
Real-Time Schedulability Analysis for Overloaded

Primary-to-Secondary Processor Systems

Mitchell Duncan

Wayne State University

Fatima Raadia

Wayne State University

Syeda Tanjila Atik

Wayne State University

Marco Brocanelli

Wayne State University

Nathan Fisher

Wayne State University

Abstract—Heterogeneous computing has emerged as a pow-
erful tool for modern highly-connected systems to efficiently
distribute computing resources. Yet, many systems with real-time
constraints may require expensive over-provisioning to meet their
requirements. To address this problem, a real-time system may be
designed to be overloaded on its primary processor, but be made
viable through the support of a powerful secondary processor. In
such a system, workload is scheduled on the primary processor
by default, but some jobs that would cause a deadline miss can
be offloaded, through a transfer of the necessary data, to the
secondary processor. We propose an earliest-deadline-first (EDF)
based scheduling framework to demonstrate schedulability condi-
tions of such a system, including the costs incurred by offloading.
This represents a first stage towards a complete understanding
of this complex class of systems and their dynamics.

I. INTRODUCTION

Modern computing is rapidly expanding into multiple new

and interdisciplinary domains. Real-time computing in partic-

ular is finding itself relevant in many fresh areas, like hetero-

geneous and distributed computer resources. As more fields

create demands for computation, heterogeneous computing

systems are emerging as a flexible solution for managing the

variety of requirements from many complex systems. Notably,

some of the systems generating these demands, e.g., naviga-

tion tasks of autonomous vehicles, drones, and autonomous

mobile robots, have safety-critical aspects that must satisfy

certain timing constraints. In general, an on-board primary-

secondary processor setup enables computational offloading

when the primary processor is overloaded, i.e., a given taskset

is unchedulable on the primary processor. For example, jobs

can be offloaded from the primary little core (energy-efficient

but weak) to the secondary big core (powerful but power-

hungry) in big.LITTLE architectures when deadlines cannot

be met only with the little core. Another example is when

jobs are offloaded from the on-board primary processor to a

remote powerful edge server through the on-board network

processor, i.e., the secondary processor.

In this work we address the schedulability of online de-

cisions for offloading permitting the secondary processor’s

resources to be utilized only when absolutely needed, which

allows real-time developers to safely use these powerful re-

sources without fear of excessive network traffic or wasteful

energy usage on their local devices. Specifically, we determine

an offloading policy that minimizes the number of offloaded

jobs to the secondary processor and then provide a schedu-

lability analysis for the following general scenario: a multi-

processor system comprised of a primary local processor and

a secondary local processor that either executes jobs in place

of the primary processor or offloads data to powerful remote

servers.

Our work utilizes a variety of existing concepts and tools.

Prior studies in similar scenarios do not take real-time con-

straints into account (Goldstein [1], Lv et al. [2]), do not select

jobs for offloading based on preserving primary schedulability

(Schönberger et al. [3]), or are based on choosing tasks to

offload offline [4], [5]. However, to the best of our knowledge,

there is no prior work that guarantees the schedulability of

sporadic real-time tasks on such a heterogeneous system using

demand-based real-time analysis while minimizing the amount

of offloaded demand as a central goal.

In summary, this paper makes the following contributions:

• A real-time analysis of primary-secondary processor sys-

tems running constrained deadline sporadic tasksets;

• An analysis on the amount of demand offloaded to the

secondary processor;

• An extensive evaluation of offloaded demand estimation

and schedulability ratio comparison for a variety of task

systems compared to a runtime simulated system.

The rest of the paper is organized as follows. Section II

describes the related work. Section III details our system

model. Section IV describes our scheduling framework and

how we address deadline-aware offloading. Section V details

how we construct a schedulability analysis for this framework

and derive demand-based bounds. Section VI shows our ex-

perimental results and Section VII concludes the paper.

II. RELATED WORK

The general topic of computational offloading has been well

studied in the past. A good survey of the field is provided

by Mach and Becvar [6]. Some existing studies on real-

time computation offloading focus on specific application such

as object recognition and tracking [7] or assume, as default

model, that all tasks will have a remote execution component

such as Schönberger et al. [3]. Contrary to such solutions, our

paper does not focus on a specific application but analyzes a

system that executes jobs at the primary processor by default,

and on the secondary only when necessary. Both Liu et al. [5]

and Toma et al. [4] focus on demand-based edge offloading,

but use offline decisions to determine the set of tasks to offload

(and all jobs of selected tasks are offloaded). Our system

makes job level decisions, and does so online (i.e., at runtime);

thus, the objectives of the approaches are orthogonal.

1931

2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th
Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application

979-8-3503-1993-4/22/$31.00 ©2022 IEEE
DOI 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00289

20
22

 IE
EE

 2
4t

h
In

t C
on

f o
n

Hi
gh

 P
er

fo
rm

an
ce

 C
om

pu
tin

g
&

 C
om

m
un

ic
at

io
ns

; 8
th

 In
t C

on
f o

n
Da

ta
 S

ci
en

ce
 &

 S
ys

te
m

s;
 2

0t
h

In
t C

on
f o

n
Sm

ar
t C

ity
; 8

th
 In

t C
on

f o
n

De
pe

nd
ab

ili
ty

 in
 S

en
so

r,
Cl

ou
d

&
 B

ig
 D

at
a

Sy
st

em
s &

 A
pp

lic
at

io
n

(H
PC

C/
DS

S/
Sm

ar
tC

ity
/D

ep
en

dS
ys

) |
 9

79
-8

-3
50

3-
19

93
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HP
CC

-D
SS

-S
M

AR
TC

IT
Y-

DE
PE

N
DS

YS
57

07
4.

20
22

.0
02

89

Authorized licensed use limited to: The Ohio State University. Downloaded on July 28,2023 at 16:53:31 UTC from IEEE Xplore. Restrictions apply.

Our system model may be viewed as composed of het-

erogeneous multi-processors (e.g., Raravi et al. [8]). Most

of these papers involve balanced assignment of tasks to the

processors, which is different from our case study where

the secondary processor receives jobs only when the primary

processor cannot schedule them. To the best of our knowledge,

this is the first work studying the schedulability of tasks in

a primary-secondary system by including the scheduling of

job data transmissions. In particular, considering the online

job offloading policy described in Section IV, we design the

proposed offline schedulability test by analyzing the amount

of demand offloaded to the secondary processor in Section V.

III. SYSTEM MODEL

Our long-term goal (beyond this paper) is to develop general

schedulability tests for online job-level offloading policies for

a system of n tasks scheduled across a primary processor,

and a general set of secondary processors. However, due to

the high complexity of the problem and given the lack of

previous work focusing on such online offloading policies with

strict real-time analysis, in this paper we make the following

assumptions that allow us to simplify the problem and make

the first step towards the above goal:

1) The system has one primary processor that executes task

τi with a Worst-Case Execution Time (WCET) CiP ,

and one secondary processor that executes them with

a WCET CiS ;

2) The primary processor uses preemptive EDF scheduling;

3) The secondary processor is capable of using either

preemptive or non-preemptive EDF;

4) System tasks are modeled by the constrained-deadline

sporadic task model;

5) A system-wide scaling factor γ ∈ (0, 1] can be used to

describe the non-equal relationship between the primary

and secondary processors’ execution time as follows:

CiS = γ ∗ CiP for τi ∈ τ .

The first assumption restricts us to one offloading processor,

and requires it to be well analyzed and suitable for real-

time applications. The second and third assumptions are re-

quirements for these processors, but not restrictive in many

applications. The fourth assumption is a typical real-time

system model while the last one assumes a uniform scaling

factor in WCET of tasks from primary to secondary processor.

Our model is a slight variation on this standard, with an

additional term to address the presence of both processors.

Each task τi is of the form:

τi =< CiP , CiS , Ti, DiP , DiS >

where CiP and CiS are the WCET of a task on the pri-

mary and secondary processor, respectively. If the secondary

processor is a network processor, CiS will denote the transfer

time. Note, we are aware that execution times may vary at

runtime. However, having bounded transfer time and execution

times is fundamental for real-time analysis [9] since real-time

guarantees cannot be provided if applications cannot bound

their runtime. Ti is the shortest time between the arrival of two

jobs of the same task. Each task has a relative deadline DiP

that must be met if a job executes on the primary platform,

and another relative deadline DiS if a job executes on the

secondary platform. In both cases, these represent the offset of

a job’s arrival to it’s absolute deadline. In general, we assume

that a job’s secondary deadline may be more restrictive than

its primary deadline, so DiS ≤ DiP We plan to remove the

above first assumption in future work. Note that this system

model can be used on most on-board primary-secondary

processor setups. For example, if computation is offloaded to

an edge server, the primary processor offloads jobs through the

network (secondary) processor by subtracting the worst-case

response time of the job on the edge server from the original

deadline DiP to find DiS , thus including possible delays due

to shared edge resources. The updated deadline is then used

to conduct the schedulability analysis. We will evaluate this

restrictive setup in the evaluation section. In addition, we plan

to expand our model to consider schedulability also of tertiary

processors, e.g., an edge server processor, in our future work.

IV. DEMAND BASED OFFLOADING POLICY

Our scheduling methodology is based on an extension of

EDF scheduling. A released job has priority assigned to its

deadline and earlier deadlines have higher priority. An arriving

job of higher priority will either preempt a job of lower

priority or be offloaded. For the primary system, we assume

a preemptive constrained-deadline EDF scheduling condition

based on the work of Baruah et al. [10] to determine if

offloading will be necessary:

∀L > 0, L ≥ DBF (L) =
n∑

i=1

(⌊
L+ Ti −DiP

Ti

⌋)
CiP

If this condition is satisfied, then we have a trivial case since

no offloading is necessary. If this condition is not met, then at

some point offloading may need to occur to maintain primary

processor schedulability. In this case, we must determine a

methodology for choosing what jobs to offload and when to

do so. We refer to this as an offloading policy and define it

for our system in the following section. It runs each time a

job arrives and tests short term primary schedulability, then

offloads only those arriving jobs that would cause a deadline

to be missed on the primary processor. Note that this is not the

only policy that could be defined, and the rest of our analysis

hinges upon the behavior of this algorithm with the rest of our

model. We plan to explore other policies and their scheduling

properties in our future work.

A. The Online Offloading Policy

Our scheduling methodology considers only the primary and

secondary processors, and can be treated as a two processor

heterogeneous EDF system that first attempts to schedule jobs

on the primary processor. If not possible, it schedules them on

the secondary processor. This is, to the best of our knowledge,

a novel scheduling environment that requires some theoretical

investigation. In particular, can we bound the amount of work

sent to the secondary processor as part of offloading? This

1932

Authorized licensed use limited to: The Ohio State University. Downloaded on July 28,2023 at 16:53:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Offload(Ja,S,t)

Input Ja: a job just arrived. S: current set of active jobs that

have been admitted to primary processor prior to Ja’s arrival.

t: current time instant.

1: for each job Ji in S ∪ Ja, in earliest deadline order do

2: Let Cobserved
iP

be the amount of time Ji has spent

executing on the primary processor

3: Let C
left
iP

= CiP − Cobserved
iP

4: t = t+ C
left
iP

5: if t > absolute deadline of job Ji then

6: Offload Ja and terminate.

7: end if

8: end for

9: Admit Ja to the primary processor schedule

involves a discussion of what a critical instant means for

this system. For a traditional uniprocessor system this critical

instant for a job Ji is when all tasks release a job at the

same time1. It is the scenario that creates the largest response

time for that job. In the uniprocessor case, using the critical

instant allows the construction of a worst-case schedule to

determine whether a job Ji could potentially miss its deadline.

However, the case considered in this paper is substantially

different because we consider that the primary processor is

overloaded. We then have two questions. How to know when

a sequence of jobs will cause an offload? In addition, how

to measure the offloaded demand? Both of these questions

are tied to the offloading algorithm that we propose. We have

adopted an offloading policy where the system admits jobs

until it is overloaded. Once this happens, the offending job,

i.e. the one that caused the system to become overloaded, is

offloaded. We present our offloading policy in Algorithm 1,

which is called at the arrival of each job into the system. It

takes three arguments: Ja, the just arrived job with relative

deadline DaP
and WCET CaP

; S: the current set of active

jobs that have been admitted to the primary processor prior to

Ja’s arrival; t: the current time instant. If multiple jobs arrive

simultaneously, they are processed in an arbitrary order. Lines

1-8 process each job of the existing schedule S plus Ja in

order of their deadlines. Line 2 defines Cobserved
iP

, the amount

of time that a job has spent executing on the primary processor.

We assume the system can track this for each job. Line 3 then

subtracts Cobserved
iP

from CiP to get C
left
iP

, the job’s worst-case

remaining execution time. Line 4 advances the current time

instant by C
left
iP

and Line 5 determines whether a deadline

has been missed. If so, then the addition of Ja may cause

a deadline miss on the primary processor, thus it is offloaded

and Algorithm 1 terminates its execution. Otherwise, if the for

loop completes and the algorithm reaches Line 9, no deadline

miss is possible. Thus, Ja is admitted to the primary processor.

1Unless otherwise specified, the index i for a job does NOT imply that the
job was generated by task i.

B. Offline Analysis Overview

The described offloading policy ensures that the primary

system is schedulable, since S was schedulable before the

arrival of Ja, and that the offloading infrastructure that may be

shared among different devices is not unnecessarily congested.

However, this is not the only possible offloading policy. A

system could offload before its primary processor is over-

loaded and it could offload more jobs than it needs to. We will

consider different policies in our future work. For an interval

of length L, the demand that could be offloaded is analyzed.

This is done by calculating the G∗ function - which is an

upper bound on the offloaded demand over an interval (Section

V). If the maximum offloaded demand G∗ is schedulable on

the secondary processor, then there is no deadline miss for

this interval. Successively larger intervals are tested until L

is equal to the hyperperiod H , i.e., the analysis terminates

and determines the taskset to be schedulable, or until G∗ is

unschedulable on the secondary processor for some interval L,

i.e., the taskset is potentially unschedulable. The hyperperiod

H is a safe upper bound; it is omitted for space and will appear

in the extended version of the paper.

V. OFFLOADED DEMAND ANALYSIS

We now begin the construction of a schedulability test by

examining the total amount of offloaded demand, i.e., the total

amount of jobs’ primary execution time that may be offloaded

to the secondary processor over a given interval.

A. Offloaded Demand Analysis

1) Outline: To determine a sufficient condition for schedu-

lability, we determine a necessary condition for unschedulabil-

ity. Throughout this section, we use the following conventions:

Sets of objects use calligraphy letters such as a set of jobs,

J ; Relative terms use a capital letter indexed with a subscript

such as some job a’s WCET Ca; Absolute terms use lowercase

letters with a subscript such as a time instant tn. Due to the

complex interactions between tasks and the processors, there

are a few of steps we must go through before reaching a

schedulability test:

1) In Section V-A2, we define the conditions for the

primary processor to offload an arriving job (Claim 1).

2) Using Claim 1 we show that each job offloading is

caused by demand intervals and that intervals of consec-

utive offloaded jobs are contiguous (Lemma 1). Then,

based on the findings of Lemma 1, we re-define the

conditions for a job to be offloaded using the intervals

and total demand (Lemma 2).

3) In Section V-A3 we generalize this condition away from

job-specific terms to quantify what primary processor

conditions are required for offloading, regardless of the

arriving job (Lemma 3). This lets us describe, for a given

interval, which of its subintervals must be busy (Lemma

4). We also define two new forms of demand (accepted

and induced).

4) In Section V-A4, we find an upper bound on how much

accepted demand can be carried between contiguous

1933

Authorized licensed use limited to: The Ohio State University. Downloaded on July 28,2023 at 16:53:31 UTC from IEEE Xplore. Restrictions apply.

intervals (Lemma 5). This lets us prove bounds on the

amount of offloaded demand that can be introduced to

the secondary processor from the primary processor in

a given interval (Theorem 1).

5) Finally, Section V-B proposes a function G∗(L) in

Theorem 2, which performs the bounding of offloaded

demand in a fast and easily computable way.

2) Job-Specific Offloading Conditions: Our analysis begins

by determining the general conditions for a job to be offloaded:

Claim 1. A job Ja can only be offloaded if it being accepted

into the primary processor’s schedule would cause Ja or a

previously accepted job to miss its deadline.

Proof Sketch: The for loop in Lines 1-8 of Algorithm 1 are

an admission schedulability test for the primary processor. In

particular, the offloading action in Line 6 is only reached if

a job will miss its deadline, or cause a previously accepted

job to miss its deadline, by the statements of Lines 2-5. So a

job that misses its deadline must do so after being sent to the

secondary processor.

Since by construction a job admitted to the primary pro-

cessor will not miss its deadline, our schedulability analysis

begins by assuming a job on the secondary processor has

missed its deadline, and then “works backwards” to find the

necessary sequence of arrivals and offloads from the primary

processor that cause this deadline miss. Assume there is a

deadline miss on the secondary processor at time tm. We

assume w.l.o.g. that tm is the first deadline miss, i.e., the

interval [0, tm) contains no deadline miss. Denote Jm as the

job that misses its deadline. Jm has arrival time am and

absolute deadline dm = tm. Denote the last idle instant (on the

secondary processor) before tm as t0. We may ignore all jobs

on the secondary processor that complete before t0 without

affecting the deadline miss at tm. There is therefore a set

of jobs that are continuously active in the interval [t0, tm).
From this set of continuously active jobs, we want to consider

only the minimum set of jobs which “span” the entire interval

of [t0, tm) and adopt a concept from [11] called spanning

chain of jobs. In essence, it describes how, for a busy interval,

you can find a subset of jobs such that at any time point

at least one, but at most only two of them are active on

the processor. For details, we direct the interested reader to

the cited paper. We will index these spanning-chain jobs by

their absolute deadline on the secondary processor. J0 has the

earliest absolute deadline after t0, then J1, and so on, until

Jm, which does not complete by its deadline at tm. For each

Ji : 0 ≤ i ≤ m, the term ai (resp., di) represents the absolute

arrival time (resp., deadline) of Ji. To satisfy the properties of

the spanning chain, we require the following:

1) ∀1 < i ≤ m : ai−1 < ai ≤ di−1

2) ∀1 < i < m : di−1 < ai+1

By construction, this spanning chain of jobs J =
J0, J1, J2, ..., Jm entirely covers the secondary processor busy

interval over [t0, tm).
As the rest of this section involves the contributions of

various jobs to various forms of processor demand, we specify

three different demand values in terms of primary execution

time (i.e., CiP values) that must be generated for the jobs of

J to be offloaded to the secondary processor:

• Dtotal : The traditional notion of demand, the sum of

the demand of all jobs released and having a deadline in

some interval;

• Dprimary : The demand of all jobs that are not offloaded

and thus execute on the primary processor over some

interval;

• Doffload : The demand of all jobs that have been selected

to be sent to the secondary processor.

We now consider the demand intervals on the primary

processor for each job J ∈ J that has been offloaded. We can

use this to construct the interval of primary demand that was

sufficient to offload a given job in J i.e., Jk, 0 ≤ k ≤ m. This

interval is calculated based on the active set of jobs S during

the execution of Algorithm 1 w.r.t. Jk. Let the set of jobs in

the system upon each Jk’s arrival be Sk. Denote the earliest

arrived job in Sk as Jα
k , and its arrival time as aαk . Denote the

job that would miss its deadline should Jk be accepted as J
β
k ,

and its deadline as d
β
k . Trivially, aαk ≤ ak. For determining

when a job may obstruct the execution of another, we use the

notion of interference:

Definition V.1. A job Jx interferes with a job Jy iff Jx
executes on the same processor as Jy after the release of,

and before the completion of Jy .

Since the primary processor is scheduled with EDF, Jk
cannot interfere with jobs in Sk with deadline earlier than dk.

Therefore, d
β
k ≥ dk. This defines the interval [aαk , d

β
k), which

we refer to as the primary demand interval of Jk. Note that

the interval itself may not be entirely busy, as Jk is offloaded.

Considering the primary demand intervals of each offloaded

job Jk, we now demonstrate the following lemma:

Lemma 1. The primary demand intervals of offloaded jobs

are contiguous: ∀k < m, d
β
k ≥ aαk+1 ≥ aαk

Proof of Lemma 1. Let the primary demand interval of job

Jk be [aαk , d
β
k). By construction of the spanning-chain for

[t0, tm), we have that dk ≥ ak+1. Therefore, d
β
k ≥ dk ≥

ak+1 ≥ aαk+1 =⇒ d
β
k ≥ aαk+1. Additionally, by the spanning

chain ak+1 ≥ ak. The earliest job that is active when Jk+1

arrives cannot have strictly earlier arrival than the earliest job

that interferes with Jk; thus, we also have aαk+1 ≥ aαk . This

concludes the proof.

Therefore, the total demand interval that must be investi-

gated for the deadline miss at dm is the union of all the

primary demand intervals of jobs of J , which, by Lemma

1, is a single contiguous interval [aα0 , d
β
m) whose length we

denote as L = dβm − aα0 . Importantly, since t0 is the last

idle instant before tm, the earliest arrival of any Jk on the

secondary processor occurred at t0. Since aαk ≤ ak, it must

also be true that this aαk ≤ t0. Similarly, since dβm ≥ dm = tm,

the secondary processor interval [t0, tm) is contained entirely

within [aα0 , d
β
m). We know that all jobs released by the system

1934

Authorized licensed use limited to: The Ohio State University. Downloaded on July 28,2023 at 16:53:31 UTC from IEEE Xplore. Restrictions apply.

execute either on the primary or secondary processors. That

is, over [aα0 , d
β
m), the following must hold: Dtotal(L) =

Dprimary(L) + Doffload(L). The total demand follows from

the processor demand-bound equation for constrained-deadline

sporadic task sets, consisting of all jobs released within an

interval from all tasks in the system, multiplied by their

execution lengths, i.e., Dtotal(L) ≤ DBF (L).

We may now upper bound the offloaded demand by upper

bounding total demand and lower bounding primary demand.

First, we determine a safe lower bound on Dprimary within

an interval of length L. To bound this demand, we consider

the condition upon which a job may get offloaded. Since

the primary processor is scheduled according to EDF, the

necessary condition for a job Jk to be offloaded is that the

amount of already accepted demand over the interval [ak, dk)
must exceed the amount that Jk brings:

Definition V.2. Accepted Demand with respect to a time a and

interval [a, b) is the potential remaining execution of jobs that

arrive at or before a, are accepted on the primary processor

by Algorithm 1 and have deadlines at or before b.

Denote by D̂k the length of the interval from the arrival

of Jk to the deadline that would be missed on the primary

processor. That is, D̂k = (dβk − ak). Remember that d
β
k may

itself be dk, in which case Jk itself could not fit on the primary

processor, or it could be a later deadline, in which case a job

that had already been accepted to run on the primary processor

could miss its deadline. Note that either way, D̂k ≥ DkP
, the

primary relative deadline of Jk. As a result:

Lemma 2. Jk is offloaded if and only if at the arrival of job

Jk, the amount of accepted demand over the interval [ak, ak+
D̂k) exceeds D̂k − CkP

.

Proof of Lemma 2. First, assume that Jk is offloaded. Then by

Claim 1, we have seen that trying to schedule it on the primary

processor would cause a deadline miss at ak + D̂k. Since we

are scheduling with EDF, then necessarily it must have caused

the accepted demand within [ak, ak+D̂k) to exceed D̂k. Since

Jk brings CkP
demand, the amount previously scheduled there

must have been at least D̂k − CkP
. This proves the first

direction. Now assume there is less than D̂k − CkP
accepted

demand over [ak, ak+D̂k). There is at least CkP
idle time on

the primary processor over that interval. Jk can be scheduled

in these idle instances without missing a deadline, or causing

any already accepted job to miss a deadline. This proves the

second direction.

3) Generalization of Offloading Conditions: In order to

remove the dependency of the results of Lemma 2 from

specific job characteristics, we define the term density by

δk =
CkP

DkP

. We also define δmax, the maximum density of

any task in the system: δmax := {δk|1 ≤ i ≤ n, δk ≥ δi}. We

use density to translate Lemma 2 into the following interval-

based offloading condition:

Lemma 3. The accepted demand scheduled over some interval

with job Jk being offloaded, [ak, ak + D̂k), is lower-bounded

by D̂k(1− δmax)

Proof of Lemma 3. Let a job Jk arrive at time ak, and the

accepted demand already scheduled over [ak, ak+D̂k) exceed

D̂k − CkP
as per Lemma 2. Necessarily, D̂k − CkP

≥ D̂k −
D̂k

DkP

CkP
= D̂k(1−δk) ≥ D̂k(1−δmax). Since by assumption

the accepted demand over [ak, ak + D̂k) exceeds D̂k − CkP

it also exceeds D̂k(1− δmax).

The result of Lemma 3 is that, for any interval checked

by Algorithm 1, (1− δmax) is the minimum busy percentage

required for an offload. In other words, for every job in J , their

intervals are busy for at least (1− δmax) percentage of time.

However, it is not straightforward to simply take L(1− δmax)
as the lower bound on the full [a0, dm) interval. This is

because Lemma 3 is discussing an interval with exactly one

offload. To do this we must make an argument on the minimum

busy percentage of related, non-overlapping subintervals that

make up this broader interval, which can be unioned together

to find the lower bound of [a0, dm). We then define a term

to discuss the accepted demand that must occur within a

smaller interval, but does not contribute to the demand of that

smaller interval. Technically, you may accept demand from a

job without actually executing all of it, as jobs may under-run

their WCETs. However, as we are doing a worst-case analysis,

we will assume that all jobs execute for their full WCET

runtimes. This leads to the term Induced Demand to describe

how smaller intervals within larger intervals must necessarily

have some execution in them that does not correspond directly

to traditional ideas of demand:

Definition V.3. Induced Demand for an interval [a, b) ⊂ [a, c)
is the amount of the accepted demand at time a of [a, c) that

is executed within [a, b) due to the work conserving scheduler.

Consider the interval of interest for a job that is offloaded,

Jk. Such a job arrives at ak, and at the time of its arrival, we

can find D̂k. Lemma 3 tells us that over [ak, ak + D̂k) the

interval has at least (1− δmax) of accepted demand. Since we

know the arrival of the next offloaded job ak+1 occurs within

this interval, let us divide it into two portions: [ak, ak+1) and

[ak+1, ak + D̂k). Lemma 4 lets us determine how potentially

busy the subinterval [ak, ak+1) is, based on our knowledge

about [ak, ak + D̂k) from Lemma 3:

Lemma 4. Let w be the accepted demand at ak for [ak, ak +
D̂k). Then, the induced demand for interval [ak, ak+1) where

ak ≤ ak+1 ≤ ak + D̂k is min(w, ak+1 − ak)

Proof of Lemma 4. Assume w ≤ (ak+1 − ak). Thus, the

accepted demand tha may be scheduled over [ak, ak+D̂k) will

have to be scheduled entirely over [ak, ak+1), which is verified

because of the work-conserving scheduler assumption. As a

result, the amount of induced demand in [ak, ak+1) is w as

well. If w > (ak+1−ak), then there is more accepted demand

over [ak, ak + D̂k) than can fit in [ak, ak+1). Again since we

1935

Authorized licensed use limited to: The Ohio State University. Downloaded on July 28,2023 at 16:53:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The three regions defined

by a−1, a
α
0
, d

β
m and d′ on the Pri-

mary and Secondary Processors

Fig. 2. Relations between sets of
jobs. Note that J1 and J2 overlap,
but neither is a subset of the other,
and portions of each exist outside
of both JD

2
and JD

1

have a work conserving scheduler and all jobs included in

the accepted demand have already arrived by ak, the interval

[ak, ak+1) may be continuously busy (i.e., no idle instants

before completion of the execution of the accepted demand),

and its induced demand is (ak+1 − ak).

4) DBF-Based Offloaded Demand: The result of Lemma 4

is that [ak, ak+1) must be busy for at least (1− δmax) of its

length. Since this is true for any k, this allows us to claim that

[a0, a1) is (1− δmax) busy, as is [a1, a2), up to [am−1, am).
Thus, the interval [am, am + D̂m) is itself (1 − δmax) busy.

Since these intervals are constructed to be non-overlapping, the

entire interval from [a0, d
β
m) is (1−δmax) busy. Unfortunately,

calculating work offline is a difficult proposition. This is

because arrival patterns of sporadic tasks are unpredictable

and jobs may run under their WCETs. So we finally seek

to transform this condition into one based on demand bound

function calculations. To do so, we must consider the primary

demand intervals that can contribute work to the [aα0 , d
β
m)

interval. For this we must consider all the jobs generated over

a broader interval [a−1, d
′). a−1 is the last idle instant on

the primary processor before aα0 , and d′ is the latest possible

absolute deadline of any job executing in the system over

[aα0 , d
β
m). d′ is defined by d′ = dβm+Dmax, with Dmax being

the largest relative deadline of any task in the system. Since

all jobs that execute within [aα0 , d
β
m) must be released at or

after a−1, and have a deadline before d′, DBF (d′ − a−1) is

a safe upper bound on the accepted demand within [aα0 , d
β
m).

On the other hand, this upper bound is highly pessimistic.

To reduce the level of pessimism, in the rest of the sections

we analyze several subintervals of [a−1, d
′) that we can more

tightly bound.

Figure 1 details the important time points within this anal-

ysis as well as separating the three important demand regions

we will analyze across both processors. Our goal is the tightest

possible upper bound on the demand of the middle region,

[aα0 , d
β
m) on the secondary processor, through analysis on the

demand of all three regions on the primary processor. The left

region begins from a full idle point for the system, a−1, where

a job arrives on the primary processor. It ends with the arrival

of the first job to be offloaded since a−1 at aα0 , which marks

the beginning of the second region, as well as a busy period

on the secondary processor. This second region contains the

arrival am of the job that will eventually miss its deadline

and ends at its deadline dβm. The third region extends for an

additional Dmax time units and contains primary processor

work that may have begun in the prior two regions. We start

our analysis with the left region [a−1, a
α
0).

Jobs that arrive and have deadlines within [a−1, a
α
0) cannot

execute during [aα0 , d
β
m) or [dβm, d′), and are not offloaded.

This quantity can be bound by DBF (aα0 − a−1). Other jobs

that arrive in [a−1, a
α
0) may execute partially in [a−1, a

α
0)

and [aα0 , d
β
m), entirely in [aα0 , d

β
m), partially in [aα0 , d

β
m) and

[dβm, d′), entirely in [dβm, d′) or over all three regions. In order

to characterize the effect on [aα0 , d
β
m) these jobs may have,

we use Lemma 5 to quantify the amount of accepted demand

that executes in [aα0 , d
β
m), but that comes from jobs that do

not contribute to the total demand of [aα0 , d
β
m):

Lemma 5. An upper bound on the accepted demand that

executes in [aα0 , d
β
m) but does not contribute to the demand

of [aα0 , d
β
m) is given by2:

[
n∑

i=1

CiP − [(aα0 − a−1)−DBF (aα0 − a−1)]0

]

0

Proof of Lemma 5. To begin, we can take all the execution

within [aα0 , d
β
m) as a trivial upper bound. Then for each task i

in the system, we can subtract a lower bound on the accepted

demand executed over [a−1, a
α
0−Ti) from the DBF (d′−a−1).

This is effectively a lower bound on the work from jobs that do

not contribute to the demand of [aα0 , d
β
m) and do not execute in

[aα0 , d
β
m). Only the last job released of each task in [a−1, a

α
0)

can actually carry execution into [aα0 , d
β
m). If this last job was

released before aα0−Ti for each task i, than any execution after

aα0 would imply a deadline miss. The interval is busy, so there

must be at least aα0 − a−1 execution present, which is a lower

bound. All tasks could contribute at most DBF (aα0 −a−1) to

that interval exclusively. DBF (aα0 − a−1) is an upper bound.

The remaining work consists of jobs that may carry execution

into [aα0 , d
β
m). Thus, [(aα0 − a−1)−DBF (aα0 − a−1)]0 is the

amount of existing execution and consists of jobs that may ex-

ecute into [aα0 , d
β
m). Thus, [(aα0 − a−1)−DBF (aα0 − a−1)]0

is a lower bound on the amount of those jobs that have

arrival in [a−1, a
α
0) but deadlines after aα0 and must execute

in [a−1, a
α
0). To get an upper bound on the execution of

these jobs, we note that the total amount of execution of

tasks that carry-in work into [aα0 , d
β
m) is at most one job

of each task, which is upper bounded by:
∑n

i=1 CiP . Thus,

[
∑n

i=1 CiP − [(aα0 − a−1) − DBF (aα0 − a−1)]0]0 gives an

upper bound on the amount of execution that could be carried

into [aα0 , d
β
m) without contributing to its demand.

The results of Lemmas 3 and 5 allow us to lower bound the

amount of primary execution during [aα0 , d
β
m), which consists

of demand from [aα0 , d
β
m) by considering the lower bound on

total execution within [aα0 , d
β
m) (Lemma 3), and subtracting

the upper bound of demand that may execute in [aα0 , d
β
m), but

does not contribute to its demand (Lemma 5). Then, since

the total demand across both processors is upper bounded by

DBF (dβm−aα0), Theorem 1 subtracts that lower bound to get

the overall upper bound on offloaded demand in [aα0 , d
β
m):

2We use [x]0 to denote the value taken is the larger of x and 0

1936

Authorized licensed use limited to: The Ohio State University. Downloaded on July 28,2023 at 16:53:31 UTC from IEEE Xplore. Restrictions apply.

Theorem 1. The offloaded demand over the interval [aα0 , d
β
m)

is upper bounded by

G(a−1, a
α
0 , d

β
m) =

[

DBF (dβm − a
α
0)−

[

(1− δmax)(d
β
m − a

α
0)−

[n
∑

i=1

CiP − [aα
0 − a−1 −DBF (aα

0 − a−1)]0

]

0

]

0

]

0

(1)

Proof of Theorem 1. We use job sets to prove Theorem 1. In

particular, we indicate with |J | the cardinality of the number

of jobs in a set, ‖J ‖ the total execution time of a set of jobs

J on the primary processor (also called set norm), and J̄ the

complement of a set J , which contains all jobs not in the set.

From Figure 2’s notation, we define the following five sets of

jobs:

• JD
total, jobs that contribute to the primary demand of

[a−1, d
′);

• JD
1 , jobs that contribute to the total demand of [a−1, a

α
0);

• JD
2 , jobs that contribute to the total demand of [aα0 , d

β
m);

• J1, jobs that have some primary execution in [a−1, a
α
0);

• J2, jobs that have some primary execution in [aα0 , d
β
m).

We can see that JD
2 \ J2 is the set of jobs that contribute

to the demand of [aα0 , d
β
m), but do not execute on the primary

processor in [aα0 , d
β
m). These jobs are the offloaded demand

of [aα0 , d
β
m). Our goal then, is to upper bound

∥∥JD
2 \ J2

∥∥.

Following the definition of set operations, we can define this

upper bound as follows:
∥∥JD

2

∥∥−
∥∥JD

2 ∩ J2

∥∥ ≥
∥∥JD

2 \ J2

∥∥.

We cannot take
∥∥JD

2

∥∥ − ‖J2‖ directly, as J2 may contain

jobs that are not in JD
2 . An upper bound on

∥∥JD
2

∥∥ and

a lower bound on
∥∥JD

2 ∩ J2

∥∥ will provide the safe upper

bound we need. Upper bounding ‖J2‖ is simple, by using the

demand bound function: DBF (dβm−aα0) ≥
∥∥JD

2

∥∥. We know

by some basic properties of set operations that JD
2 ∩ J2 =

J2 \ (J2 ∩ J̄D
2) and its norm:

∥∥J2 \ J2 ∩ J̄D
2

∥∥ ≥ ‖J2‖ −∥∥J2 ∩ J̄D
2

∥∥. Therefore, if we lower bound ‖J2‖ and upper

bound
∥∥J2 ∩ J̄D

2

∥∥, we can lower bound
∥∥J2 \ J2 ∩ J̄D

2

∥∥.

Our lower bound of primary demand to have an offload for

‖J2‖ is given by Lemma 3: (1 − δmax)(d
β
m − aα0) ≤ ‖J2‖.

Our upper bound for
∥∥J2 ∩ J̄D

2

∥∥ is given by Lemma 5:

[
∑n

i=1 CiP − (aα0 − a−1 −DBF (aα0 − a−1))]0.
Since the relation between the Lemma 3 and Lemma 5

can be difficult to reason about, we take the maximum of
their difference and zero to avoid situations of adding demand
incorrectly. Additionally, since offloaded demand can never
be negative, we apply this maximum again on the entire
expression. We recap by showing the whole series of steps,
from basic upper bound, to final equation:

∥

∥

∥
JD

2 \ J2

∥

∥

∥
≤

∥

∥

∥
JD

2

∥

∥

∥
−

∥

∥

∥
JD

2 ∩ J2

∥

∥

∥
=

=
∥

∥

∥
JD

2

∥

∥

∥
−

∥

∥

∥
J2 \ (J2 ∩ J̄D

2)
∥

∥

∥

≤
∥

∥

∥
JD

2

∥

∥

∥
−

(

‖J2‖ −
∥

∥

∥
J2 ∩ J̄D

2

∥

∥

∥

)

≤ DBF (dβm − a
α
0)−

−
(

‖J2‖ −
∥

∥

∥
J2 ∩ J̄D

2

∥

∥

∥

)

≤

[

DBF (dβm − a
α
0)−

[

(1− δmax)(d
β
m − a

α
0)−

−

[n
∑

i=1

CiP − [aα
0 − a−1 −DBF (aα

0 − a−1)]0

]

0

]

0

]

0

Thus, Equation 1 successfully upper bounds the offloaded

demand in [aα0 , d
β
m)

B. Simplification of the Offloaded Demand Bound

Theorem 1 gives a good analytical understanding of what is

the upper bound of offloaded demand for a generic taskset to

have a deadline miss, but it suffers from practical drawbacks.

In particular, determining the actual value of a−1 is only

possible through a full schedule simulation, which could be

impractical to compute. We therefore propose the G∗(L)
function, which gives a safe upper bound on Theorem 1 that

can be easily computed offline. Theorem 1 starts from simple

upper bound of DBF (dβm − aα0) and performs reductions on

this to get a less pessimistic, but still valid, upper bound. G∗

relaxes some of these reductions to get a bound that is not as

tight as Theorem 1, but is fast to compute:

Theorem 2. Given any interval of length L, G∗(L) upper
bounds the G(a−1, a

α
0 , d

β
m) function, ∀a−1, aα0 , d

β
m ∈ R≥0

such that a−1 ≤ aα0 and dβm = aα0 + L:

G
∗(L) =

⎡

⎣

∑

τi∈τ:Ti≤L

CiP

⌊

L+ Ti −DiP

Ti

⌋

−

[

(1− δmax)L−
∑

τi∈τ

CiP

]

0

⎤



0

Proof of Theorem 2. We seek to show that G∗(L) upper

bounds the G(a−1, a
α
0 , d

β
m) function from Theorem 1. We

assert L = dβm−aα0 , and show that the bound holds regardless

of choice of a−1. The bound is proven in parts, noting that

the G(a−1, a
α
0 , d

β
m) function can be broken into three major

terms. The first two terms are the same in G and G∗. In fact,

for the first term we have that: DBF (dβm−aα0) = DBF (L) =∑
τi∈τ:Ti≤L CiP

⌊
L+Ti−Di

Ti

⌋
. Note that using the reduced set

of tasks τi ∈ τ :Ti ≤ L for the sum rather than the full taskset

does not reduce the DBF value. This is because tasks with

Ti > L cannot have a job be released and have a deadline in

the interval, and thus contribute no demand. For the second

term, adopted from Lemma 3, we have that: (1− δmax)(d
β
m−

aα0) = (1 − δmax)L. The last term adopted from Lemma 5,

i.e.,

[∑n
i=1 CiP − [aα0 −a−1−DBF (aα0 −a−1)]0

]

0

, is clearly

smaller than
∑n

i=1 CiP . As the second terms are equal, and

the third term in G∗(L) is equal to or larger than the one in G,

their difference is either equal or smaller. Therefore the amount

subtracted from the DBF term in G∗(L) is no larger than the

amount subtracted in G. Thus, G∗(L) ≥ G(a−1, a
α
0 , d

β
m).

The G∗(L) function is non-negative, is defined for all non-

negative integer values of L and provides an upper bound on

the amount of demand that can be offloaded over any interval

of length L. When γ = 1, CiP = CiS for τi ∈ τ , then

the amount of offloaded demand from the primary processor

exactly equals the demand upon the secondary processor.

Therefore, we can use G∗ as an upper bound of demand in

the standard EDF uniprocessor schedulability condition (e.g.,

if the secondary processor was fully preemptive, a sufficient

condition for secondary processor schedulability would be

G∗(L) ≤ L, ∀L > 0).

1937

Authorized licensed use limited to: The Ohio State University. Downloaded on July 28,2023 at 16:53:31 UTC from IEEE Xplore. Restrictions apply.

We are now ready to move from our analysis of offloaded

demand to deriving a general offline schedulability test for the

system (∀ γ ∈ (0, 1]). We begin first with some definitions.

Definition V.4. Consider any L-length busy interval [t, t+L)
on the non-preemptive secondary processor that satisfies the

following properties:

1) a job with secondary relative deadline DiS ≤ L arrives

at time t;

2) the secondary processor is continuously backlogged over

[t, t + L) with offloaded jobs that arrive and have

deadline in [t, t+ L);
3) Under non-preemptive scheduling, there is at most one

lower priority job with an absolute deadline after t+ L

that begins execution prior to t and continues its execu-

tion within the interval [t, t + L). This job necessarily

must have DiS > L; and

4) No job misses a deadline in [t, t + L) (note a deadline

miss is permitted at t+ L).

The critical offloaded demand Q(L) for any such L-length

busy interval is the minimum offloaded demand from the

primary processor that could generate such a busy interval.

Definition V.5. When jobs are executed on the secondary

processor non-preemptively, some low priority jobs may cause

an additional blocking time, B(L), that can be bounded by the

following function from George et al. [12]:

B(L) = max
τj∈τ

{CjS |DjS > L} (2)

We use the convention that B(L) equals 0 when L exceeds or

equals maxτj∈τ{Dj}.

For uniform secondary processor times, the critical of-

floaded demand over any L-length interval can be obtained by:

Q(L) >
L−B(L)

γ
. From the above definitions, we can easily

state a generic schedulability test for our system:

Theorem 3. The both primary-executed and offloaded jobs

of task system τ will meet all their deadlines if: G∗(L) <

Q(L), ∀L > 0.

Proof of Theorem 3. First, observe that Algorithm 1 offloads

any job whose induced demand over some interval will

cause the demand to exceed the available processing time

on the primary processor. To show that the offloaded jobs

will meet their deadline upon the secondary processor, we

prove this statement via the contrapositive; that is, if τ misses

a deadline on the secondary processor, we will show that

G∗(L′) ≥ Q(L′) for some L′ > 0. Assume that the secondary

processor misses a deadline at time tf . According to the

usual demand-based analysis for non-preemptive EDF on a

processor [12], there exists a time t−1(< tf) that is the last

idle instant with respect to jobs with deadline at or before

time tf ; in other words, the processor is either idle right

before t−1 or executing a job with deadline strictly later than

tf (in which case it can non-premptively block for at most

B(tf − t−1)). Therefore, by construction of this last idle

instant, the secondary processor is continuously backlogged in

the interval [t−1, tf) with jobs that arrive at or after t−1 but

have deadline at or before tf . Therefore, the total secondary

processor demand of the offloaded jobs in the [t−1, tf) strictly

exceeds tf−t−1−B(tf−t−1). Let L′ = tf−t−1; by definition

of the Q function, we have that the offloaded demand from

the primary processor exceeds or equals Q(L′).
Note that the interval [t−1, tf) exactly corresponds to inter-

val [aα0 , d
β
m) in the proof of Theorem 1. Thus, there must also

exist an a−1(≤ aα0), which is the last idle time on the primary

processor with respect to interval [aα0 , d
β
m). Thus, since the

primary processor demand offloaded from this interval exceeds

or equals Q(L′), we must have G(a−1, a
α
0 , d

β
m) ≥ Q(L′). By

Theorem 2, G∗(L′) ≥ Q(L′), completing the theorem.

VI. EVALUATION

We now analyze the performance of our offline method by

using both synthetically-generated taskset data and a realistic

practical taskset collected from our prototype autonomous

mobile robot executing computer vision tasks, which is the

primary processor. The local network processor is the sec-

ondary processor, which transmits the job to a powerful edge

server. The deadlines are adjusted by subtracting the worst-

case response time of an offloaded job on the edge server.

A. Experimental Setup

Our evaluation was done through a python simulator A mod-

ified EDF scheduler was made to run jobs from 500 tasksets of

different primary utilization using Algorithm 1 to select jobs

for offloading. We run these tests on a desktop with an Intel

core-i9 3.7GHz processor and 128GB DRAM. To generate the

tasksets, we have adopted the UUniFast algorithm [13]. For

the primary processor the utilization of a task is defined as Ui

=
CiP

Ti
. Ti values are randomly generated from the interval

[10ms, 70ms]. We also define a common scaling factor γ

and then use it to calculate the secondary processor execution

time for each task. To maintain integer task parameters, we

then take floor values of primary and secondary processor

execution times. Due to this rounding, the overall utilization of

any generated task system may differ slightly from the target

UUniFast utilization. Due to the exponential-time complexity

of the simulator (proportional to the value of the hyperperiod),

we chose to limit generated taskset hyperperiod sizes to keep

experiment runtimes manageable. For our synthetic tasksets

we restricted them to 50,000, and permitted hyperperiods up

to 100,000 for our practical examples.

We consider two performance metrics to analyze the theo-

retical bounds provided in this paper: offloaded demand ratio

(ODR) and schedulability ratio (SR). We calculate these for

primary utilizations ranging from 110% to 200% for ODR and

110% to 290% for SR, using γ values from 0.2 to 0.6. ODR is

calculated as the highest observed ratio between the value of

the G∗ function (Theorem 2) and the actual offloaded demand

given by our simulator for all interval lengths 1 ≤ L ≤ H .

If the ODR is 1, G∗ perfectly estimates offloaded demand.

Values larger than 1 imply an over-estimation by G∗. SR is

1938

Authorized licensed use limited to: The Ohio State University. Downloaded on July 28,2023 at 16:53:31 UTC from IEEE Xplore. Restrictions apply.

defined as the percentage of generated tasksets that are found

schedulable.

It is important to note that the results from the simulator

may be optimistic since it is looking at the offloaded demand

of one arrival sequence, which may not be the worst-case;

i.e., the simulation may classify a task system as schedulable,

even though a different arrival sequence may lead to a deadline

miss. Nonetheless, it is useful for demonstrating the usefulness

of the G∗ function when compared to the optimistic results

reported by the simulator. Furthermore, while both the simula-

tion and G∗ evaluations can take exponential time, in practice

the G∗ is significantly faster, provides an answer on whether

the system is schedulable (over all possible legal job arrivals),

and is not significantly more conservative than the optimistic

simulation results (as we will see in the next subsections).

B. Results with Synthetic Tasksets

Figure 3a shows the cumulative distribution function (CDF)

of the ODR for primary utilization varying from 110% to

200% over 500 tasksets at each utilization. For example, at

utilization 120%, around 60% of the tasksets have an ODR

of 2.6 or less. We observe that when primary utilization is

110%, the offloaded demand estimation given by G∗ function

never exceeds approximately 8.7 times the offloaded demand

found from the simulation, and is never less than 1.5. As

the primary utilization increases, the observed ODR values

tend to decrease and approach 1. For a primary utilization

of 200%, the smallest observed ODR is around 1.4. As

primary utilization increases, the G∗ function becomes more

accurate, and ODR decreases towards 1. G∗ improves at high

utilizations as the primary processor tends to be more busy and

offloads more jobs. As G∗ is an upper-bound, the closer the

system performs to the worst-case of offloading all jobs, the

more accurate G∗’s estimations are. Lower primary utilizations

are less likely to encounter a worst-case and G∗’s estimation

will be more conservative.

Figure 3b shows the difference in SR between the simulator

and the offline analysis. We tested primary utilizations from

110% to 290% and for each utilization considered secondary

processor utilization based on three values of γ, 0.3, 0.4, and

0.5. Note that we did not include results for cases where pri-

mary utilization is lower than 100%, as such cases are trivially

schedulable by preemptive EDF. For example, at γ=0.3 the

simulator schedulability ratio ranges from 100% schedulable at

110% primary utilization down to 48% schedulable for 290%

primary utilization. Correspondingly, our offline schedulability

analysis based on uniform secondary processors (o labels

in figure) provides an SR ranging from 89% to 17% for

similar tasksets. Overall, the offline analysis had SR which

perfectly matched the simulator results, or found about half

as many tasksets schedulable as the simulator until either

γ = 0.5, or utilization is well past 2. Understandably, the

SR of our analysis drops dramatically for γ values above

0.5, and we omit them here for brevity. Nonetheless, these

results show that our offline analysis is able to provide some

schedulability guarantees even at very high primary utilization.

In particular, with γ = 0.3, many tasksets of 290% utilization

are schedulable, as a fully utilized primary processor may

offload at most 190% utilization to the secondary processor,

which is then reduced by the γ factor to effectively 63.3%

utilization, often schedulable, even by non-preemptive EDF.

C. Results from Realistic Practical Tasksets

Here we test the proposed offline analysis based on a real-

world applications. We use our prototype HydraOne [14],

which is an autonomous mobile robot that can execute navi-

gation and objective tasks. The navigation task is a Machine

Learning (ML) model trained to periodically update the robot

speed and direction based on camera frames. The objective

tasks are other ML models that do not directly affect the

navigation decisions but give the robot useful purpose, such

as recognizing faces, detecting holes in a fence, recognizing

objects etc. Unfortunately, our real prototype does not im-

plement a real time operating system, so we could not run

tests directly on it. Thus, we use the simulator described in

Section VI-A to schedule various tasksets generated using

data profiled from our real robot. Specifically, each navigation

task executes approximately 0.1M instructions, while objective

tasks, depending on the model, execute between 0.5M and

1.5M instructions. The CPU speed is profiled to execute on

average 50 Million Instructions per Second (MIPS) for these

tasks. For network operations, we profile the size of a typical

camera frame to be in the interval 4Mb − 32Mb and assume

an average 5G networking speed of 1,000Mbps [15].

Using these profiled data, we use an example scenario of

four objective tasks running concurrently to a navigation task.

In order to generate different tasksets, we use the following

procedure: 1) randomly choose the number of instructions for

each of the 4 objective tasks in the range 0.5M−1.5M, 2) cal-

culate the primary processor execution time of each task based

on the profiled CPU speed, 3) choose the target utilization and

calculate the periods of each objective and navigation tasks.

Similar steps are used to generate the secondary processor

related data of the taskset. We generate 25 different tasksets

and average the ODR and SR for each target utilization. Note,

due to long running times we could not use 500 tasksets as in

previous section. In addition, the large period range of these

tasksets leads to large hyperperiods, thus here we show results

for only γ = 0.5. We plan to design a more efficient method

for interval selection in our future work.

Figure 3c shows how the ODR changes for different primary

utilization considering both synthetic and practical tasksets.

We observe that the offloading behavior and G∗ function be-

haves similarly whether testing synthetic or practical tasksets.

In both cases G∗ becomes more accurate for primary utiliza-

tion increases with the ODR approaching 1 (red horizontal

line). For synthetic tasksets the worst-case observed ODR is

3.40 while the realistic tasksets have a significantly lower value

of 2.36. As primary utilization increases, both types of tasksets

follow a similar trend, suggesting applicability of the synthetic

results to real systems. Figure 3d shows the comparison of

SR between the simulator and the offline analysis tested with

1939

Authorized licensed use limited to: The Ohio State University. Downloaded on July 28,2023 at 16:53:31 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d)

Fig. 3. (a) CDF of ODRs for varied primary utilizations. (b) SR for different primary utilizations and γ values for simulated system (s) and offline analysis (o)
with uniform secondary processor execution times. (c) ODR with synthetic and practical tasksets and (d) SR for different primary utilization of the practical
taskset with uniform secondary processor execution times.

the practical tasksets. We can see that when the primary

utilization is lower than 200%, all of the tasksets are found

schedulable by the simulator, and nearly all by the offline

analysis as well. However, when utilization increases, the ratio

tends to decrease for the same reason described earlier. While

the simulator finds surprising schedulability even up to 270%

utilization, the offline analysis drops sharply above 200%.

These experiments suggest that the results for the synthetic

tasksets are comparable to those of realistic cases. In addition,

our offline analysis provides reasonably good guarantees of

schedulability for realistic tasksets.

VII. CONCLUSIONS

While both offloading and real-time systems have been well

studied in the literature, works using them together are less

common. In this paper we have laid the groundwork for a

scheduling framework that utilizes heterogeneous processors

to assist with hard real-time systems when the primary proces-

sor is overloaded, in which case jobs can be offloaded to meet

deadlines. While we take a number of simplifying assump-

tions, we believe that this is an important step in utilizing the

high degree of connectivity in modern computing in a novel

and powerful way. Our experimental results show that even

with our conservative assumptions, task sets above even 200%
primary utilization become schedulable, potentially lowering

expensive over-provisioning in such systems. Future work will

involve tightening of the offline analysis, consideration of

multiple offloading units, other scheduling algorithms, network

losses, and further generalizations.

ACKNOWLEDGMENT

This research was supported in part by the US National

Science Foundation under grant nos. CCF-2118202, CNS-

2038609, IIS-1724227, and CNS-1948365.

REFERENCES

[1] O. Goldstein, “Real-time cost-aware machine learning at the edge,”
Ph.D. dissertation, University of California, Los Angeles, 2021.

[2] B. Lv, C. Yang, X. Chen, Z. Yao, and J. Yang, “Task offloading
and serving handover of vehicular edge computing networks based on
trajectory prediction,” IEEE Access, 2021.

[3] L. Schönberger, G. von der Brüggen, K.-H. Chen, B. Sliwa, H. Youssef,
A. K. R. Venkatapathy, C. Wietfeld, M. ten Hompel, and J.-J. Chen,
“Offloading Safety- and Mission-Critical Tasks via Unreliable Connec-
tions,” in 32nd Euromicro Conference on Real-Time Systems (ECRTS

2020), Dagstuhl, Germany, 2020.

[4] A. Toma, J.-J. Chen, and W. Liu, “Computation offloading for sporadic
real-time tasks,” in 2014 IEEE 20th International Conference on Em-

bedded and Real-Time Computing Systems and Applications, 2014.
[5] W. Liu, J.-J. Chen, A. Toma, T.-W. Kuo, and Q. Deng, “Computation

offloading by using timing unreliable components in real-time systems,”
in Proceedings of the 51st Annual Design Automation Conference, ser.
DAC ’14. New York, NY, USA: Association for Computing Machinery,
2014.

[6] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys

Tutorials, vol. 19, no. 3, 2017.
[7] Y. Nimmagadda, K. Kumar, Y.-H. Lu, and C. S. G. Lee, “Real-time

moving object recognition and tracking using computation offloading,”
in 2010 IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2010.
[8] G. Raravi, B. Andersson, V. Nélis, and K. Bletsas, “Task assignment

algorithms for two-type heterogeneous multiprocessors,” Real-Time Sys-

tems, vol. 50, no. 1, 2014.
[9] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-

ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem—overview of methods and survey of tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, may 2008.

[10] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor,” Real-time systems, vol. 2, no. 4, 1990.

[11] N. Fisher and S. Baruah, “The global feasibility and schedulability of
general task models on multiprocessor platforms,” in 19th Euromicro

Conference on Real-Time Systems (ECRTS’07), 2007.
[12] L. George, N. Rivierre, and M. Spuri, “Preemptive and non-preemptive

real-time uniprocessor scheduling,” in INRIA, INSTITUT NATIONAL DE

RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE, 2006.
[13] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-

bility tests,” Real-Time Systems, vol. 30, no. 1-2, 2005.
[14] L. Liu, J. Chen, M. Brocanelli, and W. Shi, “E2m: an energy-efficient

middleware for computer vision applications on autonomous mobile
robots,” in Proceedings of the 4th ACM/IEEE Symposium on Edge

Computing, 2019.
[15] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu,

and H. Ma, “Understanding operational 5g: A first measurement study
on its coverage, performance and energy consumption,” in Proceedings

of the Annual conference of the ACM Special Interest Group on Data

Communication on the applications, technologies, architectures, and

protocols for computer communication, 2020.

1940

Authorized licensed use limited to: The Ohio State University. Downloaded on July 28,2023 at 16:53:31 UTC from IEEE Xplore. Restrictions apply.

