unac-
ceptable due to its high latency, power consumption, and up-
grading cost (the application-specific integrated circuit (ASIC)
needs to be re-designed when the data rate and channel number
increase).

Here, we focus on solving the modal crosstalk problem of
SDM optical fiber interconnects for intra-data-center appli-
cations. Intra-data-center interconnects connect one server to
another within a data center, which constitutes more than 70%
volume among all market segments in data center interconnects.
A typical SDM based optical fiber interconnect for short-reach
transmissions is shown in Fig. 3. At the transmitter, the single-
wavelength laser source is split into IV branches, and then each
branch is modulated by independent data. The modulated signals
are then combined by a spatial mode multiplexer which converts
the signal into orthogonal eigenmodes. The multimode fiber can
ideally carry orthogonal modes without interference, however,
random perturbations along the fiber would cause mode coupling
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across different modes. Within this distance of intra-data-center
links, chromatic and modal dispersion can be neglected. In this
case, modal crosstalk can be modeled as an N N ugitary matrix
with complex-valued elements, where N is the number of
spatial modes [38]. The element values in the unitary matrix
randomly drift with the perturbations along with the fiber and
have millisecond-timescale dynamics [39]. At the receiver, the
signals are demultiplexed by another mode demultiplexer [40]
and then processed to equalize transmission channel induced
distortions.

Our approach combines silicon photonic processors with BSS
to mitigate modal crosstalk, in order to address the challenges of
the high cost and power consumption in high-speed DSP MIMO
processors. The system is illustrated in Fig. 3. The feasibility of
using photonic processors for mode crosstalk equalization has
been recently demonstrated [38], [41], assisted with training
sequences. Our approach, photonic BSS, in contrast, can tackle
the more difficult problem of making the receiver transparent to
any data rate and modulation format, and workable with slow
and cost-effective electronics.

In following two subsections, we first provide a succinct
exposition of the BSS algorithm and then present the proposed
photonic hardware to implement the algorithm.

A. BSS Algorithm: Independent Component Analysis (ICA)

A number of BSS algorithms have been reviewed in [13],
[42]. Depending on the assumption made to the sources, the
algorithms are classified into ICA, sparse component analysis
(SCA), non-negative matrix factorization (NMF), and bounded
component analysis (BCA), as reviewed in [42]. The most com-
monly used blind separation method is ICA [12], [43], which is
based on two generally accepted assumptions: 1) the source
signals are unrelated to one another; 2) each source signal has
non-Gaussian distribution. These two assumptions hold true for
communication signals encoded in orthogonal SDM channels.
Under these assumptions, ICA separates signals using the central
limit theorem, which says that the sum of independent sources
is more Gaussian than any individual sources. So ICA separates
signal by maximizing the relative distance from the Gaussian
distribution of each independent components.

1) Theory: Consider a group of independent time-series sig-
nal S(t) (i= 1, ..., N)) form a transmitter signal matrix S. These
signals are mixed in the transmission channel and result in the
observed mixtures X at the receiver. The transmission channel
model can be described by

X=AS +C, (D

where A is the matrix containing the mixing coefficient, and C
is the noise in the transmission channel. The goal of ICA is
to figure out the inverse matrix of A, known as demixing matrix
A1, so that we can retrieve the transmitter signals by
multiplying them with the received mixtures S = A—1X.

ICA searches for A-! by maximizing the relative distance
from the Gaussian distribution, that is, the non-Gaussianity of
each independent component, measured by kurtosis, a fourth-
order moment,

. By Y4
)= Ey =)D @

where y is a given IC estimation, and y is the mean value of
y. Directly searching for A—* has N 2 degrees of freedom,
and is therefore difficult to calculate. Therefore, instead of
searching for A-! from the received signal X directly, the
ICA algorithm first applies a whitening matrix V' to X such
that the matrix after transformation Z = VX is white, i.c.,
expectation E(ZZT) =1, where I is the identify matrix. It
is commonly assumed that independence still holds for the
estimated independent components, i.e., E(S S T') = L. In this

case, we consider a new matrix @ that can transfer Z to S, i.e.,
S=QZ=QVX. 3)

The new transformation matrix @ naturally becomes an or-

thogonal matrix, making it considerably simpler to find Q
since orthogonal matrices have degrees of freedom of N(IV _
1)/2 in contrast to N2. Whitening matrix V can be derived

from principal component analysis (PCA) using the formula

V = U Z7'2UT, where U contains principal component
(PC) vectors of X as its columns while diagonal matrix Z has PC
variances as its diagonal entries. As a result, the BSS algorithm
consists of two consecutive steps: (1) PCA searching for U, and
(2) ICA searching for Q.

-3,
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2) PCA: PCA is the oldest and the most widely used tech-
nique in multivariate analysis. PCA uses a linear matrix W to
transfers data X to a new coordinate system U . Such transfor-
mation causes the projection of the data on the first coordinate
to have the largest variance (referred to as first principal com-
ponent), on the second coordinate to have the second greatest
variance, and so on. In this way, PCA produces an array of
decorrelated signals ordered in decreasing order of statistical
variance. Thus, the goal of PCA is to find the projection matrix U
that maximizes the variance 02, i.e., the 2nd-order (central) mo-
ment, of the projected data. Traditionally, PCA can be obtained
analytically from singular value decomposition of X. However,
the runtime and the memory usage can be unbearable for com-
munication systems. Instead, we use Nelder-Mead searching
method [44] to continuously update the estimated projection
vectors while looking for W until the projected signal yields
the largest variance. This method can take the best advantages
of the front-end photonic matrix operator described in the fol-
lowing section in accelerating the convergence speed [35]. We
present the detailed implementation procedures of Nelder-Mead
for PCA in Appendix-A and Appendix-B. PCA produces the
whitening matrix V' to simplify the subsequent ICA.

3) ICA: Whitening matrix V is introduced as an input argu-
ment to the ICA algorithm. According to Equation 3, ICA then
searches for matrix @Q that yields the largest output kurtosis.
Similar to PCA, The Nelder-Mead method is used to continu-
ously update the values of @ until it converges to the target IC
vectors (details see Appendix A-C).

B. Hardware Implementation

From the theory, BSS consists of two major of operations: 1)
matrix operations which multiply the input signal X with the
estimated transformation matrix V at the PCA stage and Q at the
ICA stage in each iteration until the algorithm converges to its
solutions, followed by 2) statistical moment fitting which mea-
sures the second- and fourth-order statistical moments (02 and
kurtrespectively) of the transformed signals. To perform these
functions, as shown in Fig. 3, the photonic processor is composed
of a number of building blocks: 1) a photonic front-end for
matrix operations; 2) an electronic subsystem performing mo-
ment fitting and analog-to-digital conversion (ADC) to digitize
the photonic operator output and digital-to-analog conversion
(DAC) to generate driving voltages in order to control the matrix,
and 3) signal interface consisting of data input/output (I/O) ports
and data domain conversions depending on the applications.

1) Integrated Photonic Matrix Operator: Matrix operations
carried out in the optical domain only need one time step by
simply allowing the signal to travel across the photonic system.
The characteristics of photonic devices allow them to operate
at considerably faster rates than digital devices, resulting in a
less than 100 ps delay [23], [30]. In other words, the whole
matrix may be calculated in less than one digital electronic clock
cycle. Matrix operations can be performed with a variety of
photonic systems using tunable photonic components [30]-[32],
[45]. Their operation principles can be categorized into two
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primary mechanisms: coherent or incoherent, as defined in [16]
and illustrated in Fig. 2(b).

We use the coherent mechanism as shown in Fig. 3, which
uses a multiport interferometer with cascaded Mach-Zehnder
interferometers (MZlIs). Each MZI is made of two 50:50 beam-
splitters and two tunable shifters. By controlling the two phase
shifters, MZI is capable of executing a 2«2 complex unitary
matrix operation. An Ny NN arbitrary unitary transformations
can be accomplished using Ny (N _1)/2 MZIs arranged in a
triangular architecture proposed by Reck ef al. [31], a rectangular
architecture by Clements et al. [32] or several other variants.
The inputs of the multiport interferometer are NV spatial optical
modes separated from a single wavelength laser source. Phase
shifters change the relative power and phase levels (i.e. complex
values) of the output optical modes by controlling the light
propagation via constructive and destructive interference. The
multiport interferometer show in Fig. 3 can only perform unitary
matrix transformations, and thus can only unscramble modal
coupling. Adding programmable attenuators before or after the
multiport interferometer can address mode-dependent loss.

Photonic matrix operators can be fabricated in a variety of
technology platforms, and monolithically integrate with the
multi-mode integrated receivers [5]. As shown in Fig. 3, amode
demultiplexer splits the overlapped and orthogonal modes into
separate waveguides. Because the signals in the two waveguides
are generated from the same laser source, they can be directly
coupled into a N [N MZI and get processed by the photonic
front-end prior to optical-electrical (O/E) conversion.

To integrate a large number of building blocks, these platforms
must be able to offer compact and low loss components [46].
Silicon photonics has high refractive index contrast and low loss,
thus providing an unprecedented platform to produce large-scale
integrated optical systems. Phase shifters are the key compo-
nents to control and program the photonic matrix, which is
accomplished by shifting the effective refractive index of the
silicon photonic waveguide. Phase shifters are expected to offer
low-power, high-speed, and low-loss tuning capabilities. So far,
phase shifters are mostly accomplished using two convenient
effects in silicon: thermo-optic effect or plasma dispersion effect.
The former involves shifting the temperature through the use of
heaters [47], while the latter involves changing the carrier den-
sity via a biased p-n junction [48]. Heaters are simple to operate
and are most widely used for reconfigurable photonic circuits,
although they dissipate several milliwatts of electrical power
when tuning and holding the states and have a relatively slow
response time of 10-100 us. Compared to heaters, the plasma-
dispersion effect offers much better tuning speed and lower-
power consumption; nevertheless, it requires doping, which
introduces a few dB insertion loss to each component, prevent-
ing them from scaling to large-scale photonic systems. There
are many less mature but better or alternative approaches for
phase tuning, for example, micro-electro-mechanical systems
(MEMS) [49], Si/lII-V hybrid waveguide [50], lithium niobate
for electrooptic effect [51], single-layer-graphene (SLG) [52],
[53], and non-volatile phase change material [54]. We direct
interested readers to the review article on various phase tuning
methods and cutting-edge devices [46].
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2) Electronic Subsystems: BSS algorithm only needs to mea-
sure signals’ statistic properties, rather than the full waveform. In
communication systems, signal statistics change on timescales
related to environmental and channel fluctuations, which is much
lower than the signals themselves. For this reason, unlike other
DSP algorithms, BSS allows ADCs sampling at a frequency
much slower than the Nyquist frequency, and the sampling does
not need to synchronize with the signal’s clock. As a result, the
BSS algorithm offers benefits in terms of hardware cost,
complexity, and energy efficiency, because they all increase with
the samplers’ frequency.

One of the primary functions of the electronic subsystem is to
measure the second and fourth statistic moment and update the
weight matrix following the Nelder-Mead method. As shown in
Fig. 3, DACs convert the weight matrix to a group of voltages and
apply the voltages to the photonic matrix operator via the phase
shifters. Then the photonic matrix operator would compute an
updated PC or IC from the optical domain “on-the-fly”. The
photonic processor repeats the operations until all the weight
vectors pointing in nearly the same direction, at which point the
algorithm is converged. The photonic matrix operator plays a
crucial role in accelerating the convergence speed by two orders
of magnitude.

In addition, a control system must precisely control a large
number of phase shifters in order to conduct precise matrix

computations. The control system consists of a circuit to imple-
ment the control algorithm and monitor components that provide
insight into the internal distribution of light in MZI meshes or
the partial transmission of individual MRRs. Controlling a large
number of optical components can be a challenging problem
because it requires a large amount of dedicated electrical I/Os
for control and monitor purposes. N-doped photoconductive
heater is a solution to solve this challenge in I/Os [55], [56].

The N-doped heater can actuate the phase shifter by thermally
tuning, and at the same time, can monitor the transmission from
the photoabsorption-induced change in the heater resistance.

As a result, N-doped photoconductive heaters allow accurate
control without the need for direct access to device output and
the need to layout electrical and optical 1/Os specific for monitor
purposes [57]. We demonstrated the control of multi-channel
MRR weight banks [57] and achieved 8.5-bit precision [58],
outperforming the 8-bit precision utilized in DSP systems for
processing communication systems.

C. Results

We first consider a short-reach optical link carrying two spatial
modes modulated by two pulse amplitude modulation 4-level
(PAM4) data streams. The signals on the two modes are inde-
pendent of each other, but have an identical modulation format
and an identical data rate, making it a challenging problem to
demixing them blindly. Within the intra-data-center distance,
the value of crosstalk is around = 5dB and fluctuate 14dB at
a time scale of a few milliseconds due to the environmental
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Fig. 4. (a.i)(b.i) Eye diagrams of PAM-4 signals on x and y polarization after
transmission; (a.ii)(b.ii) eye diagram after being recovered by photonic BSS;
(a.iii)(b.iii) signal waveforms comparison between back-to-back signals and
after photonic BSS.

The transmission channel with two orthogonal modes pro-
duces a 2 X 2 effective mixing matrix given by

1 1
ab

A= 4 Q)

where b/ a denotes the crosstalk from mode x to y (defined as
modal coupling coefficient Kx-y), and ¢/ d denotes the crosstalk
from mode y to x (denoted as Ky-x). The mixing of two modal
states is because the mode degeneracy is broken by random
variations in core shape and stress-induced anisotropy along the
optical fiber [39], [60]. Under such crosstalk condition, we
randomly generate an exemplary time-varying matrix to emulate
the transmission channel as shown below,
1 1
0.820.23
A= o107z TNOO %) ©)

fluctuations [59].
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where N (¢)(0, 02) is the ambient noise which fluctuates at a
frequency of 1 kHz.

At the receiver, a mode demultiplexer splits the two over-
lapped and orthogonal modes into two separate waveguides
and directly coupled intoa 2 2 MZI.

1) Results: After the mixture matrix, the eye diagrams of
the received signals are plotted in Fig. 4(a.i) and (b.1), showing
nearly closed eye diagrams. To determine the demixing matrix
A , we apply the BSS algorithm described in Section II. The
signals do not insert any training sequence are sampled at a sub-
Nyquist rate of 2 Gsample/s in a free-running mode. BSS applies
the transformation matrix according to the Nelder—Mead rules
until the solutions for PCA and ICA converge. PCA requires 24
iterations and ICA requires 35 iterations for convergence. As
shown in Fig. 4(a.ii) and (b.ii), BSS fully recovers the signals
from the mixtures, resulting in clearly opened eye diagrams for
both polarization channels. The samplers used to plot the eye
diagrams have a time length of one second, which is considerably
longer than the time scale of the matrix fluctuation, so the result
demonstrates that BSS can adapt to ambient noise. We also
evaluate the accuracy of BSS by comparing the recovered signal
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TABLE I
MSE OF 2- AND 3-CHANNEL BSS

Channel number | IC1 I1C2 IC3
2 0.20%  0.74%
3 0.26%  0.88%  1.35%
(@ 2 Channels (b) 50G Data Rate
. 2001 2100
] o i s & e e e = 3
= = 80
E 170+ g 2
£ 60
F 140 a0 !
@ 0
£ g 2 6 10
£ 110 E 20 ‘S
F g0 -
10 20 30 40 50 2 4 6 8 10
Data Rate (GBaud/s) Number of Channels
---DSP —— Photonics
Fig. 7. The training time of DSP and photonics (a) at different data rates and

(b) with different number of channels.
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waveforms with back-to-back signals. We run the algorithm 40
times, all with newly-initialized random weight vectors, and find
that the average mean square error (MSE) of the two signals is
0.20% and 0.74 %, respectively.

We next evaluate the system performance (indicated by sig-
nal’s Q-factor), taking the noise in the transmission channel
into consideration. To do so, we assume a channel with additive
white Gaussian noise, and add the noises with zero mean and
varying variance to emulate a wide range of signal-to-noise
ratios (SNRs). Q-factor is estimated from the signal’s noise
variance using the equations in [61] shown in Appendix B. The
result is shown in Fig 5. The received signals are severely con-
taminated by the modal crosstalk; as a result, their Q factors are
always below the equivalent Q factor for hard-decision forward
error correction (FEC) threshold (BER =3.8 10x3). After BSS,
the system can achieve the FEC threshold at an SNR of
approximately 24 dB, which has a 3 dB SNR penalty compared
to the back-to-back signals.

2) Channel Scalability: Here we investigate how photonic
BSS performs when it is extended to a higher number of spatial
channels. To this end, we apply photonic BSS to a three-channel
SDM system characterized by a 3« 3 mixture matrix. As shown
in Fig. 6(a)(i)(ii) and (iii), the eye diagrams of the three received
signals are completely closed due to the spatial mode coupling.
After being processed by photonic BSS, opened eye diagrams
are observed in all three channels. However, we also observe
the signal quality is degrading as we move from low-order IC
(channel 1) to higher-order IC (channel 3), and the correspond-
ing MSE increases from 0.26% to 1.35%. Table I summarizes
the MSE of two-channel (dual-polarization case as discussed
earlier) and three-channel BSS. The main source of scaling
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TABLE II
ENERGY USE IN TRAINING PHASE
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Fig. 10. During the execution phase, the average power in processing each
symbol using DSP and photonics. Comparison (a) under different data rates and
(b) under different number of channels.

limitation comes from the sequential learning aspect of the
proposed photonic BSS approach, in which a higher-order IC is
obtained after the lower-order IC is extracted. In this case, the
errors generated in the lower-order ICs will accumulate and
cascade to the higher-order learning process, limiting the
number of channels that can be faithfully processed. To solve
this issue, a straightforward solution is to improve the accuracy
of individual IC by enforcing a more stringent convergence
condition. This, however, comes with the cost of a longer training
time and may not be applicable to applications where the mixture
matrix is time-varying. Another direction is to find an alternative
algorithm that is not based on sequential searching or can reduce
the error transfer from lower-order to higher-order ICs. Several
global optimization algorithms have been proposed [62]-[65] to
solve other searching problems. Our future work will investigate
the implementation of the improved optimization algorithm with
the proposed photonic hardware.

III. ENERGY AND LATENCY COMPARISON BETWEEN
PHOTONICS AND DSP

The photonic BSS system benefits the data center interconnect
in two ways: energy consumption and latency. We are interested
in how the two approaches compare when the SDM systems
scale to larger data rates and a greater number of channels. The
components under evaluation and their corresponding energy
consumption and latency are summarized by Table II to Table
V in Appendix C. We make our best efforts in including all the
possible elements in the two receiver systems (photonic and
DSP) in our comparision.

rithm and compare their energy consumption and latency. Like
other machine learning techniques, BSS for channel equalization
can be divided into two phases. The first phase is training, during
which the transformation matrix needs to be constantly updated
until the receiver learns the correct transformation matrix for
equalizing the channel crosstalk. During the training stage, we
evaluate the energy use Etraining and training time ttraining
required to learn the transformation matrix. Following training,
the system enters the execution phase, during which the receiver
applies the transformation matrix to correct distorted signals.
The transformation matrix is fixed at the execution phase. We
focus on the average power Pexecution required to perform the
transformation matrix to the input signals and the delay required
to compute the matrix tiatency.

A. Training Phase

The training phase consists of two main operations, which
includes matrix-vector multiplication (which may be done using
photonics or DSP) and variance or kurtosis computation (which
is done in the electronic subsystem). As a result, the difference of
energy use Etraining in photonics and DSP is a multiplication
of two factors: the energy used in each transformation matrix
update and the training time ttraining. Photonics has shown
exceptional capabilities in accelerating matrix computing while
delivering significant energy savings, particularly when the sig-
nal is already analog, so power-intensive and high-speed DACs
can be avoided at the system input. However, the DACs that
translate the transformation matrix values to the driving voltages
of each phase shifter add to the expense of the photonic system.

We first evaluate the training time ttraining in the photonic
and DSP systems, respectively. We consider the best scenario
for DSP where DSP hardware can always operate at line rate
speed via massive parallelism, so the delay in serial to par-
allel (s/p) conversion is included. The training time is spent
on matrix multiplication, moment fittings, and s/p conversions
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(see Table I'V). Using photonics, matrix multiplication can be
done at a single time step, so its speed is limited only by the
bandwidth of photodetectors, which is only tens of picosec-
onds. In this case, the training time ttraining is determined by
max [1/ Bpd, 1/ fapc,sampling], where fsampie is the sampling
rate of ADC. BSS can operate at any sampling rate; here we make
Jfsample = 10"GHz as a tradeoff between energy consumption
and convergence speed. The training time of DSP, on the other
hand, is bounded by its clock frequency feiock which is set a
few hundreds of MHz in most DSP systems. The results of
the training time comparison are shown in Fig. 7. We assume
the channel number is two in Fig. 7(a), and the results show

that the training time remains constant when the signal data rate
increases, owing to the BSS statistic feature. The photonic
system reduces the training time by ~90 us, as a result of
its high-speed matrix multiplier. We then evaluate the training
time as a function of the number of channels and fix the signal
data rate per channel to 50 GBaud/s. Since the Nelder-Mead
method finds out the IC/PCs channel by channel, so the number
of overall iterations increases in proportion to the number of
channels. In addition, the operations required to computing an
N-channel matrix grow quadratically with the channel number.
As a result, as shown in Fig. 7(b), the training time of DSP
increases rapidly with the channel number and becomes too
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port. Two of the total four MRRs are used to implement BSS of two received signals, with their resonance locating around 1549.6 nm and 1554 nm, respectively.
On top of these MRRs are dedicated metal heaters, which allow for independent tuning of each MRR. All four MRRs share a common ground, as do two additional
signaling traces. As a result, three DC pads are used and wire-bonded for testing.

long to capture the environment vibrations. In contrast, the
relation between the training time of the photonic system and
the number of channels is approximately linear. As we shall see
later, the shortened training period in the photonic system will
also minimize energy consumption during the training phase.
The equations and parameters used in the calculations are shown
in Appendix C.

We then evaluate the energy use in the training phase
Etraining. Fig. 9(a) shows how energy changes at different
data rates in the training process. In DSP, the energy depends
on the training time derived above and the total number of
operations during the training phase. The energy of individual
operations is closely linked to the CMOS process technology.
Here we assume the DSP employs the cutting-edge 7 nm process.
Using photonics, the energy cost comes from the phase shifters
and the DACs used to control the phase shifters. The energy use
of individual phase shifters depends on the type of tuning
mechanisms. Here we analyze two mechanisms, micro-heaters
and PN junction-based modulators. The primary distinction
is that micro-heaters waste energy even while the actuation
voltages stay constant, but PN modulators, being a kind of
capacitive device, have virtually little static power. The same
DSP hardware is used to compute the statistical moments in the
photonic BSS, and its energy consumption is also included in
our study (see Appendix C, Table II). As shown in Fig. 9,
because the actual sample rate may stay constant owing to BSS,
the energy consumption throughout training period has a flat
response to the data rate. The photonic system with heaters and
PN-modulators has similar energy use because the ADCs
dominate overall energy consumption. As the channel number
rises, the total number of operations grows proportional to the
third power of the channel number. As a result, we observe two
orders of magnitude energy reduction in the photonic systems
at large channel numbers.

B. Execution Phase

The main operation in the execution phase is to execute
matrix-vector multiplications on the input signals using the
transformation matrix learned during training. Similarly to the

training phase, we begin by calculating the time delay tiatency in
processing each data symbol in the incoming data stream. In
DSP, as the data rate increases, more s/p conversions are required
to produce more parallel operations in order to compute the
matrix at the signal’s line rate. This comes at the expense of
extra tiatency delay, as shown in Fig. 8. In comparison, tiatency
in phonics systems is independent to the signal data rate. For the
similar reason, tiatency grows quadratically with the channel
number N in DSP, while fiatency remains a constant in the
photonic system as N increases.

We now consider the average power consumption Pexecution
in different types of systems during the execution phase when
a single matrix-vector operation, consisting of N input chan-
nels and N output channels with a fixed transformation ma- trix,
is calculated. In DSP, the average power is a function of
multiplying number of logic operations in a unit time by the
energy per operation. As a result, the power consumption of
DSP grows approximately linear with the signal data rate and
quadratically with the channel number, as shown in Fig. 10. The
photonic system has a completely different picture. When the
transformation matrix becomes fixed, the DACs operate in static
mode, consuming very little static power. PN modulator-based
actuators, like DACs, have minimal power consumption. As a
result, using PN modulators as actuators, the processor’s power
consumption is nearly zero, independent of the signal data rate
or channel number. On the other hand, micro-heaters have a
constant power, and the overall power consumption does not
vary with the signal data rate, but increases quadratically with
the channel number. Nonetheless, the power consumption is still
much lower than that of DSP.

C. Remarks About Photonics and DSP Comparison

In contrast to DSP, the photonic BSS front-end has a signifi-
cantly more favorable scaling law for SDM-based optical fiber
interconnects, which is especially important for high-throughput
interconnects with high data rates per channel and large number
of channels. For example, in a 1 Tbit/s optical interconnect
consisting of 10 spatial channels and 50 Gbaud PAM4 per
channel, photonics would reduce the training time by closely
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TABLE III
AVERAGE POWER IN EXECUTION PHASE (WE ONLY CALCULATE THE POWER USED IN SIGNAL PROCESSING WHILE IGNORING THE POWER USED IN PD AND ADC)

Buliding Blocks DSP
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MVM
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TABLE IV
TRAINING TIME ttraining (DEFINED AS THE TIME TO FIND THE TRANSFORMATION MATRIX)

Buliding Blocks DSP

Photonics
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TABLE V
EXECUTION LATENCY (Tiatency)

Buliding Blocks DSp Photonics
MVM 2N2/fcluck 1/BPD
s/p conversion 2 % Hdﬂm/ff-tock 0

to 30 times from 69 ms to 2.3 ms and reduce the energy use of
training by 30 times from 140 mJ to 4.6 mJ. In the execution
phase, photonics lowers latency by 32 times, from 0.8 us to 25
ps, and average power by 270 times, from 2.7 W to | mW.

IV. PRIVACY PROTECTION FOR WIRELESS MIMO AND
COGNITIVE RADIO

This section reviews the application and experimental demon-
strations of photonic BSS for wireless communications [33]-
[35]. The accelerating demands on the efficient utilization of
spectrum resources are pushing the implementation of cognitive
radio, in which a transceiver can intelligently detect the spectrum
usage and moves into a vacant spectrum while avoiding the
used spectrum. However, cognitive ratio requires monitoring
opportunistic users in real-time, which is challenging in MIMO
systems due to the existence of a large number of unpredictability
and transience of time-frequency transmission blocks. Fortu-
nately, BSS, which can distill the salient information sharing
the same spectrum and time, can effectively address potential
spectrum collision problems. In addition, BSS is agnostic to
signal format and, most importantly, blind to the content of trans-
missions, which makes BSS outstanding in protecting users’
privacy [66].

While the conventional radio-frequency (RF) electronics for
wireless communication systems [67], has dominated for
decades, they could hardly offer the broadband frequency agility,
which is a prerequisite for achieving the full potential of BSS.
And the RF electronics have to come up with burdensome

solutions which require large banks of sub-circuits (each de-
signed for a specific frequency band) for such a broad spec-
trum coverage [68], and sophisticated switching technology to
ensure smooth transitions across frequency bands. These practi-
cal difficulties motivate photonic BSS that provides a completely
different set of signal processing properties [69].

Here we experimentally showcase using silicon photonic BSS
chip for wireless MIMO communications. The experimental
setup is shown in Fig. 11(a). The system consists of a photonic
RF front-end for a 22 wireless MIMO system. The two channel
wireless systems carry signals with two modulation formats:
Binary Phase Shift Keying (BPSK) and Amplitude Shift Keying
(ASK) respectively. In this system, two optical modulators first
convert the received wireless mixtures onto optical carriers
with different optical wavelengths. Then the two optical sig-
nals are coupled into a silicon photonic device fabricated on a
silicon-on-insulator (SOI) wafer through optical grating cou-
plers. The silicon photonic device is an MRR weight bank
composed of two MRRs, each having its resonances aligned
with the wavelengths of two optical carriers, as shown in Fig. 12.
In addition, each MRR embeds an in-ring N-doped photocon-
ductive heater to realize precise MRR control [56]-[58]. The
MRR weight bank provides matrix operations to the input signals
in the optical domain, and then the signals are converted to
electrical format by the balanced photodetector. By effectively
upconverting the wireless signals to a 193 THz intermediate
frequency, photonic processors are nearly flat frequency re-
sponse. Even gigahertz wireless signals (e.g., millimeter-wave
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TABLE VI

MODELING PARAMETERS

Symbol Quantity Value
N Signal channel number N
Nheater Heater number N? + N —2[38]
Nitod P-N modulator number N2+ N-2
Npac DAC number N2y N-2
Naampie Sample number for statis- 600
tic analysis per weight up-
date
factuator ~ Change frequency of MZL  foumpie/Nsample
mesh
Biata Signal baud rate 50 GBaud/s
Feample Sample rate of ADC ina 10 GHz
free-running mode
Faae DAC figures of merit 1.25 x 10~ 2 J/conv-step
Ndae DAC resolution 8
Fode ADC figures of merit 2.5 x 10712 J/conv-step
Nyde ADC resolution 8
Nupdate Number of weight update 223 (for N = 2)
for training 223"(;“\/’2/4) (for N > 2)
Npeoa Number of weight update 71 (for N = 2)
for training of PCA TIH(N2/4) (for N > 2)
Nica Number of weight update 152 (for N = 2)
for training of ICA 152%(N?/4) (for N > 2)
FA sample Sample frequency at ADC g0 Baara
Nsa Oversampling ratio 2
Pheater Heater power 1 mW
Fiae,static  Static power of DAC 10 oW [72]
Enrod Energy consumed to  ChgoqV)2
change the voltage on the
modulator
Catod Modulator capacitance 30 fF
Vi Modulator voltage swing 48V
Eyp, A Average energy per n,-bit  2.5Tnpp: V21l
adder op.
Eop 0t Average energy per ny-bit  2.57nip V2 ]
multiplexer op.
ny Average bit resolution of 8
the DSP module
D CMOS process technol- 7 nm
ogy feature size
Vv CMOS supply voltage 0.65V
i Photodiode responsivity 1 A/W
Vibias Photodiode bias voltage 33V
Pree Received optical power 0 dBm
Biod Modulator bandwidth 40 GHz
Bpp Photodiode bandwidth 40 GHz
Fetock Clock frequency of DSP 500 MHz

signals) are considered narrowband on the optical spectrum
since this optical path gives a flat frequency response over a
5 THz window [70]. Between the E/O modulation and O/E
detection, optical signals can be processed with tunable optical
devices, which may benefit from both the unconventional utiliza-
tion of standard photonic integrated devices and the enormous
information density made possible through wavelength-division
multiplexing (WDM) [18], [30].

Fig. 11(b) presents the experimental results of two-channel
photonic BSS, in which we used the photonic weight bank to find
the PC/IC vectors and then applied the vectors at the RF photonic

front-end to recover the sources. The experiment was done when
the antennas were configured at different locations to evaluate
the system’s performance at different transmission conditions.
To do so, we fixed the transmitter antennas and moved to adjust
the distance between the receiver antennas. By doing so, we
could test this photonic BSS system dealing with mixtures with
different mixing ratios. As shown in Fig. 11(b)—(d), the top
mixture (RX1) is received by the antenna that is closer to
the BPSK transmitter, while the bottom mixture (RX2) is
received by the antenna that is closer to the ASK transmitter.
The photonic BSS pipeline demonstrates its effectiveness by
successfully separating these two sources at a distance of 31,”
resulting in the top estimated source (IC1) being the BPSK and
the bottom estimated source (IC2) being the ASK. The other
two trails, which represent the distance of 19” (Fig. 11(c)) and
177 (Fig. 11(d)) experience more difficulty in source estimation
because the mixing ratios are very close to 0.5. However, we
demonstrated that photonic BSS still manages to achieve per-
ceivably effective source separation.

V. CONCLUSION

Because of the intrinsic scaling constraints of digital systems,
DSP has faced significant energy and speed challenges as the
data volumes required in communication systems has increased
rapidly. Photonics provides a solution, alleviating the energy
use and processing delays in matrix-vector multiplications, an
operation ubiquitously used in different signal processing al-
gorithms. In this work, we introduce a novel photonic front- end
that synthesizes integrated silicon photonic devices with a
novel BSS algorithm. We demonstrate its various applications
in space-division multiplexing based communication systems,
which includes addressing the modal crosstalk in multi-mode
optical fiber interconnect in data centers and preserving user
privacy for wireless MIMO and cognitive radios, enabled by
the “blindness” in BSS. We extensively compare our photonic
system with DSP in terms of energy use and processing latency,
demonstrating that photonics has distinct benefits at high data
rates and large channel numbers. The findings indicate that
photonics can solve growing constraints in DSP and pave ways
for future high-speed, low-energy communication systems.
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APPENDIX A
BSS ALGORITHM

A. Constrained Nelder—Mead Search

The constrained N-M method aims to find the minimum or
maximum of an objective function in a multidimensional space.
Here we make all the weight vectors Wi have unit norm [35] to
make it implementable with photonic devices. Nelder—Mead
search is applied to both PCA and ICA to find the maximum
second- and fourth-moment, respectively, by searching for the
updated vectors Wmax and Wmin. Nelder-Mead search first
initializes N +1 random weight vectors distributed on a unit
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N-dimension space. We define the centroid of all weight vectors

as Ween = 4, '}2: , Wi, and define unit vectors €max, €min
representing the 1st and N th PC (or IC) vector directions,
respectively. Then, the weight vector Wmin associated with the
minimum output variance o2 (or kurtosis kurt) is updated until
all the weight vectors pointing in nearly the same direction at
which point the algorithm is converged.

Each iteration consists of four type of main operations:
reflection, expansion, contraction, and shrinkage. Reflection
improves Wmin by simply reversing its direction with re-
spect to Ween. We get many WS in the directions of con-
tinuous reflections Wref = Ween + 3(Ween— Wmin), which
can make w;i converge into a cone near €max. If reflection
does not lead to a better weight vector direction than cur-
rent Wmin in some special cases, we need to continue apply
expansion, contraction, and shrinkage operations. Expansion
Wexp = Ween + V(Wref Ween) along the reflection direc-
tion may reach an even better wnew direction. Contraction

Weon = Ween t+ p(Wmin —chn) can instead find a better
alternative wnew direction when reflection does not lead to

a better weight vector direction than current Wmin. Finally,
shrinkage with Wi = Wmax + 0(Wi— Wmax) often has an
impact when Ween is negligible, it will change Wi to further
create better Wgw direction. In addition, standard values of
above coefficients are =1, y=2, p=0.5, 0=0.5, respec-
tively. Good convergence is achieved when the different between
final Wmax and Wmin is smaller than convergence tolerance E.

B. PCA Algorithm

Input: Weighted addition output y, 1s,..., (k — 1)% PC vec-
tors ex,..., ex—1;

Parameters: Convergence tolerance E, reflection coefficient
3, expansion coefficient y, contraction coefficient p, shrinkage
coefficient o,

Output: kmn PC vector ek

1 Initialize n random weight vectors Wi(i=1,.. ., n);

2fori=1:ndo

3 if kK >1 then

4 Orthogppalize r Wi such  that  Wi=wi—
J—(wi ej)e;j;

5 endif
6 Normalize Wi such thatj wy =1;
7 Apply wi to the weight bank and obtain the resulted
y(wi);
8 Compute the variance of y: f(Wi) = E(y?);
9 end for
10 Among f(wi)(i=1,.. ., n), find finax = max(f(wy)),
Sfmin = min(f(wh));
11 Set Wmnax = argmax(f(wi)),
argmin(f(wh));
12 if |[fmax — fmin | < E then
13 return ex = Wmax;
14 end if
15 while Lfmax — fmm | >FE do
16 Compute the centroid of all weight vectors except Wimnin:
Ween = E(Wi)(fOI' Wi £ Wmnin);

Wmin =
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17 Compute the reflected weight vector:

_B(chn - Wmin);

18 Normalize Wrer such that |Wrer | = 1;

19 iffmln <f(Wref) < fma.x then

20 Winin = Wherand update fmin;

21 else if f(Wref) > fmax then

22 Compute the expanded weight vector: Wexp = Ween +
V(Wref — chn);

23 Normalize Wexp such that| Wexp| = 1;

24 iff(Wref) < f(Wexp) then

Wref = Ween +

25 Wmax = Wexp and update fmax = f(Wexp);
26 else

27 Wmax = Wrer and update frmax = f(Wref);
28 iff(Wexp) >fmin then

29 Winin = Wexp and update fmin, Winin;

30 end if

31 end if

32 elseif f(Wrer) < fmin then

33 Compute the contracted weight vector: Weon = Ween +
O(Wmin — Ween);

34 Normalize Weon such that| Weon| = 1;

35 iffmin <f(Wcon) <f(max) then

36 Wmin = Weon and update fmin

37 else iff(Wcon) >fmax then

38 Wimax = Weon and update fmax

39 else

40 fori=1:ndo

41 Replace all weight vectors with Wi = Wnax +
O(Wi — Wmax);

42 Normalize wi such that| wj = 1;

43 end for

44 Update fmax, fmin, and Winax, Wimin;

45 end if

46 endif

47 end while
48 return €x = Wmax.

C. ICA Algorithm

Input: Weighted addition output y, 1%,..., (k — 1)t IC vec-
tors ex,..., ekx-1; whitening matrix /bmV ;

Parameters: Convergence tolerance E, reflection coefficient
B3, expansion coefficient y, contraction coefficient p, shrinkage
coefficient o;

Output: ke IC vector ex

1 Initialize n random weight vectors wi(i=1,.. ., n);

2fori=1:ndo

3 if k >1 then

4 hogonalize Wi such that wi=wi—

Q%:i(wzj €j)ej;

5 endif

6 Normalize wi such that|wi =1;

7 compute the normalized whitened weight vectors
vi=V wi

8 apply Vi to the weight bank and obtain the resulted y(vi);

O

compute the objective function, i.e., the kurtosis of y:

S(wi) = kurt(y+(vi);
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10 end for
11 Among f(wi)(i=1,.. ., n), find finax = max(f(wi)),
fmin = mm(f(wl)),
12 Set Wmnax = argmax(f(wi)),
argmin(f(wh));

13 if Lfmax —fmin | < E then

14 return €, = Wmnax, €, = €7;

15 end if

16 while |[fnax — fmin|>E do

17 Compute the centroid of all weight vectors: Ween =

E(wi);

18 Compute the normalized reflected weight vector: Wies =
Ween +JB(chn — Wmin);

19 Compute the normalized whitened reflected weight vector:
Vref =V Wier

20 iffmin <f(Wref) = kurt(y4(Vref)) <fma.x then

21 Wmin = Wrer and update fimin;

22 else if f(Wref) > fmax then

23 Compute the whitened expanded weight vector: Wexp =
Ween + V(Wref — chn);

24 Compute the expanded weight vector: Vexp = V Wexp

25 iff(Wref) <f(Wexp) = kurt(y4(Vexp)) then

Wmin =

26 Wimax = Wexp and update fmax = f(Wexp);
27 else

28 Winax = Wrer and update finax = f(Wrer);
29 if f(Wexp) > finin then

30 Wmin = Wexp and update fmin, Winin;

31 end if

32 end if

33 else if f(Wrer) < fmin then

34  Compute the contracted weight vector: Weon = Ween +
O(Whnin _ Ween);

35  Compute the whitened contracted weight vector: Veon =

47 endif
48 end while
49 return €x = Winax.

APPENDIX B
Q-FACTOR CALCULATION

The Q-factor is calculated using equations 6,7, and 8 [61]:
where pi is the mean amplitude of the received symbols at level
i, and o is their variance.

APPENDIX C
COMPARISONS OF PHOTONICS AND DSP

Here, we model photonic and DSP systems using the formulas
in Table I to V. The four Tables show the time and energy used
by each building block at various system phases, providing the
scaling law of photonics and DSP as the system data rate and
channel count rise. The detailed modeling parameters can be
found in Table VI. Below, we explore 1. energy consumption
and training time when training the photonic BSS model; 2.
power consumption and latency when executing photonic BSS
tasks. By modeling the processes, excellent performances can
be found in photonics BSS over the DSP counterpart. We show
the comparison results in Section II1.
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