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SUMMARY

Large herbivores play unique ecological roles and are disproportionately imperiled by human activity. As
many wild populations dwindle towards extinction, and as interest grows in restoring lost biodiversity,
research on large herbivores and their ecological impacts has intensified. Yet, results are often conflicting
or contingent on local conditions, and new findings have challenged conventional wisdom, making it hard
to discern general principles. Here, we review what is known about the ecosystem impacts of large her-
bivores globally, identify key uncertainties, and suggest priorities to guide research. Many findings are
generalizable across ecosystems: large herbivores consistently exert top-down control of plant demog-
raphy, species composition, and biomass, thereby suppressing fires and the abundance of smaller ani-
mals. Other general patterns do not have clearly defined impacts: large herbivores respond to predation
risk but the strength of trophic cascades is variable; large herbivores move vast quantities of seeds and
nutrients but with poorly understood effects on vegetation and biogeochemistry. Questions of the great-
est relevance for conservation and management are among the least certain, including effects on carbon
storage and other ecosystem functions and the ability to predict outcomes of extinctions and reintroduc-
tions. A unifying theme is the role of body size in regulating ecological impact. Small herbivores cannot
fully substitute for large ones, and large-herbivore species are not functionally redundant — losing any,
especially the largest, will alter net impact, helping to explain why livestock are poor surrogates for
wild species. We advocate leveraging a broad spectrum of techniques to mechanistically explain how
large-herbivore traits and environmental context interactively govern the ecological impacts of these
animals.

Introduction fascination with ‘big game,’” megafauna long occupied the mar-
gins of ecological research. Population and community ecology
developed around the study of plants, invertebrates, birds, ro-
dents, and fish; ecosystem ecology developed largely without
reference to animals at all°. The comparative neglect of big ani-
mals was not for lack of reasons to study them. It was never a se-
cret that large herbivores (plant-eating animals weighing over
2 kg)* have unique traits and can play distinctive roles in terres-
trial ecosystems®~'? (Figure 1). Early authors also recognized the
role of large herbivores in the evolution and global expansion of
hominins'®'* and the role of humans in driving large herbivores

“Big things such as elephants, jaguars, and tapirs tend to
be neglected by ecologists, for the very reason that by be-
ing big, they lack amenability to study...I suspect that for
this reason the key functions provided by the big things
are underappreciated.” - John Terborgh'

“We live in a world analogous to an herbivore exclusion
experiment, with most of the large herbivores removed.”
Juli Pausas and William Bond?

The quotation above from Terborgh’s 1988 essay The big things
that run the world' captures an irony. Despite millennia of human
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extinct'®. The problem was rather that large herbivores are
inconvenient study subjects — difficult to manipulate and often
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Figure 1. Size-based functional thresholds in terrestrial large herbivores.

Top: Species representing body-size thresholds used to categorize herbivores as ‘large’. While inherently arbitrary®’, many thresholds correspond to biologically
meaningful distinctions (bottom, based on references cited in caption). 2 kg (chevrotain, hare): adult size of smallest extant ungulate. 3 kg (hyrax, Phillipine
porcupine): size above which correlates of extinction risk become more pronounced (A)*°. 5 kg (rock wallaby, howler monkey): adult size of the smallest ungulates
in African savanna assemblages”®. 20 kg (Speke’s gazelle, roe deer): size of the smallest migratory mammalian herbivore (B)°°. 30 kg (saiga, peccary): size above
which intrinsic rate of increase () drops below the level (0.45) considered necessary for intrinsic mechanisms of population regulation to evolve (C)'?. 45 kg
(pronghorn, red kangaroo): size above which Pleistocene extinction was much more likely (D)'® and a common threshold for defining ‘megafauna’'*°. 60 kg
(chital, capybara): size above which >69% of ecologists agree that an animal is ‘megafauna’ (E)°'. 100 kg (ibex, spurred tortoise): threshold used to delineate the
‘world’s largest’ herbivores®’. 150 kg (hartebeest, mountain tapir): size above which population regulation switches from primarily top-down (predation) to
bottom-up (food limitation) in Serengeti (F) °°. 1000 kg (giraffe, black rhinoceros): size above which adults are essentially invulnerable to predation (F)°° and a
threshold used to delineate ‘megaherbivores’ . We do not embrace any threshold in this review, instead emphasizing the diverse and frequently nonlinear ways
in which body size differentiates the ecological impacts of herbivores across the spectrum shown here®”'"®'?3_ Figure created using BioRender.com.

even to observe, intractable for testing theory, “not the stuff of
NSF grants” . Moreover, the diminished abundance of large her-
bivores across much of the world by the mid-20"" century?®
diluted and dispersed their ecological impacts, making them
easier to ignore.

By 1988, that oversight was already starting to fade. A series of
syntheses over the following decade placed large-herbivore
ecology in a broad conceptual framework and identified com-
mon patterns across ecosystems and continents'®72%. Attention

to the ecological importance of body size'®?**> and accumu-

lating evidence that large herbivores could be keystone spe-
cies?® 28 reinforced the value of studying wild large herbivores,
and an ever-expanding methodological toolkit has made it ever
easier to do so. Most recently, interest in ‘rewilding’ to recover
the lost functional roles of extinct large herbivores®®* has fu-
eled attempts to pinpoint what those roles actually are, and to
what extent modern herbivore assemblages approximate
ancient ones®>>°. The mainstreaming of megafauna in ecology
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has produced many exciting discoveries and spawned a wealth
of reviews, meta-analyses, and models*®~°. Still, many ques-
tions remain unanswered. Recent reviews imply a consensus
that wild large herbivores are pivotal in regulating ecosystem
functioning but do not always clearly distinguish isolated case
studies from repeatable general rules.

The rapid growth of this literature has been motivated in
part by the goal of understanding, predicting, and mitigating
anthropogenic global change. Large herbivores are dispropor-
tionately prone to extinction from human activity°®°”. Quaternary
extinctions have been so size-selective that large herbivores are
smaller now than at any time in the last 30 million years®®. 60% of
the 75 mammalian large-herbivore species weighing >100 kg
are threatened with extinction®’, as are all 12 species of mega-
herbivore (>1000 kg) and 83% of all tortoise species®. A fifth
of these species are listed as critically endangered, with
numbers ranging from a few tens to a few thousands globally,
and may thus be functionally extinct. Meanwhile, domesticated
large herbivores continue to increase in density and distribution,
often displacing wild counterparts from their remaining strong-
holds®’”. How will the decline and replacement of wild large her-
bivores affect ecosystems? What constraints limit ecologists’
ability to answer that question? And what are the implications
for conservation, restoration, and management?

This review has three main aims. First, we identify a set of gen-
eral rules that have solidified over the last decade — inferences
about the ecosystem impacts of large herbivores that have
repeatedly and rigorously been tested in nature and that apply
with few exceptions worldwide (Table 1). Second, we survey
important but intractable problems and emerging research fron-
tiers. Third, we highlight the need for process-based and spe-
cies-specific knowledge to break down longstanding barriers
to generalization, prediction, and applied relevance. We argue
that mechanistic understanding of large-herbivore impacts is
generally weak, even in most experimental studies, and that
this contributes to a disconnect between the current state of
the field and its aspirations. We are cautiously optimistic that
this gap can be closed, and we conclude by outlining some
promising strategies.

Generalizations about the roles and impacts of large
herbivores

Body size governs impact, and small herbivores do not
compensate for large herbivores

A premise of focusing on impacts of large herbivores is that big-
bodied herbivores are a category apart from smaller vertebrate
and invertebrate herbivores. This premise holds despite the
lack of any universal criterion for defining where ‘small’ ends
and ‘large’ begins®®®'. Dramatic changes in functionally relevant
traits occur at different body sizes (Figure 1). For example, spe-
cies >3 kg are markedly more at risk of extinction®®; species
>7 kg are disproportionately targeted by human hunters®;
migratory behavior is confined to species >20 kg®?, which also
have much larger home ranges®; species >30 kg are unlikely
to evolve intrinsic behavioral or physiological mechanisms of
population regulation'?; populations of species >150 kg are far
more likely to be limited by food than by predators®; and species
>1000 kg are essentially invulnerable to nonhuman predators®®.
Large herbivores are often simply defined taxonomically, which
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is also justifiable. Ungulates (Artiodactyla, Perissodactyla) ac-
count for 50% of wild terrestrial mammal biomass, elephants
(Proboscidea) add 8%, and kangaroos and other marsupial her-
bivores (Diprotodontia) add another 7%°°. In sum, the variety of
size-based functional thresholds and the global dominance of
four taxonomic orders of indisputably big mammalian herbivores
suggest that ‘large herbivore’ is an ecologically meaningful heu-
ristic category — but that it is even more useful to consider body
size as a continuous variable.

Indeed, an overarching generalization that we revisit in various
specific contexts throughout this review is that body size regu-
lates the form, strength, and direction of herbivore impacts in
ways that quantitatively and qualitatively distinguish large herbi-
vores from smaller herbivores (and from each other). These differ-
ences arise from the allometric scaling of food requirements®’,
behavior®*®’, and morphophysiological constraints®®°°, along
with assorted traits and capabilities that are unique to very large
herbivores’®~”. Such size-based differentiation in ‘requirement’
and ‘impact’ niches’® is key for understanding the origin and
functional importance of large-herbivore diversity. Sympatric
large-herbivore species differ in size (which almost certainly re-
flects competitive constraints on coexistence), and large species
account for the greatest share of biomass and energetic demand
in intact communities (Figure 2). This in turn suggests that bigger
herbivores should exert stronger per capita and net impacts, and
that smaller herbivores should not be able to fully compensate for
the loss of larger ones’®.

Support for these propositions comes from exclosure experi-
ments that remove large herbivores but are permeable to small
species — the primary method for causal inference about
large-herbivore impacts (Figures 3-5). Hundreds of exclosure
studies worldwide have revealed countless direct and indirect
effects of large herbivores®®“%, and we know of no long-term
study that has failed to detect any effect. These results, and
similar ones from defaunated landscapes, such as forests where
hunters have eliminated peccaries and monkeys but spared the
rodents® %, show that small consumers undercompensate for
the loss of large herbivores. Densities of small mammals and in-
sects increase in exclosures and overhunted forests, but not to
the point of matching the biomass and energetic demand of
large herbivores® ', and there are only a few reported cases
of full compensation for even one response variable'®". Similarly,
small ungulates are more abundant in size-selective exclo-
sures'%? and megaherbivore-free landscapes’® but do not repro-
duce the impacts of larger species'®*'% (Figure 5).

Different large herbivores have different diets, implying
functional complementarity

Plant biomass varies in accessibility, digestibility, nutrient con-
tent, and toxicity. Large herbivorous mammals vary along a con-
tinuum from grazers that eat monocots (mainly grasses) to
browsers that do not; ‘mixed feeders’ eat substantial amounts
of both™""" (Figure 2E). This grazer-browser spectrum is
rooted in traits of both herbivores (e.g., dentition, anatomy''?)
and plants (e.g., grasses with high tensile strength and abrasive
phytoliths that non-grasses lack''®'"¥). The modality of this
spectrum varies, and species’ positions along it can differ in
time and space, but the general pattern is universal both across
large-herbivore lineages and within local assemblages, suggest-
ing its importance in maintaining large-herbivore diversity''"'"°.



18G4 €202 ‘G dunr ‘0194-185Y ‘e¢ ABojoig Jusund

Table 1. Generalizations about the impacts of large herbivores in terrestrial ecosystems.

Generality

Mechanisms

Manifestations

Citations

Body size regulates
herbivore requirements
and impacts

Dietary differentiation

Top-down control of plants

Alteration of plant species
composition

Modulation of fire and its
impacts

Transport and nutrient
cycling

Indirect suppression
of small animals

Risk alters behavior,
cascades are variable

Increased ecosystem
heterogeneity

Livestock are poor proxies
for wild large herbivores

— Allometric scaling of energetic requirements, life history,
behaviors, predation vulnerability.

— Bigger herbivores reach higher biomass, eat more phytomass.
- Traits unique to extremely large herbivores.

— Herbivore and plant traits constrain plant taxa and tissues
eaten.

- Competition prevents coexistence of species with identical
diets and promotes adaptive differentiation of traits that
constrain diet.

— Lethal, nonlethal consumption.

— Mutualist suppression.

- Offsetting benefits (dispersal, enemy suppression,
nutrient inputs).

- Differences in palatability, resistance, tolerance leads to
‘increaser’ or ‘decreaser’ species.

- Modified plant-plant interactions.

— Reduced fuel load, continuity, composition.
— Altered plant architecture.
- Feedbacks from effects on food quantity, quality.

— Dung, urine, and death lead to long-distance transport of matter.

— Diet affects content of inputs.
- Traits that lower palatability also slow decomposition.

— Plant depletion limits food and structure available for other
consumers.
- Effect size scales with regrowth rate.

— Large herbivores perceive correlates of predation risk.
- Response hinges on herbivore vulnerability (size), predictability
of risk, strength of tradeoffs.

— Herbivore activity is non-uniform in space and time.
— Feedbacks amplify heterogeneity arising from variation in
density, activity.

— Domestic species differ from even close wild relatives in

traits.

— Livestock attain high density.

- Livestock assemblages have less trait diversity than wild ones.

— Functional thresholds occur at different body sizes (Figure 1).
— Small herbivores under-compensate for large ones (Figure 5).
— Elephants are uniquely able to kill adult trees but less selective
for shoots, seedlings.

- Grazer-browser spectrum (Figure 2E,F).

— Herbivore species eat different plant species (Figure 2D,E).
- Species differ in selectivity for nutrient-rich tissues.

- Differences scale with body size (Figure 2); big species need
more food, cannot be as selective.

— Species are not functionally equivalent.

— Lower plant performance, biomass, density.

— Reduced tree cover.

— Depression of aboveground net primary production
(with localized exceptions).

- Large herbivores filter plant communities, leading to
species replacement but limited net change in richness.
- Positive effects on richness occur mainly in productive
grasslands.

- Large herbivores reduce fire frequency, intensity, and/or extent.
- Functionally diverse herbivore guilds best suppress fuel loads.
- Fire and browsers synergistically suppress trees.

— Herbivore-vectored transport differs from abiotic drivers.

- Content, distance, and spatiotemporal pattern of inputs scale
with body size.

- Simple rules about effects on nutrient recycling rates are not
general.

- Suppression of small herbivores propagates through food webs.
— Stronger effects at low primary production.

— Exceptions: specialized herbivore symbionts, some habitat-
modification effects.

— Sustained avoidance of risky areas releases plants.
- Unpredictable risk, invulnerable herbivores, strong fitness
tradeoffs, and avoidance in time dampen trophic cascades.

— Geology, water proximity, etc. alter herbivore densities
and their impacts.

- Game trails, foraging hotspots, etc. ingrain impacts
atop underlying gradients through repeated use.

- Trait differences and protection of animals from enemies and
resource limitation results in different foraging, densities, impacts.
— Many wild large herbivores have no domestic analogue.

- Management can relax these differences.

18,64,67-69,73,77,100

18,54,69,114,123,124,
128,129,135

ABojoig uaiin)

10,19,47,54,85,96,105,

139,147,158,162

47,48,172,184,185,
190,194-196

154,182,199,203-205,
207,213

219,226,227,229,230,
233,357,362

97,236-238,242,247,248

77,254-257,259-261,

263-266,268,269

73,272,275,276,278,

279,281,282

90,142,176,284,293-295,
297,298,302

?
O
@
Y
®
)
o




¢? CellPress

Current Biology

Figure 2. Body size structures large-
herbivore assemblages and diets.

(A,B) Co-occurring large herbivores differ in body
size. Histograms show distribution of body-mass
differences between pairs of ruminant (A) and
nonruminant (B) large herbivores (species >2 kg
that eat >80% plants**®) that co-occur in any
location in Africa*‘®. Species of very similar size
rarely co-occur (modal differences of ~100 kg in
ruminants and ~10, ~100, and ~1000 kg in non-
ruminants), suggesting that size differentiation
fosters coexistence. (C) Intact large-herbivore
assemblages are dominated by large-bodied
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species. Estimates of species’ biomass density
from 60 protected areas in 17 African countries**’
are plotted as a function of species’ body mass
(BM)*“®, Colors indicate locations; thin lines show
trend within locations, black line shows overall
trend (2 = 0.33). Scaling densities by metabolic
rate (4.21xBM°") to reflect energetic re-
quirements does not change the pattern =
0.22). (D) Co-occurring large-herbivore species
differ in diet composition (relative abundance of
plant taxa, from DNA metabarcoding'?®), and dif-
ference in body size (Agy) predicts the strength of
this differentiation. Each point corresponds to a
pair of sympatric herbivore species from a given
location in Africa (sized by Ay, colored by season
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(right), showing how taxonomic resolution reveals additional dimensions of dietary variation. (F) Body size affects species’ position on the grazer-browser

128

spectrum, with grass consumption being significantly higher on average in larger-bodied species. Points are 164 large-herbivore species in a global synthesis'~°.

Sympatric large herbivores also consistently differ in the taxo-
nomic composition of their diets''®~'?® (Figure 2E). This form of
dietary differentiation also arises from the interplay of plant and
herbivore traits''* and is nested within the grazer-browser spec-
trum. The latter is the dominant axis of resource partitioning,
reflecting the ancient split between monocots and other plant lin-
eages; along that axis, different large herbivores eat different
mixes of species. Further nested within taxonomy, large herbi-
vores differentially select plant tissues based on phenology,
nutritional quality, and height'2*~'26, These multiple axes of sep-
aration minimize dietary redundancy among co-occurring large
herbivores, despite species’ broad fundamental niches, shared
use of plant species, and often parallel food preferences’'?* 2"
(Figure 5C).

Body size mediates separation along all of these axes, being
positively correlated with grass consumption (Figure 2F),
foraging height, and degree of differentiation in dietary species
composition (Figure 2D) and negatively correlated with average
diet quality'8:67:69-112.114.123.128 ' Negative scaling of diet quality
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with body size (the Jarman-Bell effect’>*'%°) arises from herbi-

vores’ selection of both plant taxa and plant tissues and is a
strong generality, although its classic physiological explana-
tions'*® — long considered axiomatic — have recently been
challenged®®'®''%3, Contrary to theory'®*, however, recent
work has found no link between body size and dietary taxonomic
or phylogenetic diversity; niche breadth on these axes appears
to be remarkably constrained’':122123.135.136

Lack of dietary redundancy implies a lack of functional redun-
dancy, suggesting that species loss or addition should alter the
net impact of the entire assemblage, that diverse assemblages
should directly affect more plant species, and that the range of
impacts on vegetation should increase with the size range of
the herbivore assemblage. The available data support these hy-
potheses. Grazers and browsers have predictably different im-
pacts on herbaceous and woody plants®®. Big herbivores eat
more stem, bark, and other fibrous material'®""*, which removes
support for photosynthetic tissue and produces strong effects
on vegetation structure’">.
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(A) Dung pellet counts/surveys (F) Fecal analysis
Laboratory/computational analysis (G) UAV LiDAR/remote sensing
(C) Exclosure experiments (H) Meta-analysis and synthesis

(D) Aerial censuses and monitoring (1) Behavioral observations

@ Direct observation of impacts @ Paleontological & isotopic analysis

Large herbivores reduce the vital rates, density, cover,
and biomass of plants

Classic theory suggested that herbivores might have weak ef-
fects on plants in three-level food chains, such as those involving
large herbivores and carnivores'®”"'*®. Not so. A global meta-
analysis of exclosure studies found negative effects of wild
herbivores on plant survival, reproduction, abundance, and
biomass*’. Syntheses of exclosure data from temperate forests
and tropical savannas likewise show strong negative effects of
large herbivores on plant cover, density, growth, survival, and
reproduction?®5* 137141 'Wjithin and across these experiments,
large-herbivore biomass predicts the strength of the plant re-
sponses®* 189140142 At |arger scales, mass die-offs of large her-
bivores increase ecosystem tree cover'**'** and woody
encroachment in Africa is weaker in areas with abundant large
herbivores'*®, mirroring results from exclosures. Although
grazers are expected to benefit trees in savannas by releasing
them from competition with grass, negative net effects of large
herbivores on trees are common even in grazer-dominated sys-
tems and despite suppression of grass biomass' 04 10%:139.145-148_
This suggests that indirect facilitation of trees by grazers is gener-
ally weak and outweighed by even modest browsing; it probably
also reflects the fact that there are few pure grazers (Figure 2E,F)
and that food-limited grazers at high densities both eat and
trample young trees 251497152,

These net effects of entire large-herbivore assemblages are
products of component interactions that differ in strength and di-
rection among herbivore species. For example, regulation of
savanna tree cover by browsers arises from leaf consumption
and reduced capacity for growth and reproduction, from flower
consumption and indirect suppression of pollinators, and

® GPS telemetry/collar sensors
@ Camera trapping/ABRS

@ Translocations/reintroductions
(N) Environmental DNA

¢? CellPress

Figure 3. How ecologists study the impacts
of large herbivores.

Advances in understanding large-herbivore im-
pacts have been catalyzed by a mixture of time-
tested field methods and new technical tools.
Exclosures (C) remove herbivores above a certain
size from experimental plots, enabling cause-
effect inference about how herbivores affect their
environments. Exclosure results are clarified and
deepened by field observations (E) and data on
factors such as herbivore density (A,D), diet
(F,1,J), and behavior (I,K,L). Camera traps (L) are
used both for monitoring and as automated
behavioral response systems (ABRS) for
experiments involving playbacks of audio cues.
Unoccupied aerial vehicles (UAVs) carrying light-
detection and ranging (LiDAR) and other sensors
(G) can compensate for the limited size of
exclosures by enabling comparative analysis at
much larger scales. Syntheses of field data
(H) enable researchers to test the generality of
local findings across biomes and continents
(stripe distinguishes an African landscape, left,
from a high-latitude one, right). Translocations
(M) create unique opportunities for quasi-
experimental investigation of how introducing
individuals or populations affects ecological
dynamics. DNA and other compounds sampled
from the environment (N), feces (F), and bodies
(J) can be analyzed in laboratories (B), offering
unprecedented insights into large-herbivore
ecology. Figure created using BioRender.com.
Current Biology

from recruitment bottlenecks and mortality at different life
stages®°:92:103.104.147.1557155  Thege negative effects are only
partially offset by benefits of seed dispersal, grass removal by
grazers, and indirect suppression of smaller leaf- and seed-
eating consumers®5+108:154.156,

Large-scale effects of large herbivores on aboveground net
primary production are generally negative, but can be neutral
or positive under limited conditions, notably in grasslands with
moderate intensities and long histories of grazing'” 4157160,
By contrast, localized large-herbivore-induced increases in pri-
mary production are common. Grazing lawns of palatable, defo-
liation-tolerant short-grass species emerge in response to
intense grazing worldwide. These hotspots of forage and high
visibility attract large herbivores, which deposit urine and feces,
further enhancing primary productivity in a positive-feedback
loop that can be sustained indefinitely'%27:72:75:161-168 ' Although
less studied, chronic browsing can induce effects similar to graz-
ing lawns in woody plants and forbs'®9""",

Large herbivores alter plant communities but have weak
effects on species richness

Large herbivores suppress some plant species (‘decreasers’)
to the benefit of others (‘increasers’), and effects of large
herbivores on plant community composition are essentially
universal'#6:93:140.172=179 " o plant’s response to large herbivores
reflects the interplay of its palatability (i.e., herbivore preference)
and its robustness to herbivory as conferred by avoidance
(escaping consumption), resistance (reducing consumption),
and tolerance (withstanding consumption) mechanisms '8,
Palatable plants with low robustness tend to be decreasers; un-
palatable or robust plants tend to be increasers. Palatable plants
that are tolerant (as in grazing lawns) enable positive feedbacks
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Figure 4. Distribution of research on large-herbivore impacts in relation to their diversity.

Locations of 492 studies experimentally excluding vertebrate herbivores*’~*°

, superimposed on a map of large-herbivore (LH) species richness (>2 kg, >80%

plant-based diets) based on range maps from the IUCN**°, Circle size denotes experimental duration. Research is concentrated in low-diversity temperate
ecosystems, with gaps in tropical America, western and central Africa, and eastern and southern Asia. Multidecadal studies are scarce, particularly in the tropics.

between large herbivores and primary productivity>. Palatability
and robustness both arise from many traits and physiological pro-
cesses, notably photosynthetic capacity, growth rate and form,
leaf nitrogen, fiber, spines, and phenolic compounds. Selective
foraging in relation to these attributes filters plant species compo-
sition at local to biogeographic scales'®?~'#° and alters trait mani-
festation at within-individual to macroevolutionary scales via
phenotypic plasticity and natural selection8-"°.

Large herbivores also modify plant-plant interactions, result-
ing in indirect (non-consumptive) effects. Many traits that
make plants unpalatable or robust to large herbivores are
competitively disadvantageous (e.g., short stature, high defen-
sive investment). Accordingly, plants that are rarely eaten
may nonetheless respond strongly to large herbivores due
to the suppression of their competitors. Some facilitative
interactions that occur in the presence of large herbivores
(e.g., associational resistance) become neutral or competitive
in their absence'® %, while other facilitative interactions
become stronger when large herbivores are scarce (e.g., release
of shrubs provides structural support for vines)'%.

This trait-based variability in the sign of direct and indirect im-
pacts helps to explain the weak net effect of large herbivores on
plant richness: large herbivores tend to shift the identity and
abundance, rather than the number, of plant species. The most
comprehensive global meta-analysis to date’’ found no effects
of herbivory on richness across biomes. Diversity-enhancing ef-
fects occur mainly in grasslands and only under certain condi-
tions. This contingency is unusually well understood and de-
pends on primary productivity and grazing history. In places
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with low productivity and short grazing histories, large herbi-
vores have little effect on diversity; under the opposite condi-
tions, large herbivores increase diversity by suppressing tall,
competitively dominant plant species and releasing subordi-
nates from competition for light'6+48:107:193-196_
Large herbivores moderate fire regimes, and herbivore-
fire feedbacks regulate vegetation dynamics
Large herbivores and fire are both generalist consumers of plant
biomass that differ in ‘food preference’ but nonetheless
compete'®'97. With limited exceptions'®®, large herbivores
reduce fire frequency, intensity, or extent by reducing quantity,
flammability, composition, or continuity of fuel'“®2°". A global
review found that while large herbivores sometimes had no effect
on fire, they very rarely had positive effects (and those were by
livestock) 2°'. In Africa, fire decreases with large-herbivore
biomass at local to continental scales, especially in drier land-
scapes'“>2°2, Herbivore species and assemblages that eat
both trees and grasses control fuel most effectively®**°". These
modern data are consistent with evidence that fire increased
globally after the Pleistocene megafaunal extinctions®%%72°°,
Large herbivores alter the impacts of fires on plants and vice
versa“®. While fire depletes absolute forage quantity, nutritious
postfire regrowth attracts grazers and browsers alike®®’ 2",
intensifying local herbivore—fire interactions and feedbacks'“%.
Browsing elevates trees’ vulnerability to fire by stunting
growth?'?. Elephants in particular interact synergistically (su-
per-additively) with fire to increase tree mortality>'*2'®. By
contrast, heavy grazing creates stubble and bare soil, which
limits fire and alleviates tree-grass competition®'”. As a result,
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Figure 5. Probing exclosures with
complementary data streams for
mechanistic insight.
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savanna tree cover can sometimes covary positively with grazer
abundance, despite the generally negative net effects of large
herbivores on trees as a whole®'®.

Large herbivores redistribute large quantities of organic
matter, altering nutrient cycling

Transport of carbon, nutrients, and seeds by large herbi-
vores?2:52:58:219-222 (iffers from abiotic mechanisms such as
gravity, wind, and flooding in quantity, spatiotemporal pattern,
and composition®?*??*, To list just a few salient examples, hip-
pos defecate >3,000 tons of organic matter into Kenya’s Mara
River each year’®, and white rhino redistribute >25 kg N ha™
year' into dung middens®?°. Large herbivores move assimilated
nutrients in their bodies that die and decompose®°. Giant tor-
toises and elephants deposit hundreds of seeds per dung pile
over distances up to 4 and 67 km, respectively>>"-*%%,

Body size distinguishes large herbivores from other animal
vectors and large-herbivore species from one another. The allo-
metric scaling of space use®®” and diet quality (and hence fecal
composition®?°) suggests that smaller large herbivores should
distribute more concentrated nutrients more evenly over smaller
areas. Multiple studies support this idea’”?*%?*', The biggest
large herbivores have few natural predators (Figure 1) and thus
carry nutrients across areas of high predation risk’’. Body size
also has implications for relative nutrient supply®*. Larger herbi-
vores require greater amounts of phosphorus to support bone

0
Predicted effect of exclusion

. was a stronger predictor of plant response ( =
1 0.36, p < 0.0001) than was giraffe selectivity

Current Biology ~ @one (*=0.17, p = 0.003).

mass, which affects fecal and carcass stoichiometry and the ra-
tio of nitrogen vs. phosphorus inputs®26:230:253.234

Selective foraging and subsequent excretion, defecation, and
death alter nutrient cycling, but effect size and direction vary.
Several general principles influence these effects: large herbi-
vores select nutritious foliage, dung and urine nutrient content
scales with diet composition, and plant traits that reduce palat-
ability also slow decomposition®>*>1882%5 Yet, simple rules
extrapolated from these premises — that grazers accelerate
and browsers decelerate cycling, and that large herbivores has-
ten cycling in fertile systems but slow it in infertile ones — appear
less general than once thought in light of current data®®. A
recent framework of context-dependent mechanisms by which
large herbivores modulate nutrient recycling rates has proposed
more nuanced generalizations that require further testing>>.
Large herbivores indirectly suppress smaller animals
Large herbivores generally reduce density and diversity of
smaller animals®®?**-?° including other large herbivores'%>>%°,
These effects can be direct (e.g., ingestion of insects on fo-
liage®®2%"2") but most are indirect and essentially competitive.
Plant biomass eaten or modified by large herbivores becomes
unavailable to other primary consumers, which then propagates
up food chains. For example, large herbivores suppress pollina-
tors by reducing flower abundance and diversity®* and rodents
by reducing plant density and seed set®?422%3 which in turn
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limits predators of these species®"?**. Exceptions to this rule
include obligate associates of large herbivores (e.g., parasites,
dung beetles®*>2*") along with various idiosyncratic and often
localized facilitative interactions (e.g., species benefitting from
ecosystem engineering by megaherbivores) 24424°, The strength
of negative indirect effects scales negatively with aboveground
net primary production, dampened by the greater regenerative
ability of plants in more productive systems®*2%8,

Large herbivores respond to predation risk, which often
alters their impacts

Predation risk alters large-herbivore behavior, which can impact
plants and ecosystem functions (behaviorally mediated trophic
cascades) >°°, but the strength of these cascades varies and is
sometimes negligible?®'"2°®, That large herbivores are respon-
sive to real and perceived predation risk, even after decades of
predator absence®®, is indisputable. A more useful emerging
generalization is that the strength and form of herbivore
response — and hence trophic cascades — depends on the
spatiotemporal predictability of risk and the ability of large herbi-
vores to adjust their behavior in ways that mitigate vulnerability
without diminishing impact'®°:2°4257-263  Experimental or
quasi-experimental evidence of trophic cascades involving
large herbivores and carnivores exists from multiple conti-
nents’”+?%42%¢ as do studies finding no evidence of trophic cas-
cades despite strong predator-induced changes in herbivore
behavior or density®®"?5"2%°  As ever, body size matters: very
large herbivores are less vulnerable to non-human predators
(Figure 1F) and thus less behaviorally sensitive to risk’”%°.
Large herbivores increase spatiotemporal

heterogeneity of ecosystems

While large herbivores homogenize some variables over some
(typically small) scales®”®*"", herbivore space use is spatiotem-
porally nonuniform®’??”® and impacts are thus heterogeneously
distributed®>"*?7%?’6 " Gradients in geology, distance to
water, tree cover, and other variables structure this varia-
tion'°%264275 " Routinized feeding and movement patterns
entrain nutrient cycling and substrate compaction’**""*"®_ Cen-
tral-place behaviors create lasting nutrient hotspots
Carcass decomposition causes local nutrient pulses
Herbivory variegates fire extent and intensity 182198282
reduces plant species dominance and spatial aggregation
Together, these spatiotemporally patchy impacts enhance
many facets of heterogeneity at large scales relative to defau-
nated areas73‘274’276’279.

Livestock do not functionally substitute for wild large-
herbivore assemblages

A dozen or so domesticated ungulates, mostly ruminants — and
especially cattle, sheep and goats — displace wild large herbi-
vores worldwide. Even multi-species livestock assemblages are
functionally different and less diverse than native ones?®*2%* Live-
stock differ from their closest wild relatives in behavior, diet, and
microbiome and parasite composition' 285286 These differ-
ences are products of phylogeny, artificial selection, reduced
ecological constraints (resource provision, protection from en-
emies), and management (herding, corralling) 2°’. Livestock can
thus attain exceptional densities®®®, a key predictor of impact®.
Divergent effects of livestock and wild large herbivores
have been documented in studies of plant and invertebrate
communities?®%2% 294

75,168,225,279
226,280,281

and also
47,95

, primary productivity'*?, biotic invasions®®*,
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fire regimes , soil chemistry®®, nutrient transpo and
methane emissions®®®. Functional discrepancies are greatest
when native large-herbivore assemblages include influential spe-
cies with no domestic analogue (e.g., elephants, hippos, marsu-
pials, tortoises, arboreal primates)?842°6-2%,

Although livestock are not surrogates for wild large herbivores,
the two can coexist and even harmonize®®®*°°, Livestock can
also provide closer or weaker approximations of native herbivory
regimes. Long-term experiments that have independently
manipulated wild and domesticated large herbivores affirm their
differential impacts®'*°%*°" put also emphasize that stocking
rate and management practices determine the degree of dif-
ference'’%3%2,

Knowledge gaps and frontiers

The ability to articulate a list of qualitatively reliable global gener-
alizations about the ecological impacts of large herbivores is a
significant advance, even relative to the previous decade. Still,
one could ask why the list is not longer or the generalizations
more quantitatively precise. The intractability of large herbivores
remains problematic, as it was 35 years ago'. But unlike then,
there is no deficit of attention to large herbivores or of data for in-
vestigators to work with; today’s challenges relate more to which
types of data are being collected in which places, and limits on
the depth of inferences that can be squeezed out of them. We
briefly review several major impediments and important unre-
solved questions where they loom large.

Context dependence complicates the study of large herbi-
vores at least as much as it does other areas of ecology®’.
But contingency has causes, and ecologists are increasingly
able to evaluate them. In fact, several relationships underlying
context-dependent variation in large-herbivore impacts have
been known for years. At continental®®® to global* scales,
large-herbivore biomass and diversity vary predictably with
moisture (unimodal) and soil fertility (linear), which jointly regulate
net primary production. In turn, productivity predicts the amount
of plant biomass consumed by herbivores across terrestrial bi-
omes'®. These relationships, and the residual variance around
them, highlight one major source of contingency in how large
herbivores influence different environments. Although many
grasslands and forests are similarly productive, forest biomass
is far less available to large herbivores owing to its indigestibility
(e.g., wood) and its height; thus, total herbivore consumption is
roughly an order of magnitude higher in grasslands than in for-
ests with equivalent primary productivity'®*°*. Proportional off-
take is best predicted by plant turnover (ratio of production to
biomass)®®*, which is low in forests and high in grasslands,
such that a much greater fraction of primary production passes
through herbivore guts in grasslands (e.g., 65% in the Seren-
geti® vs. 6.7% in tropical forests®°®). Furthermore, both turnover
and plant-herbivore size ratio (which is also higher in grasslands)
are theoretically predicted to increase the strength of top-down
control®°®. However, the upshot of this logical chain — that her-
bivore impacts should be stronger in grasslands than in forests
— is only partially supported by the available data. A cross-
biome meta-analysis found stronger effects of herbivores on
plant reproduction, abundance, biomass and diversity in grass-
lands (especially tropical ones), but statistical support for these
differences was equivocal. Similarly, while many studies have



Current Biology

shown that climate, soil properties, landscape history and other
factors mediate various large-herbivore impacts at local to
global scales'%:1947196:238,307.308 ‘there is no unified framework
for interpreting this variation. Unpacking environmental contin-
gency is essential for forecasting responses to global change,
but it will require experimentation in addition to macroecological
and metabolic reasoning.

The difficulty of bridging scales of space, time, and biological
organization is another challenge that is common to ecology
but manifests in ways that are specific to large herbivores. Ex-
closure studies are indispensable for causal inference but are
limited in size and duration (e.g., median of 48 m? in one
meta-analysis*’, 400 m? and 6 years in another*®), making
them prone to mischaracterize processes that occur over larger
scales®®2'?, Use of exclosures for inferences about the ef-
fects of defaunation is problematic given both their scale and
the fact that, especially in forests, fences exclude terrestrial fo-
livores but not arboreal frugivores®'®. Conversely, observa-
tional, macroecological, and paleontological studies can reveal
large-scale patterns but not their causes. We thus have rich but
limited data at meters-to-hectare scales over 0-20 years, and
at continental-to-global scales over >10,000 years; intermedi-
ate scales are less understood but are crucial for linking pro-
cess to pattern®’®, as are the micro-scale molecular and
biochemical mechanisms that ultimately underpin plant-
herbivore interactions.

These rich datasets are also skewed both geographically
and taxonomically. Research on large herbivores is concen-
trated in grassy ecosystems of a few countries in a few re-
gions*”*®, most of which have low large-herbivore diversity
(Figure 4). In Africa, large-herbivore assemblages are diverse,
but most studies occur in southern and eastern savannas
with moderate rainfall®*°**'*_ Taxonomic bias towards ungu-
lates (mainly ruminants) limits the ability to understand how
large-herbivore impacts are regulated by body size vs. traits
that are shared by ruminants but absent in other large herbi-
vores — giant rodents®'®>*'®, macropods'®®, bears®'’, tor-
toises®'®, and birds®'®. These biases obstruct efforts to explain
contingencies and bridge scales, and they foster the
misleading perception that what occurs in intensively studied
systems is ‘normal’, when in fact those systems may not be
especially representative at higher levels (e.g., grazers in South
Africa may mainly browse in Namibia or Mozambique)'2*%°.
Geographic and taxonomic bias may also constrain scientific
curiosity by imprinting junior researchers with preformed views
on what research questions are interesting enough to pursue in
the context of a given location or taxon. With that last risk in
mind, we outline a set of still-unanswered questions that we
find particularly interesting.

What structures large-herbivore assemblages?

Abundant indirect evidence indicates that large herbivores
compete for food*!:123:329-324 byt direct evidence of competi-
tion is hard to obtain®*>*?° (but see *?’). Facilitation among
grazers is also widely hypothesized but equally hard to
test*1:299928  Measuring the net effects of species interactions
on population dynamics is even harder. Which traits confer
competitive advantage under which conditions? If small-bodied
species are competitively superior*’, then why do large ones
dominate communities (Figure 2) and global mammal
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biomass®®? How much niche differentiation along which axes
is sufficient for stable coexistence®”'?*? Understanding and
forecasting the impacts of large herbivores requires understand-
ing what regulates their relative abundance and functional di-
versity.

The role of traits beyond size and diet type in shaping large-
herbivore assemblages and impacts is unclear. Even for those
traits, key gaps remain. Body size affects, and is thus difficult
to isolate from, local biomass and diet composition (Figure 2). Di-
ets have been characterized coarsely, often categorically, in
ways that predict correspondingly coarse-grained responses®*
but eclipse nuance that is surely important for predicting other
impacts. Traits such as water requirements, thermoregulatory
strategy, and social behavior, which are ecologically central in
the context of anthropogenic global change, have received
comparatively little attention®*°.

How do large herbivores affect carbon, water, and
nutrient cycles?

There is great interest and great uncertainty about the role of
large herbivores in carbon cycling and climate regula-
tion®#4:49:330-337 " Dagpite hope that large herbivores can be
part of nature-based solutions for enhancing carbon uptake
and storage®*®>°, their effects on net ecosystem exchange
can be positive, negative, or neutral’®?*'=%%3, Case studies
neatly illustrate this point: increased wildebeest abundance
flipped one savanna from a source to a sink of woody biomass
carbon®', whereas increased elephant abundance flipped
another savanna in the opposite direction®*. Accounting is
difficult because large herbivores affect net carbon fluxes
through many pathways that can offset each other: biomass
removal; shifts in productivity and plant allocation to roots
vs. shoots; and alteration of vegetation type, fire regime, al-
bedo, litter inputs, soil C fractions, microbial biomass and
respiration, substrate compaction, subsurface temperatures,
and methane production®'#295:319:344-350 " Modern remote
sensing facilitates large-scale measurement of large-herbivore
effects on aboveground carbon®’®, but large herbivores also
affect belowground stocks in variable ways. The latter are
harder to quantify at scale but crucial to understand, because
they comprise the majority of carbon stored in many systems
where large herbivores are dominant consumers, such as
grasslandSQO,QW,SSW—SSSI

Although water regulates the distribution and abundance of
large herbivores and vice versa, hydrology remains poorly incor-
porated in the study of large herbivores®”*°*=5" A standard-
ized global survey found strong but intricately context-depen-
dent effects of grazing intensity on soil water-holding capacity
and porosity®®. Transport of terrestrial carbon into aquatic sys-
tems by large herbivores and subsequent decomposition under
anaerobic conditions can elevate CO, and methane emissions
from surface waters, thereby altering ecosystem carbon bal-
ance®®®. Changing precipitation and surface-water regimes,
along with artificial water supply by managers, may transform
large-herbivore assemblages, because species vary widely in
their water requirements®’>°4%%°_ These uncertainties under-
score the need for further integration of earth science and
large-herbivore ecology®.

The role of large herbivores in nutrient cycling has received
relatively more attention but remains clouded by uncertainty.
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Notably, while it is clear large herbivores are long-distance vec-
tors of organic and inorganic nutrients, and the composition and
distribution of those inputs are quantified in a growing number of
studies, evidence on the net impacts of that transport is weak.
Which ecosystem functions are impaired, by how much, when
lateral nutrient flow is truncated by defaunation**? Do long-
ranging large herbivores stabilize communities by coupling
distinct energy channels, as theoretically predicted®**°? How
does body size regulate the role of large herbivores in nutrient
cycling®®'? Body size affects ratios of nitrogen, phosphorus,
and minerals to an extent that can alter plant productivity and
community composition, but the exact form and determinants
of this relationship are unclear®>%%':3¢2:3¢3  Research in this
area has focused mainly on nitrogen and feces, and less on other
elements, urine, and carcasses®®.

Similarly, the impacts of seed dispersal by large herbivores
are heavily studied, long debated, and extremely difficult to
measure®®>*%°_ Simulation models suggest that dispersal of
large-seeded, dense-wooded trees by large herbivores en-
hances carbon storage®*'3*2%¢736° byt these models rely on
strong, unverified assumptions about how strictly trees depend
on animal dispersal. Notably, putatively megafauna-dependent
plants in Neotropical forests have persisted for millennia
without the megaherbivores extinguished during the Pleisto-
cene, in part by developing novel adaptations and mutual-
isms®’%3"2_ Experiments often detect little effect of large herbi-
vores on forests®”®°7®, Observational studies of intact and
defaunated forests more reliably detect effects but struggle
with causal attribution®'®. Seed dispersal is largely ignored
in grassy biomes®"°"® yet savanna herbivore dung
germinates many seedlings, and savanna grasses have traits
suggestive of alternative megafaunal and abiotic dispersal
syndromes®”°-38°,

Does herbivore-associated microbiota affect ecosystem
processes?

The study of how microbes mediate herbivore-environment in-
teractions is nascent. Herbivore microbiomes are seeded and
shaped by the environment; in turn, large herbivores can alter
environmental microbiomes via direct (egestion of microbes)
and indirect (habitat modification) pathways®®'*®, Egestion of
gut microbes has lately been recognized as relevant to
ecosystem functioning and may be influential in dense herbivore
assemblages. Gut microbiomes differ from ambient ones given
the differences between guts and external environments, but
when those differences are relaxed (e.g., in water), some mi-
crobes can function outside the host and affect biogeochem-
istry. Hippos can push freshwater systems to anoxia by import-
ing terrestrial matter in feces, turning pools into extensions of the
gut where some bacteria continue biodegradation and produc-
tion of CHy4, N,O, and H,S*°%°8%, Dead herbivores also export
microbes to the environment, including some of those that
decompose carcasses®®* 2%, Different herbivores host distinct
microbiomes, which covary with phylogeny and diet, suggesting
non-redundancy of species’ effects on microbially mediated
functions®®®. The ‘metamicrobiome’®%%:2%% is a frontier that may
be key to understanding herbivore impacts, just as gut micro-
biomes are key to understanding herbivore physiology®®”+2%8,
But fully incorporating microbial dynamics exacerbates the
already-daunting hurdles of complexity and scale and requires
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attention to molecular mechanisms that lie beyond the traditional
remit of ecology.

Do Iarge herbivores affect ecosystem distribution at
large scales?

Herbivore exclusion increases tree cover, and late-Pleistocene
extinctions preceded shifts in fire regimes and plant commu-
nities, both of which suggest that large herbivores help to main-
tain the distribution of ecosystems and ecotones within abiotic
constraints®'3%89%%0  The extent to which large herbivores
trigger shifts in ecosystem distribution and alternative stable
states (e.g., forest to grassland, steppe to tundra) is un-
clear®®'*%*_In the Serengeti, elephants maintained grasslands
but could not cause woodland to grassland transition without
fire>'®, while rising wildebeest abundance reduced fire and
increased tree density but did not cause forestation®'*. Tram-
pling of vegetation by forest elephants at forest-savanna bound-
aries created natural fire breaks that stabilized the ecotone®®®.
While large herbivores alone therefore seem more likely to stabi-
lize than transform ecosystems, interactions between large her-
bivores and fire or climate — which can be decoupled by human
activity — are potent and difficult to predict.

Evolutionary and eco-evolutionary dynamics

Amazingly few studies have quantified selection or evolutionary
response in large herbivore-plant interactions®°=%, in sharp
contrast to the study of insect-plant interactions*®. Current
knowledge is based on inference from modern ecological inter-
actions, comparative floristic analysis, and sparse macroevolu-
tionary data. For example, spines deter browsers*®’, plants pro-
tected from browsers have shorter spines®*'??, plants on islands
without large herbivores have fewer spines”®?, and phylogenies
show that spines evolved repeatedly in concert with the diversi-
fication of bovids'®®. Spinescence undoubtedly evolves in
response to selection by large herbivores. Yet, definitive evi-
dence is hard to pin down. Plant response to herbivory depends
on tolerance mechanisms and plant-plant interactions in addi-
tion to resistance mechanisms such as spines, meaning deter-
ring browsers does not necessarily increase fitness. Spines are
phenotypically plastic®?, meaning that observed associations
between herbivory regime and spine phenotype do not neces-
sarily indicate heritable variation. Persistence of ‘Pleistocene
anachronisms’, such as spiny Neotropical trees in forests with
few or no browsers'", highlights that modern associations are
unreliable indicators of past or future evolutionary processes”°°.
And while the co-diversification of spiny plants and bovids in Af-
rica'® is compelling, it is not immediately obvious why Miocene
bovids would select more strongly for spines than Oligocene
browsers***. The point is that even this exceptionally convincing
evolutionary inference is potentially fallible; other evolutionary
hypotheses have far less support.

The approaches of modern microevolutionary biology can be
applied to large herbivore—plant interactions: common-garden
experiments to establish heritability“®®, quantitative measure-
ments of selection, and elucidation of genes and gene-expres-
sion patterns underlying traits under selection by large herbi-
vores. Development of large herbivore-plant model systems
with advanced genomic resources would deepen the under-
standing of modern interactions and eco-evolutionary feed-
backs, along with the ability to forecast rapidly evolving dy-
namics in the Anthropocene®”'+406-408,
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How do predators regulate large-herbivore impacts?
Different predation regimes are often associated with different
vegetation, but it is hard to establish that this is the result of a
trophic cascade — and, if so, whether the cascade is mediated
by herbivore behavior, density, or both?*2?°°, Most research
in this area rests on correlative data, but manipulative experi-
ments provide the strongest evidence both for’”:?%42%¢ and
against®®22%8:269 trophic cascades. The gold standard*®® re-
quires showing that predation or risk affects herbivores, that
herbivores affect plants, and that predators indirectly affect
plants. Yet, few studies independently manipulate predation
and herbivory?®*2%, To this end, cheap devices for experimen-
tally simulating risk®®%?°>*1% can be combined with exclosures,
and data on animal movement and diet can help to constrain
other uncertainties®®.

How well does herbivore diet predict impacts?

The cumulative biomass of grazers and browsers predicts the
strength of their effects on grasses and trees® — but herbi-
vore diets also differ at finer grains'®®*'"%'2 What explains
those subtler distinctions, and to what extent do they predict
impacts of large herbivores on plant biodiversity? Variation in
herbivore diets is correlated with both herbivore and plant
traits''>""*, but more work is needed to understand how those
associations emerge. In particular, effects of chemical de-
fenses on large-herbivore diets are little known but surely
important'?”#'341%  Phenolic compounds are known to influ-
ence large herbivores’ food choices and nutrition®'>™*'8, but
a vast array of other metabolites remains unstudied. Advances
in metabolomics*'® and genomics*® can unblock research on
how plant toxins mediate diet and how gut microbiomes
mediate toxicity®®’.

Will a deeper understanding of diet in turn facilitate predictions
about herbivore impacts on plants? Herbivore preference alone
predicts a limited amount of variance in plant response to large-
herbivore exclusion (Figure 5D). Differences in plant tolerance
and effects of large herbivores on plant-plant interactions
contribute to this unexplained variance'®* %2, Preliminary data
from one system show that herbivore food preference and plant
traits related to tolerance or competitive ability can together pre-
dict plant species’ responses to herbivore exclusion better than
models based on herbivore consumption alone (Figure 5D).

Because body size and diet type generally differentiate herbi-
vore species’ ecological impacts, and because sympatric spe-
cies universally differ in size and diet (Figures 2 and 5), species
are not functionally redundant in a strict sense. Yet, redundancy
is theorized to be widespread and important in governing robust-
ness to species loss*?°, and it is a matter of degree. While no two
large herbivores are ecologically equivalent, the realized extent
of functional redundancy (or its inverse, complementarity) is un-
certain. Small large herbivores cannot compensate for big ones,
nor can grazers replace browsers. But can plains zebra (300 kg)
compensate for the extinction of endangered Grevy’s zebra
(400 kg) — sympatric species that both eat >95% grass but differ
in dietary species composition, water dependence, and space
use''%4212 Any difference in net impact might be undetectable
and practically irrelevant. Similarly, niche complementarity is
thought to explain positive biodiversity-ecosystem function rela-
tionships. How do the impacts of large-herbivore assemblages
depend on their species richness?
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These questions are relevant both to forecasting conse-
quences of extinction and to understanding the extent to which
species can serve as proxies for one another. This concept of
surrogacy is invoked not just in relation to the substitutability of
wildlife and livestock, but also increasingly in the context of re-
wilding scenarios that propose to reproduce prehistoric herbivo-
ry regimes using extant species in lieu of extinct ones®%*%422,
Studies that have tried to address the last question by recon-
structing multidimensional functional-trait spaces suggest that
introduced ungulates recover a substantial fraction of Pleisto-
cene ecosystem functions®®, but it is unclear how closely trait
spaces map onto realized impacts.

Synthesis
“The key to prediction and understanding lies in the elucidation of
mechanisms underlying observed patterns.” — Simon Levin*?®

Recent work on the ecological impacts of large herbivores has
built on longstanding conceptual foundations to solidify and
refine a set of robust generalities while simultaneously advancing
on multiple new fronts. The catalyst for these advances has not
been the birth of new paradigms or formal theory, but rather
enhanced power to discern empirical patterns and the scales
at which they hold. The increasing scale and resolution of remote
sensing*?*, use of camera traps*?®, innovation and miniaturiza-
tion of telemetry devices®?®, fusion of field and laboratory
methods®®® and development of big data repositories have all
synergized with time-tested observational and experimental
methods to enable progress (Figure 3). Despite this progress,
the challenges of complexity, scale and contingency prevent an-
swers to many classic questions®*>*?®, The scope of unsolved
problems reveals a mismatch between the state of knowledge
and ecologists’ aspiration to predict and mitigate global
change?®3240:427:428 " \We identify two problems that underlie
many of the specific uncertainties reviewed in the preceding
section.

Weak inference about process

Mechanistic insight is not required for generalization, but it is for
understanding and predictive power*?°. Ecological phenomena
have layers of mechanisms at different levels of organization.
Observational and macro-data are invaluable but cannot estab-
lish cause—effect relationships. Exclosures and other experi-
ments can link cause to effect, but most are mechanistic only
to the first order: they reveal the cause of an outcome, but not
the processes that produced it, nor how and why the outcome
depends on environmental conditions and experimental scale.
Piercing deeper layers of mechanism — e.g., whether direct ef-
fects resulted from consumption or trampling, which indirect
pathways also contributed — requires additional experiments
and data.

One view is that mechanistic generalization is hopeless in the
face of contingency, and that ecologists should focus on large-
scale patterns and ignore “messy details”*°>. Another view is
that multi-method research across scales is synergistically clar-
ifying*?°. Some work reviewed here affirms the latter take. For
example, early intuition that large herbivores might enhance
grassland plant diversity at high (but not low) primary productiv-
ity by alleviating competition for light**° was conceptually
formalized and bolstered by site-specific work'®"'9%, Syntheses
of exclosure data over ever-larger scales later confirmed the
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generality of that context-dependent effect and implicated light
competition as the cause'?"19+*%" Targeted experiments even-
tually confirmed that mechanism'®®. In this case, the dynamic
interplay of natural history, theory, and empiricism at multiple
scales resolved ‘messy’ contingency into mechanistic rules.
Weak understanding of species-specific impacts

One type of mechanistic uncertainty particularly thwarts under-
standing and prediction of Anthropocene dynamics. Most exper-
imental and macro-scale research measures effects of large-
herbivore assemblages or guilds — often quantifying differences
between an intact fauna and no large fauna at all. In contrast, de-
faunation and restoration are typically piecemeal, with popula-
tions declining at uneven rates or being reintroduced one at a
time. Prevailing study designs are incongruent with those sce-
narios. It is usually impossible to manipulate just one large-her-
bivore species, or to exclude small species without excluding
large ones; selective exclosures remove nested subsets of spe-
cies. Also, exclosures are designed to remove all individuals, not
to simulate population decline.

Inability to isolate the effects of individual species prevents a
process-based accounting of net assemblage-level impacts,
which emerge from species-specific effects that differ in magni-
tude or even direction. It also limits ecologists’ ability to answer
practical questions that arise in real-world management settings.
Conservation and restoration emphasize the survival of iconic
species but increasingly aim to incorporate ecological pro-
cesses. How are those two goals linked? How well or poorly
does species conservation align with total biodiversity, carbon
sequestration, and other ecosystem services? When should a
species be considered functionally extinct®”'**? or overabun-
dant®®*°? Does the order of species reintroductions matter in
restoration, for example by impeding or aiding reestablishment
of other species? Can managers harness large-herbivore func-

tional ecology to predict and mitigate human-wildlife con-
f|iCt433’434?

Outlook

Ecology is not unique among sciences in confronting
complexity, contingency, problems of scale, emergent proper-
ties, and an urgency to translate basic research into applications.
For some reason, physics is the standard measuring stick for
ecology’s insecurities®***%>36 Comparison to other branches
of biology seems more apt, but there is a cultural difference be-
tween fields — namely that ecology has been far less patient with
bottom-up (‘reductionist’) empirical progress than molecular,
cell, or developmental biology. Whatever its limitations, reduc-
tionism has propelled the greatest advances in biology over
the last century. With technology releasing ecologists from old
empirical constraints, it is getting easier to envision bridging
scales via a renewed commitment to process-based inquiry.
We offer some suggestions.

Developing and sustaining model systems

Model systems (e.g., yeast, Drosophila, Arabidopsis) are
amenable to research, which attracts investigators, which further
unlocks the system and often yields generalizable discoveries.
Research on the effects of large herbivores has model systems:
deer, Yellowstone, Serengeti, Kruger, a few multi-decadal ex-
periments (Figure 4). Continued investment in these systems
will pay dividends and need not undermine the goal of reducing
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geographic and taxonomic bias in research effort: insights from
existing model systems facilitate the establishment of new ones.
Relying less on categories

To categorize is human. However, as discussed above in relation
to defining ‘large herbivores’ and feeding guilds, discretizing
continuous variables for analysis discards and obscures infor-
mation, sometimes to the point of misrepresentation. Ecologists
can embrace the heuristic value of categories for conceptualiza-
tion and efficient communication while also estimating and
analyzing real quantities (body mass, proportional grass con-
sumption) whenever possible.

Relentlessly pursuing mechanisms

Process-based understanding requires multiple strategies: con-
ducting follow-up experiments and experiments-within-experi-
ments to isolate candidate mechanisms and distinguish direct
vs. indirect effects, collecting data on organismal and environ-
mental covariates and building rigorously parameterized
models. This entails a shift in focus away from testing null hy-
potheses of ‘no effect’ towards explaining how effects emerge.
Similarly, attacking contingency entails a shift from showing
that effects vary (they do!) towards explicitly testing factors
that regulate effect size and direction. Climate change is altering
many sources of contingency, which creates opportunities to
evaluate those factors and also helps justify the effort required
to do so.

Devising next-generation field experiments

Beyond maintaining existing long-term exclosures, which
continue to yield new insights after decades, the conventional
model can be expanded with innovations to address the limita-
tions discussed above. Concerns about replication lead re-
searchers to build many little, individually fenced plots, but one
mega-exclosure (e.g., Kruger’s >250-ha Hlangwine and Nwas-
witshumbe sites'*") could address questions of scalability
without sacrificing rigor. Intermittently opening and closing fen-
ces, or building them as herbivore deterrents rather than re-
movals, could test effects of density reduction. Enclosing one
or two individual large herbivores in hectare-scale enclosures
could test species-specific effects at realistic total biomass
densities, similar to the controlled cattle grazing in a Kenyan
experiment'’®. Planned obsolescence — systematic removal
of replicated exclosures at intervals — could be used to test hy-
potheses about resilience and alternative stable states'%*'%.
Gathering contextual data in experimental studies

Basic data such as herbivore densities are needed to interpret ex-
closure results but are often not collected*”->*. Combining manip-
ulation with modern monitoring techniques can be especially
potent. These include measurement of plant traits and soil chem-
istry*®’, hyperspectral imaging and LIDAR?’®, subsurface imag-
ing®®!, GPS telemetry**®, DNA metabarcoding®®®, metabolomics
and transcriptomics*®, flux towers, and machine-learning algo-
rithms to mine these and a growing array of other data that can
be continuously logged in the field (Figures 3 and 5). Long-term
monitoring of individual plants across ontogeny using this slate
of tools would be informative.

Capitalizing on fortuitous large-scale events
Environmental interventions are often revelatory**°. Conserva-
tion translocations of large herbivores are increasingly
frequent®>#2%441 and represent species-specific experiments
at otherwise impossible scales, as do population crashes and
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culls®*”. Wildlife ranching is a business**? that enables planned

experiments with non-domestic large-herbivore species that
would be unthinkable in protected areas. The scientific interest
in these opportunities may often align with the interests of other
stakeholders (e.g., shared interest in why translocations suc-
ceed or fail**").

Bottom-up mechanistic modeling

While the aforementioned set of approaches will deepen basic
understanding and crystallize new insights, they are not a
recipe for predictive power. Yet, they might be essential ingre-
dients. We do not foresee extremely accurate and precise
forecasts of the impacts of perturbations to large-herbivore
communities. But we can envision a common quantitative
framework based on species’ traits and interactions that pro-
vides actionable guidance to those attempting to manage

and conserve large herbivores and their habitats in the Anthro-
pocene51'283'443'444.
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