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Abstract—Heterogeneous computing has emerged as a pow-
erful tool for modern highly-connected systems to efficiently
distribute computing resources. Yet, many systems with real-time
constraints may require expensive over-provisioning to meet their
requirements. To address this problem, a real-time system may be
designed to be overloaded on its primary processor, but be made
viable through the support of a powerful secondary processor. In
such a system, workload is scheduled on the primary processor
by default, but some jobs that would cause a deadline miss can
be offloaded, through a transfer of the necessary data, to the
secondary processor. We propose an earliest-deadline-first (EDF)
based scheduling framework to demonstrate schedulability condi-
tions of such a system, including the costs incurred by offloading.
This represents a first stage towards a complete understanding
of this complex class of systems and their dynamics.

I. INTRODUCTION

Modern computing is rapidly expanding into multiple new
and interdisciplinary domains. Real-time computing in partic-
ular is finding itself relevant in many fresh areas, like hetero-
geneous and distributed computer resources. As more fields
create demands for computation, heterogeneous computing
systems are emerging as a flexible solution for managing the
variety of requirements from many complex systems. Notably,
some of the systems generating these demands, e.g., naviga-
tion tasks of autonomous vehicles, drones, and autonomous
mobile robots, have safety-critical aspects that must satisfy
certain timing constraints. In general, an on-board primary-
secondary processor setup enables computational offloading
when the primary processor is overloaded, i.e., a given taskset
is unchedulable on the primary processor. For example, jobs
can be offloaded from the primary little core (energy-efficient
but weak) to the secondary big core (powerful but power-
hungry) in big.LITTLE architectures when deadlines cannot
be met only with the little core. Another example is when
jobs are offloaded from the on-board primary processor to a
remote powerful edge server through the on-board network
processor, i.e., the secondary processor.

In this work we address the schedulability of online de-
cisions for offloading permitting the secondary processor’s
resources to be utilized only when absolutely needed, which
allows real-time developers to safely use these powerful re-
sources without fear of excessive network traffic or wasteful
energy usage on their local devices. Specifically, we determine
an offloading policy that minimizes the number of offloaded
jobs to the secondary processor and then provide a schedu-
lability analysis for the following general scenario: a multi-
processor system comprised of a primary local processor and
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a secondary local processor that either executes jobs in place
of the primary processor or offloads data to powerful remote
Servers.

Our work utilizes a variety of existing concepts and tools.
Prior studies in similar scenarios do not take real-time con-
straints into account (Goldstein [1], Lv et al. [2]), do not select
jobs for offloading based on preserving primary schedulability
(Schonberger et al. [3]), or are based on choosing tasks to
offload offline [4], [5]. However, to the best of our knowledge,
there is no prior work that guarantees the schedulability of
sporadic real-time tasks on such a heterogeneous system using
demand-based real-time analysis while minimizing the amount
of offloaded demand as a central goal.

In summary, this paper makes the following contributions:

o A real-time analysis of primary-secondary processor sys-
tems running constrained deadline sporadic tasksets;

o An analysis on the amount of demand offloaded to the
secondary processor;

o An extensive evaluation of offloaded demand estimation
and schedulability ratio comparison for a variety of task
systems compared to a runtime simulated system.

The rest of the paper is organized as follows. Section II
describes the related work. Section III details our system
model. Section IV describes our scheduling framework and
how we address deadline-aware offloading. Section V details
how we construct a schedulability analysis for this framework
and derive demand-based bounds. Section VI shows our ex-
perimental results and Section VII concludes the paper.

II. RELATED WORK

The general topic of computational offloading has been well
studied in the past. A good survey of the field is provided
by Mach and Becvar [6]. Some existing studies on real-
time computation offloading focus on specific application such
as object recognition and tracking [7] or assume, as default
model, that all tasks will have a remote execution component
such as Schonberger et al. [3]. Contrary to such solutions, our
paper does not focus on a specific application but analyzes a
system that executes jobs at the primary processor by default,
and on the secondary only when necessary. Both Liu et al. [5]
and Toma et al. [4] focus on demand-based edge offloading,
but use offline decisions to determine the set of tasks to offload
(and all jobs of selected tasks are offloaded). Our system
makes job level decisions, and does so online (i.e., at runtime);
thus, the objectives of the approaches are orthogonal.
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Our system model may be viewed as composed of het-
erogeneous multi-processors (e.g., Raravi et al. [8]). Most
of these papers involve balanced assignment of tasks to the
processors, which is different from our case study where
the secondary processor receives jobs only when the primary
processor cannot schedule them. 7o the best of our knowledge,
this is the first work studying the schedulability of tasks in
a primary-secondary system by including the scheduling of
job data transmissions. In particular, considering the online
job offloading policy described in Section IV, we design the
proposed offline schedulability test by analyzing the amount
of demand offloaded to the secondary processor in Section V.

III. SYSTEM MODEL

Our long-term goal (beyond this paper) is to develop general
schedulability tests for online job-level offloading policies for
a system of n tasks scheduled across a primary processor,
and a general set of secondary processors. However, due to
the high complexity of the problem and given the lack of
previous work focusing on such online offloading policies with
strict real-time analysis, in this paper we make the following
assumptions that allow us to simplify the problem and make
the first step towards the above goal:

1) The system has one primary processor that executes task

7, with a Worst-Case Execution Time (WCET) C;,,
and one secondary processor that executes them with
a WCET C;;

2) The primary processor uses preemptive EDF scheduling;

3) The secondary processor is capable of using either
preemptive or non-preemptive EDF;

4) System tasks are modeled by the constrained-deadline
sporadic task model;

5) A system-wide scaling factor v € (0,1] can be used to
describe the non-equal relationship between the primary
and secondary processors’ execution time as follows:
Cig =v*C;, for1; € 1.

The first assumption restricts us to one offloading processor,
and requires it to be well analyzed and suitable for real-
time applications. The second and third assumptions are re-
quirements for these processors, but not restrictive in many
applications. The fourth assumption is a typical real-time
system model while the last one assumes a uniform scaling
factor in WCET of tasks from primary to secondary processor.
Our model is a slight variation on this standard, with an
additional term to address the presence of both processors.
Each task 7; is of the form:

Ti =< inycisuTinipaDis >

where C;, and C;, are the WCET of a task on the pri-
mary and secondary processor, respectively. If the secondary
processor is a network processor, C;, will denote the transfer
time. Note, we are aware that execution times may vary at
runtime. However, having bounded transfer time and execution
times is fundamental for real-time analysis [9] since real-time
guarantees cannot be provided if applications cannot bound
their runtime. 7T is the shortest time between the arrival of two

jobs of the same task. Each task has a relative deadline D,
that must be met if a job executes on the primary platform,
and another relative deadline D;, if a job executes on the
secondary platform. In both cases, these represent the offset of
a job’s arrival to it’s absolute deadline. In general, we assume
that a job’s secondary deadline may be more restrictive than
its primary deadline, so D;, < D;, We plan to remove the
above first assumption in future work. Note that this system
model can be used on most on-board primary-secondary
processor setups. For example, if computation is offloaded to
an edge server, the primary processor offloads jobs through the
network (secondary) processor by subtracting the worst-case
response time of the job on the edge server from the original
deadline D,, to find D;, thus including possible delays due
to shared edge resources. The updated deadline is then used
to conduct the schedulability analysis. We will evaluate this
restrictive setup in the evaluation section. In addition, we plan
to expand our model to consider schedulability also of tertiary
processors, e.g., an edge server processor, in our future work.

IV. DEMAND BASED OFFLOADING POLICY

Our scheduling methodology is based on an extension of
EDF scheduling. A released job has priority assigned to its
deadline and earlier deadlines have higher priority. An arriving
job of higher priority will either preempt a job of lower
priority or be offloaded. For the primary system, we assume
a preemptive constrained-deadline EDF scheduling condition
based on the work of Baruah et al. [10] to determine if
offloading will be necessary:

VL>0, L= DBF(L)=3 QHTT;DPD i
i=1 i

If this condition is satisfied, then we have a trivial case since
no offloading is necessary. If this condition is not met, then at
some point offloading may need to occur to maintain primary
processor schedulability. In this case, we must determine a
methodology for choosing what jobs to offload and when to
do so. We refer to this as an offloading policy and define it
for our system in the following section. It runs each time a
job arrives and tests short term primary schedulability, then
offloads only those arriving jobs that would cause a deadline
to be missed on the primary processor. Note that this is not the
only policy that could be defined, and the rest of our analysis
hinges upon the behavior of this algorithm with the rest of our
model. We plan to explore other policies and their scheduling
properties in our future work.

A. The Online Offloading Policy

Our scheduling methodology considers only the primary and
secondary processors, and can be treated as a two processor
heterogeneous EDF system that first attempts to schedule jobs
on the primary processor. If not possible, it schedules them on
the secondary processor. This is, to the best of our knowledge,
a novel scheduling environment that requires some theoretical
investigation. In particular, can we bound the amount of work
sent to the secondary processor as part of offloading? This
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Algorithm 1 Offload(J,,S,t)
Input J,: a job just arrived. S: current set of active jobs that
have been admitted to primary processor prior to J,;’s arrival.
t: current time instant.
1: for each job J; in S U J,, in earliest deadline order do
2: Let Cfli””“d be the amount of time J; has spent
executinfgt on the primary processor

3: Let Cff, Cip — C’flfs”“e‘i

4 t=t+ 0l

5: if ¢ > absolute deadline of job .J; then
6: Offload J, and terminate.

7 end if

8: end for

9: Admit .J, to the primary processor schedule

involves a discussion of what a critical instant means for
this system. For a traditional uniprocessor system this critical
instant for a job .J; is when all tasks release a job at the
same time!. It is the scenario that creates the largest response
time for that job. In the uniprocessor case, using the critical
instant allows the construction of a worst-case schedule to
determine whether a job J; could potentially miss its deadline.
However, the case considered in this paper is substantially
different because we consider that the primary processor is
overloaded. We then have two questions. How fo know when
a sequence of jobs will cause an offload? In addition, how
to measure the offloaded demand? Both of these questions
are tied to the offloading algorithm that we propose. We have
adopted an offloading policy where the system admits jobs
until it is overloaded. Once this happens, the offending job,
i.e. the one that caused the system to become overloaded, is
offloaded. We present our offloading policy in Algorithm 1,
which is called at the arrival of each job into the system. It
takes three arguments: .J,, the just arrived job with relative
deadline D,,, and WCET C,,; S: the current set of active
jobs that have been admitted to the primary processor prior to
Jo’s arrival; ¢: the current time instant. If multiple jobs arrive
simultaneously, they are processed in an arbitrary order. Lines
1-8 process each job of the existing schedule S plus J, in
order of their deadlines. Line 2 defines C’f}fse”’ed, the amount
of time that a job has spent executing on the primary processor.
We assume the system can track this for each job. Line 3 then
subtracts Cfﬁse”’ed from C;, to get Cff;f ! the job’s worst-case
remaining execution time. Line 4 advances the current time
instant by C’f;f " and Line 5 determines whether a deadline
has been missed. If so, then the addition of J, may cause
a deadline miss on the primary processor, thus it is offloaded
and Algorithm 1 terminates its execution. Otherwise, if the for
loop completes and the algorithm reaches Line 9, no deadline
miss is possible. Thus, .J, is admitted to the primary processor.

!Unless otherwise specified, the index i for a job does NOT imply that the
job was generated by task .

B. Offfine Analysis Overview

The described offloading policy ensures that the primary
system is schedulable, since S was schedulable before the
arrival of .J,, and that the offloading infrastructure that may be
shared among different devices is not unnecessarily congested.
However, this is not the only possible offloading policy. A
system could offload before its primary processor is over-
loaded and it could offload more jobs than it needs to. We will
consider different policies in our future work. For an interval
of length L, the demand that could be offloaded is analyzed.
This is done by calculating the G* function - which is an
upper bound on the offloaded demand over an interval (Section
V). If the maximum offloaded demand G* is schedulable on
the secondary processor, then there is no deadline miss for
this interval. Successively larger intervals are tested until L
is equal to the hyperperiod H, i.e., the analysis terminates
and determines the taskset to be schedulable, or until G* is
unschedulable on the secondary processor for some interval L,
i.e., the taskset is potentially unschedulable. The hyperperiod
H is a safe upper bound; it is omitted for space and will appear
in the extended version of the paper.

V. OFFLOADED DEMAND ANALYSIS

We now begin the construction of a schedulability test by
examining the total amount of offloaded demand, i.e., the total
amount of jobs’ primary execution time that may be offloaded
to the secondary processor over a given interval.

A. Offloaded Demand Analysis

1) Outline: To determine a sufficient condition for schedu-
lability, we determine a necessary condition for unschedulabil-
ity. Throughout this section, we use the following conventions:
Sets of objects use calligraphy letters such as a set of jobs,
J; Relative terms use a capital letter indexed with a subscript
such as some job a’s WCET C,; Absolute terms use lowercase
letters with a subscript such as a time instant ¢,,. Due to the
complex interactions between tasks and the processors, there
are a few of steps we must go through before reaching a
schedulability test:

1) In Section V-A2, we define the conditions for the
primary processor to offload an arriving job (Claim 1).

2) Using Claim 1 we show that each job offloading is
caused by demand intervals and that intervals of consec-
utive offloaded jobs are contiguous (Lemma 1). Then,
based on the findings of Lemma 1, we re-define the
conditions for a job to be offloaded using the intervals
and total demand (Lemma 2).

3) In Section V-A3 we generalize this condition away from
job-specific terms to quantify what primary processor
conditions are required for offloading, regardless of the
arriving job (Lemma 3). This lets us describe, for a given
interval, which of its subintervals must be busy (Lemma
4). We also define two new forms of demand (accepted
and induced).

4) In Section V-A4, we find an upper bound on how much
accepted demand can be carried between contiguous
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intervals (Lemma 5). This lets us prove bounds on the
amount of offloaded demand that can be introduced to
the secondary processor from the primary processor in
a given interval (Theorem 1).

5) Finally, Section V-B proposes a function G*(L) in
Theorem 2, which performs the bounding of offloaded
demand in a fast and easily computable way.

2) Job-Specific Offloading Conditions: Our analysis begins

by determining the general conditions for a job to be offloaded:

Claim 1. A job J, can only be offloaded if it being accepted
into the primary processor’s schedule would cause J, or a
previously accepted job to miss its deadline.

Proof Sketch: The for loop in Lines 1-8 of Algorithm 1 are
an admission schedulability test for the primary processor. In
particular, the offloading action in Line 6 is only reached if
a job will miss its deadline, or cause a previously accepted
job to miss its deadline, by the statements of Lines 2-5. So a
job that misses its deadline must do so after being sent to the
secondary processor. O

Since by construction a job admitted to the primary pro-
cessor will not miss its deadline, our schedulability analysis
begins by assuming a job on the secondary processor has
missed its deadline, and then “works backwards” to find the
necessary sequence of arrivals and offloads from the primary
processor that cause this deadline miss. Assume there is a
deadline miss on the secondary processor at time t,,. We
assume w.l.o.g. that ¢,, is the first deadline miss, i.e., the
interval [0,¢,,) contains no deadline miss. Denote J,,, as the
job that misses its deadline. .J,, has arrival time a,, and
absolute deadline d,,, = t,,,. Denote the last idle instant (on the
secondary processor) before ¢,,, as to. We may ignore all jobs
on the secondary processor that complete before ¢y without
affecting the deadline miss at t,,. There is therefore a set
of jobs that are continuously active in the interval [to,%,,).
From this set of continuously active jobs, we want to consider
only the minimum set of jobs which “span” the entire interval
of [to,tm,) and adopt a concept from [11] called spanning
chain of jobs. In essence, it describes how, for a busy interval,
you can find a subset of jobs such that at any time point
at least one, but at most only two of them are active on
the processor. For details, we direct the interested reader to
the cited paper. We will index these spanning-chain jobs by
their absolute deadline on the secondary processor. Jy has the
earliest absolute deadline after ¢y, then .J;, and so on, until
Jm,» which does not complete by its deadline at ¢,,,. For each
Ji : 0 <7 < m, the term a; (resp., d;) represents the absolute
arrival time (resp., deadline) of .J;. To satisfy the properties of
the spanning chain, we require the following:

DVi<i<m:a;_1<a; <d;_1

2) Vi<i<m:d;_, < Gj11

By construction, this spanning chain of jobs J =
Jo, J1, Ja, ..., Jp, entirely covers the secondary processor busy
interval over [tg,ty,).

As the rest of this section involves the contributions of
various jobs to various forms of processor demand, we specify

three different demand values in terms of primary execution
time (i.e., C;, values) that must be generated for the jobs of
J to be offloaded to the secondary processor:

e Diytar = The traditional notion of demand, the sum of
the demand of all jobs released and having a deadline in
some interval;

e Dyrimary : The demand of all jobs that are not offloaded
and thus execute on the primary processor over some
interval;

e Dof fioad : The demand of all jobs that have been selected
to be sent to the secondary processor.

We now consider the demand intervals on the primary
processor for each job J € J that has been offloaded. We can
use this to construct the interval of primary demand that was
sufficient to offload a given job in 7 i.e., Ji, 0 < k < m. This
interval is calculated based on the active set of jobs S during
the execution of Algorithm 1 w.r.t. J;. Let the set of jobs in
the system upon each Ji’s arrival be Si. Denote the earliest
arrived job in Sy, as J, and its arrival time as af. Denote the
job that would miss its deadline should J; be accepted as J2,
and its deadline as df . Trivially, af < aj. For determining
when a job may obstruct the execution of another, we use the
notion of interference:

Definition V.1. A job J, interferes with a job .J, iff J,
executes on the same processor as .J, after the release of,
and before the completion of J,,.

Since the primary processor is scheduled with EDF, Jj
cannot interfere with jobs in Sy, with deadline earlier than dj.
Therefore, df, > dj,. This defines the interval [af, d,f), which
we refer to as the primary demand interval of Ji. Note that
the interval itself may not be entirely busy, as .Jj, is offloaded.
Considering the primary demand intervals of each offloaded
job Ji, we now demonstrate the following lemma:

Lemma 1. The primary demand intervals of offloaded jobs
are contiguous: Yk < m, df >ag,, > ay

Proof of Lemma 1. Let the primary demand interval of job
Jy, be [ag,df). By construction of the spanning-chain for
[to,tm), we have that dj > ag41. Therefore, df > dp >
agp1 > ay,, = df, > aj, ;- Additionally, by the spanning
chain apy1 > ai. The earliest job that is active when Jj 1
arrives cannot have strictly earlier arrival than the earliest job
that interferes with Ji; thus, we also have aj 112 aj,. This
concludes the proof. D

Therefore, the total demand interval that must be investi-
gated for the deadline miss at d,, is the union of all the
primary demand intervals of jobs of 7, which, by Lemma
1, is a single contiguous interval [a§,d?)) whose length we
denote as L = d? — a§. Importantly, since t, is the last
idle instant before t,,, the earliest arrival of any J; on the
secondary processor occurred at ?g. Since aj} < ay, it must
also be true that this af < tg. Similarly, since dfn > dpy = tm,
the secondary processor interval [tg,,,) is contained entirely
within [a§, d2,). We know that all jobs released by the system
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execute either on the primary or secondary processors. That
is, over [ag,d?), the following must hold: Dyorer(L) =
Dprimary (L) + Dof f10ad(L). The total demand follows from
the processor demand-bound equation for constrained-deadline
sporadic task sets, consisting of all jobs released within an
interval from all tasks in the system, multiplied by their
execution lengths, i.e., Dyt (L) < DBF(L).

We may now upper bound the offloaded demand by upper
bounding total demand and lower bounding primary demand.
First, we determine a safe lower bound on IDp,ipary Within
an interval of length L. To bound this demand, we consider
the condition upon which a job may get offloaded. Since
the primary processor is scheduled according to EDF, the
necessary condition for a job Jj to be offloaded is that the
amount of already accepted demand over the interval [ay, dj)
must exceed the amount that .Jj, brings:

Definition V.2. Accepted Demand with respect to a time a and
interval [a,b) is the potential remaining execution of jobs that
arrive at or before a, are accepted on the primary processor
by Algorithm 1 and have deadlines at or before b.

Denote by ﬁk the length of the interval from the arrival
of Jj; to the deadline that would be missed on the primary
processor. That is, Dk = (df — ay). Remember that dﬂ may
itself be dj, in which case .J, itself could not fit on the primary
processor, or it could be a later deadline, in which case a job
that had already been accepted to run on the primary processor
could miss its deadline. Note that either way, D;, > Dy, the
primary relative deadline of Jj. As a result:

Lemma 2. J;, is offloaded if and only if at the arrival of job
Jy, the amount of accepted demand over the interval [ak, ar +
Dy.) exceeds Dy, — C,,.

Proof of Lemma 2. First, assume that .Jj;, is offloaded. Then by
Claim 1, we have seen that trying to schedule it on the primary
processor would cause a deadline miss at ay + Dy. Since we
are scheduling with EDF, then necessarily it must have caused
the accepted demand within [ay, a, +Dk) to exceed Dk Since
J. brings Cy,, demand, the amount previously scheduled there
must have been at least Dk — Cip. ThlS proves the first
direction. Now assume Athere is less than Dk — Cy, accepted
demand over [ay, ax + Dy ). There is at least C},,, idle time on
the primary processor over that interval. J; can be scheduled
in these idle instances without missing a deadline, or causing
any already accepted job to miss a deadline. This proves the
second direction. O

3) Generalization of Offloading Conditions: In order to
remove the dependency of the results of Lemma 2 from
specific job characteristics, we define the term density by
O = C— We also define 0,,,4,, the maximum density of
any task in the system: Oy := {0kl <i < mn,dr > 0d;}. We
use density to translate Lemma 2 into the following interval-
based offloading condition:

1935

Lemma 3. The accepted demand scheduled over some interval
with job Ji. being offloaded, [ak,ax + Dy), is lower-bounded
by Di(1 = 6maz)

Proof of Lemma 3. Let a job Jy arrive at time ay, and the
accepted demand already scheduled over [ak ,ar+Dy) exceed
Dk - Ckp as per Lemma 2. Necessarily, Dk —Cip > Dk -
= Dk(l O) > Dk(l Omaz)- Since by assumption

the accepted demand over [ak,ar + Dk.) exceeds ﬁk — Cip
it also exceeds Dy (1 — dmax)- O

The result of Lemma 3 is that, for any interval checked
by Algorithm 1, (1 — d,,4,) is the minimum busy percentage
required for an offload. In other words, for every job in 7, their
intervals are busy for at least (1 — d,,4,) percentage of time.
However, it is not straightforward to simply take L(1 — 0,,44)
as the lower bound on the full [ag,d,,) interval. This is
because Lemma 3 is discussing an interval with exactly one
offload. To do this we must make an argument on the minimum
busy percentage of related, non-overlapping subintervals that
make up this broader interval, which can be unioned together
to find the lower bound of [ag, d,,). We then define a term
to discuss the accepted demand that must occur within a
smaller interval, but does not contribute to the demand of that
smaller interval. Technically, you may accept demand from a
job without actually executing all of it, as jobs may under-run
their WCETs. However, as we are doing a worst-case analysis,
we will assume that all jobs execute for their full WCET
runtimes. This leads to the term Induced Demand to describe
how smaller intervals within larger intervals must necessarily
have some execution in them that does not correspond directly
to traditional ideas of demand:

Definition V.3. Induced Demand for an interval [a,b) C [a,c)
is the amount of the accepted demand at time a of [a, ¢) that
is executed within [a, b) due to the work conserving scheduler.

Consider the interval of interest for a job that is offloaded,
Ji.. Such a _]Ob arrives at a, and at the time of its arr1va1 we
can find Dk Lemma 3 tells us that over [ax,ar + Dk) the
interval has at least (1 — d,,4,) of accepted demand. Since we
know the arrival of the next offloaded job aj1 occurs within
this interval, let us divide it into two portions: [a, ax+1) and
[ak+1,ar + Dy). Lemma 4 lets us determine how potentially
busy the subinterval [ay,ar4+1) is, based on our knowledge
about [ay, ay, + lA)k) from Lemma 3:

Lemma 4. Let w be the accepted demand at ay, for [ay, ay +
Dy,). Then, the induced demand for interval [ay, ay+1) where
ar < ag+1 < ap + Dy is min(w, ag+1 — ag)

Proof of Lemma 4. Assume w < (agi1 — a). ThAus, the
accepted demand tha may be scheduled over [ay, a;+ Dy,) will
have to be scheduled entirely over [ay, ai+1), which is verified
because of the work-conserving scheduler assumption. As a
result, the amount of induced demand in [ag,ax+1) is w as
well. If w > (ag+1—ag), then there is more accepted demand
over [ay, ai, + Dy) than can fit in [ay, ax+1). Again since we
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Fig. 1. The three regions defined
bya_1,af, d?, and d’ on the Pri-
mary and Secondary Processors

Fig. 2. Relations between sets of
jobs. Note that 71 and [J2 overlap,
but neither is a subset of the other,
and portions of each exist outside
of both 7 and J°

have a work conserving scheduler and all jobs included in
the accepted demand have already arrived by ay, the interval
[ak, ar+1) may be continuously busy (i.e., no idle instants
before completion of the execution of the accepted demand),
and its induced demand is (agt+1 — ag). O

4) DBF-Based Offloaded Demand: The result of Lemma 4
is that [ag, ag+1) must be busy for at least (1 — d,,,4,) of its
length. Since this is true for any k, this allows us to claim that
[aOaal) is (1 — dmaz) busy, asAis [a17a2), up to [am—lyam)-
Thus, the interval [y, @y + D) is itself (1 — 6,42) busy.
Since these intervals are constructed to be non-overlapping, the
entire interval from [ao, dﬁl) is (1 —0yq2) busy. Unfortunately,
calculating work offline is a difficult proposition. This is
because arrival patterns of sporadic tasks are unpredictable
and jobs may run under their WCETs. So we finally seek
to transform this condition into one based on demand bound
function calculations. To do so, we must consider the primary
demand intervals that can contribute work to the [af,d?)
interval. For this we must consider all the jobs generated over
a broader interval [a_1,d’). a_y is the last idle instant on
the primary processor before a, and d’ is the latest possible
absolute deadline of any job executing in the system over
[ag,d3). d’ is defined by d’ = d? + Dpaz, With D pq, being
the largest relative deadline of any task in the system. Since
all jobs that execute within [ag,d? ) must be released at or
after a_1, and have a deadline before d’, DBF(d' —a_y) is
a safe upper bound on the accepted demand within [ag, d?).
On the other hand, this upper bound is highly pessimistic.
To reduce the level of pessimism, in the rest of the sections
we analyze several subintervals of [a_1,d’) that we can more
tightly bound.

Figure 1 details the important time points within this anal-
ysis as well as separating the three important demand regions
we will analyze across both processors. Our goal is the tightest
possible upper bound on the demand of the middle region,
[ag,d3) on the secondary processor, through analysis on the
demand of all three regions on the primary processor. The left
region begins from a full idle point for the system, a_;, where
a job arrives on the primary processor. It ends with the arrival
of the first job to be offloaded since a_; at af, which marks
the beginning of the second region, as well as a busy period
on the secondary processor. This second region contains the
arrival a,, of the job that will eventually miss its deadline
and ends at its deadline d . The third region extends for an
additional D,,,, time units and contains primary processor
work that may have begun in the prior two regions. We start
our analysis with the left region [a_1, a).
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Jobs that arrive and have deadlines within [a_1, a§) cannot
execute during [a§,d?) or [d?,d’), and are not offloaded.
This quantity can be bound by DBF(a§ — a_1). Other jobs
that arrive in [a_1,a) may execute partially in [a_1,ad)
and [ag,d2), entirely in [a§,d?), partially in [a§,d?) and
[d?,,d"), entirely in [d2 , d') or over all three regions. In order
to characterize the effect on [a§, d?,) these jobs may have,
we use Lemma 5 to quantify the amount of accepted demand
that executes in [ag,d?), but that comes from jobs that do

m
not contribute to the total demand of [ag, d2,):

Lemma 5. An upper bound on the accepted demand that
executes in [ay,d>) but does not contribute to the demand

m
of [ag,dB) is given by?:

> Cip —[(a§ —a_1) — DBF(a§ —a_1)],
=1 0

Proof of Lemma 5. To begin, we can take all the execution
within [a§, d2,) as a trivial upper bound. Then for each task i
in the system, we can subtract a lower bound on the accepted
demand executed over [a_1, af—T;) from the DBF (d'—a_1).
This is effectively a lower bound on the work from jobs that do
not contribute to the demand of [ag, d?,) and do not execute in
[ag,d?). Only the last job released of each task in [a_1,af)
can actually carry execution into [ag, dJ,). If this last job was
released before af —T; for each task ¢, than any execution after
a§ would imply a deadline miss. The interval is busy, so there
must be at least aff —a—; execution present, which is a lower
bound. All tasks could contribute at most DBF(a§ —a_1) to
that interval exclusively. DBF'(a§ —a_1) is an upper bound.
The remaining work consists of jobs that may carry execution
into [ag, d?,). Thus, [(a§ —a—1) — DBF(a§ —a_1)], is the
amount of existing execution and consists of jobs that may ex-
ecute into [a§,db)). Thus, [(a§ —a_1) — DBF(a§ — a_1)],
is a lower bound on the amount of those jobs that have
arrival in [a_1,a§) but deadlines after ¢ and must execute
in [a_1,a§). To get an upper bound on the execution of
these jobs, we note that the total amount of execution of
tasks that carry-in work into [af,d?) is at most one job
of each task, which is upper bounded by: Y7, C;,. Thus,
30, Cip — [(a§ — a_1) — DBF(a§ — a_y)loly gives an
upper bound on the amount of execution that could be carried
into [ag,d?) without contributing to its demand. O

The results of Lemmas 3 and 5 allow us to lower bound the
amount of primary execution during [ag, d2,), which consists
of demand from [ag, d?)) by considering the lower bound on
total execution within [a§,d?,) (Lemma 3), and subtracting
the upper bound of demand that may execute in [a§, d?,), but
does not contribute to its demand (Lemma 5). Then, since
the total demand across both processors is upper bounded by
DBF(dJ, —a§), Theorem 1 subtracts that lower bound to get
the overall upper bound on offloaded demand in [a§, d2,):

2We use [z]o to denote the value taken is the larger of = and 0
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Theorem 1. The offloaded demand over the interval [ag,dP)
is upper bounded by

Glaos,ag db) — [DBF(de —a) - [(1 o) (s — )

[Z Cip — [a6 —a—1 — DBF(ag — a_l)]o} } } (1)
1=1 0d0

Proof of Theorem 1. We use job sets to prove Theorem 1. In
particular, we indicate with | 7| the cardinality of the number
of jobs in a set, || 7] the total execution time of a set of jobs
J on the primary processor (also called set norm), and 7 the
complement of a set 7, which contains all jobs not in the set.
From Figure 2’s notation, we define the following five sets of
jobs:

0

. %?tal, jobs that contribute to the primary demand of
[a—lv d/);

JP, jobs that contribute to the total demand of [a_1, a§);
J3, jobs that contribute to the total demand of [a§, d2,);
J1, jobs that have some primary execution in [a_1, af);
Ja, jobs that have some primary execution in [a§, d2)).

We can see that J;” \ J» is the set of jobs that contribute
to the demand of [a§, d2,), but do not execute on the primary
processor in [a§, d?). These jobs are the offloaded demand
of [ag,dS). Our goal then, is to upper bound ||75 \ J2||.
Following the definition of set operations, we can define this
upper bound as follows: HJQDH — HJ2D N jg“ > HJ2D \ng.
We cannot take Hj2D H — || J2]| directly, as J> may contain
jobs that are not in J;°. An upper bound on HJQDH and
a lower bound on HJQD N jQH will provide the safe upper
bound we need. Upper bounding || J2|| is simple, by using the
demand bound function: DBF (df), —a§) > ||75||. We know
by some basic properties of set operations that J° N Jo
T2\ (2 N JP) and its norm: |72\ Lo NTL| > [|7] —
|72 0 TP ||. Therefore, if we lower bound || 72| and upper
bound ng N j2D , we can lower bound HJQ \ 2N jQDH.
Our lower bound of primary demand to have an offload for
|| is given by Lemma 3: (1 — dpq)(d2, — ag) < || Za]l
Our upper bound for |72 N J#|| is given by Lemma 5:
> Cip — (a§ —a—1 — DBF(ag — a-1))],.

Since the relation between the Lemma 3 and Lemma 5
can be difficult to reason about, we take the maximum of
their difference and zero to avoid situations of adding demand
incorrectly. Additionally, since offloaded demand can never
be negative, we apply this maximum again on the entire
expression. We recap by showing the whole series of steps,
from basic upper bound, to final equation:

o\ <o - |
= |7| - ||72\ (27|

< ||| - (171 - || 72 0 7P| < DBF@ - a8) -
AR FarA)
< {DBF(d?n —af) — [(1 = Omaz)(dp, — a§) —

_ [; Cip —[af —a—1 — DBF(a§ — ‘“”0} 0] J

0
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Thus, Equation 1 successfully upper bounds the offloaded
demand in [a§, d3)) O

B. Simplification of the Offloaded Demand Bound

Theorem 1 gives a good analytical understanding of what is
the upper bound of offloaded demand for a generic taskset to
have a deadline miss, but it suffers from practical drawbacks.
In particular, determining the actual value of a_; is only
possible through a full schedule simulation, which could be
impractical to compute. We therefore propose the G*(L)
function, which gives a safe upper bound on Theorem 1 that
can be easily computed offline. Theorem 1 starts from simple
upper bound of DBF(d2, — a&) and performs reductions on
this to get a less pessimistic, but still valid, upper bound. G*
relaxes some of these reductions to get a bound that is not as
tight as Theorem 1, but is fast to compute:

Theorem 2. Given any interval of length L, G* gL) upper
bounds the G(a_1,a§,d>,) function, Ya_i, a§,d’, € Rxg
such that a_y < a§ and d,, = a§ + L:

S, { J_[u_(smm)L—Zcip

T, €T T; <L T;iET

L+Ti—DiP

G*(L) = -

0

Proof of Theorem 2. We seek to show that G*(L) upper
bounds the G(a_1,a§,d?) function from Theorem 1. We
assert [ = d —ag, and show that the bound holds regardless
of choice of a_;. The bound is proven in parts, noting that
the G(a_1,ag,d?) function can be broken into three major
terms. The first two terms are the same in G and G*. In fact,
for the first term we have that: DBF(d® —ay) = DBF(L) =
Yrerm<r Cip {L*TTDJl Note that using the reduced set
of tasks 7; € 7:T; < L for the sum rather than the full taskset
does not reduce the DBF value. This is because tasks with
T; > L cannot have a job be released and have a deadline in
the interval, and thus contribute no demand. For the second
term, adopted from Lemma 3, we have that: (1 — 6,naz)(d2, —
ad) = (1 — dyaz) L. The last term adopted from Lemma 5,

ie., |:Z?:1 Cip —la§—a_1—DBF(a§ —a,l)]o} , is clearly

smaller than Z:L:l Cip. As the second terms areoequal, and
the third term in G*(L) is equal to or larger than the one in G,
their difference is either equal or smaller. Therefore the amount
subtracted from the DBF term in G*(L) is no larger than the
amount subtracted in G. Thus, G*(L) > G(a_,,a§,d?). O

The G*(L) function is non-negative, is defined for all non-
negative integer values of L and provides an upper bound on
the amount of demand that can be offloaded over any interval
of length L. When v = 1, C;, = C;, for 7; € 7, then
the amount of offloaded demand from the primary processor
exactly equals the demand upon the secondary processor.
Therefore, we can use G* as an upper bound of demand in
the standard EDF uniprocessor schedulability condition (e.g.,
if the secondary processor was fully preemptive, a sufficient
condition for secondary processor schedulability would be
G*(L) < L, VL > 0).
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We are now ready to move from our analysis of offloaded
demand to deriving a general offline schedulability test for the
system (V 7 € (0, 1]). We begin first with some definitions.

Definition V.4. Consider any L-length busy interval [t, ¢+ L)
on the non-preemptive secondary processor that satisfies the
following properties:

1) a job with secondary relative deadline D;, < L arrives
at time ¢;

2) the secondary processor is continuously backlogged over
[t,t + L) with offloaded jobs that arrive and have
deadline in [t,t + L);

3) Under non-preemptive scheduling, there is at most one
lower priority job with an absolute deadline after ¢ + L
that begins execution prior to ¢ and continues its execu-
tion within the interval [¢,¢ 4+ L). This job necessarily
must have D, > L; and

4) No job misses a deadline in [, + L) (note a deadline
miss is permitted at ¢ + L).

The critical offloaded demand @Q(L) for any such L-length
busy interval is the minimum offloaded demand from the
primary processor that could generate such a busy interval.

Definition V.5. When jobs are executed on the secondary
processor non-preemptively, some low priority jobs may cause
an additional blocking time, B(L), that can be bounded by the
following function from George et al. [12]:

B(L) = I_P%:f{cjs'Djs > L} 2)

We use the convention that B(L) equals 0 when L exceeds or
equals max, ¢-{D;}.

For uniform secondary processor times, the critical of-
floaded demand over any L-length interval can be obtained by:
QL) > %%L)_ From the above definitions, we can easily
state a generic schedulability test for our system:

Theorem 3. The both primary-executed and offloaded jobs
of task system T will meet all their deadlines if: G*(L) <
Q(L), YL > 0.

Proof of Theorem 3. First, observe that Algorithm 1 offloads
any job whose induced demand over some interval will
cause the demand to exceed the available processing time
on the primary processor. To show that the offloaded jobs
will meet their deadline upon the secondary processor, we
prove this statement via the contrapositive; that is, if 7 misses
a deadline on the secondary processor, we will show that
G*(L") > Q(L’) for some L’ > 0. Assume that the secondary
processor misses a deadline at time ty. According to the
usual demand-based analysis for non-preemptive EDF on a
processor [12], there exists a time ¢_1(< ¢7) that is the last
idle instant with respect to jobs with deadline at or before
time t;; in other words, the processor is either idle right
before t_; or executing a job with deadline strictly later than
ty (in which case it can non-premptively block for at most
B(ty — t_1)). Therefore, by construction of this last idle
instant, the secondary processor is continuously backlogged in

the interval [t_q,¢;) with jobs that arrive at or after ¢_; but
have deadline at or before t;. Therefore, the total secondary
processor demand of the offloaded jobs in the [t_, %) strictly
exceeds ty—t_1—B(ty—t_1). Let L’ = ty—t_y; by definition
of the () function, we have that the offloaded demand from
the primary processor exceeds or equals Q(L').

Note that the interval [t_,¢s) exactly corresponds to inter-
val [a§, d?) in the proof of Theorem 1. Thus, there must also
exist an a_1(< af), which is the last idle time on the primary
processor with respect to interval [a§,d?,). Thus, since the
primary processor demand offloaded from this interval exceeds
or equals Q(L), we must have G(a_1,a§,d>) > Q(L'). By
Theorem 2, G*(L') > Q(L’), completing the theorem. O

VI. EVALUATION

We now analyze the performance of our offline method by
using both synthetically-generated taskset data and a realistic
practical taskset collected from our prototype autonomous
mobile robot executing computer vision tasks, which is the
primary processor. The local network processor is the sec-
ondary processor, which transmits the job to a powerful edge
server. The deadlines are adjusted by subtracting the worst-
case response time of an offloaded job on the edge server.

A. Experimental Setup

Our evaluation was done through a python simulator A mod-
ified EDF scheduler was made to run jobs from 500 tasksets of
different primary utilization using Algorithm 1 to select jobs
for offloading. We run these tests on a desktop with an Intel
core-i9 3.7GHz processor and 128GB DRAM. To generate the
tasksets, we have adopted the UUniFast algorithm [13]. For
the Cprlmary processor the utilization of a task is deﬁned as U;

[IOms 70ms] We also define a common scaling factor y
and then use it to calculate the secondary processor execution
time for each task. To maintain integer task parameters, we
then take floor values of primary and secondary processor
execution times. Due to this rounding, the overall utilization of
any generated task system may differ slightly from the target
UUniFast utilization. Due to the exponential-time complexity
of the simulator (proportional to the value of the hyperperiod),
we chose to limit generated taskset hyperperiod sizes to keep
experiment runtimes manageable. For our synthetic tasksets
we restricted them to 50,000, and permitted hyperperiods up
to 100,000 for our practical examples.

We consider two performance metrics to analyze the theo-
retical bounds provided in this paper: offloaded demand ratio
(ODR) and schedulability ratio (SR). We calculate these for
primary utilizations ranging from 110% to 200% for ODR and
110% to 290% for SR, using ~y values from 0.2 to 0.6. ODR is
calculated as the highest observed ratio between the value of
the G* function (Theorem 2) and the actual offloaded demand
given by our simulator for all interval lengths 1 < L < H.
If the ODR is 1, G* perfectly estimates offloaded demand.
Values larger than 1 imply an over-estimation by G*. SR is
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defined as the percentage of generated tasksets that are found
schedulable.

It is important to note that the results from the simulator
may be optimistic since it is looking at the offloaded demand
of one arrival sequence, which may not be the worst-case;
i.e., the simulation may classify a task system as schedulable,
even though a different arrival sequence may lead to a deadline
miss. Nonetheless, it is useful for demonstrating the usefulness
of the G* function when compared to the optimistic results
reported by the simulator. Furthermore, while both the simula-
tion and G* evaluations can take exponential time, in practice
the G* is significantly faster, provides an answer on whether
the system is schedulable (over all possible legal job arrivals),
and is not significantly more conservative than the optimistic
simulation results (as we will see in the next subsections).

B. Results with Synthetic Tasksets

Figure 3a shows the cumulative distribution function (CDF)
of the ODR for primary utilization varying from 110% to
200% over 500 tasksets at each utilization. For example, at
utilization 120%, around 60% of the tasksets have an ODR
of 2.6 or less. We observe that when primary utilization is
110%, the offloaded demand estimation given by G* function
never exceeds approximately 8.7 times the offloaded demand
found from the simulation, and is never less than 1.5. As
the primary utilization increases, the observed ODR values
tend to decrease and approach 1. For a primary utilization
of 200%, the smallest observed ODR is around 1.4. As
primary utilization increases, the G* function becomes more
accurate, and ODR decreases towards 1. G* improves at high
utilizations as the primary processor tends to be more busy and
offloads more jobs. As G* is an upper-bound, the closer the
system performs to the worst-case of offloading all jobs, the
more accurate G*’s estimations are. Lower primary utilizations
are less likely to encounter a worst-case and G*’s estimation
will be more conservative.

Figure 3b shows the difference in SR between the simulator
and the offline analysis. We tested primary utilizations from
110% to 290% and for each utilization considered secondary
processor utilization based on three values of v, 0.3, 0.4, and
0.5. Note that we did not include results for cases where pri-
mary utilization is lower than 100%, as such cases are trivially
schedulable by preemptive EDF. For example, at 7=0.3 the
simulator schedulability ratio ranges from 100% schedulable at
110% primary utilization down to 48% schedulable for 290%
primary utilization. Correspondingly, our offline schedulability
analysis based on uniform secondary processors (o labels
in figure) provides an SR ranging from 89% to 17% for
similar tasksets. Overall, the offline analysis had SR which
perfectly matched the simulator results, or found about half
as many tasksets schedulable as the simulator until either
v = 0.5, or utilization is well past 2. Understandably, the
SR of our analysis drops dramatically for  values above
0.5, and we omit them here for brevity. Nonetheless, these
results show that our offline analysis is able to provide some
schedulability guarantees even at very high primary utilization.
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In particular, with v = 0.3, many tasksets of 290% utilization
are schedulable, as a fully utilized primary processor may
offload at most 190% utilization to the secondary processor,
which is then reduced by the v factor to effectively 63.3%
utilization, often schedulable, even by non-preemptive EDF.

C. Results from Realistic Practical Tasksets

Here we test the proposed offline analysis based on a real-
world applications. We use our prototype HydraOne [14],
which is an autonomous mobile robot that can execute navi-
gation and objective tasks. The navigation task is a Machine
Learning (ML) model trained to periodically update the robot
speed and direction based on camera frames. The objective
tasks are other ML models that do not directly affect the
navigation decisions but give the robot useful purpose, such
as recognizing faces, detecting holes in a fence, recognizing
objects etc. Unfortunately, our real prototype does not im-
plement a real time operating system, so we could not run
tests directly on it. Thus, we use the simulator described in
Section VI-A to schedule various tasksets generated using
data profiled from our real robot. Specifically, each navigation
task executes approximately 0.1M instructions, while objective
tasks, depending on the model, execute between 0.5M and
1.5M instructions. The CPU speed is profiled to execute on
average 50 Million Instructions per Second (MIPS) for these
tasks. For network operations, we profile the size of a typical
camera frame to be in the interval 4Mb — 32Mb and assume
an average 5G networking speed of 1,000Mbps [15].

Using these profiled data, we use an example scenario of
four objective tasks running concurrently to a navigation task.
In order to generate different tasksets, we use the following
procedure: 1) randomly choose the number of instructions for
each of the 4 objective tasks in the range 0.5M —1.5M, 2) cal-
culate the primary processor execution time of each task based
on the profiled CPU speed, 3) choose the target utilization and
calculate the periods of each objective and navigation tasks.
Similar steps are used to generate the secondary processor
related data of the taskset. We generate 25 different tasksets
and average the ODR and SR for each target utilization. Note,
due to long running times we could not use 500 tasksets as in
previous section. In addition, the large period range of these
tasksets leads to large hyperperiods, thus here we show results
for only v = 0.5. We plan to design a more efficient method
for interval selection in our future work.

Figure 3c shows how the ODR changes for different primary
utilization considering both synthetic and practical tasksets.
We observe that the offloading behavior and G* function be-
haves similarly whether testing synthetic or practical tasksets.
In both cases G* becomes more accurate for primary utiliza-
tion increases with the ODR approaching 1 (red horizontal
line). For synthetic tasksets the worst-case observed ODR is
3.40 while the realistic tasksets have a significantly lower value
of 2.36. As primary utilization increases, both types of tasksets
follow a similar trend, suggesting applicability of the synthetic
results to real systems. Figure 3d shows the comparison of
SR between the simulator and the offline analysis tested with
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Fig. 3. (a) CDF of ODRs for varied primary utilizations. (b) SR for different primary utilizations and  values for simulated system (s) and offline analysis (o)
with uniform secondary processor execution times. (¢) ODR with synthetic and practical tasksets and (d) SR for different primary utilization of the practical

taskset with uniform secondary processor execution times.

the practical tasksets. We can see that when the primary
utilization is lower than 200%, all of the tasksets are found
schedulable by the simulator, and nearly all by the offline
analysis as well. However, when utilization increases, the ratio
tends to decrease for the same reason described earlier. While
the simulator finds surprising schedulability even up to 270%
utilization, the offline analysis drops sharply above 200%.
These experiments suggest that the results for the synthetic
tasksets are comparable to those of realistic cases. In addition,
our offline analysis provides reasonably good guarantees of
schedulability for realistic tasksets.

VII. CONCLUSIONS

While both offloading and real-time systems have been well
studied in the literature, works using them together are less
common. In this paper we have laid the groundwork for a
scheduling framework that utilizes heterogeneous processors
to assist with hard real-time systems when the primary proces-
sor is overloaded, in which case jobs can be offloaded to meet
deadlines. While we take a number of simplifying assump-
tions, we believe that this is an important step in utilizing the
high degree of connectivity in modern computing in a novel
and powerful way. Our experimental results show that even
with our conservative assumptions, task sets above even 200%
primary utilization become schedulable, potentially lowering
expensive over-provisioning in such systems. Future work will
involve tightening of the offline analysis, consideration of
multiple offloading units, other scheduling algorithms, network
losses, and further generalizations.
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