
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 40, NO. 6, MARCH 15, 2022 1617 
 

T 

High-Capacity Space-Division Multiplexing 

Communications With Silicon Photonic Blind 

Source Separation 
Chaoran Huang , Dongliang Wang , Weipeng Zhang, Graduate Student Member, IEEE, Benshan Wang, 

Alexander N. Tait  , Thomas Ferreira de Lima , Bhavin J. Shastri, and Paul R. Prucnal, Life Fellow, IEEE 
 

(Invited Paper) 

 

 

Abstract—Space-division multiplexing is a widely used tech- 
nique to improve data-carrying capacities in both wireless and 
optical communication systems. However, tightly packed spatial 
channels cause severe crosstalk. High data rates and large channel 
counts impose severe constraints on resolving the crosstalk using 
traditional digital signal processing algorithms and electronic cir- 
cuits. In order to solve these issues, this paper presents a silicon 
photonic system combining high-speed silicon photonic devices 
with a novel blind source separation (BSS) algorithm. We first 
demonstrate using photonic BSS to undo modal crosstalk in a short- 
reach multimode optical fiber interconnect for intra-data-center 
communications. The proposed photonic BSS system inherits the 
advantages of photonic matrix processor and the “blindness” of 
BSS, leading to superior energy and cost efficiency and reduced 
latency, while allowing to recover the signals using a sub-Nyquist 
sampling rate and in a free-running mode, and offering unmatched 
agility in signal format and data rate. The feasibility of using pho- 
tonic processors for mode crosstalk equalization has been recently 
demonstrated, assisted with training sequences. Our approach, 
photonic BSS, in contrast, can tackle the more difficult problem of 
making the receiver transparent to any data rate and modulation 
format, and workable with slow and cost-effective electronics. In 
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addition, we find that photonic BSS has a much better scaling law 
for space-division multiplexing (SDM)-based communication 
systems than digital signal processing (DSP). When compared 
to state-of-the-art DSP, photonic BSS can reduce system power 
consumption, speed, and latency by several orders of magnitude, 
particularly for high-capacity communications with high data rates 
per channel and a large number of channels. Photonic BSS has the 
added advantages of being agnostic to transmission content, mak- 
ing it exceptional at protecting communication privacy. This paper 
also discusses our previous work in demonstrating photonic BSS 
for privacy protection in wireless multiple-in multiple-out (MIMO) 
communications using silicon photonic micoring resonator (MRR) 
weight banks. 

Index Terms—Machine learning, optical signal processing, 
silicon photonics, space-division multiplexing. 

 

 

 
I. INTRODUCTION 

ODAY’S world is witnessing an explosion of network 

traffic [1]. Numerous emerging services and applications, 

such as cloud service, video streaming, and Internet of Things, 

are accelerating the demand for high-capacity communications 

even further. Space-division multiplexing (SDM) is a multi- 

plexing technology used to increase data transmission capacity 

by exploring the new degrees of freedom in space to establish 

parallel data stream pipelines. As a result, SDM increases the 

communication channel throughput without increasing band- 

width usage or transmission power. 

SDM based technologies have benefited both optical and wire- 

less communications. In optical communications, SDM has also 

been used in optical communication systems using multimode 

or multi-core optical fibers (i.e. photonic Multiple-In Multiple- 

Out MIMO) [2]–[5] (Fig. 1(a)). SDM promises to overcome the 

problem of nonlinear Shannon limit encountered in single mode 

fibers, resulting in a massive increase in data transmis- sion 

capacity [6]. Similarly, in wireless communications, SDM is a 

well-known Multiple-In Multiple-Out (MIMO) technique 

which uses multiple antennas to send and receive independent 

and separately encoded wireless signals (Fig. 1(b)), and is the 

key enabler in many modern wireless technologies such as 4G 

long-term evolution (LTE) and 5G [7], [8]. 
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Fig. 1. Spatial division multiplexing (SDM) for (a) multi-mode fiber (MMF) 
optical fiber communication system. (b) multi-antenna wireless communication 

system. A is the channel state for each system. Signal processing is needed at 
the receiver to undo the channel induced signal distortions. 

 

 

 

 

 
A. Advantages of Blind Source Separation (BSS) 

Dense SDM is always accompanied by crosstalks caused by 

deleterious effects in transmission channels. Signal processing 

techniques are needed to retrieve the transmitted data streams. 

To do this, the receiver needs to estimate the channel state that 

characterized the combined transmission effects (i.e., channel 

estimation), and then inverts the distortions (i.e., channel equal- 

ization). Least squares (LS) and minimum mean square error 

(MMSE) and their numerous variations are popular channel 

estimation techniques [9], [10]. However, LS and MMSE need 

prior knowledge of transmitted signals or the incorporation of 

training symbols [11]. The training signals obviously decrease 

communications throughput, especially for time-varying chan- 

nels. 

Unlike previous methods, blind source separation (BSS) is an 

unsupervised learning technique that requires minimal knowl- 

edge of either source or channel characteristics. Instead of rely- 

ing on training symbols, BSS only relies on signal’s statistical 

features and estimate channels state via maximization of signal 

independence [12], [13]. For this reason, unlike most algorithms, 

a significant advantage of BSS is it allows to sample signals at 

a far slower frequency than the Nyquist frequency, and the sam- 

pling does not need to synchronize with the signal, both resulting 

in significantly lower power consumption and implementation 

cost. In addition, BSS is completely transparent to modulation 

format, data rate, and waveforms, offering unrivaled agility in 

communications systems. Algorithm details will be discussed 

in Section II-A and Appendix A. 

B. Photonics versus DSP 

Despite the existence of many mature algorithms for SDM- 

based communication system, their hardware implementation 

remains a challenging problem, because SDM-based commu- 

nication systems are expected to process high-dimensional and 

high-speed signals in a short period of time (i.e., low latency) 

and with low energy usage. However, digital electronics is facing 

harsh tradeoffs between the number of spatial channels, energy 

use, and bandwidth [14]. A typical receiver for SDM based 

communication systems is composed of an array of analog-to- 

digital converters (ADCs) followed by a digital signal processing 

(DSP) backend as shown in Fig. 2(a). In this case, the energy 

use E grows in proportions with the signal bandwidth Bs and 

quadratically with channel number N [15]. The processing la- 

tency is ultimately bounded by the clock rate fclock, even with the 

efforts on parallelism [16], which causes additional interconnect 

problem [17], [18]. The processing latency of digital electronics 

also increase quadratically with the channel number. Current 

communication systems already have to operate at Peta (1015) 

multiply–accumulate (MAC) operations per second [19]. As 

a result, as data throughput increases in the future, DSP will 

confront formidable challenges in terms of processing speed 

and will result in an explosion in energy consumption. 

Photonics provides a completely different scaling physics 

that can solve many fundamental constrains of digital electron- 

ics [16], [20], [21], as shown in Fig. 2(c). Photonic processors 

deal with signals in the optical domain (i.e., photonic front-end), 

prior to digitization, breaking the ADC imposed limitations in 

a fundamental way [21] (Fig. 2(b)). Photonic processors have a 

nearly flat frequency response to the signals over 5-THz window. 

As a result, the energy use of photonic processors is not affected 

by the signal bandwidth Bs, and they only increase in proportion 

with N , in contrast to N 2 in digital electronics [16]. Further- 

more, the processing latency is only limited by the bandwidths of 

the optical components on the signal pathway, leading photonic 

processors to have much higher speeds than digital devices. For 

this reason, photonics processors can offer high bandwidth with 

low energies and have been used in many applications including 

intelligent signal processing ([22] and this paper), neuromorphic 

computing [17], [18], [23], [24], quantum computing [25]–[27], 

and optimization problems such as Ising machine [28], [29]. 

These application systems have two major features in common: 

1) the same task (especially matrix operations) needs to be done 

repeatedly and needs to be done quickly; and 2) the signals to be 

processed are already in the analog domain (optical, wireless) 

[17], [18], [22]. 

 
C. Paper Contributions and Organizations 

To address the energy and latency challenges in SDM com- 

munication systems, this paper introduces photonic BSS [33], 

[34], a multivariate photonic processor with high bandwidth and 

low latency that handles high-dimension signal processing at the 

physical layer. We propose the use of photonic BSS for multi- 

mode optical fiber interconnects to solve DSP constraints and 

enable high-capacity and low-power data-center interconnects 

in Section II. We demonstrate that, without inserting training 
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Fig. 2. Building blocks of (a) DSP, (b) photonic processor for matrix mul- 
tiplications. (b.i) photonic matrix operator using microring resonator (MRR) 
weight banks [30] and multiport Mach-Zender interferometers (MZI) meshes 
[31], [32]. If the inputs are electrical signals, the signals can be modulated 
to the optical domain using an array of optical modulators before processing. 
Balanced photodetector (BPD) if the inputs are optical signals, they can be 
coupled to the following optical devices directly, and (c) scaling law of photonic 
and electronic devices in terms of channel number N , signal frequency fsignal, 
electronic device clock fclock, optical device bandwidth of modulator BM OD, 

and bandwidth of photodetector BP D. 

 

 
symbols, our approach can recover multi-channel data streams 

using a sub-Nyquist sampling rate running in a free-running 

mode and unscramble random modal crosstalk varying with 

millisecond-timescale. 

In this section, we first present the principle, algorithm, and 

hardware that bridge BSS with analog photonic integrated hard- 

ware. We then demonstrate to recover 50 Gbaud/s per channel 

pulse amplitude modulation 4-level (PAM4) data streams using a 

sub-Nyquist sampling rate of only 2 GSample/s in a free-running 

mode. In Section III, we provide comprehensive analysis show- 

ing that photonic BSS has distinct benefits over DSP in terms of 

energy consumption and bandwidth as the channel number and 

data rate increases, showing our approach is especially important 

for high-throughput interconnects. Section IV experimentally 

demonstrates another application of photonic BSS for privacy 

protection in wireless MIMO communications, as a review of 

our previous work [20], [33]–[35]. Using these examples, we 

show that the benefits of photonic BSS system from the com- 

bination of a modified hardware-friendly BSS algorithm and a 

reconfigurable photonic matrix operator: photonic BSS inherits 

the advantages from both hardware and algorithm prospects, 

and, as a result, can relieve some fundamental limitations of 

digital electronics such as latency, bandwidth, energy efficiency, 

agility, and throughput, in particular for high bandwidth and 

high-throughput telecommunication systems. 

 
II. PHOTONIC BSS FOR MULTIMODE OPTICAL FIBER 

INTERCONNECTS 

Data centers play a critical part of today information technol- 

ogy (IT) services, computing and communications. Data center 

traffic has increased 10 times in the past decade and this trend 

would continue in the future. On the other hand, data center is 

gobbling up the world’s electrical power. Data-centre is likely to 

take up 8% of the global electricity use by 2030 [36]. Therefore, a 

paradigm shift in optical communication technologies is needed 

to improve data throughout and energy efficiency of data center 

interconnects. 

The use of mode multiplexing in multi-mode fibers can scale 

the information capacity of an optical transmission link with the 

number of spatial modes. However, modal crosstalk increases 

with the number of spatial channels, limiting the achievable data 

rate and transmission distance. In long-haul communication sys- 

tems, power-hungry DSP is widely deployed to address modal 

crosstalk using well-developed MIMO algorithms implemented 

with digital electronics [37]. However, optical interconnects for 

data center applications are highly sensitive to latency, energy 

consumption, and cost. For this reason, DSP is typically unac- 

ceptable due to its high latency, power consumption, and up- 

grading cost (the application-specific integrated circuit (ASIC) 

needs to be re-designed when the data rate and channel number 

increase). 

Here, we focus on solving the modal crosstalk problem of 

SDM optical fiber interconnects for intra-data-center appli- 

cations. Intra-data-center interconnects connect one server to 

another within a data center, which constitutes more than 70% 
volume among all market segments in data center interconnects. 

A typical SDM based optical fiber interconnect for short-reach 

transmissions is shown in Fig. 3. At the transmitter, the single- 

wavelength laser source is split into N branches, and then each 

branch is modulated by independent data. The modulated signals 

are then combined by a spatial mode multiplexer which converts 

the signal into orthogonal eigenmodes. The multimode fiber can 

ideally carry orthogonal modes without interference, however, 

random perturbations along the fiber would cause mode coupling 
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Fig. 3. Multimode fiber link with photonic BSS. The link is composed of the multimode optical fiber communication system, MZM and the electronic back-end 
block. The photonic BSS algorithm would be realized by MZM and electronic back-end block. The data rate of transmitted signals is 50 GBaud/s and the sampling 
rate of ADCs is 2 GSample/s. 

 

across different modes. Within this distance of intra-data-center 

links, chromatic and modal dispersion can be neglected. In this 

case, modal crosstalk can be modeled as an N N unitary matrix 

with complex-valued elements, where N is the number of 

spatial modes [38]. The element values in the unitary matrix 

randomly drift with the perturbations along with the fiber and 

have millisecond-timescale dynamics [39]. At the receiver, the 

signals are demultiplexed by another mode demultiplexer [40] 

and then processed to equalize transmission channel induced 

distortions. 

Our approach combines silicon photonic processors with BSS 

to mitigate modal crosstalk, in order to address the challenges of 

the high cost and power consumption in high-speed DSP MIMO 

processors. The system is illustrated in Fig. 3. The feasibility of 

using photonic processors for mode crosstalk equalization has 

been recently demonstrated [38], [41], assisted with training 

sequences. Our approach, photonic BSS, in contrast, can tackle 

the more difficult problem of making the receiver transparent to 

any data rate and modulation format, and workable with slow 

and cost-effective electronics. 

In following two subsections, we first provide a succinct 

exposition of the BSS algorithm and then present the proposed 

photonic hardware to implement the algorithm. 

 
A. BSS Algorithm: Independent Component Analysis (ICA) 

A number of BSS algorithms have been reviewed in [13], 

[42]. Depending on the assumption made to the sources, the 

algorithms are classified into ICA, sparse component analysis 

(SCA), non-negative matrix factorization (NMF), and bounded 

component analysis (BCA), as reviewed in [42]. The most com- 

monly used blind separation method is ICA [12], [43], which is 

based on two generally accepted assumptions: 1) the source 

signals are unrelated to one another; 2) each source signal has 

non-Gaussian distribution. These two assumptions hold true for 

communication signals encoded in orthogonal SDM channels. 

Under these assumptions, ICA separates signals using the central 

limit theorem, which says that the sum of independent sources 

is more Gaussian than any individual sources. So ICA separates 

signal by maximizing the relative distance from the Gaussian 

distribution of each independent components. 

1) Theory: Consider a group of independent time-series sig- 

nal Si(t) (i = 1, ..., N ) form a transmitter signal matrix S. These 

signals are mixed in the transmission channel and result in the 

observed mixtures X at the receiver. The transmission channel 

model can be described by 

X = AS + C, (1) 

where A is the matrix containing the mixing coefficient, and C 
is the noise in the transmission channel. The goal of ICA is 

to figure out the inverse matrix of A, known as demixing matrix 

A−1, so that we can retrieve the transmitter signals by 

multiplying them with the received mixtures S̄ = A−1X. 

ICA searches for A−1 by maximizing the relative distance 

from the Gaussian distribution, that is, the non-Gaussianity of 

each independent component, measured by kurtosis, a fourth- 

order moment, 

E[y ȳ ] 4  
kurt(y) = 

(E[(y − ȳ )2)])2 
− 3, (2) 

where y is a given IC estimation, and ȳ is the mean value of 

y. Directly searching for A−1 has N 2 degrees of freedom, 

and is therefore difficult to calculate. Therefore, instead of 

searching for A−1 from the received signal X directly, the 

ICA algorithm first applies a whitening matrix V to X such 
that the matrix after transformation Z = VX is white, i.e., 
expectation E(ZZT ) = I, where I is the identify matrix. It 
is commonly assumed that independence still holds for the 

estimated independent components, i.e., E ( S̄  S̄ T  ) = I. In this 

case, we consider a new matrix Q that can transfer Z to S̄ , i.e., 

S̄ = QZ = QV X. (3) 

The new transformation matrix Q naturally becomes an or- 

thogonal matrix, making it considerably simpler to find Q 
since orthogonal matrices have degrees of freedom of N (N 

1)/2 in contrast to N 2. Whitening matrix V can be derived 

from principal component analysis (PCA) using the formula 

V = U Σ−1/2UT , where U contains principal component 

(PC) vectors of X as its columns while diagonal matrix Σ has PC 

variances as its diagonal entries. As a result, the BSS algorithm 

consists of two consecutive steps: (1) PCA searching for U , and 

(2) ICA searching for Q. 
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2) PCA: PCA is the oldest and the most widely used tech- 

nique in multivariate analysis. PCA uses a linear matrix W to 

transfers data X to a new coordinate system U . Such transfor- 

mation causes the projection of the data on the first coordinate 

to have the largest variance (referred to as first principal com- 

ponent), on the second coordinate to have the second greatest 

variance, and so on. In this way, PCA produces an array of 

decorrelated signals ordered in decreasing order of statistical 

variance. Thus, the goal of PCA is to find the projection matrix U 
that maximizes the variance σ2, i.e., the 2nd-order (central) mo- 

ment, of the projected data. Traditionally, PCA can be obtained 

analytically from singular value decomposition of X. However, 

the runtime and the memory usage can be unbearable for com- 

munication systems. Instead, we use Nelder-Mead searching 

method [44] to continuously update the estimated projection 

vectors while looking for W until the projected signal yields 

the largest variance. This method can take the best advantages 

of the front-end photonic matrix operator described in the fol- 

lowing section in accelerating the convergence speed [35]. We 

present the detailed implementation procedures of Nelder-Mead 

for PCA in Appendix-A and Appendix-B. PCA produces the 

whitening matrix V to simplify the subsequent ICA. 

3) ICA: Whitening matrix V is introduced as an input argu- 

ment to the ICA algorithm. According to Equation 3, ICA then 

searches for matrix Q that yields the largest output kurtosis. 

Similar to PCA, The Nelder-Mead method is used to continu- 

ously update the values of Q until it converges to the target IC 

vectors (details see Appendix A-C). 

 

 
B. Hardware Implementation 

From the theory, BSS consists of two major of operations: 1) 

matrix operations which multiply the input signal X with the 

estimated transformation matrix V at the PCA stage and Q at the 

ICA stage in each iteration until the algorithm converges to its 

solutions, followed by 2) statistical moment fitting which mea- 

sures the second- and fourth-order statistical moments (σ2 and 

kurt respectively) of the transformed signals. To perform these 

functions, as shown in Fig. 3, the photonic processor is composed 

of a number of building blocks: 1) a photonic front-end for 

matrix operations; 2) an electronic subsystem performing mo- 

ment fitting and analog-to-digital conversion (ADC) to digitize 

the photonic operator output and digital-to-analog conversion 

(DAC) to generate driving voltages in order to control the matrix, 

and 3) signal interface consisting of data input/output (I/O) ports 

and data domain conversions depending on the applications. 

1) Integrated Photonic Matrix Operator: Matrix operations 

carried out in the optical domain only need one time step by 

simply allowing the signal to travel across the photonic system. 

The characteristics of photonic devices allow them to operate 

at considerably faster rates than digital devices, resulting in a 

less than 100 ps delay [23], [30]. In other words, the whole 

matrix may be calculated in less than one digital electronic clock 

cycle. Matrix operations can be performed with a variety of 

photonic systems using tunable photonic components [30]–[32], 

[45]. Their operation principles can be categorized into two 

primary mechanisms: coherent or incoherent, as defined in [16] 

and illustrated in Fig. 2(b). 

We use the coherent mechanism as shown in Fig. 3, which 

uses a multiport interferometer with cascaded Mach-Zehnder 

interferometers (MZIs). Each MZI is made of two 50:50 beam- 

splitters and two tunable shifters. By controlling the two phase 

shifters, MZI is capable of executing a 2 2 complex unitary 

matrix operation. An N N arbitrary unitary transformations 

can be accomplished using N (N 1)/2 MZIs arranged in a 

triangular architecture proposed by Reck et al. [31], a rectangular 

architecture by Clements et al. [32] or several other variants. 

The inputs of the multiport interferometer are N spatial optical 

modes separated from a single wavelength laser source. Phase 

shifters change the relative power and phase levels (i.e. complex 

values) of the output optical modes by controlling the light 

propagation via constructive and destructive interference. The 

multiport interferometer show in Fig. 3 can only perform unitary 

matrix transformations, and thus can only unscramble modal 

coupling. Adding programmable attenuators before or after the 

multiport interferometer can address mode-dependent loss. 

Photonic matrix operators can be fabricated in a variety of 

technology platforms, and monolithically integrate with the 

multi-mode integrated receivers [5]. As shown in Fig. 3, a mode 

demultiplexer splits the overlapped and orthogonal modes into 

separate waveguides. Because the signals in the two waveguides 

are generated from the same laser source, they can be directly 

coupled into a N N MZI and get processed by the photonic 

front-end prior to optical-electrical (O/E) conversion. 

To integrate a large number of building blocks, these platforms 

must be able to offer compact and low loss components [46]. 

Silicon photonics has high refractive index contrast and low loss, 

thus providing an unprecedented platform to produce large-scale 

integrated optical systems. Phase shifters are the key compo- 

nents to control and program the photonic matrix, which is 

accomplished by shifting the effective refractive index of the 

silicon photonic waveguide. Phase shifters are expected to offer 

low-power, high-speed, and low-loss tuning capabilities. So far, 

phase shifters are mostly accomplished using two convenient 

effects in silicon: thermo-optic effect or plasma dispersion effect. 

The former involves shifting the temperature through the use of 

heaters [47], while the latter involves changing the carrier den- 

sity via a biased p-n junction [48]. Heaters are simple to operate 

and are most widely used for reconfigurable photonic circuits, 

although they dissipate several milliwatts of electrical power 

when tuning and holding the states and have a relatively slow 

response time of 10–100 μs. Compared to heaters, the plasma- 

dispersion effect offers much better tuning speed and lower- 

power consumption; nevertheless, it requires doping, which 

introduces a few dB insertion loss to each component, prevent- 

ing them from scaling to large-scale photonic systems. There 

are many less mature but better or alternative approaches for 

phase tuning, for example, micro-electro-mechanical systems 

(MEMS) [49], Si/III-V hybrid waveguide [50], lithium niobate 

for electrooptic effect [51], single-layer-graphene (SLG) [52], 

[53], and non-volatile phase change material [54]. We direct 

interested readers to the review article on various phase tuning 

methods and cutting-edge devices [46]. 
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2) Electronic Subsystems: BSS algorithm only needs to mea- 

sure signals’ statistic properties, rather than the full waveform. In 

communication systems, signal statistics change on timescales 

related to environmental and channel fluctuations, which is much 

lower than the signals themselves. For this reason, unlike other 

DSP algorithms, BSS allows ADCs sampling at a frequency 

much slower than the Nyquist frequency, and the sampling does 

not need to synchronize with the signal’s clock. As a result, the 

BSS algorithm offers benefits in terms of hardware cost, 

complexity, and energy efficiency, because they all increase with 

the samplers’ frequency. 

One of the primary functions of the electronic subsystem is to 

measure the second and fourth statistic moment and update the 

weight matrix following the Nelder-Mead method. As shown in 

Fig. 3, DACs convert the weight matrix to a group of voltages and 

apply the voltages to the photonic matrix operator via the phase 

shifters. Then the photonic matrix operator would compute an 

updated PC or IC from the optical domain “on-the-fly”. The 

photonic processor repeats the operations until all the weight 

vectors pointing in nearly the same direction, at which point the 

algorithm is converged. The photonic matrix operator plays a 

crucial role in accelerating the convergence speed by two orders 

of magnitude. 

 

   
 

 
 

Fig. 4. (a.i)(b.i) Eye diagrams of PAM-4 signals on x and y polarization after 
transmission; (a.ii)(b.ii) eye diagram after being recovered by photonic BSS; 
(a.iii)(b.iii) signal waveforms comparison between back-to-back signals and 
after photonic BSS. 

 

The transmission channel with two orthogonal modes pro- 

duces a 2 × 2 effective mixing matrix given by 

1 
a b 

1 

In addition, a control system must precisely control a large 

number of phase shifters in order to conduct precise matrix 

A = 
c d 

 (4) 

computations. The control system consists of a circuit to imple- 

ment the control algorithm and monitor components that provide 

insight into the internal distribution of light in MZI meshes or 

the partial transmission of individual MRRs. Controlling a large 

number of optical components can be a challenging problem 

because it requires a large amount of dedicated electrical I/Os 

for control and monitor purposes. N-doped photoconductive 

heater is a solution to solve this challenge in I/Os [55], [56]. 

where b/a denotes the crosstalk from mode x to y (defined as 
modal coupling coefficient Kx−y), and c/d denotes the crosstalk 

from mode y to x (denoted as Ky−x). The mixing of two modal 

states is because the mode degeneracy is broken by random 

variations in core shape and stress-induced anisotropy along the 

optical fiber [39], [60]. Under such crosstalk condition, we 

randomly generate an exemplary time-varying matrix to emulate 

the transmission channel as shown below, 

The N-doped heater can actuate the phase shifter by thermally 

tuning, and at the same time, can monitor the transmission from 

the photoabsorption-induced change in the heater resistance. 

0.82 0.23 
A =  

0.18 0.77 
+ N (t)(0, σ2) (5) 

As a result, N-doped photoconductive heaters allow accurate 

control without the need for direct access to device output and 

the need to layout electrical and optical I/Os specific for monitor 

purposes [57]. We demonstrated the control of multi-channel 

MRR weight banks [57] and achieved 8.5-bit precision [58], 

outperforming the 8-bit precision utilized in DSP systems for 

processing communication systems. 

 

 

 
C. Results 

We first consider a short-reach optical link carrying two spatial 

modes modulated by two pulse amplitude modulation 4-level 

(PAM4) data streams. The signals on the two modes are inde- 

pendent of each other, but have an identical modulation format 

and an identical data rate, making it a challenging problem to 

demixing them blindly. Within the intra-data-center distance, 

the value of crosstalk is around = 5 dB and fluctuate  1 dB at 

a time scale of a few milliseconds due to the environmental 

fluctuations [59]. 
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where N (t)(0, σ2) is the ambient noise which fluctuates at a 

frequency of 1 kHz. 

At the receiver, a mode demultiplexer splits the two over- 

lapped and orthogonal modes into two separate waveguides 

and directly coupled into a 2  2 MZI. 

1) Results: After the mixture matrix, the eye diagrams of 

the received signals are plotted in Fig. 4(a.i) and (b.i), showing 

nearly closed eye diagrams. To determine the demixing matrix 

Ā , we apply the BSS algorithm described in Section II. The 

signals do not insert any training sequence are sampled at a sub- 

Nyquist rate of 2 Gsample/s in a free-running mode. BSS applies 

the transformation matrix according to the Nelder–Mead rules 

until the solutions for PCA and ICA converge. PCA requires 24 

iterations and ICA requires 35 iterations for convergence. As 

shown in Fig. 4(a.ii) and (b.ii), BSS fully recovers the signals 

from the mixtures, resulting in clearly opened eye diagrams for 

both polarization channels. The samplers used to plot the eye 

diagrams have a time length of one second, which is considerably 

longer than the time scale of the matrix fluctuation, so the result 

demonstrates that BSS can adapt to ambient noise. We also 

evaluate the accuracy of BSS by comparing the recovered signal 
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Fig. 5.  System performance Q-factors at different SNRs. 

 

 
Fig. 6. (a.i)(b.i)(c.i) Eye diagrams of PAM-4 signals on three spatial modes 
after transmission. (a.ii)(b.ii)(c.ii) eye diagram after being recovered by photonic 
BSS. (a.iii)(b.iii)(c.iii) signal waveforms comparison between back to back 
signals and after photonic BSS. 

 
TABLE I 

MSE OF 2- AND 3-CHANNEL BSS 

 
 

 
 

 

 

 

 
 

 

  

 

   

 

 

 
Fig. 7.  The training time of DSP and photonics (a) at different data rates and 
(b) with different number of channels. 

Fig. 8.  During the execution phase, the latency in processing each sym- 
bol using DSP and photonics. Comparison (a) under different data rates and 
(b) under different number of channels. 

 

 

 
 

Fig. 9. During the training, the total energy use of photonics and DSP (a) at 
different data rates and (b) at different number of channels. 

 

waveforms with back-to-back signals. We run the algorithm 40 

times, all with newly-initialized random weight vectors, and find 

that the average mean square error (MSE) of the two signals is 

0.20% and 0.74%, respectively. 

We next evaluate the system performance (indicated by sig- 

nal’s Q-factor), taking the noise in the transmission channel 

into consideration. To do so, we assume a channel with additive 

white Gaussian noise, and add the noises with zero mean and 

varying variance to emulate a wide range of signal-to-noise 

ratios (SNRs). Q-factor is estimated from the signal’s noise 

variance using the equations in [61] shown in Appendix B. The 

result is shown in Fig 5. The received signals are severely con- 

taminated by the modal crosstalk; as a result, their Q factors are 

always below the equivalent Q factor for hard-decision forward 

error correction (FEC) threshold (BER = 3.8 10−3). After BSS, 

the system can achieve the FEC threshold at an SNR of 
approximately 24 dB, which has a 3 dB SNR penalty compared 
to the back-to-back signals. 

2) Channel Scalability: Here we investigate how photonic 

BSS performs when it is extended to a higher number of spatial 

channels. To this end, we apply photonic BSS to a three-channel 

SDM system characterized by a 3  3 mixture matrix. As shown 

in Fig. 6(a)(i)(ii) and (iii), the eye diagrams of the three received 

signals are completely closed due to the spatial mode coupling. 

After being processed by photonic BSS, opened eye diagrams 

are observed in all three channels. However, we also observe 

the signal quality is degrading as we move from low-order IC 

(channel 1) to higher-order IC (channel 3), and the correspond- 

ing MSE increases from 0.26% to 1.35%. Table I summarizes 

the MSE of two-channel (dual-polarization case as discussed 

earlier) and three-channel BSS. The main source of scaling 
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ENERGY USE IN TRAINING PHASE 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 
 

 
a Heater 
b P-N modulator 

 

 

 
 

Fig. 10. During the execution phase, the average power in processing each 
symbol using DSP and photonics. Comparison (a) under different data rates and 
(b) under different number of channels. 

 

limitation comes from the sequential learning aspect of the 

proposed photonic BSS approach, in which a higher-order IC is 

obtained after the lower-order IC is extracted. In this case, the 

errors generated in the lower-order ICs will accumulate and 

cascade to the higher-order learning process, limiting the 

number of channels that can be faithfully processed. To solve 

this issue, a straightforward solution is to improve the accuracy 

of individual IC by enforcing a more stringent convergence 

condition. This, however, comes with the cost of a longer training 

time and may not be applicable to applications where the mixture 

matrix is time-varying. Another direction is to find an alternative 

algorithm that is not based on sequential searching or can reduce 

the error transfer from lower-order to higher-order ICs. Several 

global optimization algorithms have been proposed [62]–[65] to 

solve other searching problems. Our future work will investigate 

the implementation of the improved optimization algorithm with 

the proposed photonic hardware. 

 
III. ENERGY AND LATENCY COMPARISON BETWEEN 

PHOTONICS AND DSP 

The photonic BSS system benefits the data center interconnect 

in two ways: energy consumption and latency. We are interested 

in how the two approaches compare when the SDM systems 

scale to larger data rates and a greater number of channels. The 

components under evaluation and their corresponding energy 

consumption and latency are summarized by Table II to Table 

V in Appendix C. We make our best efforts in including all the 

possible elements in the two receiver systems (photonic and 

DSP) in our comparision. 

Even although we discuss the DSP performance under dif- 

ferent data rate, it should be noted that once a DSP chip has 

been built for a certain data rate, it cannot self-adapt to a higher 

data rate. Instead, the DSP chip must be redesigned to include 

more transistors in order to execute more operations. In contrast, 

photonics has a flat response to the input signals, so the system 

doesn’t need to be changed as the data rate increases. 

We model photonics and DSP in running the same BSS algo- 

rithm and compare their energy consumption and latency. Like 

other machine learning techniques, BSS for channel equalization 

can be divided into two phases. The first phase is training, during 

which the transformation matrix needs to be constantly updated 

until the receiver learns the correct transformation matrix for 

equalizing the channel crosstalk. During the training stage, we 

evaluate the energy use Etraining and training time ttraining 

required to learn the transformation matrix. Following training, 

the system enters the execution phase, during which the receiver 

applies the transformation matrix to correct distorted signals. 

The transformation matrix is fixed at the execution phase. We 

focus on the average power Pexecution required to perform the 

transformation matrix to the input signals and the delay required 

to compute the matrix tlatency. 

 

A. Training Phase 

The training phase consists of two main operations, which 

includes matrix-vector multiplication (which may be done using 

photonics or DSP) and variance or kurtosis computation (which 

is done in the electronic subsystem). As a result, the difference of 

energy use Etraining in photonics and DSP is a multiplication 

of two factors: the energy used in each transformation matrix 

update and the training time ttraining. Photonics has shown 

exceptional capabilities in accelerating matrix computing while 

delivering significant energy savings, particularly when the sig- 

nal is already analog, so power-intensive and high-speed DACs 

can be avoided at the system input. However, the DACs that 

translate the transformation matrix values to the driving voltages 

of each phase shifter add to the expense of the photonic system. 

We first evaluate the training time ttraining in the photonic 

and DSP systems, respectively. We consider the best scenario 

for DSP where DSP hardware can always operate at line rate 

speed via massive parallelism, so the delay in serial to par- 

allel (s/p) conversion is included. The training time is spent 

on matrix multiplication, moment fittings, and s/p conversions 
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Fig. 11. Experimental results of wirelss MIMO system. (a) Experimental setup of photonic BSS for wireless communications. (b)(c)(d) Signal waveforms with 
distance 31 inches, 19 inches, and 9 inches, respectively. blue line: received mixture signals, black line: simulation waveforms after BSS, red line: experimental 
waveforms after photonic BSS. and (e)(f) RMSE under different receiver distance. 

 

(see Table IV). Using photonics, matrix multiplication can be 

done at a single time step, so its speed is limited only by the 

bandwidth of photodetectors, which is only tens of picosec- 

onds. In this case, the training time ttraining is determined by 

max [1/Bpd, 1/fADC,sampling], where fsample is the sampling 

rate of ADC. BSS can operate at any sampling rate; here we make 

fsample = 10˜GHz as a tradeoff between energy consumption 

and convergence speed. The training time of DSP, on the other 

hand, is bounded by its clock frequency fclock which is set a 

few hundreds of MHz in most DSP systems. The results of 

the training time comparison are shown in Fig. 7. We assume 

the channel number is two in Fig. 7(a), and the results show 

that the training time remains constant when the signal data rate 

increases, owing to the BSS statistic feature. The photonic 

system reduces the training time by  90 μs, as a result of 

its high-speed matrix multiplier. We then evaluate the training 

time as a function of the number of channels and fix the signal 

data rate per channel to 50 GBaud/s. Since the Nelder-Mead 

method finds out the IC/PCs channel by channel, so the number 

of overall iterations increases in proportion to the number of 

channels. In addition, the operations required to computing an 

N-channel matrix grow quadratically with the channel number. 

As a result, as shown in Fig. 7(b), the training time of DSP 

increases rapidly with the channel number and becomes too 
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Fig. 12. (a) Optical image of silicon microring (MRR) weight bank with four MRRs. (b) Zoom-in of an MRR. (c) Transmission from the IN port to the THRU 
port. Two of the total four MRRs are used to implement BSS of two received signals, with their resonance locating around 1549.6 nm and 1554 nm, respectively. 
On top of these MRRs are dedicated metal heaters, which allow for independent tuning of each MRR. All four MRRs share a common ground, as do two additional 
signaling traces. As a result, three DC pads are used and wire-bonded for testing. 

 

long to capture the environment vibrations. In contrast, the 

relation between the training time of the photonic system and 

the number of channels is approximately linear. As we shall see 

later, the shortened training period in the photonic system will 

also minimize energy consumption during the training phase. 

The equations and parameters used in the calculations are shown 

in Appendix C. 

We then evaluate the energy use in the training phase 

Etraining. Fig. 9(a) shows how energy changes at different 

data rates in the training process. In DSP, the energy depends 

on the training time derived above and the total number of 

operations during the training phase. The energy of individual 

operations is closely linked to the CMOS process technology. 

Here we assume the DSP employs the cutting-edge 7 nm process. 

Using photonics, the energy cost comes from the phase shifters 

and the DACs used to control the phase shifters. The energy use 

of individual phase shifters depends on the type of tuning 

mechanisms. Here we analyze two mechanisms, micro-heaters 

and PN junction-based modulators. The primary distinction 

is that micro-heaters waste energy even while the actuation 

voltages stay constant, but PN modulators, being a kind of 

capacitive device, have virtually little static power. The same 

DSP hardware is used to compute the statistical moments in the 

photonic BSS, and its energy consumption is also included in 

our study (see Appendix C, Table II). As shown in Fig. 9, 

because the actual sample rate may stay constant owing to BSS, 

the energy consumption throughout training period has a flat 

response to the data rate. The photonic system with heaters and 

PN-modulators has similar energy use because the ADCs 

dominate overall energy consumption. As the channel number 

rises, the total number of operations grows proportional to the 

third power of the channel number. As a result, we observe two 

orders of magnitude energy reduction in the photonic systems 

at large channel numbers. 

 
B. Execution Phase 

The main operation in the execution phase is to execute 

matrix-vector multiplications on the input signals using the 

transformation matrix learned during training. Similarly to the 

training phase, we begin by calculating the time delay tlatency in 

processing each data symbol in the incoming data stream. In 

DSP, as the data rate increases, more s/p conversions are required 

to produce more parallel operations in order to compute the 

matrix at the signal’s line rate. This comes at the expense of 

extra tlatency delay, as shown in Fig. 8. In comparison, tlatency 

in phonics systems is independent to the signal data rate. For the 

similar reason, tlatency grows quadratically with the channel 

number N in DSP, while tlatency remains a constant in the 

photonic system as N increases. 

We now consider the average power consumption Pexecution 

in different types of systems during the execution phase when 

a single matrix-vector operation, consisting of N input chan- 

nels and N output channels with a fixed transformation ma- trix, 

is calculated. In DSP, the average power is a function of 

multiplying number of logic operations in a unit time by the 

energy per operation. As a result, the power consumption of 

DSP grows approximately linear with the signal data rate and 

quadratically with the channel number, as shown in Fig. 10. The 

photonic system has a completely different picture. When the 

transformation matrix becomes fixed, the DACs operate in static 

mode, consuming very little static power. PN modulator-based 

actuators, like DACs, have minimal power consumption. As a 

result, using PN modulators as actuators, the processor’s power 

consumption is nearly zero, independent of the signal data rate 

or channel number. On the other hand, micro-heaters have a 

constant power, and the overall power consumption does not 

vary with the signal data rate, but increases quadratically with 

the channel number. Nonetheless, the power consumption is still 

much lower than that of DSP. 

 
C. Remarks About Photonics and DSP Comparison 

In contrast to DSP, the photonic BSS front-end has a signifi- 

cantly more favorable scaling law for SDM-based optical fiber 

interconnects, which is especially important for high-throughput 

interconnects with high data rates per channel and large number 

of channels. For example, in a  1 Tbit/s optical interconnect 

consisting of 10 spatial channels and 50 Gbaud PAM4 per 

channel, photonics would reduce the training time by closely 
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TABLE III 

AVERAGE POWER IN EXECUTION PHASE (WE ONLY CALCULATE THE POWER USED IN SIGNAL PROCESSING WHILE IGNORING THE POWER USED IN PD AND ADC) 
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TABLE IV 

TRAINING TIME ttraining (DEFINED AS THE TIME TO FIND THE TRANSFORMATION MATRIX) 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 

 
 

 
 

 

 
TABLE V 

EXECUTION LATENCY (Tlatency ) 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

 

 
 

 

to 30 times from 69 ms to 2.3 ms and reduce the energy use of 

training by 30 times from 140 mJ to 4.6 mJ. In the execution 

phase, photonics lowers latency by 32 times, from 0.8 μs to 25 

ps, and average power by 270 times, from 2.7 W to 1 mW. 

 
IV. PRIVACY PROTECTION FOR WIRELESS MIMO AND 

COGNITIVE RADIO 

This section reviews the application and experimental demon- 

strations of photonic BSS for wireless communications [33]– 

[35]. The accelerating demands on the efficient utilization of 

spectrum resources are pushing the implementation of cognitive 

radio, in which a transceiver can intelligently detect the spectrum 

usage and moves into a vacant spectrum while avoiding the 

used spectrum. However, cognitive ratio requires monitoring 

opportunistic users in real-time, which is challenging in MIMO 

systems due to the existence of a large number of unpredictability 

and transience of time-frequency transmission blocks. Fortu- 

nately, BSS, which can distill the salient information sharing 

the same spectrum and time, can effectively address potential 

spectrum collision problems. In addition, BSS is agnostic to 

signal format and, most importantly, blind to the content of trans- 

missions, which makes BSS outstanding in protecting users’ 

privacy [66]. 

While the conventional radio-frequency (RF) electronics for 

wireless communication systems [67], has dominated for 

decades, they could hardly offer the broadband frequency agility, 

which is a prerequisite for achieving the full potential of BSS. 

And the RF electronics have to come up with burdensome 

solutions which require large banks of sub-circuits (each de- 

signed for a specific frequency band) for such a broad spec- 

trum coverage [68], and sophisticated switching technology to 

ensure smooth transitions across frequency bands. These practi- 

cal difficulties motivate photonic BSS that provides a completely 

different set of signal processing properties [69]. 

Here we experimentally showcase using silicon photonic BSS 

chip for wireless MIMO communications. The experimental 

setup is shown in Fig. 11(a). The system consists of a photonic 

RF front-end for a 2 2 wireless MIMO system. The two channel 

wireless systems carry signals with two modulation formats: 

Binary Phase Shift Keying (BPSK) and Amplitude Shift Keying 

(ASK) respectively. In this system, two optical modulators first 

convert the received wireless mixtures onto optical carriers 

with different optical wavelengths. Then the two optical sig- 

nals are coupled into a silicon photonic device fabricated on a 

silicon-on-insulator (SOI) wafer through optical grating cou- 

plers. The silicon photonic device is an MRR weight bank 

composed of two MRRs, each having its resonances aligned 

with the wavelengths of two optical carriers, as shown in Fig. 12. 

In addition, each MRR embeds an in-ring N-doped photocon- 

ductive heater to realize precise MRR control [56]–[58]. The 

MRR weight bank provides matrix operations to the input signals 

in the optical domain, and then the signals are converted to 

electrical format by the balanced photodetector. By effectively 

upconverting the wireless signals to a 193 THz intermediate 

frequency, photonic processors are nearly flat frequency re- 

sponse. Even gigahertz wireless signals (e.g., millimeter-wave 
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signals) are considered narrowband on the optical spectrum 

since this optical path gives a flat frequency response over a 

5 THz window [70]. Between the E/O modulation and O/E 

detection, optical signals can be processed with tunable optical 

devices, which may benefit from both the unconventional utiliza- 

tion of standard photonic integrated devices and the enormous 

information density made possible through wavelength-division 

multiplexing (WDM) [18], [30]. 

Fig. 11(b) presents the experimental results of two-channel 

photonic BSS, in which we used the photonic weight bank to find 

the PC/IC vectors and then applied the vectors at the RF photonic 

front-end to recover the sources. The experiment was done when 

the antennas were configured at different locations to evaluate 

the system’s performance at different transmission conditions. 

To do so, we fixed the transmitter antennas and moved to adjust 

the distance between the receiver antennas. By doing so, we 

could test this photonic BSS system dealing with mixtures with 

different mixing ratios. As shown in Fig. 11(b)–(d), the top 

mixture (RX1) is received by the antenna that is closer to 

the BPSK transmitter, while the bottom mixture (RX2) is 

received by the antenna that is closer to the ASK transmitter. 

The photonic BSS pipeline demonstrates its effectiveness by 

successfully separating these two sources at a distance of 31,” 

resulting in the top estimated source (IC1) being the BPSK and 

the bottom estimated source (IC2) being the ASK. The other 

two trails, which represent the distance of 19” (Fig. 11(c)) and 

17” (Fig. 11(d)) experience more difficulty in source estimation 

because the mixing ratios are very close to 0.5. However, we 

demonstrated that photonic BSS still manages to achieve per- 

ceivably effective source separation. 

 
V. CONCLUSION 

Because of the intrinsic scaling constraints of digital systems, 

DSP has faced significant energy and speed challenges as the 

data volumes required in communication systems has increased 

rapidly. Photonics provides a solution, alleviating the energy 

use and processing delays in matrix-vector multiplications, an 

operation ubiquitously used in different signal processing al- 

gorithms. In this work, we introduce a novel photonic front- end 

that synthesizes integrated silicon photonic devices with a 

novel BSS algorithm. We demonstrate its various applications 

in space-division multiplexing based communication systems, 

which includes addressing the modal crosstalk in multi-mode 

optical fiber interconnect in data centers and preserving user 

privacy for wireless MIMO and cognitive radios, enabled by 

the “blindness” in BSS. We extensively compare our photonic 

system with DSP in terms of energy use and processing latency, 

demonstrating that photonics has distinct benefits at high data 

rates and large channel numbers. The findings indicate that 

photonics can solve growing constraints in DSP and pave ways 

for future high-speed, low-energy communication systems. 
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APPENDIX A 

BSS ALGORITHM 

A. Constrained Nelder–Mead Search 

The constrained N-M method aims to find the minimum or 

maximum of an objective function in a multidimensional space. 

Here we make all the weight vectors wi have unit norm [35] to 

make it implementable with photonic devices. Nelder–Mead 

search is applied to both PCA and ICA to find the maximum 

second- and fourth-moment, respectively, by searching for the 

updated vectors wmax and wmin. Nelder–Mead search first 

initializes N +1 random weight vectors distributed on a unit 



1630 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 40, NO. 6, MARCH 15, 2022 
 

− 
min 

≥ 

| | 

| | 
− 

min 

�k−1(wi
T ej )ej ; 

− 

− 

| | 

min 

min 

�k−1(wi
T ej )ej ; 

| | 
− 

| | 
− 

| − | 

| − |≤  | | 

N k=1 

− 

 

N -dimension space. We define the centroid of all weight vectors 17 Compute the reflected weight vector: wref = wcen + 

as wcen =  1 
�n 

wi, and define unit vectors emax, emin β(wcen − wmin); 

representing the 1st and N th PC (or IC) vector directions, 

respectively. Then, the weight vector wmin associated with the 

minimum output variance σ2 (or kurtosis kurt) is updated until 

all the weight vectors pointing in nearly the same direction at 

which point the algorithm is converged. 

Each iteration consists of four type of main operations: 

reflection, expansion, contraction, and shrinkage. Reflection 

improves wmin by simply reversing its direction with re- 

spect to wcen. We get many wnew in the directions of con- 

tinuous reflections wref = wcen + β(wcen wmin), which 

can make wi converge into a cone near emax. If reflection 

does not lead to a better weight vector direction than cur- 

rent wmin in some special cases, we need to continue apply 

expansion, contraction, and shrinkage operations. Expansion 

wexp = wcen + γ(wref wcen) along the reflection direc- 

tion may reach an even better wnew direction. Contraction 

18 Normalize wref such that wref  = 1; 

19 if fmin < f (wref ) < fmax then 

20 wmin = wref and update fmin; 

21 else if f (wref ) fmax then 

22 Compute the expanded weight vector: wexp = wcen + 
γ(wref wcen); 

23 Normalize wexp such that wexp = 1; 

24 if f (wref ) < f (wexp) then 

25 wmax = wexp and update fmax = f (wexp); 
26 else 

27 wmax = wref and update fmax = f (wref ); 
28 if f (wexp) > fmin then 

29 wmin = wexp and update fmin, wmin; 

30 end if 

31 end if 

32 else if f (wref ) ≤ fmin then 

wcon = wcen + ρ(wmin wcen) can instead find a better 

alternative wnew direction when reflection does not lead to 

a better weight vector direction than current wmin. Finally, 

shrinkage with wi = wmax + σ(wi wmax) often has an 

impact when wcen is negligible, it will change wi to further 

create better wnew direction. In addition, standard values of 

above coefficients are β = 1, γ = 2, ρ = 0.5, σ = 0.5, respec- 

tively. Good convergence is achieved when the different between 

final wmax and wmin is smaller than convergence tolerance E. 

 
B. PCA Algorithm 

Input: Weighted addition output y, 1st,..., (k − 1)th PC vec- 

tors e1,..., ek−1; 

Parameters: Convergence tolerance E, reflection coefficient 

β, expansion coefficient γ, contraction coefficient ρ, shrinkage 

coefficient σ; 

Output: kth PC vector ek; 

1 Initialize n random weight vectors wi(i = 1,.. ., n); 
2 for i = 1 : n do 

3 if k > 1 then 

4 Orthogonalize wi such that wi = wi − 

j=1 

5 end if 

6 Normalize wi such that wi = 1; 

7 Apply wi to the weight bank and obtain the resulted 

y(wi); 
8 Compute the variance of y: f (wi) = E(y2); 
9 end for 

10  Among f (wi)(i = 1,.. ., n), find fmax = max(f (wi)), 
fmin = min(f (wi)); 

11 Set wmax = argmax(f (wi)), wmin = 
argmin(f (wi)); 

12 if fmax fmin E then 

13 return ek = wmax; 

14 end if 

15 while fmax fmin >E do 

16 Compute the centroid of all weight vectors except wmin: 

wcen = E(wi)(for wi /= wmin); 

33 Compute the contracted weight vector: wcon = wcen + 
ρ(wmin wcen); 

34 Normalize wcon such that wcon = 1; 

35 if fmin < f (wcon) < f(max) then 

36 wmin = wcon and update fmin 

37 else if f (wcon) > fmax then 

38 wmax = wcon and update fmax 
39 else 

40 for i = 1 : n do 

41 Replace all weight vectors with wi = wmax + 
σ(wi wmax); 

42 Normalize wi such that wi = 1; 

43 end for 

44 Update fmax, fmin, and wmax, wmin; 

45 end if 

46 end if 

47 end while 

48 return ek = wmax. 

 
C. ICA Algorithm 

Input: Weighted addition output y, 1st,..., (k − 1)th IC vec- 

tors e1,..., ek−1; whitening matrix /bmV ; 

Parameters: Convergence tolerance E, reflection coefficient 

β, expansion coefficient γ, contraction coefficient ρ, shrinkage 

coefficient σ; 

Output: kth IC vector ek 

1 Initialize n random weight vectors wi(i = 1,.. ., n); 
2 for i = 1 : n do 

3 if k > 1 then 

4 Orthogonalize wi such that wi = wi − 

j=1 

5 end if 

6 Normalize wi such that wi = 1; 

7 compute the normalized whitened weight vectors 

vi = V wi; 

8 apply vi to the weight bank and obtain the resulted y(vi); 

9 compute the objective function, i.e., the kurtosis of y: 

f (wi) = kurt(y4(vi)); 
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10 end for 

11  Among f (wi)(i = 1,.. ., n), find fmax = max(f (wi)), 
fmin = min(f (wi)); 

12 Set wmax = argmax(f (wi)), wmin = 
argmin(f (wi)); 

13 if fmax fmin E then 

14 return e1 = wmax, e2 = eT ; 
15 end if 

16 while fmax fmin >E do 

17 Compute the centroid of all weight vectors: wcen = 
E(wi); 

18 Compute the normalized reflected weight vector: wref = 
wcen + β(wcen wmin); 

19 Compute the normalized whitened reflected weight vector: 
Vref = V wref 

20 if fmin < f (wref ) = kurt(y4(vref )) < fmax then 

21 wmin = wref and update fmin; 

22 else if f (wref ) fmax then 

23 Compute the whitened expanded weight vector: wexp = 
wcen + γ(wref wcen); 

24 Compute the expanded weight vector: Vexp = V wexp 
25 if f (wref ) < f (wexp) = kurt(y4(vexp)) then 

26 wmax = wexp and update fmax = f (wexp); 
27 else 

28 wmax = wref and update fmax = f (wref ); 
29 if f (wexp) > fmin then 

30 wmin = wexp and update fmin, wmin; 

31 end if 

32 end if 

33 else if f (wref ) fmin then 

34 Compute the contracted weight vector: wcon = wcen + 
ρ(wmin wcen); 

35 Compute the whitened contracted weight vector:Vcon = 
V wcon 

36 if fmin < f (wcon) = kurt(y4(vcon)) < fmax) then 

37 wmin = wcon and update fmin 

38 else if f (wcon) = kurt(y4(vcon)) > fmax then 

39 wmax = wcon and update fmax 
40 else 

41 for i = 1 : n do 

42 Replace all weight vectors with wi = wmax + 
σ(wi wmax); 

43 Compute the whitened weight vectors:Vi = V wi 
44 end for 

45 Update fmax, fmin, and wmax, wmin; 

46 end if 

47 end if 

48 end while 

49 return ek = wmax. 

 
APPENDIX B 

Q-FACTOR CALCULATION 

The Q-factor is calculated using equations 6,7, and 8 [61]: 

where μi is the mean amplitude of the received symbols at level 

i, and σ2 is their variance. 

 
APPENDIX C 

COMPARISONS OF PHOTONICS AND DSP 

Here, we model photonic and DSP systems using the formulas 

in Table II to V. The four Tables show the time and energy used 

by each building block at various system phases, providing the 

scaling law of photonics and DSP as the system data rate and 

channel count rise. The detailed modeling parameters can be 

found in Table VI. Below, we explore 1. energy consumption 

and training time when training the photonic BSS model; 2. 

power consumption and latency when executing photonic BSS 

tasks. By modeling the processes, excellent performances can 

be found in photonics BSS over the DSP counterpart. We show 

the comparison results in Section III. 
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