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ABSTRACT

The “impossibility theorem” — which is considered foundational in
algorithmic fairness literature — asserts that there must be trade-
offs between common notions of fairness and performance when
fitting statistical models, except in two special cases: when the
prevalence of the outcome being predicted is equal across groups,
or when a perfectly accurate predictor is used. However, theory
does not always translate to practice. In this work, we challenge the
implications of the impossibility theorem in practical settings. First,
we show analytically that, by slightly relaxing the impossibility
theorem (to accommodate a practitioner’s perspective of fairness),
it becomes possible to identify abundant sets of models that satisfy
seemingly incompatible fairness constraints. Second, we demon-
strate the existence of these models through extensive experiments
on five real-world datasets. We conclude by offering tools and guid-
ance for practitioners to understand when — and to what degree
— fairness along multiple criteria can be achieved. This work has
an important implication for the community: achieving fairness
along multiple metrics for multiple groups (and their intersections)
is much more possible than was previously believed.
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1 INTRODUCTION

Increasingly, artificial intelligence (AI) and machine learning (ML)
systems are being implemented in domains like employment, health-
care, and education to improve the efficiency of existing processes
[39, 57, 65]. In tandem with this uptick in adoption, there are grow-
ing concerns about the potential for ML systems to cause significant
harm to members of already marginalized groups. For example, it
has been found that some lending algorithms discriminate against
Latinx and African-American borrowers [4, 27], some prevalent
medical algorithms discriminate against Black patients [48], and
some educational risk-assessment algorithms perform worse for
minority students [32, 48, 56].

The risk of discriminatory ML systems has led to significant in-
terest in methods for measuring and ensuring “algorithmic fairness”
Researchers have created robust processes and tools for auditing
algorithmic systems for bias based on various definitions of fairness,
such as Demographic Parity, Equalized Odds Ratios, and Predictive
Parity [13, 18, 41, 54]. Choosing a context-specific fairness defini-
tion (also called a fairness metric) depends on value judgments, and
often several metrics may be situationally relevant [3]. For instance,
in contexts where the output of an algorithmic system is assistive,
disparities in the False Negative Rate between groups can be used
as a measure of discrimination with respect to group need [54].

In contexts where more than one metric is applicable, practition-
ers, stakeholders, and the wider public may engage in a debate
about which metric to choose [60]. Debates of this nature have
yielded a number of notable results in the algorithmic fairness lit-
erature, including a fundamental result known colloquially as the
“impossibility theorem” simultaneously reported on by Choulde-
chova [16] and Kleinberg et al. [37]. The impossibility theorem
asserts that, for binary classification, equalizing some specific set of
multiple common performance metrics between protected classes
is impossible, except in two special cases. The first special case is
when an algorithm is a perfect predictor, and the second is when
the prevalence of the outcome being predicted (i.e. the percentage
of individuals in a group with the positive outcome, also called
base rate) is equal across groups. As a consequence of this theorem,
researchers and practitioners have focused on understanding trade-
offs between fairness and predictive accuracy in an algorithmic
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system, often designing bias audits and mitigation techniques that
center on a single chosen fairness metric [18].

Though important and strong, the implicit assumption of the
impossibility result (namely, that a practitioner might think about
fairness as exactly equalizing metrics) may not actually apply to a
wide array of real-world problems. In fact, a growing body of re-
search suggests that the limitations to fairness derived by Kleinberg
et al. [37] and Chouldechova [16] may not be particularly relevant
in many practical settings [14, 31, 50, 61].

Note. Throughout this paper, we will often refer to metrics like
FPR (False Positive Rate), FNR (False Negative Rate), PPV (Preci-
sion) and ACC (Accuracy). Though these metrics are common, we
seek to make our work accessible across levels of technical exper-
tise by providing equations and descriptions of these metrics in
Appendix Section C. On a related note, throughout this work we
concern ourselves with binary classification, a standard machine
learning task where one attempts to assign the correct binary label
(positive/negative) to each individual in a population. In fairness
literature, it is common to consider at least two groups within
that population, and then to compare the performance of a binary
classifier on each sub-population. We also provide an in-depth defi-
nition of binary classification, and consideration of groups in the
population, in Appendix Section C.

Summary of contributions. Variations on the “impossibility theo-
rem” specific to binary classification (with a protected class) state
that, when equalizing certain metrics (like FPR, FNR, PPV or ACC)
between two groups, we should hesitate to consider multiple met-
rics at once. Why? The fairness constraints (equalizing three of
these metrics between groups) will only be exactly satisfiable if we
have a perfect predictor or outcome prevalence parity [16, 37].

We suggest that this setting is unrealistic. Our paper’s driving
insight is that practitioners are often more than comfortable with
approximate fairness guarantees, as opposed to enforcing exact
equality between metrics. Therefore, we focus on a set of more
realistic fairness constraints, where we are allowed to slightly re-
lax between-group metric equalities for FNR, FPR, PPV, and ACC.
To our knowledge, we are the first to study at length this relaxed
setting from a practitioner’s point of view.! This framing yields a
straightforward research question: under what type of setting and
relaxation is it possible to find classifiers that are “fair” along seem-
ingly incompatible fairness constraints? And how can practitioners
determine if a “fair” classifier exists for their predictive context?

For example, it turns out that if I, as a practitioner, say “I have
prevelances p; and p, for Groups 1 and 2 in dataset X, and I am
willing to tolerate a difference of Y% when equalizing metrics,”
then I have all of the information I need to determine if finding
such a model is truly impossible (or not!) before even attempting
the problem. Encouragingly, and perhaps counter-intuitively, our
analysis suggests that in practical settings the answer is often “yes,
it’s possible to find that fair model” Our major finding is that
if one allows only a small margin-of-error between metrics,

!Previous work showed that a version of the impossibility result exists on the boundary
of the relaxed setting [37], but the authors did not fully explore the space of relaxed
solutions, nor did they position it from the viewpoint of practitioners. This is further
discussed in Section 2.
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sets of models satisfying three fairness constraints simulta-
neously are abundant, rather than rare. In our corresponding
experiments on real datasets, we find empirically that the resource
constraint k (i.e., having k loans to give out or k job interview slots
to fill) also plays a significant role in feasibility, where a smaller k
can result in more feasible models.

Paper organization. We begin with background and related work
in Section 2. After, we approach the problem analytically in Sec-
tion 3. We state a formula balancing FPR, FNR and ACC between
groups with fairness relaxations for each metric. In this setting,
we are able to derive a powerful tool in the form of a simple for-
mula relating the feasibility of fairness to a specific relaxation
strength, given a classification scenario. However, in many resource-
constrained settings, practitioners care more about PPV than ACC.
So, we then turn our attention to the problem in terms of FPR,
FNR and PPV, but find that it is difficult to analyze in closed-form.
Instead, through principled approximations, we are able to provide
much the same guidance to practitioners as a direct analytical solu-
tion would, and leave deriving a closed-form result to future work.
Additionally, to demonstrate the utility of our fairness relaxation
insights, we conduct extensive experimental evaluations on five
real-world datasets. The results of these experiments, discussed in
Section 4, corroborate our insights and compellingly demonstrate
the possibility of fairness. We discuss our insights and offer guid-
ance to practitioners in Section 5 and conclude in Section 6. For
those who wish to go directly to our margin-of-error based
fairness feasibility recommendations, skip to Section 5.

2 BACKGROUND AND RELATED WORK

Algorithmic fairness. Significant progress has been made in un-
derstanding algorithmic fairness [45]. Broadly, this literature con-
cludes that fairness is not a monolith: there are many different ways
to think about algorithmic fairness, and defining what is “fair” is a
matter of philosophy, incorporating one’s worldview, mitigation
objectives, and an algorithm’s context-of-use [3, 24]. In response
to the complex and nuanced nature of fairness, researchers have
defined dozens of fairness metrics, or mathematical assessments
of an algorithm’s prejudice, that address different aspects of fair-
ness 7,9, 11, 16, 25, 38, 44, 54, 59, 64]. These metrics can be divided
into two categories: those that consider the output of an algorithm,
and those that consider errors made by the algorithm. As an example
of the former, Disparate Impact (or Proportional Parity) measures the
proportion of a group receiving the positive classification outcome
relative to the proportion of the group in the input. As an example of
the latter, the difference in False Negative Rates between groups can
be used to assess whether one group is erroneously “passed over”
for a positive outcome relative to another. Importantly, there is no
one-size-fits-all metric for evaluating the fairness of algorithms.
Some tools (like the Fairness Tree [55]) have been developed to help
navigate the challenge of selecting an appropriate fairness metric,
but ultimately, it is necessary for researchers and practitioners to
have meaningful conversations with those impacted by algorithms
to select fairness metric(s) specific to the context-of-use [53, 54].

Typically, metrics judge the fairness of a predictor by consid-
ering the imbalance between group-specific metrics. We can cal-
culate imbalance as a difference — mean, squared, absolute, etc. —
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or as a disparity — the ratio of a metric of one group, g;, to that

of a reference group, g, f, usually chosen as the majority group:
metricgj

disparitygj = . Often, the goal of algorithmic fairness

metricg,, -
is to achieve parity, that is, to eliminate the imbalance between
fairness metrics entirely. Importantly, the tolerable level of differ-
ence/disparity for a given fairness metric is highly dependent on the
algorithm’s context-of-use. Perhaps counter-intuitively, there are
cases where we want to enforce a large disparity (see Rodolfa et al.
[51], who discuss intentionally over-representing a marginalized
group for an assistive intervention).

While some fairness metrics are incompatible with one another?,
and others are approximately mathematically equivalent [52], many
are compatible and distinct. Consider the following scenario: a high
school is using an algorithm to predict which students are at risk
of failing ninth grade, so that high-risk students can be offered a
special tutoring intervention. School administrators may want an
algorithm that selects an equal number of privileged and under-
privileged students, and also does not unfairly pass over students
who are badly in need of tutoring. This would imply a need for
both Demographic Parity and False Negative Rate Parity between
groups. Yet, as we argued in the introduction, multiple fairness
metrics are rarely considered in practice, and most existing bias
mitigation methods enforce a single metric (or at most two metrics)
at a time [8, 23, 30, 34-36, 46, 49, 51, 64]. In part, this is due to the im-
possibility theorem, a foundational result, presented simultaneously
by Chouldechova and by Kleinberg et al..

The impossibility theorem. As stated by Kleinberg et al. [37], this
theorem shows that three common metrics — equalizing calibra-
tion within groups, and enforcing balance for the negative class
and for the positive class — cannot be simultaneously satisfied for
multiple groups, outside of two special cases [37]. These cases are
(1) when the algorithm is a perfect predictor and (2) when there is
no prevalence difference between groups. Chouldechova [16] states
an equivalent impossibility, presented as the relationship between
the Predictive Positive Value (PPV), False Positive Rate (FPR), False
Negative Rate (FNR), and prevalence (p):

p 1-PPV

FPR= — ————
1-p PPV

(1-FNR) (1)
Exploring implications of the impossibility theorem. Importantly,
the impossibility results imply an upper bound on how many fair-
ness metrics can be satisfied simultaneously without a perfect pre-
dictor. Kleinberg et al. addressed a related question on approximate
conditions of the impossibility result, showing that approximate
fairness definitions can simultaneously hold, but only under e-
approximate prevelances or e-approximate perfect prediction [37].
Significantly, Kleinberg et al. did not explore the space of solutions
under e-approximate relaxations of constraints, nor did they detail
the implications that these relaxations might have for practitioners.

A thought experiment. To motivate our exploration of this space,
consider the following thought experiment. The achievement gap is
one of the most pervasive examples of racial disparities in education,
in which Black and Brown students graduate from high school at

ZFor example, one cannot simultaneously satisfy equal selection and proportional
parity unless the prevalence of outcomes is the same in both groups
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a rate roughly 10% lower than that of White students [40]. How
should practitioners think about a prevalence difference of 10%
when designing algorithms that predict student performance? Is
it a small or large difference, and what implication does it have
for the abundance (or rarity) of models satisfying e-approximate
fairness constraints or e-approximate perfect prediction?

Practice versus theory. Understanding the space of feasible mod-
els under a relaxation of the impossibility theorem is particularly
salient in light of recent work showing that theoretical trade-offs
do not always apply to real-world settings [14, 50, 61]. Rodolfa et al.
introduced a method for finding models that were fair with respect
to FNR without sacrificing a model’s PPV, and demonstrated the ef-
fectiveness of their approach in four separate ML-for-public-policy
problems [50].3 It was hypothesized by the authors that the negli-
gible trade-off is the result of the resource-constrained nature of
applied problems, where fairness and model performance are mea-
sured with respect to the top-k, rather than at an arbitrary threshold.
In our work, we begin to formalize this intuition in Theorem 3.5.

Other works also challenge the idea that accuracy and fairness
are in tension. Celis et al. [14] developed a meta-algorithm for a
large family of classification problems with convex constraints,
and demonstrated that one can achieve near-perfect fairness while
sacrificing negligible accuracy. Similarly, Wick et al. [61] propose a
semi-supervised learning approach that improves both fairness and
accuracy. A third recent example is the MFOpt framework proposed
by Hsu et al. [31] that simultaneously optimizes Demographic Parity,
Equalized Odds, and Predictive Rate Parity—those fairness notions
that are mathematically incompatible according to the impossibility
theorem. Similar to our work, Hsu et al. were motivated by doubts
about the strength of the impossibility theorem in practical settings.
Notably, these works have focused on methods for mitigating dis-
parity for multiple fairness metrics while maintaining high model
accuracy, but have not provided much analysis of their implicit
relaxing of fairness metric parity.

In our analysis, we center two considerations common to practi-
cal settings. First, in practice, one generally does not require fairness
metrics to be exactly equal across groups to achieve fairness. For
example, depending on the context of use, a classifier that has an
FPR difference between groups of 2%, 5% or even 10% may be satis-
factory. Second, we consider the presence of a resource constraint.
For example, a commonly used performance metric in applied ML
problems is PPV-at-k, where k represents a real-world resource
constraint [1, 12, 62].

3 FINDING FEASIBLE MODELS

To encode that practitioners are generally okay with approximate
fairness constraints as opposed to strict constraints, we begin by di-
rectly re-parameterizing the impossibility theorem with relaxations
for each parameter. The relaxed constraints afford us a space of
solutions, where each solution represents a potential classifier that
balances all three metrics within our desired tolerance. We call this
space of solutions the fairness region. Exploring how this region
changes across different contexts/relaxations/metric settings can
tell us when satisfying all constraints is feasible and, further, when

3Rodolfa et al. refer to Recall Parity in their work, but state that it is mathematically
equivalent to FNR Parity for small population sizes.
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we can expect greater flexibility when searching for a model across
multiple metrics.

The impossibility theorem can be stated in terms of different
metrics, and our choice of metric impacts the ease or difficulty of
characterizing the fairness region in closed-form. We start with a
choice of metrics for which we have a closed-form characterization
of the fairness region: FNR, FPR, and ACC (Section 3.1). Motivated
by the fact that practitioners in resource constrained settings often
consider PPV instead of ACC, we then consider a fairness region for
FNR, FPR, and PPV (Section 3.2). Deriving a closed-form solution
for the fairness region in the second case is much more difficult,
requiring us to approach our analysis computationally.

3.1 Characterizing the fairness region using
FPR, FNR, and ACC

We begin by defining an alternative expression for the impossibility
result, this time in terms of FPR, FNR, and ACC. Proofs of all results
in this section (Corollary 3.1, Proposition 3.2, and Theorem 3.3) can
be found in Appendix D.

COROLLARY 3.1 (IMPOSSIBILITY RESULT VARIATION [16] [37]). Ina
binary classification setting (see Appendix Section C), the relationship
between ACC, FNR, FPR and p can be characterized by:

ACC = (1 - FNR)p+ (1= FPR)(1 - p).

Next, we add a relaxation term for each parameter in Corol-
lary 3.1. In the case of two groups, we let FPRy = FPR{ +€ppr, where
€FpR is a tolerable difference between the metric for the two groups.
Similarly, let FNRy = FNR; +€epnr and ACCy = ACCq+€epcc. Using
these relaxations, we can express a “governing equation” for the
fairness region as follows.

PrRoOPOSITION 3.2 (DESCRIBING THE FAIRNESS REGION). Consider
Corollary 3.1. Assume that p, = p; + €p, ACCy = ACC1 + €acc,
FPRy = FPRy+€fpr, and FNRy = FNRy+epng, where each €ppr, €ENR,
€Acc €p € (=1,1) term captures the difference between two groups
for p, ACC, FPR, and FNR, respectively. Then, the following is equal
to FNR1:

—€FpR+ EACC+ €FPR - Py — €FNR * Py + FPRy - €p + €rpr - €p — €FNR - €p

€p

@

While Equation 2 may look complex, an important insight is
that it shows FNR can be expressed as a function of mostly fixed
and known terms. Observe that p and ¢ are known a priori, as
they can be calculated directly from the dataset. By deciding
on bounds for the acceptable tolerance between fairness metrics
(i.e., maximum allowable values for egpRr, €gNR, EACC), We can then
create plots of FNR vs. FPR, as seen in Figure 1 (a). Each point in
these plots represents an FPR, FNR (and, implicitly, an ACC value)
of a feasible model. In other words, these points correspond to the
existence of feasible models satisfying fairness constraints for FPR,
FNR, and ACC within an e-margin-of-error. Similarly, the absence
of a point corresponds to the emptiness of a set of models (i.e., the
infeasibility of finding a model). In general, we can say that plotting
FNR vs. FPR according to Proposition 3.2 gives us a projection of
the fairness region, where the size of the area provides a measure
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(out of the entire FPR,FNR € [0, 1] region) of the proportion of
feasible models that are fair across all three metrics of interest (out
of all possible metric values). Significantly, we can use Equation 2
to find a closed-form expression for the size of the fairness region
over the unit square FNR, FPR € [0, 1]:

THEOREM 3.3 (SIZE OF THE FAIRNESS REGION). Assumeep < 1—p.
Allow +y to be the symmetric acceptable error (our “fair” relaxation)
between groups for metrics FPR, FNR, and ACC. Consider the size
of the space of possible erpg, €pnR, €Eacc assignments, given €, and p
that satisfy the constraints from Proposition 3.2. We will denote the
size of that space as |Ay| (as shorthand, we will call this the “fairness
region”). For a set of fairness constraints —y < €rpr, EFNR, €EACC < V>
where |y| < 1 andy # 0, we have that |Ag| is simply:

2
|Af| = g - 4L2 ®)
P €p

The practical implication of Theorem 3.3 is simple: for a practi-
tioner with a target tolerance for FPR, FNR, and ACC across groups,
we can show them whether their fairness relaxation values will
work or not given their context (i.e., p and ep), and furthermore,
how relaxing (or tightening) their e-margin-of-error affects the
fairness region.

3.2 Characterizing the fairness region using
FPR, FNR, PPV

Theorem 3.3 provides a clean and convenient result for FPR, FNR
and ACC, but it does not allow us to meaningfully analyze the type
of resource-constrained settings generally faced by practitioners.
In many contexts, a classifier’s ACC has less meaning than its PPV
[1, 5, 12, 50, 62]. To this end, we attempted to recreate the analysis
in Section 3.1 instead using FPR, FNR, and PPV, which is found in
Appendix E. This analysis with PPV instead of ACC leads us to an
analogous expression for FNR as a function of the other parameters
(see 8). However, the expression in the PPV case is ripe with non-
linearities and possible discontinuities, making it more difficult to
find a closed-form expression for the size of the fairness region (in
the same way we did for ACC in Theorem 3.3). A corresponding
plot of the fairness region projected onto two dimensions (FNR
and PPV) is shown in Figure 1 (b). The figure is a discretized set of
solutions created by sweeping out a range of parameter values and
plotting feasible lines following the equation for FNR (see 8).
With no closed-form expression, we take two computational
approaches to understanding the size of this fairness region. The
first approach is to directly estimate the fraction of the unit square
(FNR, PPV € [0, 1]) taken up by a discretized feasible region by us-
ing a dot planimeter, which is a well-studied method for estimating
complex two-dimensional areas [10, 26]. Intuitively, dot planimeter
estimates the fraction of the unit square taken up by the set of
solutions by overlaying a regular grid of points. For each point (also
known as a detector), we check whether or not any feasible lines
pass within a specific distance tolerance, which is a function of the
the grid’s granularity. An example of this procedure is shown in
the corresponding Figure 1 (c). Unfortunately, the process of dot-
planimeter-style estimation introduces additional approximation
error on top of discretizing the fairness region. Our analysis of
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with a dot planimeter

Figure 1: p; = 0.3, p2 = 0.5; €ppR, €ENRs EACC €PPV € [—0.05,0.05]

upper-bounding this error (under some assumptions) can be found
in Section F of the Appendix.

To avoid this additional approximation error, for our second
approach we re-frame our description of the fairness region us-
ing a Constraint Program (CP). A constraint program provides an
alternative means of measuring how large the space of feasible
solutions is for a given setting of tolerances. Rather than measuring
the area taken up by a projection on two dimensions (PPV and
FNR), we can describe the fairness region directly as the set of
feasible solutions to a constraint program. Using the CP-SAT solver
in Google ORTools, we express our problem’s governing equations
as a set of integer variables and constraints. Our quantities of in-
terest (FPR, FNR, PPV, p, €rpR, €FNR, €PPV; €p) are all real numbers
rather than integers, with infinitely many possible values in their
respective ranges. To characterize the size of the solution space for
different tolerances, we discretize the interval [0, 1] into N + 1 bins
(and, correspondingly, the interval [—1, 1] into 2N + 1 bins). For
example, an FPR = 0.91 corresponds to an integer value of 91 when
N = 100. With this discretization, we represent the fairness region
using the following constraint program:

ai, Bi, pi,vi € [0, N] integer Vi e {1,2}
€j € [-N,N]integer Vje€ {a,f, p,o}
mi,d; € [0,N?] integer Vi€ {1,2}
n;i € [0,N3] integer Vi€ {1,2}
pi =bi-N Vie{1,2}
i =j2+ej Vj€{a p.p.o}
€j = —€max' N Vj € {a, B0}
€j < é€max N Vj e {a,p v}
mi =p;i-(N—-uv;) Vi e {1,2}
ni =m;-(N-pi) Vie{1,2}
di =vi-(N-pi) Vie{1,2}
ni =a;-d; Vie{1,2}

Here, N is the number of integers; n, m, d are intermediate vari-
ables used to represent multiplicative constraints for the CP-SAT
solver; €max represents the maximum allowable value of |eq |, |€g], [€o;
b; represent the observed prevalences in the real-valued range [0, 1];
and , a, B, v represent FPR, FNR, PPV, respectively. The CP-SAT
solver allows us to enumerate all possible solutions to a constraint
program. With N© possible values for the set {FPRy, FPR2, FNRy,
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FNRg, PPV, PPV, }, for any fixed N, we can characterize the size
of the discretized solution space as a function of changes to the
other inputs simply as the number of feasible solutions.

3.3 Revisiting the impossibility theorem

Recall that there are two known exceptions to the impossibility
theorem: when the two groups’ prevalence values are the same, and
under perfect prediction [16, 37]. However, given our formalization
for the relaxed case of fairness constraints, perhaps we should
ask: to what degree do the exceptions from the impossibility result
apply? Specifically:

(1) How large can prevalence differences be (ep € {1%, 10%, 50%})
and still imply a large fairness region?

(2) How far can a model depart from perfect prediction (PPV €
{99%, 75%}) and still imply a large fairness region?

3.3.1 Varying prevalence difference. First we explore the impact of
varying the prevalence difference between two groups on the size
of the fairness region, using the CP described in Section 3.2. The
results of these experiments are in Figure 2, which shows heatmaps
plotting the number of feasible models for any pair of prevalence
values p;, p, over a range of values from 0.01 to 0.99. Figures 2 (a),
(b), (c), and (d) correspond to settings where the allowable difference
between metricsis € < 0.0, 0.02,0.05, and 0.1, respectively. Note that
in each setting we fix performance such that FNR, PPV € [0, 0.99]
to avoid the pathological cases covered by Equation 1.

Several important insights can be gleaned from Figure 2. As
expected, in the case where the e-margin-of-error is 0, feasible
models are only found on the diagonal, when prevalences are equal
(implied by [16, 37]). Interestingly, we observe for all settings of €
that the number of feasible models is densest around p; = p, = 0.5.
For example, the fairness region is larger when p; = 0.4,p, = 0.5
than when p; = 0.1, p, = 0.2, even though €, = 0.1 in both cases.

As the e-margin-of-error increases from 0.0 to 0.1, the total
number of feasible models increases dramatically from 3, 640 to
199, 314. While the specific values of these numbers are a function of
our discretization and the value of N used in the constraint program,
they still enable us to make relative comparisons about the size of
the fairness region. For example, Figure 2 (c), where € < 0.05 (i.e.,
the maximum allowable difference between group metrics is 5%),
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provides a valuable insight: if the prevalence difference between
groups is less than 0.2 (or 20%), the fairness region is quite dense,
especially relative to plot 2 (a), where € = 0.0. This is good news for
practitioners because: (1) prevalence differences between 10% and
15% are commonly observed, and (2) setting € < 0.05 is reasonable
in many contexts.

3.3.2  Varying performance. Next, we test the effect of “imperfect
prediction” on the size of the fairness region. As a reference point,
we focus on the case where € < 0.05 (Figure 2 (c)), and create bins
that corresponded to four ranges of PPV: [0.00, 0.24], [0.25, 0.49],
[0.50,0.74], and [0.75, 0.99]. As expected, the closer the setting is to
“perfect prediction” (i.e., the higher the PPV), the larger the size of
the fairness region. The number of feasible models increases from
7,554 in the lowest PPV bin to 10,007 in the highest bin. Notably,
there are still many feasible models available in all bins even when
the prevalence difference between groups is as high as 20%.

There is another key insight implicit in Figure 3: it not only
shows how many feasible models there are under different PPV
settings, but that many of those models are high-performing. In each
figure, it can be seen that the number of feasible models is most
dense when the group prevalences are below the maximum PPV
value. Recall that any model with a PPV greater than the overall
prevalence of the dataset on which it is being used offers value over
random chance, suggesting not only many possible models, but
many useful models in these settings.

3.3.3 Considering intersectional groups. The ultimate goal of algo-
rithmic fairness should not just be ensuring fairness according to
multiple metrics, but also for multiple groups (e.g., defined both
based on sex, and based on race), including intersections of these
groups (e.g., defined by a combination of sex and race) [29]. Inter-
sectional discrimination [20, 43] states that individuals who belong
to several protected groups simultaneously (e.g., Black women)
experience stronger discrimination compared to individuals who
belong to a single protected group (e.g., White women or Black
men), and that this disadvantage compounds more than additively.
This effect has been demonstrated by numerous case studies, and
by theoretical and empirical work [17, 21, 47, 58].

Intersectionaliy is an analytical framework for understanding
human beings that considers the outcome of intersections of dif-
ferent social locations, power relations and experiences [29]. For
example, an intersectional approach to fairness could be thinking
beyond an individual’s sex or race, and instead accounting for a
set of important characteristics about that individual like their sex,
race, ethnicity, and social class. In this paper, we consider a limited
interpretation of intersectionality, and investigate how stating fair-
ness constraints with respect to intersections of several sensitive
attributes impacts the existence of feasible models. In the follow-
ing proposition, we show that the maximum prevalence difference
across groups defined by an intersection of sensitive attributes (e.g.,
on sex and race) is at least as high as when groups are defined based
on each sensitive attribute independently (e.g., on sex or race).

PROPOSITION 3.4 (INTERSECTIONAL PREVALENCE DIFFERENCES).
Given a dataset that is subdivided into two groups, let 0 < p; < nj
and 0 < p2 < ny, where p; is the number of positive class members
of group i, and n; is the total number of members in group i. Suppose
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DL P2 Thep the following holds: ‘Z—i < PPz p_; (Proof deferred

ni ny = ni+ny n
to Appendix G). O
Consider a toy example where there are two binary sensitive
attributes: sex coded as male and female, and race coded as major-
ity and minority. Under the mild assumption of Proposition 3.4,
the prevalence of the minority group as a whole must be between
the prevalence of the intersectional minority male and minority
female groups. The same is true for the prevalence of the majority
group. As a result, the prevalence difference between the four in-
tersectional groups (majority male, majority female, minority male,
minority female) must be greater than or equal to the prevalence
difference between only the majority and the minority group. The
same reasoning can be used to understand prevalence differences
for sex and intersectional sex. The overall implication of Proposi-
tion 3.4 is that considering intersectional groups leads to at least
equal, but more commonly greater, prevalence differences between
groups, which suggests there will be fewer feasible models that are
fair with respect to FNR, FPR, and PPV.

3.3.4  Varying the resource constraint k. We now investigate the
impact of k on our ability to identify a feasible solution.

PROPOSITION 3.5 (REDUCING K INCREASES PPV). Given a well-
calibrated classifier being used under a resource constraint k, reducing
the size of k will monotonically increase the PPV of the classifier. (Proof
deferred to Appendix G) O

The insight of Proposition 3.5 is that reducing k causes a chain
reaction: first, it increases the PPV of the classifier, and second, an
increase in PPV results in a more dense space of feasible solutions
(as observed in Section 3.3.2). Taken together, this suggests that
reducing k can result in a denser space of feasible models on FPR,
FNR and PPV.

4 EXPERIMENTS

The analysis in Section 3 shows that, by slightly relaxing fairness
constraints between metrics, there are a large number of models
satisfying approximate fairness constraints across multiple met-
rics. In this section, we design an experiment to demonstrate the
existence of those models on real data.

Our insights suggest that the possibility of finding fair models is
influenced by (1) the group prevalences’ proximity to 50%, (2) the
differences between group prevalences, and (3) the performance of
the classifier. To better understand how these parameters impact
one’s ability to find fair models on real-world data, we developed
an experiment to answer the following question: Given a dataset X,
a resource constraint k, a set of fairness constraints, and a classifier
with a given PPV, does there exist a set of k observations for which
(1) fairness constraints for FPR, FNR and PPV are satisfied, and
(2) those fairness constraints do not reduce the PPV? If there does
exist a set of observations in X that satisfies these requirements,
then there also exists a model that could select those observations.
Trivially, one can think of a function that uses the index of each
element to map to an outcome. In other words, one could use such
a set as the labels Y for creating a functioni: X — Y.

To implement the experiment we created a Mixed Integer Linear
Program as follows: The objective function is to maximize the
PPV of a selection of k observations, subject to 5 constraints: (1)
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Figure 2: Effect of varying group prevalence values p,, p, on the number of feasible models for different values of ¢, where
PPV, FNR € [0,0.99], FPR € [0,1.0], N = 100.

k observations must be selected, (2) the classifier has at most a
pre-defined PPV, (3-5) fairness constraints for FNR, FPR, and PPV
are met. The full program details can be found in Appendix A.*

One strength of this experiment is that it allows us to work with
datasets that may have non-binary sensitive attributes or multiple
sensitive attributes. This means we can also explore the feasibility
of finding fair sets when there are more than two groups and consider
intersectionality (see Section 3.3.3).

Note that there are two complications in our problem: First,
because PPV cannot be written as a linear constraint [31], we used
an existing approach to refactor our problem into an approximately
equivalent Quadratic Linear Program that includes constraints for
PPV. Second, as a result of the transformations and the inherent
complexity, running times become intractable for large datasets.
To circumvent this problem, we conducted our experiments on
a sample of each dataset stratified on the outcome and sensitive
attributes. We ran several sensitivity analyses and did not find any
meaningful difference in the experimental results due to down-
sampling, but we acknowledge this as a limitation.

4All data, code, and experimental results are available in the following GitHub reposi-
tory: https://github.com/DataResponsibly/the-possibility- of-fairness
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4.1 Datasets

We worked with 5 real-world datasets, all with varying outcome
prevalences, and representing a variety of sensitive attributes, in-
cluding sex, race, and education level. We used these datasets in
scope of 16 tasks (i.e., outcomes): 8 for Ukrainian EIE, 5 for folktables,
1 for each of the other 3 datasets).

Ukranian External Independent Evaluation (EIE). > EIE
data contains standardized tests for secondary school graduates in
Ukraine. The 2021 data, used in our experiments, contains 389,322
records. Sensitive attributes include the students’ sex and whether
they live in an urban or a rural area. Outcomes are students’ per-
formance on 5 tests (e.g., history, German).

Portuguese Student Performance. ¢ [19]. This dataset con-
tains the performance of Portuguese high school students in twho
subjects, mathematics and Portuguese language arts. The dataset
contains 1,044 records from students at two high schools, and was
collected in 2005 and 2006. Features includes administrative records

Shttps://zno.testportal.com.ua/opendata
®https://archive.ics.uci.edu/ml/datasets/student+performance
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Figure 3: Effect of varying PPV on the fairness region, where |ex|, g, |€s]| < 0.05, N = 100.

from schools (e.g., grades, number of absences), a lifestyle ques-
tionnaire completed by each student (e.g., how many hours per
week they study), and sensitive attributes like the student’s sex,
their parents’ education levels, and whether the students live in an
urban or rural location. The associated prediction task is identifying
students at risk of failure to provide additional school resources.

Taiwanese Loan Assessment. / [63]. This dataset contains
customer loan data from a bank (and cash issuer) in Taiwan. The
data was collected in 2005, has 30,000 records, and includes sensitive
attributes like sex and education level. The associated task is to
identify customers at risk of defaulting on their loan payments.

Bangladeshi Diabetes Risk Assessment. 8[33]. This dataset,
published in 2020, has 520 patient records with information on
diabetes-related symptoms, obtained through a questionnaire by
the Sylhet Diabetes Hospital in Bangladesh. The task is to iden-
tify individuals at risk of early-stage diabetes. Sensitive attributes
include age and sex.

"https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
8https://archive.ics.uci.edu/ml/datasets/Early+stage+diabetes+risk+prediction+
dataset.
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Folktables. ° [22]. This data is from the American Community
Survey Public Use Microdata Samples (ACM PUMS), and contains
individual-level and household-level data related to income, em-
ployment, health, transportation, and housing in the United States.
The data is updated yearly, is available at both the national or state
level, and contains millions of records. Sensitive attributes include
race and sex. We look at 5 separate pre-defined prediction tasks,
using data from New York state in 2018.

4.2 Results

Full experimental results are reported in Table 2 in Appendix B, and
truncated results are in Table 1. These tables show the “Optimal k
Range” for each (dataset (outcome), sensitive attribute) pair, where
k is expressed as a percentage of the observations. The optimal
range shows for which values of k there is a set of observations
that satisfy fairness constraints for FPR, FNR, and PPV, without
sacrificing any additional classifier PPV. Note that in Table 2, each k
list must contain 30% errors (i.e., false positives). This means that the
precision of the list k is at-most 70%. This was an arbitrary choice;
however, we did conduct extensive sensitivity analysis (see Table 5

“https://github.com/zykls/folktables
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Table 1: Truncated experimental results.

Dataset (Outcome) Overall Preva- | Sensitive Group Prevalence (%) Maximum Optimal k
lence (%) Attribute Prevalence Range (%
Difference (%) | Samples)

EIE (Ukranian) 7.34 Sex Female: 4.26; Male: 10.66 6.4 None
EIE (Ukranian) 7.34 Territory Rural: 10.38; Urban: 6.3 4.08 [5,20]
EIE (Math) 31.1 Sex Female: 30.92; Male: 31.26 0.34 All
EIE (Math) 31.1 Territory Rural: 39.94; Urban: 28.12 11.82 [5,90]
EIE (Geography) 5.3 Sex Female: 4.21; Male: 6.31 2.1 All
EIE (Geography) 5.3 Territory Rural: 6.43; Urban: 4.87 1.56 All
EIE (German) 11.35 Sex Female: 10.03; Male: 13.87 3.84 [5,90]
EIE (German) 11.35 Territory Rural: 26.97; Urban: 8.57 18.4 None
Folktables  (Employ- | 46.45 Sex Female: 44.3; Male: 48.74 4.44 All
ment)
Folktables  (Employ- | 46.45 Race Asian alone: 50.0; Black or | 8.29 All
ment) African American alone:

42.08; Other: 41.71; White:

47.36
Folktables (Travel | 53.78 Sex Female: 51.72; Male: 55.8 4.08 All
Time)
Folktables (Travel Time) 53.78 Race Asian alone: 66.86; Black | 20.64 [5,55]

or African American alone:

69.15; Other: 64.63; White:

48.51
Loan Assessment 22.17 Sex Female: 20.86; Male: 24.16 3.3 All
Diabetes Risk Assess- | 61.54 Sex Female: 90.1; Male: 44.82 45.28 [5,10]
ment
Student Performance 22.03 Sex Female: 21.13; Male: 23.22 2.09 All
Student Performance 22.03 Parent’s High school: 23.55; Not | 9.33 [5,55]

education high school or university or
level greater: 25.85; University or
greater: 16.52

in the Appendix) and found that increasing the PPV generally
increases the Optimal k Range, as suggested in Section 3.3.2. Note
also that “Maximum Group Difference” refers to the maximum
pairwise difference between group prevalence values.

Recall our discussion about fairness constraints over intersec-
tional groups in Section 3.3.3. In Table 3, we have included results
for Folktables for a new “race-sex” attribute that partitions the data
based on a combination of values of these two attributes. It can
be seen that the same observations made in Section 4.2 hold here,
but with one key difference: in general, the maximum prevalence
difference in groups defined by an intersection of attributes (e.g., on
sex and race) is at least as high as when groups are defined based
on each sensitive attribute independently (e.g., on sex or race). This
is consistent with the insights of Proposition 3.4 in Section 3.3.3.

The results in Table 2 support the conceptual findings presented
in Section 3. The size of the optimal k range mirrors some previous
findings, with evidence of larger k ranges for prevalences closer to
50% and for smaller group prevalence differences. As evidence for
the former, for any row in Table 2 for which the optimal k range is
All, the group prevalence differences are small (less than 10%). For
the latter, consider this interesting observation from the table: for

the (EIE (German), Territory) pair, the maximum group prevalence
difference is 18.4% — yet there is no value of k where it is possible to
simultaneously satisfy all three fairness constraints. Notice that the
overall prevalence is ~ 10.35%. In contrast, the (Folktables (Travel
Time), Race) pair has a maximum prevalence difference that is even
higher at 20.64%, but in this case the group prevalences are closer
to 50%, and the optimal k range spans over half the dataset ([5, 55]).

Another salient result from our experiments is that out of all
32 combinations of (dataset (outcome), sensitive attribute), only 3
have no k value for which it was possible to find a set of obser-
vations satisfying every fairness constraint. This is a promising
result: across five separate and diverse real-world datasets,
we demonstrated that there is nearly always at least some
chance of finding a model that is simultaneously fair with
respect to FPR, FNR, and PPV with a small margin-of-error.

5 DISCUSSION

This paper sought to revisit the impossibility theorem in practical
settings. Taken together, our analytical and experimental results, of-
fer a promising perspective on the feasibility of finding models that
are fair with respect to approximate constraints for FNR, FPR, and
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PPV: even under slight relaxations, fair models are abundant
rather than rare.

In this section, we present our findings as guidance for practi-
tioners on when it will be feasible to find those fair models. There
are several considerations: (1) group prevalence values, (2) preva-
lence difference between groups, (3) classifier performance, and (4)
resource constraint k.

In the first two considerations, our findings suggest that if one
allows a small margin-of-error difference between metrics, then
there exist many models that simultaneously satisfy parity across
FNR, FPR, PPV even when there is a moderate prevalence differ-
ence between groups. Further exploration is needed to understand
what exactly constitutes small and moderate, but in our analysis
we observed that cases with a 5% margin-of-error and prevalence
differences up to 10% (and in some cases up to 20%) afforded fea-
sible solutions. We are unsure how well these particular settings
will generalize, but the larger implication is hopeful. For example,
revisiting the thought experiment from Section 2: when predict-
ing student graduation in the US where the prevalence difference
between minority and majority students is roughly 10%, we ex-
pect that it is possible to build good models that are fair with re-
spect to multiple metrics. To allow practitioners to answer ques-
tions like these for their own datasets, we offer an open-source
tool they can use to assess the feasibility of finding models that
are fair across multiple constraints, given an input dataset. (See
https://github.com/DataResponsibly/the-possibility-of-fairness.)

Regarding considerations (3) and (4), our analytical work sug-
gests that a higher PPV yields a larger number of feasible models.
This furthers claims by other researchers that increasing the perfor-
mance of a model actually improves the possibility of finding a fair
model [61]. This is in-line with a paradigm shift away from thinking
one must choose between high performance or fairness — from a
fairness perspective, it can be worthwhile to improve the perfor-
mance of your classifier to further enable fairness across multiple
constraints. Connecting this insight to the resource-constrained
setting with k, it follows that resource constraints can, perhaps
counter-intuitively, lead to higher chances of finding fair
models (see Proposition 3.5). This is particularly impactful for
practitioners working in ML for public policy, where resource con-
straints can be as small as 1% (k = 0.01) or 5% (k = 0.05) [6, 50].

We also offer two other meta-considerations. The first is the
e-margin-of-error allowed between fairness metrics. In practice,
€ should be decided a priori, and by consulting stakeholders and
subject area experts [53, 54]—but generally, the guidance here is
unsurprising: the larger the tolerable difference between metrics,
the larger the feasible region of fair models.

The second meta-consideration is the number of groups of sen-
sitive attributes. We find that adding intersectional groups will
increase prevalence differences (see Proposition 3.4), which reduces
the number of possibilities for fair models. However, this is by no
means an argument against considering intersectionality. On the
contrary, we frame this finding as follows: you can continue to
add sensitive attributes and intersectional groups and still have a
chance of finding models that are fair across multiple metrics.

Future work and limitations. Our work leaves open an impor-
tant next step in ensuring fairness across multiple metrics and for
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multiple groups: once we know there is a large set of feasible
models, how do we find such a model? Further, does having a
large number of feasible models make it easier to find one of
those models? Answering these questions is beyond the scope of
this current paper, but the authors hope to answer them in follow-
up work. Notably, as of the time this work was published, there
has been at least one effort made to develop an algorithm to find
classifiers that are fair with respect to FPR, FNR, and PPV [31].
Significant additional study of this problem should be done with
closed-form expressions describing model feasibility in terms of
FPR, FNR, and PPV.

6 CONCLUSIONS AND SOCIAL IMPACT

This paper provides evidence that challenges commonly held as-
sumptions about the impossibility theorem in practical settings,
suggesting that practitioners can strive for more fairness in the
algorithms they implement. This is an important part of the social
impact of this paper: it exists as part of a growing body of liter-
ature showing that strong limits to fairness, like trade-offs with
performance, with other metrics, or between groups, may be over-
stated or even self-imposed. The impossibility theorem is not a rigid
barrier to equitable machine learning.

This work also further demonstrates the importance of reduc-
ing societal biases, which are ultimately what cause prevalence
differences between groups to appear in data. There is a similar
implication for designing better models — by knowing that high
model performance and fairness are interrelated, we can shift away
from a paradigm of wanting to build algorithms that are either
better performing or more fair, and towards one where we build
algorithms that are better performing and more fair.

Our efforts, along with related work that challenges commonly-
held beliefs about the fairness-accuracy trade-off, may represent
an inflection point in the fair-ML community: fewer and fewer
researchers and practitioners conform to the idea that we must
choose between (a single notion of) fairness and accuracy [14,
31, 50, 61]. Our main take-away is that achieving fairness along
multiple metrics, for multiple groups, and without sacrificing
accuracy is much more attainable than previously believed.

ACKNOWLEDGMENTS

This research was supported in part by NSF Awards No. 1922658 and
1916505, by the NSF Graduate Research Fellowship under Award No.
DGE-1839302, and by UL Research Institutes through the Center
for Advancing Safety of Machine Intelligence.

REFERENCES

[1] Everaldo Aguiar, Himabindu Lakkaraju, Nasir Bhanpuri, David Miller, Ben Yuhas,
and Kecia L Addison. 2015. Who, when, and why: A machine learning approach to
prioritizing students at risk of not graduating high school on time. In Proceedings
of the Fifth International Conference on Learning Analytics And Knowledge. 93-102.

Tiago Andrade, Fabricio Oliveira, Silvio Hamacher, and Andrew Eberhard. 2019.
Enhancing the normalized multi-parametric disaggregation technique for mixed-
integer quadratic programming. . of Global Optimization, 73(4) (2019), 701-722.
https://doi.org/10.1007/s10898-018-0728-9

Falaah Arif Khan, Eleni Manis, and Julia Stoyanovich. 2022. Towards Substantive
Conceptions of Algorithmic Fairness: Normative Guidance from Equal Opportu-
nity Doctrines. In Equity and Access in Algorithms, Mechanisms, and Optimization
(Arlington, VA, USA) (EAAMO °22). Association for Computing Machinery, New
York, NY, USA, Article 18, 10 pages. https://doi.org/10.1145/3551624.3555303

[2

—_
A


https://github.com/DataResponsibly/the-possibility-of-fairness
https://doi.org/10.1007/s10898-018-0728-9
https://doi.org/10.1145/3551624.3555303

The Possibility of Fairness

(4]

[8

[9

=

[10]

[12]

[13]

[14

[16]

[17

(18]

[24]

[25

[27]

[28]

Robert Bartlett, Adair Morse, Richard Stanton, and Nancy Wallace. 2021.
Consumer-lending discrimination in the FinTech Era. Journal of Financial Eco-
nomics (2021). https://doi.org/10.1016/j.jfineco.2021.05.047

Andrew Bell, Alexander Rich, Melisande Teng, Tin Oreskovi¢, Nuno B Bras, Lénia
Mestrinho, Srdan Golubovic, Ivan Pristas, and Leid Zejnilovic. 2019. Proactive
advising: a machine learning driven approach to vaccine hesitancy. In 2019 IEEE
International Conference on Healthcare Informatics (ICHI). IEEE, 1-6.

Andrew Bell, Ian Solano-Kamaiko, Oded Nov, and Julia Stoyanovich. 2022. It’s
just not that simple: an empirical study of the accuracy-explainability trade-
off in machine learning for public policy. In 2022 ACM Conference on Fairness,
Accountability, and Transparency. 248-266.

Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie
Houde, Kalapriya Kannan, Pranay Lohia, ]acquelyn Martino, Sameep Mehta,
Aleksandra Mojsilovic, Seema Nagar, Karthikeyan Natesan Ramamurthy, John
Richards, Diptikalyan Saha, Prasanna Sattigeri, Moninder Singh, Kush R. Varsh-
ney, and Yunfeng Zhang. 2018. Al Fairness 360: An Extensible Toolkit for De-
tecting, Understanding, and Mitigating Unwanted Algorithmic Bias.  https:
//arxiv.org/abs/1810.01943

Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael Kearns,
Jamie Morgenstern, Seth Neel, and Aaron Roth. 2017. A convex framework for
fair regression. arXiv preprint arXiv:1706.02409 (2017).

Sarah Bird, Miro Dudik, Richard Edgar, Brandon Horn, Roman Lutz, Vanessa
Milan, Mehrnoosh Sameki, Hanna Wallach, and Kathleen Walker. 2020. Fairlearn:
A toolkit for assessing and improving fairness in AL Technical Report MSR-TR-2020-
32. Microsoft. https://www.microsoft.com/en-us/research/publication/fairlearn-
a-toolkit-for-assessing-and-improving-fairness-in-ai/

Michail Kuzmic Bocarov. 1957. Matematiko-statisticeskie metody v kartografii.
Toon Calders and Sicco Verwer. 2010. Three naive Bayes approaches for
discrimination-free classification. Data mining and knowledge discovery 21, 2
(2010), 277-292.

Samuel Carton, Jennifer Helsby, Kenneth Joseph, Ayesha Mahmud, Youngsoo
Park, Joe Walsh, Crystal Cody, CPT Estella Patterson, Lauren Haynes, and Rayid
Ghani. 2016. Identifying police officers at risk of adverse events. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and
data mining. 67-76.

Simon Caton and Christian Haas. 2020. Fairness in machine learning: A survey.
arXiv preprint arXiv:2010.04053 (2020).

L Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K Vishnoi. 2019.
Classification with fairness constraints: A meta-algorithm with provable guaran-
tees. In Proceedings of the conference on fairness, accountability, and transparency.
319-328.

A. Charnes and WW. Cooper. 1962. Programming with linear fractional func-
tionals. Naval Research Logistics Quarterly 9(3-4) (1962), 181-186.  https:
//doi.org/10.1002/nav.3800090303

Alexandra Chouldechova. 2017. Fair Prediction with Disparate Impact: A Study
of Bias in Recidivism Prediction Instruments. Big Data 5, 2 (2017), 153-163.
https://doi.org/10.1089/big.2016.0047

Patricia Hill Collins. 2002. Black feminist thought: Knowledge, consciousness, and
the politics of empowerment. routledge.

Sam Corbett-Davies and Sharad Goel. 2018. The measure and mismeasure of
fairness: A critical review of fair machine learning. arXiv preprint arXiv:1808.00023
(2018).

P. Cortez and A. M. G. Silva. 2008. Using data mining to predict secondary school
student performance.

Kimberle Crenshaw. 1990. Mapping the margins: Intersectionality, identity
politics, and violence against women of color. Stan. L. Rev. 43 (1990), 1241.
Catherine D’Ignazio and Lauren F Klein. 2020. Data feminism. MIT Press.
Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. 2021. Retiring
adult: New datasets for fair machine learning. Advances in Neural Information
Processing Systems 34 (2021), 6478-6490.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh
Venkatasubramanian. 2015. Certifying and removing disparate impact. In pro-
ceedings of the 21th ACM SIGKDD international conference on knowledge discovery
and data mining. 259-268.

Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. 2016.
On the (im) possibility of fairness. arXiv preprint arXiv:1609.07236 (2016).
Sorelle A Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam
Choudhary, Evan P Hamilton, and Derek Roth. 2019. A comparative study
of fairness-enhancing interventions in machine learning. In Proceedings of the
conference on fairness, accountability, and transparency. 329-338.

YS Frolov and DH Maling. 1969. The accuracy of area measurement by point
counting techniques. The Cartographic Journal 6, 1 (1969), 21-35.

Andreas Fuster, Paul Goldsmith-Pinkham, Tarun Ramadorai, and Ansgar Walther.
2020. Predictably unequal? the effects of machine learning on credit markets.
The Effects of Machine Learning on Credit Markets (October 1, 2020) (2020).

LLC Gurobi Optimization. 2022. Gurobi Optimizer Reference Manual. (2022).
https://www.gurobi.com/

410

&

(31]

(32]

(33]

[34

@
2

[36

(37]

[38

@
20,

[40

[41

[42

[43

[44

[45

[46

[50

[51

[56

FAccT 23, June 12-15, 2023, Chicago, IL, USA

Olena Hankivsky. 2022. INTERSECTIONALITY 101. (2022).
Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of opportunity in

supervised learning. Advances in neural information processing systems 29 (2016).
Brian Hsu, Rahul Mazumder, Preetam Nandy, and Kinjal Basu. 2022. Pushing
the limits of fairness impossibility: Who’s the fairest of them all? arXiv preprint
arXiv:2208.12606 (2022).

Qian Hu and Huzefa Rangwala. 2020. Towards Fair Educational Data Mining: A
Case Study on Detecting At-Risk Students. https://eric.ed.gov/?id=ED608050
MM Islam, Rahatara Ferdousi, Sadikur Rahman, and Humayra Yasmin Bushra.
2020. Likelihood prediction of diabetes at early stage using data mining tech-
niques. In Computer Vision and Machine Intelligence in Medical Image Analysis.
Springer, 113-125.

Faisal Kamiran and Toon Calders. 2009. Classifying without discriminating. In
2009 2nd international conference on computer, control and communication. IEEE,
1-6.

Faisal Kamiran and Toon Calders. 2010. Classification with no discrimination
by preferential sampling. In Proc. 19th Machine Learning Conf. Belgium and The
Netherlands, Vol. 1. Citeseer.

Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for
classification without discrimination. Knowledge and information systems 33, 1
(2012), 1-33.

Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2017. Inherent
Trade-Offs in the Fair Determination of Risk Scores. In 8th Innovations in Theo-
retical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA,
USA (LIPIcs, Vol. 67), Christos H. Papadimitriou (Ed.). Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 43:1-43:23. https://doi.org/10.4230/LIPIcs.ITCS.2017.43
Nikita Kozodoi and Tibor V. Varga. 2021. Algorithmic Fairness Metrics. https:
//CRAN.R-project.org/package=fairness R package version 1.2.2.

Danijel Ku¢ak, Vedran Juri¢i¢, and Goran Dambi¢. 2018. MACHINE LEARNING
IN EDUCATION-A SURVEY OF CURRENT RESEARCH TRENDS. Annals of
DAAAM & Proceedings 29 (2018).

Barbara A Langham. 2009. The achievement gap: What early childhood educators
need to know. Texas Child Care Quarterly (2009), 14-16.

Nicol Turner Lee. 2018. Detecting racial bias in algorithms and machine learning.
Journal of Information, Communication and Ethics in Society (2018).

David Lowry-Duda. 2017. On some variants of the Gauss circle problem. arXiv
preprint arXiv:1704.02376 (2017).

Timo Makkonen. 2002. Multiple, compound and intersectional discrimination:
Bringing the experiences of the most marginalized to the fore. Institute for Human
Rights, Abo Akademi University (2002).

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2021. A survey on bias and fairness in machine learning. ACM Com-
puting Surveys (CSUR) 54, 6 (2021), 1-35.

Shira Mitchell, Eric Potash, Solon Barocas, Alexander D’Amour, and Kristian
Lum. 2021. Algorithmic fairness: Choices, assumptions, and definitions. Annual
Review of Statistics and Its Application 8 (2021), 141-163.

Preetam Nandy, Cyrus Diciccio, Divya Venugopalan, Heloise Logan, Kinjal Basu,
and Noureddine El Karoui. 2022. Achieving Fairness via Post-Processing in Web-
Scale Recommender Systems. In 2022 ACM Conference on Fairness, Accountability,
and Transparency. 715-725.

Safiya Umoja Noble. 2018. Algorithms of oppression: How search engines reinforce
racism. nyu Press.

Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. 2019.
Dissecting racial bias in an algorithm used to manage the health of populations.
Science 366, 6464 (2019), 447-453.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger.
2017. On fairness and calibration. Advances in neural information processing
systems 30 (2017).

Kit T Rodolfa, Hemank Lamba, and Rayid Ghani. 2021. Empirical observation
of negligible fairness—accuracy trade-offs in machine learning for public policy.
Nature Machine Intelligence 3, 10 (2021), 896-904.

Kit T Rodolfa, Erika Salomon, Lauren Haynes, Ivan Higuera Mendieta, Jamie
Larson, and Rayid Ghani. 2020. Case study: predictive fairness to reduce mis-
demeanor recidivism through social service interventions. In Proceedings of the
2020 Conference on Fairness, Accountability, and Transparency. 142-153.

Lucas Rosenblatt and R. Teal Witter. 2022. Counterfactual Fairness Is Basically
Demographic Parity. https://doi.org/10.48550/ARXIV.2208.03843

Boris Ruf and Marcin Detyniecki. 2021. Towards the right kind of fairness in AL
arXiv preprint arXiv:2102.08453 (2021).

Pedro Saleiro, Benedict Kuester, Loren Hinkson, Jesse London, Abby Stevens, Ari
Anisfeld, Kit T Rodolfa, and Rayid Ghani. 2018. Aequitas: A bias and fairness
audit toolkit. arXiv preprint arXiv:1811.05577 (2018).

Pedro Saleiro, Kit T Rodolfa, and Rayid Ghani. 2020. Dealing with bias and
fairness in data science systems: A practical hands-on tutorial. In Proceedings of
the 26th ACM SIGKDD international conference on knowledge discovery & data
mining. 3513-3514.

Piotr Sapiezynski, Valentin Kassarnig, and Christo Wilson. 2017. Academic
performance prediction in a gender-imbalanced environment.


https://doi.org/10.1016/j.jfineco.2021.05.047
https://arxiv.org/abs/1810.01943
https://arxiv.org/abs/1810.01943
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://doi.org/10.1002/nav.3800090303
https://doi.org/10.1002/nav.3800090303
https://doi.org/10.1089/big.2016.0047
https://www.gurobi.com/
https://eric.ed.gov/?id=ED608050
https://doi.org/10.4230/LIPIcs.ITCS.2017.43
https://CRAN.R-project.org/package=fairness
https://CRAN.R-project.org/package=fairness
https://doi.org/10.48550/ARXIV.2208.03843

FAccT 23, June 12-15, 2023, Chicago, IL, USA

[57] K Shailaja, B Seetharamulu, and MA Jabbar. 2018. Machine learning in healthcare:

A review. In 2018 Second international conference on electronics, communication
and aerospace technology (ICECA). IEEE, 910-914.

Stephanie A Shields. 2008. Gender: An intersectionality perspective. Sex roles 59,
5-6 (2008), 301-311.

Sahil Verma and Julia Rubin. 2018. Fairness definitions explained. In 2018 ieee/acm
international workshop on software fairness (fairware). IEEE, 1-7.

Anne L. Washington. 2019. How to Argue with an Algorithm: Lessons from the
COMPAS ProPublica Debate.

Michael L. Wick, Swetasudha Panda, and Jean-Baptiste Tristan. 2019. Unlocking
Fairness: a Trade-off Revisited. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurlIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (Eds.). 8780-8789. https://proceedings.neurips.cc/paper/2019/
hash/373e4c5d8edfa8b74fd4b6791d0cfédc- Abstract.html

411

Andrew Bell, Lucius Bynum, Nazarii Drushchak, Lucas Rosenblatt, Tetiana Zakharchenko, and Julia Stoyanovich

[62] Harrison Wilde, Lucia L. Chen, Austin Nguyen, Zoe Kimpel, Joshua Sidgwick,

Adolfo De Unanue, Davide Veronese, Bilal Mateen, Rayid Ghani, Sebastian
Vollmer, and et al. 2021. A recommendation and risk classification system for
connecting rough sleepers to essential outreach services. Data and Policy 3 (2021),
e2. https://doi.org/10.1017/dap.2020.23

I-Cheng Yeh and Che-hui Lien. 2009. The comparisons of data mining techniques
for the predictive accuracy of probability of default of credit card clients. Expert
systems with applications 36, 2 (2009), 2473-2480.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P
Gummadi. 2017. Fairness beyond disparate treatment & disparate impact: Learn-
ing classification without disparate mistreatment. In Proceedings of the 26th
international conference on world wide web. 1171-1180.

Leid Zejnilovic, Susana Lavado, Carlos Soares, iﬁigo Martinez De Rituerto
De Troya, Andrew Bell, and Rayid Ghani. 2021. Machine Learning Informed
Decision-Making with Interpreted Model’s Outputs: A Field Intervention. In
Academy of Management Proceedings, Vol. 2021. Academy of Management Briar-
cliff Manor, NY 10510, 15424.


https://proceedings.neurips.cc/paper/2019/hash/373e4c5d8edfa8b74fd4b6791d0cf6dc-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/373e4c5d8edfa8b74fd4b6791d0cf6dc-Abstract.html
https://doi.org/10.1017/dap.2020.23

The Possibility of Fairness

A QUADRATIC MIXED INTEGER LINEAR
PROGRAM DETAILS

In this section, we present the Mixed Integer Linear Program used in

our experiment in Section 4. The objective function is to maximize

the PPV of a selection of k observations, subject to 5 constraints:

(1) k observations must be selected, (2) the classifier has at most a

predefined PPV, (3-5) fairness constraints for FNR, FPR, and PPV

are met. All data, code, and experimental results are available in

a GitHub repository at https://github.com/DataResponsibly/the-

possibility-of-fairness. The repository will be made public upon

publication.

Note that the fairness constraints are enforced using disparity
ratios where 0.8 < disparity < 1.2, rather than a +e distance
between group metrics. We made this decision because disparity
ratios are more robust to small real values. For example, consider
a model that has FPR; = 0.002 for one group and FPRy = 0.04
for the other. If € = 0.05, technically these values would satisfy a
fairness constraint where |FPR; — FPRy| <= ¢, but this is likely
not desirable to practitioners. However, using disparity ratios, this
PR<12.

FPR, =
We frame the Mixed Integer Linear Program in Figure 4.
where N is the set of entities, n = |N|; x is a binary array of

length n where entry x; indicates whether or not entity i € N is

included in the final list; [ is a binary array of length n such that

I; = 1 if the outcome entity x;,i € N is 1 and 0 otherwise; G is a set

of protected groups; g; is a binary array of length n where entry g,

indicates whether or not entry entity i € N is in the group j (note

that group g, is the reference group for disparity calculations); k

is the final list size; ub and Ib are the upper and lower bounds for

the disparity ratios, respectively.

KLS is the “k-list-size” constraint, FPRU and FPRL are the upper
and lower bounds for the False Positive Rate, respectively, FNRU
and FNRL are the upper and lower bounds for the False Negative
Rate, respectively, and PPVU and PPVL are the upper and lower
bounds for the PPV respectively.

The PPV constraints (PPVU and PPVL) halt the problem from
being the Mixed Integer Linear Programming problem (MILP). We
were inspired by an approach that was used when faced with a
similar obstacle in creating MFOpt (Multiple Fairness Optimization
Framework) [31], and propose a reformulation of the MIP in a way
where we can apply the normalized multiparametric disaggregation
technique (NMDT [2]). We go through the following four steps:

Step 1. Make the following substitution:

n
i=1
—
' X+ gj;
i=1
Note that Py; is the number of entities from the group g; that

are included in the final list, and T, is the PPV for the group g;.
Step 2. Find the upper PUy; and'the lower PLg, bounds for each

Py, by solving the following MILP:

scenario would be considered unfair since 0.8 £

maximizey; ng

subject to (KLS)
(FPRU), (FPRL)
(FNRU), (FNRL)
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Step 3. Find the upper TUy; and the lower TLy; bounds for each
Ty, by solving the following MIP with linear constraints but with
the fractional objective:

maximizex; ng

subject to (KLS)
(FPRU), (FPRL)
(FNRU), (FNRL)

To solve we use the Charnes-Cooper transformation [15].

Step 4. Reformulate the initial optimization problem in terms of
Py, and Ty, with corresponding lower and upper bounds from steps
2 and 3 in order to use NMDT transformation, so that it can be easily
handled by MIP solver [28]. Also, note that all denominators there
are constant for the given dataset. This reformulation is shown in
Figure 5.

Note that Py, are integer variables, and Tj;; are continuous vari-
ables, but with bounds found in step 3 (Ty; € [TLg;, TUy,]), and
precision factor p as a negative integer, we can represent this con-
tinuous variable exactly as

Iy, = (TUgj - Tng) A+ TLy,
where

and zp, € {0, 1} are binary optimization variables.

B EXPERIMENTAL RESULTS

Our full experimental results can be found in the Python note-
books in the “experiments” folder of our Github repository at
https://github.com/DataResponsibly/the-possibility-of-fairness. In
this section, we wanted to include examples of the output of our
experiment for each Dataset (Outcome), sensitive attribute pair. Here
we highlight two such pairs from the EIE dataset, which can be seen
in Figure 6. Plot (a) shows results for the EIE (Geography), territory
pair, and plot (b) shows the results for the EIE (Ukrainian), territory
pair. Each of those plots contains two subplots. On top, it shows
the PPV (Precision) and Recall (dotted lines) of an unconstrained
linear program that has the specified PPV. The solid lines show
the PPV and Recall of the selected sets. The bottom plot shows the
disparity of each metric, where the dashed lines show the limits of
1.2 and 0.8. We can tell when a model is no longer optimal when the
constrained PPV and Recall meaningfully deviate from the uncon-
strained PPV and Recall. Note that in some experiments, the PPV,
FPR, and FNR disparities may be outside of the disparity window
([0.8,1.2]) — but these instances are either pathological or due to
a rounding error. The pathological cases occur when there is only
one or two False Positives or False Negatives in a group.

Full experimental results: Table 2

Intersectional results: Table 3

Sample size sensitivity analysis: Table 4

PPV sensitivity analysis: Table 5
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n
maximizey; E xi -l

i=1
n
subject to in =k, (KLS)
= n
Dixi-(1-1)-gj, Dxic(1=1) - grey
lzln—Sub. ’:1n , VjeG,j#ref (FPRU)
D (-1)-g;, 2 (1=1) grep,
i=1 i=1
n n
in'(l_li)'gj,- in'(l_li)'greﬁ-
=l > b = , VjeG,j#ref (FPRL)
D (-1)-gj, D (1=1)  gre,
i=1 i=1
n n
Z(l_xi)'li'gji Z(l_xi)'li'greﬁ
= <ub-El , VjeG,j#ref (FNRU)
li - gj; li - gref,
i=1 i=1

n n
Z(l_xi)'li'gji Z(l_xi)'li'greﬁ
i=1

— >1p- E ., VjeG,j#ref (FNRL)
Zli'gji Zli'gref,-
i1 i=1

n n

ZXi'li’gji in’li'grefi

i=1 <ub- =L , VjeG,j#ref (PPVU)

M=

Xi * Gref;

n
in "Yji
i=1
n
Do xiligj,
i=1 > Ib - i

n
in " Yji Xi * Gref;
i=1

i=1

[
—_

D=

=

xi*li* Gref;

VjeG,j#ref (PPVL)

xi, l; € {0,1}, i=1,...,n
gj; € {0,1}, jeG
(4)

Figure 4: Mixed Integer Linear Program.

413



The Possibility of Fairness FAccT 23, June 12-15, 2023, Chicago, IL, USA

n
maximize Ty, - Py,
Jj=1
n
subject to Py, =k, (KLS)
Jj=1
Py - (1-Ty,) Py, (1—-Ty.,)

g 9g Gre Jre . .
n’—’Suh%, VieG,j#ref (FPRU)
>a-1)-g; D=1 gy,
i=1 i=1
Py - (1-Ty,) Py - (1-T,. )

g g Jre Jre . .

9 j Zlb'—nf I Vj€eG,j#ref (FPRL)
>a-1)-g; D=1 gy,
i=1 i=1

Py - Ty, Py T,
1- 2 <ub-|1- L), VjeG,j#ref (FNRU)
Dihi-g; Dk Gres,
i=1 i=1
P,y Ty, P - T,
V- 9 >y |1 - Jrel_Irel | yjeG,j#ref (FNRL)
Zli AT Zli “Gref;
i=1 i=1
Tg; <ub- Ty, VjieG,j#ref (PPVU)
Tg; <1b- Ty, VjieG,j#ref (PPVL)
Pj € {PLy,....,PU;}, j€G
Tj € [TLy;, TUg, ], jeG
I; € {0,1}, i=1,...,n
gj; G{O,l}, jeaG
Figure 5: Reformulated initial optimization problem in terms of Pj; and T;; with corresponding lower and upper bounds from
steps 2 and 3 in order to use NMDT transformation, so that it can be easily handled by MIP solver [28].
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Figure 6: Plot (a) shows that overall values of k, PPV, and Recall of the selected set do not substantially deviate from an
unconstrained model, and that PPV, FPR, and FNR remain within the bounds of the disparity window for all values. Plot (b)
shows that over the k range of [5,20], PPV and Recall of the identified sets are inline with unconstrained Precision and Recall.
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Table 2: Full empirical results

Dataset (Outcome) Overall Sensitive Group Prevalence (%) Maximum Optimal
Prevalence | Attribute Prevalence k Range
(%) Difference (%) | (% Sam-

ples)

EIE (Ukranian) 7.34 Sex Female: 4.26; Male: 10.66 6.4 None

EIE (Ukranian) 7.34 Territory Rural: 10.38; Urban: 6.3 4.08 [5,20]

EIE (History) 18 Sex Female: 14.48; Male: 22.2 7.72 [5,60]

EIE (History) 18 Territory Rural: 20.27; Urban: 17.05 3.22 All

EIE (Math) 31.1 Sex Female: 30.92; Male: 31.26 0.34 All

EIE (Math) 31.1 Territory Rural: 39.94; Urban: 28.12 11.82 [5,90]

EIE (Physics) 8.33 Sex Female: 10.46; Male: 7.96 2.5 All

EIE (Physics) 8.33 Territory Rural: 12.16; Urban: 7.09 5.07 [5,20]

EIE (Chemistry) 10.68 Sex Female: 11.18; Male: 9.81 1.37 All

EIE (Chemistry) 10.68 Territory Rural: 15.72; Urban: 9.24 6.48 [5,25]

EIE (Geography) 5.3 Sex Female: 4.21; Male: 6.31 2.1 All

EIE (Geography) 5.3 Territory Rural: 6.43; Urban: 4.87 1.56 All

EIE (English) 10.64 Sex Female: 9.55; Male: 11.76 2.21 All

EIE (English) 10.64 Territory Rural: 17.35; Urban: 9.43 7.92 [5,20]

EIE (German) 11.35 Sex Female: 10.03; Male: 13.87 3.84 [5,90]

EIE (German) 11.35 Territory Rural: 26.97; Urban: 8.57 18.4 None

Folktables (Employment) 46.45 Sex Female: 44.3; Male: 48.74 4.44 All

Folktables (Employment) 46.45 Race Asian alone: 50.0; Black or | 8.29 All

African American alone: 42.08;
Other: 41.71; White: 47.36
Folktables (Income) 41.51 Sex Female: 35.76; Male: 47.13 11.37 All
Folktables (Income) 41.51 Race Asian alone: 41.05; Black or | 19.61 [5,50]
African American alone: 31.9;
Other: 25.3; White: 44.91
Folktables (Medical Cover) 40.09 Sex Female: 38.87; Male: 41.65 2.78 All
Folktables (Medical Cover) 40.09 Race Asian alone: 41.13; Black or | 17.21 [5,60]
African American alone: 52.43;
Other: 49.06; White: 35.22
Folktables (Mobility) 78.17 Sex Female: 77.29; Male: 79.07 1.78 [5,70]
Folktables (Mobility) 78.17 Race Asian alone: 75.57; Black or | 6.11 [5,60]
African American alone: 81.33;
Other: 81.68; White: 77.35
Folktables (Travel Time) 53.78 Sex Female: 51.72; Male: 55.8 4.08 All
Folktables (Travel Time) 53.78 Race Asian alone: 66.86; Black or | 20.64 [5,55]
African American alone: 69.15;
Other: 64.63; White: 48.51

Loan Assessment 22.17 Education High school: 25.38; Not high | 14.85 None
level school or university or greater:
10.53; University or greater: 21.75
Loan Assessment 22.17 Sex Female: 20.86; Male: 24.16 33 All
Diabetes Risk Assessment 61.54 Sex Female: 90.1; Male: 44.82 45.28 [5,10]
Student Performance 22.03 Sex Female: 21.13; Male: 23.22 2.09 All
Student Performance 22.03 Address Rural: 27.27; Urban: 20.05 7.22 All
Student Performance 22.03 Parent’s High school: 23.55; Not high | 9.33 [5,55]
education school or university or greater:
level 25.85; University or greater: 16.52
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Table 3: Experimental results for Folktables with intersectionality

Dataset (Outcome)

Number of
Samples

Overall
Prevalence (%)

Sensitive
Attribute

Group Prevalence (%)

Maximum Group
Prevalence
Difference (%)

Optimal
k Range
(% Samples)

Folktables (Employ-
ment)

1970

46.45

Race and sex

Asian alone, Female: 46.07;
Asian alone, Male: 54.32;
Black or African American
alone, Female: 44.19; Black
or African American alone,
Male: 39.64; Other; Female:
39.56; Other; Male: 44.05;
White, Female: 44.71; White,
Male: 50.15

14.76

All

Folktables (Income)

1031

41.51

Race and sex

Asian alone, Female: 39.13;
Asian alone, Male: 42.86;
Black or African American
alone, Female: 30.77; Black
or African American alone,
Male: 33.33; Other; Female:
21.95; Other; Male: 28.57;
White, Female: 37.82; White,
Male: 51.58

29.63

[5,35]

Folktables (Public
Medical Coverage)

1352

40.09

Race and sex

Asian alone, Female: 40.24;
Asian alone, Male: 42.37;
Black or African American
alone, Female: 53.77; Black
or African American alone,
Male: 51.0; Other; Female:
51.14; Other; Male: 46.48;
White, Female: 33.13; White,
Male: 38.02

20.64

All

Folktables
ity)

(Mobil-

1214

78.17

Race and sex

Asian alone, Female: 74.63;
Asian alone, Male: 76.56;
Black or African American
alone, Female: 81.18; Black
or African American alone,
Male: 81.48; Other; Female:
81.82; Other; Male: 81.54;
White, Female: 76.14; White,
Male: 78.57

7.19

[5,60]

Folktables
Time)

(Travel

1824

53.78

Race and sex

Asian alone, Female: 65.85;
Asian alone, Male: 67.82;
Black or African American
alone, Female: 69.3; Black
or African American alone,
Male: 68.97; Other; Female:
63.01; Other; Male: 66.22;
White, Female: 45.41; White,
Male: 51.41

23.89

[5,80]
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Table 4: Sample size sensitivity analysis

Dataset (Outcome) | Number of | Overall Sensitive Group Prevalence (%) Maximum Group | Optimal
Samples Prevalence (%) | Attribute Prevalence 3 Range
Difference (%) (% Samples)

EIE (Ukranian) 1445 7.34 Sex Female: 4.26; Male: 10.66 6.4 None
EIE (Ukranian) 1445 7.34 Territory Rural: 10.38; Urban: 6.3 4.08 [5,20]
EIE (History) 1994 18 Sex Female: 14.48; Male: 22.2 7.72 [5,60]
EIE (History) 1994 18 Territory Rural: 20.27; Urban: 17.05 3.22 All

EIE (Math) 1222 31.1 Sex Female: 30.92; Male: 31.26 0.34 All

EIE (Math) 1222 31.1 Territory Rural: 39.94; Urban: 28.12 11.82 [5,90]
EIE (Ukranian) 5777 7.34 Sex Female: 4.26; Male: 10.67 6.41 None
EIE (Ukranian) 5777 7.34 Territory Rural: 10.38; Urban: 6.31 4.07 [5,20]
EIE (History) 5982 17.99 Sex Female: 14.43; Male: 22.23 7.8 [5,60]
EIE (History) 5982 17.99 Territory Rural: 20.21; Urban: 17.05 3.16 All

EIE (Math) 7327 31.05 Sex Female: 30.91; Male: 31.18 0.27 All

EIE (Math) 7327 31.05 Territory Rural: 39.74; Urban: 28.13 11.61 [5,90]
EIE (Ukranian) 51991 7.34 Sex Female: 4.26; Male: 10.68 6.42 None
EIE (Ukranian) 51991 7.34 Territory Rural: 10.37; Urban: 6.31 4.06 [5,20]
EIE (History) 51837 17.98 Sex Female: 14.43; Male: 22.2 7.77 [5,60]
EIE (History) 51837 17.98 Territory Rural: 20.21; Urban: 17.03 3.18 All

EIE (Math) 51283 31.05 Sex Female: 30.92; Male: 31.18 0.26 All

EIE (Math) 51283 31.05 Territory Rural: 39.75; Urban: 28.13 11.62 [5,90]
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C LIST OF ALL METRICS AND THEIR
EQUATIONS

Metrics. A traditional confusion matrix is a standard tool for un-
derstanding binary classification tasks, and details potential model
outcomes, giving names to the relation between what the model
predicts and what the ground truth labels actually are - see Table 6.
From the confusion matrix comes a set of standard metrics that cap-
ture relationships in the outcomes of a binary classification model.
Here we detail potentially relevant metrics to this paper.

o TNR = 3
° FPR—FP+1;"N
e FNR = F};ﬁ"P
* PPV = 1pirp
o ACC = 1ot NTFN

Binary Classification. We define binary classification as follows.
Consider dataset X consisting of observations for individuals x1, x2,

., xp. For individual x € X with a target value of interest (or
“label”) y € Y, where Y € {0, 1}", we seek to classify x correctly (i.e.
assign label y to x). More formally, we attempt to learn a function
Y such that V(x;, yi) eXUY, V(x;) - y; and §; == y;.

Often, we utilize a statistical technique to find a function ¥
that produces a real valued score § € (0,1), and to binarize the
outputs we apply a standard thresholding function 7(§) = ¢ to
produce a binary label § € {0, 1}. For example, if § is interpreted as
a probability of 1 being the correct label (a “positive” assignment),
then 7 thresholding at a greater than % 5 probability of positive class
assignment is a way to convert from score or probability to concrete

class.
- 1, for
o(g) = { 0

However, in situations with a resource constraint k that governs
how many positive labels we are allowed to assign (say, in a college
admissions scenario), we may be forced to adjust 7(3) to accept a
function of k, i.e., f(k) = t where t € [0, 1] such that 7(g, f(k))
produces exactly k positive classifications. For example:

forf(k)sgs1}

<y<1}

otherwise

n
otherwise |° £ z; 1Gi=1) =k
i=

(s = o

Fairness Considerations: Binary Classification with Sensitive Fea-
tures. Often, when considering the algorithmic fairness of a binary
classifier, we consider a sensitive or protected attribute in the data
that denotes group membership. For example, many datasets col-
lected in social settings have information about the race or gender
of individuals in the population. Both of these attributes are and
should be “protected,” morally and lawfully. Thus, when we evalu-
ate our binary classifier (say, along FPR or FNR), we can evaluate
each metric for the entire population, and we can also evaluate
each metric conditioned on group membership. In the simplest case
(which is our focus for much of this paper), our sensitive attribute
is binary, and thus we consider FPR; and FPR2, FNR; and FNRy,
etc. (metrics evaluated on the disjoint sets of outcomes based on
group conditioning).
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D ANALYTICAL APPROACH TO
CHARACTERIZING THE FAIRNESS REGION
USING FPR, FNR, ACC

COROLLARY D.1 (IMPOSSIBILITY RESULT VARIATION [16] [37]).

Consider a binary classification setting. The relationship between
ACC, FNR, FPR and p can be characterized by:

ACC = (1-FNR)p + (1-FPR)(1 - p) (5)

Proor. Consider the following statements over accuracy, and
note that they apply overall as well as for for some Group i. Thus,
each of these quantities could be subscripted with i i.e. ACC = ACC;,
etc.

TP+TN
ACC = (6)
TP+TN+FP+FN
TP
FNR=1- ——— )
TP+ FN
FPR=1 N (8)
~ " TN+FP
_ TP+FN o)
- TP+TN+FP+FN
TN+ FP
1-p= (10)
TP+TN+FP+FN
Split the numerator for ACC, and multiply by a clever 1:
~ TP . TN )
"TP+TN+FP+FN TP+TN+FP+FN
_TP+FN TP TN+FP TN

X X
"TP+FN TP+TN+FP+FN TN + FP TP+TN+FP+FN)

TP y TP+ FN + TN y TN +FP
"TP+FN "~ TP+TN+FP+FN TN +FP TP+TN+FP+P;]1\Q)

=(1-FNR)p+ (1 - FPR)(1 - p) (14)

]

LEMMA D.2 (EXPRESSING FAIRNESS AREA VARIATION). Consider
Corrolary D.1. Assume that p; = p1 + €p, ACC2 = ACCy + eacc,
FPRy = FPRy +e€fpR, and FNR; = FNR; +EFNR, where each EFPR, EACC>
€FNR. €p € (=1,1) term captures the difference between two groups
for FPR, ACC, FNR, p respectively. Then the following equality holds:
—€FPR T €EACC T €EFPR P — EFNR P + X€p + EFPR €p — EFNR €p

€p

FNR =
(15)

Proor. Consider Corollary D.1 in the setting where there are
two groups. Suppose ACCy = ACCy. Then:
(1=FNR1)p1+(1-FPRy)(1-p1) = (1-FNRz)p2+(1-FPR2) (1-p2)

(16)

Make the same substitutions as in Lemma D.2 to find:

(1=FNR)p+ (1 -FPR)(1 - p) =(1 - (FNR+e€rnRr) (p +€p))+

(1 - (FPR+€ppr)) (1= (p+€p))
+ €acc
(17)
Solving for FNR yields (15). m]
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Table 5: PPV sensitivity analysis

Dataset (Outcome) Overall Preva- | Sensitive | Maximum Group | Optimal Optimal
lence (%) Attribute | Prevalence k  Range | k Range
Difference (%) (PPV =0.7) | (PPV =0.85)

EIE (Ukranian) 7.34 Sex 6.4 None None
EIE (Ukranian) 7.34 Territory 4.08 [5,20] [5,20]
EIE (History) 18 Sex 7.72 [5,60] [5,60]
EIE (History) 18 Territory 3.22 All All
EIE (Math) 31.1 Sex 0.34 All All
EIE (Math) 31.1 Territory 11.82 [5,90] [5,90]
EIE (Physics) 8.33 Sex 25 All [5,90]
EIE (Physics) 8.33 Territory | 5.07 [5,20] [5,20]
EIE (Chemistry) 10.68 Sex 1.37 All All
EIE (Chemistry) 10.68 Territory 6.48 [5,25] [5,25]
EIE (Geography) 5.3 Sex 2.1 All [5,90]
EIE (Geography) 5.3 Territory 1.56 All All
EIE (English) 10.64 Sex 2.21 All All
EIE (English) 10.64 Territory 7.92 [5,20] [5,20]
EIE (German) 11.35 Sex 3.84 [5,90] [5,90]
EIE (German) 11.35 Territory 18.4 None [5,10]
Folktables (Employment) | 46.45 Sex 4.44 All All
Folktables (Employment) | 46.45 Race 8.29 All All
Folktables (Income) 41.51 Sex 11.37 All All
Folktables (Income) 41.51 Race 19.61 [5,50] [5,55]
Folktables (Public Medical | 40.09 Sex 2.78 All All
Coverage)
Folktables (Public Medical | 40.09 Race 17.21 [5,60] [5,60]
Coverage)
Folktables (Mobility) 78.17 Sex 1.78 [5,70] All
Folktables (Mobility) 78.17 Race 6.11 [5,60] All
Folktables (Travel Time) 53.78 Sex 4.08 All All
Folktables (Travel Time) 53.78 Race 20.64 [5,55] [5,70]
Loan Assessment 22.17 Education | 14.85 None None

level
Loan Assessment 22.17 Sex 3.3 All All
Diabetes Risk Assessment | 61.54 Sex 45.28 [5,10] [5,10]
Student Performance 22.03 Sex 2.09 All All
Student Performance 22.03 Address 7.22 All All
Student Performance 22.03 Parent’s 9.33 [5,55] [5,55]

education

level

Table 6: Standard confusion matrix. y # 0, we have that |Ag| is simply:
Actual |Af| = & % (18)
Positive (1) Negative (0) € €

Positive (1)
Negative (0)

TP
FN

FP
TN

Predicted

LEMMA D.3 (CLOSED-FORM FOR FAIRNESS AREA VARIATION). As-

sume €p < 1 — p. Allow +y to be the symmetric acceptable error (our
“fair” relaxation) between groups for metrics FPR, FNR and ACC. Con-
sider the size of the space of possible erpr, EENR, EACC assignments,
given €, and p, that satisfy the constraints from Lemma D.2. We will
denote the size of that space as |Af| (as a shorthand, we will call that
the “fairness region”, but the reality is more nuanced). For a set of
fairness constraints €gpg, €pNg, €acc € (=Y. Y), where |y| < 1 and
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Before proving Lemma D.3, let’s briefly motivate the three pri-
mary assumptions: first, we should expect €, << p, as our relax-
ation constant should not really be on the same order of magnitude
as our per-group prevalence (think p ~ 0.5 and €, ~ 0.05). Thus,
the assumption that €5 < 1 — p is very reasonable.

Second, pre-specifying an acceptable y relaxation term may seem
odd, but it is very common among practitioners, who prefer small
groups variations to large ones. Thus, think of y as a small value,
something like y < 0.05.

Third, assuming that |y| > 0 is necessary, as when |y| = 0 we
recover Corollary D.1. We also ignore the case where €, = 0 because
the implications of the impossibility theorem do not apply in the
case of equal base rates.
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Figure 7: A sketch of the integral construction.

ProoF. We begin with the result from Lemma D.2. Rearranging
terms, we find the following expression for FPR:

€acc + €rpR — P(EFPR — €FNR)
€p

+ €EFNR — EFPR) + FNR = FPR

(19)

Set ¢ = FPR — FNR = 6ACC+€FPR‘§(€FPR‘EFNR> + €FNR — erR),

which is fixed for prevalence p, prevalence difference €, and a set
relaxation factors eacc, €FNR, EFPR-

It’s clear that the relationship between FPR and FNR is linear,
and controlled by ¢, which can take on many possible values as we
vary the relaxation parameters. We notate the set of values that ¢
can take on as C = {c1, ¢2...c; }. C is an infinite set.

However, C contains maximum and minimum values. From the
linear relationship between FPR and FNR, we have c¢;,qx = max(C)
and cmin = min(C). cmax and cpin will help us define the bound-
aries of the solution space Ay. It follows that |Ar|, the size of the
solution space, when |c| < 1 and FPR,FNR < 1, is:

1
|Af| :/ (¢max + FNR) dFNR
—Cmax

0
- (2/ (¢max + FNR) dFNR) (20)

1
- (/ (¢min + FNR) dFNR)
—Cmin
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For a sketch of the integral construction, see Figure 7. Using our
construction over €occ, €FpR, €FNR € (-}, ¥), we can deduce cpax
and cmin-

€ACC + €FpR — P(EFPR — €FNR)

c= + €FNR — €FPR (21)
€p
€ACC | €FPR _ PEFPR  PEFNR
= O T kR — R (22)
€p €p €p €p
EACC , €FPR _ PEFPR EFNR
- ACC | PR _PEPR gt L +ernr  (23)
€p p p
1 —
= M+€FPR (_p _1)+M+€FNR (24)
p p p
Note our assumption that €5 < 1 — p gives us that
1- 25
P 1 which yields: %)
€p
1 —_
Sl+y(—p—1)+p—y+y (26)
€p €p €p
+y—yp+ 2
_yryovpkyp 27)
€p €p
A symmetric argument gives cpmin = —i—j:. To find |Af|, we set
c= %, and replace into the above integration:
1
gl =/ ¢+ FNR dFNR
—C
0
- (2/ c+FNR dFNR) (28)
—C
1 2
4 4
—(/ FNR—chNR) =2e-=T <y
c €p GP
This yields the result. m]

E ANALYTICAL APPROACH TO
CHARACTERIZING THE FAIRNESS REGION
AREA USING FPR, FNR, PPV

See Figure 8.
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LEmMA E.1 (EXPRESSING FAIRNESS AREA). Consider groups g, with prevalence p; and g, with prevalence p,. Without loss of generality,
let us assume that p, = p; +€p. Next, let us denote a predictor’s performance as FPRy, FPRy and PPV for g, and FPRy, FPRy and PPV for
8- Let €rpR, €pnR and €, denote acceptable differences in FPR, FNR and PPV between groups, respectively. That is, |FPRy — FPRz| < €Fpg,
|FNR1 — FNRz| < epng and |PPVy — PPV3| < €y. Then, the following equality holds (for the sake of space, let FPR = o, FNR = f, and PPV =
v):

f- ep (VP (erpr(p — 1) — 1) + vey (€ppr(p — 1) — 1) + pes +0) + (p — 1) (eppr(p — 1) v(v+ €y) + peu) — epnr(p — 1) o(p+€p) (V+ €y — 1)

(ep(pep — v? — vey +0) + (p — 1) pey)
(29)

Proor. Consider (1) in the setting where there are two groups. Let the FPR of the two groups be equal, subject to the relaxation
FPR2 = FPR; + eppr. Make substitutions respective to the assumptions made in Lemma 8 to find:
p 1-v pPtep 1-(v+ep)
L Ca-p = :
-p 0 1-(p+ep) v+e

(1= (B +ernRr)) +€rpR
(30)
Solving for f yields (29). o

Figure 8: Analytical approach to characterizing the fairness region area with FPR, FNR, PPV.

Figure 9: A full planimeter (g=25).

F INFORMAL ANALYSIS OF THE DOT
PLANIMETER

One of the strategies we undertook in estimating the “fairness
region” of 8 borrowed from previous work on “dot-planimetry,”
a two-dimensional area estimation technique that has been con-
sistently reinvented over the past century, and has been studied
extensively in relation to cartographic area estimation and pure
math (see Gauss’s circle problem) [10, 26, 42] (Perhaps sadly, GPS
has contributed to the under-exploration of this subject in recent
years). Here, we offer a brief informal analysis of our dot-planimetry
strategy, and how we chose values based on approximated upper
bounds on our over-estimation error for the area of the fairness
region when considering FNR, FPR and PPV.

Dot-planimetry provides a simple way of estimating the area of
complex enclosed shapes in a two dimensional space (which can
be difficult to integrate directly). Intuitively, we create a regular
grid over the space composed of points. We refer to each point as a
“detector,” who is responsible for a pre-specified radius re in the 2-
dimensional space of interest. We say that a “detector” i is “satisfied”
if the edge of the shape of interest is anywhere within re distance
away from i. To compute the final area of the shape, we simply
sum up the total number of satisfied detectors multiplied by each of
their individual areas (i.e. the area of a bunch of circles defined by

re). In our case, we are interested in a very particular space: a1 x 1
square with the bottom left corner at the origin (this is how we can
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visualize two metrics varying based on our relaxations). Our dot
planimeter in this case has g> total detectors. They are distributed
so that they are € = %1 apart, and so that the bottom row and
leftmost column each touch the x and y axis respectively, while the
rightmost and top rows each have x and y values of 1 respectively.
Thus, each detector has a radius of re = %e. Refer to Figure 9 for a
sketch of this setup, and as we walk through the problem.

For our analysis, we will call two detectors i and j “neighboring”
if iy = jy and |ix — jx| = € ie. the values of their y-axis are
equal and they are next to each other. Note that, for any of the
following arguments, symmetric variations apply were we to switch
the definition of “neighboring” to iy = jx. Neighboring detectors
are shown in Figure 10.

We will also define our “detector function” to be:

f(ixy’h(x)) = {

1, |project(ixy) — h(x)| < re
0, otherwise

Intuitively, our detector function f(ixy, h(x)) takes a detector iy,
and a boundary function of interest h(x) and returns 1 (or true) if,
for any x, h(x) passes within re of ixy.

Our overall argument for a coarse upper bound on the over-
estimation error when using a dot-planimeter is intuitive: we will
reason about which function through our [0, 1]X[0, 1] metric region
would lead to the highest number of detectors satisfied. We will
then assume that this is the boundary function for our area (i.e.
this function partitions our space, and is dense on one side). Our
estimation error is then the proportion of total detectors satisfied by
the boundary function, assuming that they all make minimal contact
with the detector radius. Again, this is a very coarse approach,
and we might assume the actual overestimation error is much
lower. Due to the computational nature of the problem, this can
provide us some measure of confidence in selecting a value for for
g that gives reasonable error (like < 5%).

Critical points all satisfying of neighboring detectors. Consider
two sets of side by side (or “neighboring”) detectors, i1, j1 and
ig, j2 (one can refer to Figure 10). By the definition of a function,
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Figure 10: A set of two sets of side by side detectors, i1, j; and
ig, jo. Note that a critical point is necessary for h(x) (in
orange) to satisfy all 4.

S, h(x)) + f iz, h(x)) + f (1, h(x)) + f (j2, h(x)) < 3 unless g(x)

has a critical point in the window iy < x < jx.

Extending the argument to columns. Consider two columns of
neighboring detectors, which can represented by sets {i1, ig, ..., im } €
I and {j1, j2, ..., jm} € J. Note that detectors in I share the same x
value, as for J.

What is the maximum number of detectors satisfied by h(x)
between sets x? If we assume |I|, |J| = g > 3, then by our argument
that critical points all satisfy neighboring detectors, if h(x) has 0
critical points lie between I, and Jy, then the answer is at most
g + 1 (this can be seen through a geometric argument). However,
we allow for any critical points, than the answer is 2g (or, the size
of the entire union between the sets).

These arguments suggest that the determining factor in satis-
fying the highest number of detectors in a space is the number of
critical points allowed for the function h(x). These two column
arguments can be extended to cover all detectors in the space, and
provides a coarse upper bound on the over-estimation error.

Coarse upper bound on error of (€)-dot-planimeter under assump-
tions of fairness region. Assume that h(x) is the boundary function
for our area € [0,1] X [0, 1] and has at most b critical points. Then,
a coarse upper bound on the max detectors satisfied by h(x) is g * c.
This yields the simple percent error calculator: g (as there are ¢*
total detectors in our dot-planimeter).

Thus, for a 5% upper bound on error, assuming no more than
6 critical points for boundary function h(x) for x € (0,1), we
have ﬁ = g = 120. Thus, with a granularity of 120? = 14400
detector in our dot-planimeter, we have high confidence that the
over-estimation error is no higher than 5%, so long as some assump-
tions we made about h(x) hold (experimentally, we found this to
be the case).

I1J
()
00,

Figure 11: A set of two detector columns, ] and J.

G ADDITIONAL PROOFS

PrOPOSITION G.1 (INTERSECTIONAL PREVELANCE DIFFERENCES).
Given a dataset that is subdivided into two groups, let 0 < p; < nj
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and 0 < py < ny, where p; is the number of positive class members
of group i, and n; is the total number of members in group i. Suppose
b1 P2

ny — ng°
The following holds:
P_pitpz _p

< < (31)
ni ni+np np

Proor. We know that 0 < p1, ny, p2, nz. Note that the assump-

P1 o P25l mipz

m < 5, implies np < T

Consider the left hand side of the equality proposed in the theo-
rem statement:

tion

P _p1tpe

< (32)
ni ni+ny
p1(n1 +n2) < ni(p1+p2) (33)
pinz < nipz (34)
ny < MP2 (35)
p1

We have now derived an inequality specific to ny. We can verify
that exceeding this value invalidates the claim by plugging in ny =

(n;)—fz + a), where a > 0 to find a contradiction:
n
p1(n1 + ;_1192 +a) < ni(p1+p2) (36)
pin1 +nipz +apy < ping +nip2 37)
ap; <0 (38)

which contradicts a > 0. An analogous argument exists for the

right hand side of the equation. Thus, so long as ny < n;f 2, the

main inequality holds.
o

PrROPOSITION G.2 (REDUCING K INCREASES PPV). Given a well-
calibrated classifier being used under a resource constraint k, reducing
the size of k will monotonically increase the PPV of the classifier.

Proor. Consider the top k outputs of a well-calibrated classifier.
Since the classifier is calibrated, the list k is ordered in the following
way: those elements closest to the first position have a higher
probability of a positive outcome, and those elements closest to
position k have a lower probability of a positive outcome. In other
words, p1 > p2 >,..., > pg, where p; is the probability that element
i is a member of the positive class. The PPV of the classifier, in
expectation, can then be expressed in the following way:

k

1 +potot

T E pi= TP TPk 3 i3 (39)
i=1

Notice that Equation 39 is simply the average of p; over the k
elements. Consider another set of size k’ < k, that is constructed
by removing the elements py.1, ...pg. Since by construction all the
elements in the new set are greater than or equal to to the elements
of the previous set, the average of p; in the new set will be greater
than or equal — or in other words, the PPV will be greater than or
equal. O
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