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ABSTRACT
The “impossibility theorem” — which is considered foundational in

algorithmic fairness literature — asserts that there must be trade-

offs between common notions of fairness and performance when

fitting statistical models, except in two special cases: when the

prevalence of the outcome being predicted is equal across groups,

or when a perfectly accurate predictor is used. However, theory

does not always translate to practice. In this work, we challenge the

implications of the impossibility theorem in practical settings. First,

we show analytically that, by slightly relaxing the impossibility

theorem (to accommodate a practitioner’s perspective of fairness),
it becomes possible to identify abundant sets of models that satisfy

seemingly incompatible fairness constraints. Second, we demon-

strate the existence of these models through extensive experiments

on five real-world datasets. We conclude by offering tools and guid-

ance for practitioners to understand when — and to what degree

— fairness along multiple criteria can be achieved. This work has

an important implication for the community: achieving fairness

along multiple metrics for multiple groups (and their intersections)

is much more possible than was previously believed.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Social
and professional topics → Socio-technical systems;
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1 INTRODUCTION
Increasingly, artificial intelligence (AI) and machine learning (ML)

systems are being implemented in domains like employment, health-

care, and education to improve the efficiency of existing processes

[39, 57, 65]. In tandem with this uptick in adoption, there are grow-

ing concerns about the potential for ML systems to cause significant

harm to members of already marginalized groups. For example, it

has been found that some lending algorithms discriminate against

Latinx and African-American borrowers [4, 27], some prevalent

medical algorithms discriminate against Black patients [48], and

some educational risk-assessment algorithms perform worse for

minority students [32, 48, 56].

The risk of discriminatory ML systems has led to significant in-

terest in methods for measuring and ensuring “algorithmic fairness.”

Researchers have created robust processes and tools for auditing

algorithmic systems for bias based on various definitions of fairness,

such as Demographic Parity, Equalized Odds Ratios, and Predictive
Parity [13, 18, 41, 54]. Choosing a context-specific fairness defini-

tion (also called a fairness metric) depends on value judgments, and

often several metrics may be situationally relevant [3]. For instance,

in contexts where the output of an algorithmic system is assistive,

disparities in the False Negative Rate between groups can be used

as a measure of discrimination with respect to group need [54].

In contexts where more than one metric is applicable, practition-
ers, stakeholders, and the wider public may engage in a debate

about which metric to choose [60]. Debates of this nature have

yielded a number of notable results in the algorithmic fairness lit-

erature, including a fundamental result known colloquially as the

“impossibility theorem” simultaneously reported on by Choulde-

chova [16] and Kleinberg et al. [37]. The impossibility theorem

asserts that, for binary classification, equalizing some specific set of

multiple common performance metrics between protected classes

is impossible, except in two special cases. The first special case is

when an algorithm is a perfect predictor, and the second is when

the prevalence of the outcome being predicted (i.e. the percentage

of individuals in a group with the positive outcome, also called

base rate) is equal across groups. As a consequence of this theorem,

researchers and practitioners have focused on understanding trade-

offs between fairness and predictive accuracy in an algorithmic
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system, often designing bias audits and mitigation techniques that

center on a single chosen fairness metric [18].

Though important and strong, the implicit assumption of the

impossibility result (namely, that a practitioner might think about

fairness as exactly equalizing metrics) may not actually apply to a

wide array of real-world problems. In fact, a growing body of re-

search suggests that the limitations to fairness derived by Kleinberg

et al. [37] and Chouldechova [16] may not be particularly relevant

in many practical settings [14, 31, 50, 61].

Note. Throughout this paper, we will often refer to metrics like

FPR (False Positive Rate), FNR (False Negative Rate), PPV (Preci-

sion) and ACC (Accuracy). Though these metrics are common, we

seek to make our work accessible across levels of technical exper-

tise by providing equations and descriptions of these metrics in

Appendix Section C. On a related note, throughout this work we

concern ourselves with binary classification, a standard machine

learning task where one attempts to assign the correct binary label

(positive/negative) to each individual in a population. In fairness

literature, it is common to consider at least two groups within

that population, and then to compare the performance of a binary

classifier on each sub-population. We also provide an in-depth defi-

nition of binary classification, and consideration of groups in the

population, in Appendix Section C.

Summary of contributions. Variations on the “impossibility theo-

rem” specific to binary classification (with a protected class) state

that, when equalizing certain metrics (like FPR, FNR, PPV or ACC)

between two groups, we should hesitate to consider multiple met-

rics at once. Why? The fairness constraints (equalizing three of

these metrics between groups) will only be exactly satisfiable if we

have a perfect predictor or outcome prevalence parity [16, 37].

We suggest that this setting is unrealistic. Our paper’s driving

insight is that practitioners are often more than comfortable with

approximate fairness guarantees, as opposed to enforcing exact
equality between metrics. Therefore, we focus on a set of more

realistic fairness constraints, where we are allowed to slightly re-

lax between-group metric equalities for FNR, FPR, PPV, and ACC.

To our knowledge, we are the first to study at length this relaxed

setting from a practitioner’s point of view.
1
This framing yields a

straightforward research question: under what type of setting and

relaxation is it possible to find classifiers that are “fair” along seem-

ingly incompatible fairness constraints? And how can practitioners

determine if a “fair” classifier exists for their predictive context?
For example, it turns out that if I, as a practitioner, say “I have

prevelances 𝑝1 and 𝑝2 for Groups 1 and 2 in dataset 𝑋 , and I am

willing to tolerate a difference of 𝑌% when equalizing metrics,”

then I have all of the information I need to determine if finding

such a model is truly impossible (or not!) before even attempting
the problem. Encouragingly, and perhaps counter-intuitively, our

analysis suggests that in practical settings the answer is often “yes,

it’s possible to find that fair model.” Our major finding is that
if one allows only a small margin-of-error between metrics,

1
Previous work showed that a version of the impossibility result exists on the boundary

of the relaxed setting [37], but the authors did not fully explore the space of relaxed

solutions, nor did they position it from the viewpoint of practitioners. This is further

discussed in Section 2.

sets of models satisfying three fairness constraints simulta-
neously are abundant, rather than rare. In our corresponding

experiments on real datasets, we find empirically that the resource

constraint k (i.e., having k loans to give out or k job interview slots

to fill) also plays a significant role in feasibility, where a smaller k

can result in more feasible models.

Paper organization. We begin with background and related work

in Section 2. After, we approach the problem analytically in Sec-

tion 3. We state a formula balancing FPR, FNR and ACC between

groups with fairness relaxations for each metric. In this setting,

we are able to derive a powerful tool in the form of a simple for-

mula relating the feasibility of fairness to a specific relaxation

strength, given a classification scenario. However, in many resource-

constrained settings, practitioners care more about PPV than ACC.

So, we then turn our attention to the problem in terms of FPR,

FNR and PPV, but find that it is difficult to analyze in closed-form.

Instead, through principled approximations, we are able to provide

much the same guidance to practitioners as a direct analytical solu-

tion would, and leave deriving a closed-form result to future work.

Additionally, to demonstrate the utility of our fairness relaxation

insights, we conduct extensive experimental evaluations on five

real-world datasets. The results of these experiments, discussed in

Section 4, corroborate our insights and compellingly demonstrate

the possibility of fairness. We discuss our insights and offer guid-

ance to practitioners in Section 5 and conclude in Section 6. For
those who wish to go directly to our margin-of-error based
fairness feasibility recommendations, skip to Section 5.

2 BACKGROUND AND RELATEDWORK
Algorithmic fairness. Significant progress has been made in un-

derstanding algorithmic fairness [45]. Broadly, this literature con-

cludes that fairness is not a monolith: there aremany different ways

to think about algorithmic fairness, and defining what is “fair” is a

matter of philosophy, incorporating one’s worldview, mitigation

objectives, and an algorithm’s context-of-use [3, 24]. In response

to the complex and nuanced nature of fairness, researchers have

defined dozens of fairness metrics, or mathematical assessments

of an algorithm’s prejudice, that address different aspects of fair-

ness [7, 9, 11, 16, 25, 38, 44, 54, 59, 64]. These metrics can be divided

into two categories: those that consider the output of an algorithm,

and those that consider errorsmade by the algorithm. As an example

of the former,Disparate Impact (or Proportional Parity) measures the

proportion of a group receiving the positive classification outcome

relative to the proportion of the group in the input. As an example of

the latter, the difference in False Negative Rates between groups can

be used to assess whether one group is erroneously “passed over”

for a positive outcome relative to another. Importantly, there is no

one-size-fits-all metric for evaluating the fairness of algorithms.

Some tools (like the Fairness Tree [55]) have been developed to help

navigate the challenge of selecting an appropriate fairness metric,

but ultimately, it is necessary for researchers and practitioners to

have meaningful conversations with those impacted by algorithms

to select fairness metric(s) specific to the context-of-use [53, 54].

Typically, metrics judge the fairness of a predictor by consid-

ering the imbalance between group-specific metrics. We can cal-

culate imbalance as a difference — mean, squared, absolute, etc. —
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or as a disparity — the ratio of a metric of one group, 𝑔 𝑗 , to that

of a reference group, 𝑔𝑟𝑒 𝑓 , usually chosen as the majority group:

disparity𝑔𝑗 =
metric𝑔𝑗

metric𝑔𝑟𝑒𝑓

. Often, the goal of algorithmic fairness

is to achieve parity, that is, to eliminate the imbalance between

fairness metrics entirely. Importantly, the tolerable level of differ-

ence/disparity for a given fairness metric is highly dependent on the

algorithm’s context-of-use. Perhaps counter-intuitively, there are

cases where we want to enforce a large disparity (see Rodolfa et al.

[51], who discuss intentionally over-representing a marginalized

group for an assistive intervention).

While some fairness metrics are incompatible with one another
2
,

and others are approximately mathematically equivalent [52], many

are compatible and distinct. Consider the following scenario: a high

school is using an algorithm to predict which students are at risk

of failing ninth grade, so that high-risk students can be offered a

special tutoring intervention. School administrators may want an

algorithm that selects an equal number of privileged and under-

privileged students, and also does not unfairly pass over students

who are badly in need of tutoring. This would imply a need for

both Demographic Parity and False Negative Rate Parity between

groups. Yet, as we argued in the introduction, multiple fairness

metrics are rarely considered in practice, and most existing bias

mitigation methods enforce a single metric (or at most two metrics)

at a time [8, 23, 30, 34–36, 46, 49, 51, 64]. In part, this is due to the im-
possibility theorem, a foundational result, presented simultaneously

by Chouldechova and by Kleinberg et al..

The impossibility theorem. As stated by Kleinberg et al. [37], this

theorem shows that three common metrics — equalizing calibra-

tion within groups, and enforcing balance for the negative class

and for the positive class — cannot be simultaneously satisfied for

multiple groups, outside of two special cases [37]. These cases are

(1) when the algorithm is a perfect predictor and (2) when there is

no prevalence difference between groups. Chouldechova [16] states

an equivalent impossibility, presented as the relationship between

the Predictive Positive Value (PPV), False Positive Rate (FPR), False
Negative Rate (FNR), and prevalence (p):

FPR =
p

1 − p

1 − PPV

PPV

(1 − FNR) (1)

Exploring implications of the impossibility theorem. Importantly,

the impossibility results imply an upper bound on how many fair-

ness metrics can be satisfied simultaneously without a perfect pre-

dictor. Kleinberg et al. addressed a related question on approximate

conditions of the impossibility result, showing that approximate

fairness definitions can simultaneously hold, but only under 𝜖-

approximate prevelances or 𝜖-approximate perfect prediction [37].

Significantly, Kleinberg et al. did not explore the space of solutions
under 𝜖-approximate relaxations of constraints, nor did they detail
the implications that these relaxations might have for practitioners.

A thought experiment. To motivate our exploration of this space,

consider the following thought experiment. The achievement gap is

one of themost pervasive examples of racial disparities in education,

in which Black and Brown students graduate from high school at

2
For example, one cannot simultaneously satisfy equal selection and proportional

parity unless the prevalence of outcomes is the same in both groups

a rate roughly 10% lower than that of White students [40]. How

should practitioners think about a prevalence difference of 10%

when designing algorithms that predict student performance? Is

it a small or large difference, and what implication does it have

for the abundance (or rarity) of models satisfying 𝜖-approximate

fairness constraints or 𝜖-approximate perfect prediction?

Practice versus theory. Understanding the space of feasible mod-

els under a relaxation of the impossibility theorem is particularly

salient in light of recent work showing that theoretical trade-offs

do not always apply to real-world settings [14, 50, 61]. Rodolfa et al.

introduced a method for finding models that were fair with respect

to FNR without sacrificing a model’s PPV, and demonstrated the ef-

fectiveness of their approach in four separate ML-for-public-policy

problems [50].
3
It was hypothesized by the authors that the negli-

gible trade-off is the result of the resource-constrained nature of

applied problems, where fairness and model performance are mea-

sured with respect to the top-k, rather than at an arbitrary threshold.
In our work, we begin to formalize this intuition in Theorem 3.5.

Other works also challenge the idea that accuracy and fairness

are in tension. Celis et al. [14] developed a meta-algorithm for a

large family of classification problems with convex constraints,

and demonstrated that one can achieve near-perfect fairness while

sacrificing negligible accuracy. Similarly, Wick et al. [61] propose a

semi-supervised learning approach that improves both fairness and

accuracy. A third recent example is theMFOpt framework proposed

by Hsu et al. [31] that simultaneously optimizesDemographic Parity,
Equalized Odds, and Predictive Rate Parity—those fairness notions
that are mathematically incompatible according to the impossibility

theorem. Similar to our work, Hsu et al. were motivated by doubts

about the strength of the impossibility theorem in practical settings.

Notably, these works have focused on methods for mitigating dis-

parity for multiple fairness metrics while maintaining high model

accuracy, but have not provided much analysis of their implicit

relaxing of fairness metric parity.

In our analysis, we center two considerations common to practi-

cal settings. First, in practice, one generally does not require fairness

metrics to be exactly equal across groups to achieve fairness. For

example, depending on the context of use, a classifier that has an

FPR difference between groups of 2%, 5% or even 10% may be satis-

factory. Second, we consider the presence of a resource constraint.

For example, a commonly used performance metric in applied ML

problems is PPV-at-k, where k represents a real-world resource

constraint [1, 12, 62].

3 FINDING FEASIBLE MODELS
To encode that practitioners are generally okay with approximate

fairness constraints as opposed to strict constraints, we begin by di-

rectly re-parameterizing the impossibility theorem with relaxations

for each parameter. The relaxed constraints afford us a space of
solutions, where each solution represents a potential classifier that

balances all three metrics within our desired tolerance. We call this

space of solutions the fairness region. Exploring how this region

changes across different contexts/relaxations/metric settings can

tell us when satisfying all constraints is feasible and, further, when

3
Rodolfa et al. refer to Recall Parity in their work, but state that it is mathematically

equivalent to FNR Parity for small population sizes.
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we can expect greater flexibility when searching for a model across

multiple metrics.

The impossibility theorem can be stated in terms of different

metrics, and our choice of metric impacts the ease or difficulty of

characterizing the fairness region in closed-form. We start with a

choice of metrics for which we have a closed-form characterization

of the fairness region: FNR, FPR, and ACC (Section 3.1). Motivated

by the fact that practitioners in resource constrained settings often

consider PPV instead of ACC, we then consider a fairness region for

FNR, FPR, and PPV (Section 3.2). Deriving a closed-form solution

for the fairness region in the second case is much more difficult,

requiring us to approach our analysis computationally.

3.1 Characterizing the fairness region using
FPR, FNR, and ACC

We begin by defining an alternative expression for the impossibility

result, this time in terms of FPR, FNR, and ACC. Proofs of all results

in this section (Corollary 3.1, Proposition 3.2, and Theorem 3.3) can

be found in Appendix D.

Corollary 3.1 (Impossibility Result Variation [16] [37]). In a
binary classification setting (see Appendix Section C), the relationship
between ACC, FNR, FPR and p can be characterized by:

ACC = (1 − FNR)p + (1 − FPR) (1 − p) .

Next, we add a relaxation term for each parameter in Corol-

lary 3.1. In the case of two groups, we let FPR2 = FPR1+𝜖FPR, where
𝜖FPR is a tolerable difference between the metric for the two groups.

Similarly, let FNR2 = FNR1+𝜖FNR and ACC2 = ACC1+𝜖ACC. Using
these relaxations, we can express a “governing equation” for the

fairness region as follows.

Proposition 3.2 (Describing The Fairness Region). Consider
Corollary 3.1. Assume that p

2
= p

1
+ 𝜖p, ACC2 = ACC1 + 𝜖ACC,

FPR2 = FPR1+𝜖FPR, and FNR2 = FNR1+𝜖FNR, where each 𝜖FPR, 𝜖FNR,
𝜖ACC, 𝜖p ∈ (−1, 1) term captures the difference between two groups
for p, ACC, FPR, and FNR, respectively. Then, the following is equal
to FNR1:
−𝜖FPR + 𝜖ACC + 𝜖FPR · p

1
− 𝜖FNR · p

1
+ FPR1 · 𝜖p + 𝜖FPR · 𝜖p − 𝜖FNR · 𝜖p

𝜖p
(2)

While Equation 2 may look complex, an important insight is

that it shows FNR can be expressed as a function of mostly fixed

and known terms. Observe that p and 𝜖p are known a priori, as
they can be calculated directly from the dataset. By deciding

on bounds for the acceptable tolerance between fairness metrics

(i.e., maximum allowable values for 𝜖FPR, 𝜖FNR, 𝜖ACC), we can then

create plots of FNR vs. FPR, as seen in Figure 1 (a). Each point in

these plots represents an FPR, FNR (and, implicitly, an ACC value)

of a feasible model. In other words, these points correspond to the

existence of feasible models satisfying fairness constraints for FPR,

FNR, and ACC within an 𝜖-margin-of-error. Similarly, the absence

of a point corresponds to the emptiness of a set of models (i.e., the

infeasibility of finding a model). In general, we can say that plotting

FNR vs. FPR according to Proposition 3.2 gives us a projection of

the fairness region, where the size of the area provides a measure

(out of the entire FPR,FNR ∈ [0, 1] region) of the proportion of

feasible models that are fair across all three metrics of interest (out

of all possible metric values). Significantly, we can use Equation 2

to find a closed-form expression for the size of the fairness region

over the unit square FNR, FPR ∈ [0, 1]:

Theorem 3.3 (Size of the Fairness Region). Assume 𝜖p < 1−p.
Allow ±𝛾 to be the symmetric acceptable error (our “fair” relaxation)
between groups for metrics FPR, FNR, and ACC. Consider the size
of the space of possible 𝜖FPR, 𝜖FNR, 𝜖ACC assignments, given 𝜖p and p
that satisfy the constraints from Proposition 3.2. We will denote the
size of that space as |𝐴𝑓 | (as shorthand, we will call this the “fairness
region”). For a set of fairness constraints −𝛾 ≤ 𝜖FPR, 𝜖FNR, 𝜖ACC ≤ 𝛾 ,
where |𝛾 | ≤ 1 and 𝛾 ≠ 0, we have that |𝐴𝑓 | is simply:

|𝐴𝑓 | =
4𝛾

𝜖p
− 4𝛾2

𝜖p2
(3)

The practical implication of Theorem 3.3 is simple: for a practi-

tioner with a target tolerance for FPR, FNR, and ACC across groups,

we can show them whether their fairness relaxation values will

work or not given their context (i.e., p and 𝜖p), and furthermore,

how relaxing (or tightening) their 𝜖-margin-of-error affects the

fairness region.

3.2 Characterizing the fairness region using
FPR, FNR, PPV

Theorem 3.3 provides a clean and convenient result for FPR, FNR

and ACC, but it does not allow us to meaningfully analyze the type

of resource-constrained settings generally faced by practitioners.

In many contexts, a classifier’s ACC has less meaning than its PPV

[1, 5, 12, 50, 62]. To this end, we attempted to recreate the analysis

in Section 3.1 instead using FPR, FNR, and PPV, which is found in

Appendix E. This analysis with PPV instead of ACC leads us to an

analogous expression for FNR as a function of the other parameters

(see 8). However, the expression in the PPV case is ripe with non-

linearities and possible discontinuities, making it more difficult to

find a closed-form expression for the size of the fairness region (in

the same way we did for ACC in Theorem 3.3). A corresponding

plot of the fairness region projected onto two dimensions (FNR

and PPV) is shown in Figure 1 (b). The figure is a discretized set of

solutions created by sweeping out a range of parameter values and

plotting feasible lines following the equation for FNR (see 8).

With no closed-form expression, we take two computational

approaches to understanding the size of this fairness region. The

first approach is to directly estimate the fraction of the unit square

(FNR, PPV ∈ [0, 1]) taken up by a discretized feasible region by us-

ing a dot planimeter, which is a well-studied method for estimating

complex two-dimensional areas [10, 26]. Intuitively, dot planimeter

estimates the fraction of the unit square taken up by the set of

solutions by overlaying a regular grid of points. For each point (also

known as a detector), we check whether or not any feasible lines

pass within a specific distance tolerance, which is a function of the

the grid’s granularity. An example of this procedure is shown in

the corresponding Figure 1 (c). Unfortunately, the process of dot-

planimeter-style estimation introduces additional approximation

error on top of discretizing the fairness region. Our analysis of
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(a) Fairness region when relating
FPR, FNR, ACC

(b) Fairness region when relating
FPR, FNR, PPV

(c) Estimating the size of (b)
with a dot planimeter

Figure 1: 𝑝1 = 0.3, 𝑝2 = 0.5; 𝜖FPR, 𝜖FNR, 𝜖ACC, 𝜖PPV ∈ [−0.05, 0.05]

upper-bounding this error (under some assumptions) can be found

in Section F of the Appendix.

To avoid this additional approximation error, for our second

approach we re-frame our description of the fairness region us-

ing a Constraint Program (CP). A constraint program provides an

alternative means of measuring how large the space of feasible

solutions is for a given setting of tolerances. Rather than measuring

the area taken up by a projection on two dimensions (PPV and

FNR), we can describe the fairness region directly as the set of

feasible solutions to a constraint program. Using the CP-SAT solver

in Google ORTools, we express our problem’s governing equations

as a set of integer variables and constraints. Our quantities of in-

terest (FPR, FNR, PPV, p, 𝜖FPR, 𝜖FNR, 𝜖PPV, 𝜖p) are all real numbers

rather than integers, with infinitely many possible values in their

respective ranges. To characterize the size of the solution space for

different tolerances, we discretize the interval [0, 1] into 𝑁 + 1 bins

(and, correspondingly, the interval [−1, 1] into 2𝑁 + 1 bins). For

example, an FPR = 0.91 corresponds to an integer value of 91 when

𝑁 = 100. With this discretization, we represent the fairness region

using the following constraint program:

𝛼𝑖 , 𝛽𝑖 , 𝑝𝑖 , 𝑣𝑖 ∈ [0, 𝑁 ] integer ∀𝑖 ∈ {1, 2}
𝜖 𝑗 ∈ [−𝑁, 𝑁 ] integer ∀𝑗 ∈ {𝛼, 𝛽, 𝑝, 𝑣}

𝑚𝑖 , 𝑑𝑖 ∈ [0, 𝑁 2] integer ∀𝑖 ∈ {1, 2}
𝑛𝑖 ∈ [0, 𝑁 3] integer ∀𝑖 ∈ {1, 2}
𝑝𝑖 = 𝑏𝑖 · 𝑁 ∀𝑖 ∈ {1, 2}
𝑗1 = 𝑗2 + 𝜖 𝑗 ∀𝑗 ∈ {𝛼, 𝛽, 𝑝, 𝑣}
𝜖 𝑗 ≥ −𝜖max · 𝑁 ∀𝑗 ∈ {𝛼, 𝛽, 𝑣}
𝜖 𝑗 ≤ 𝜖max · 𝑁 ∀𝑗 ∈ {𝛼, 𝛽, 𝑣}
𝑚𝑖 = 𝑝𝑖 · (𝑁 − 𝑣𝑖 ) ∀𝑖 ∈ {1, 2}
𝑛𝑖 =𝑚𝑖 · (𝑁 − 𝛽𝑖 ) ∀𝑖 ∈ {1, 2}
𝑑𝑖 = 𝑣𝑖 · (𝑁 − 𝑝𝑖 ) ∀𝑖 ∈ {1, 2}
𝑛𝑖 = 𝛼𝑖 · 𝑑𝑖 ∀𝑖 ∈ {1, 2}

Here, 𝑁 is the number of integers; 𝑛,𝑚,𝑑 are intermediate vari-

ables used to represent multiplicative constraints for the CP-SAT

solver; 𝜖max represents themaximum allowable value of |𝜖𝛼 |, |𝜖𝛽 |, |𝜖𝑣 |;
𝑏𝑖 represent the observed prevalences in the real-valued range [0, 1];
and , 𝛼, 𝛽, 𝑣 represent FPR, FNR, PPV, respectively. The CP-SAT

solver allows us to enumerate all possible solutions to a constraint

program. With 𝑁 6
possible values for the set {FPR1, FPR2, FNR1,

FNR2, PPV1, PPV2}, for any fixed 𝑁 , we can characterize the size

of the discretized solution space as a function of changes to the

other inputs simply as the number of feasible solutions.

3.3 Revisiting the impossibility theorem
Recall that there are two known exceptions to the impossibility

theorem: when the two groups’ prevalence values are the same, and

under perfect prediction [16, 37]. However, given our formalization

for the relaxed case of fairness constraints, perhaps we should

ask: to what degree do the exceptions from the impossibility result

apply? Specifically:

(1) How large can prevalence differences be (𝜖p ∈ {1%, 10%, 50%})
and still imply a large fairness region?

(2) How far can a model depart from perfect prediction (PPV ∈
{99%, 75%}) and still imply a large fairness region?

3.3.1 Varying prevalence difference. First we explore the impact of

varying the prevalence difference between two groups on the size

of the fairness region, using the CP described in Section 3.2. The

results of these experiments are in Figure 2, which shows heatmaps

plotting the number of feasible models for any pair of prevalence

values p
1
, p

2
over a range of values from 0.01 to 0.99. Figures 2 (a),

(b), (c), and (d) correspond to settings where the allowable difference

betweenmetrics is 𝜖 ≤ 0.0, 0.02, 0.05, and 0.1, respectively. Note that

in each setting we fix performance such that FNR, PPV ∈ [0, 0.99]
to avoid the pathological cases covered by Equation 1.

Several important insights can be gleaned from Figure 2. As

expected, in the case where the 𝜖-margin-of-error is 0, feasible

models are only found on the diagonal, when prevalences are equal

(implied by [16, 37]). Interestingly, we observe for all settings of 𝜖

that the number of feasible models is densest around p
1
= p

2
= 0.5.

For example, the fairness region is larger when p
1
= 0.4, p

2
= 0.5

than when p
1
= 0.1, p

2
= 0.2, even though 𝜖p = 0.1 in both cases.

As the 𝜖-margin-of-error increases from 0.0 to 0.1, the total

number of feasible models increases dramatically from 3, 640 to

199, 314. While the specific values of these numbers are a function of

our discretization and the value of𝑁 used in the constraint program,

they still enable us to make relative comparisons about the size of

the fairness region. For example, Figure 2 (c), where 𝜖 ≤ 0.05 (i.e.,

the maximum allowable difference between group metrics is 5%),
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provides a valuable insight: if the prevalence difference between

groups is less than 0.2 (or 20%), the fairness region is quite dense,

especially relative to plot 2 (a), where 𝜖 = 0.0. This is good news for
practitioners because: (1) prevalence differences between 10% and

15% are commonly observed, and (2) setting 𝜖 ≤ 0.05 is reasonable

in many contexts.

3.3.2 Varying performance. Next, we test the effect of “imperfect

prediction” on the size of the fairness region. As a reference point,

we focus on the case where 𝜖 ≤ 0.05 (Figure 2 (c)), and create bins

that corresponded to four ranges of PPV: [0.00, 0.24], [0.25, 0.49],
[0.50, 0.74], and [0.75, 0.99]. As expected, the closer the setting is to
“perfect prediction” (i.e., the higher the PPV), the larger the size of

the fairness region. The number of feasible models increases from

7, 554 in the lowest PPV bin to 10, 007 in the highest bin. Notably,

there are still many feasible models available in all bins even when

the prevalence difference between groups is as high as 20%.

There is another key insight implicit in Figure 3: it not only

shows how many feasible models there are under different PPV

settings, but that many of those models are high-performing. In each
figure, it can be seen that the number of feasible models is most

dense when the group prevalences are below the maximum PPV

value. Recall that any model with a PPV greater than the overall

prevalence of the dataset on which it is being used offers value over

random chance, suggesting not only many possible models, but

many useful models in these settings.

3.3.3 Considering intersectional groups. The ultimate goal of algo-

rithmic fairness should not just be ensuring fairness according to

multiple metrics, but also for multiple groups (e.g., defined both

based on sex, and based on race), including intersections of these

groups (e.g., defined by a combination of sex and race) [29]. Inter-

sectional discrimination [20, 43] states that individuals who belong

to several protected groups simultaneously (e.g., Black women)

experience stronger discrimination compared to individuals who

belong to a single protected group (e.g., White women or Black

men), and that this disadvantage compounds more than additively.

This effect has been demonstrated by numerous case studies, and

by theoretical and empirical work [17, 21, 47, 58].

Intersectionaliy is an analytical framework for understanding

human beings that considers the outcome of intersections of dif-

ferent social locations, power relations and experiences [29]. For

example, an intersectional approach to fairness could be thinking

beyond an individual’s sex or race, and instead accounting for a

set of important characteristics about that individual like their sex,

race, ethnicity, and social class. In this paper, we consider a limited

interpretation of intersectionality, and investigate how stating fair-

ness constraints with respect to intersections of several sensitive

attributes impacts the existence of feasible models. In the follow-

ing proposition, we show that the maximum prevalence difference

across groups defined by an intersection of sensitive attributes (e.g.,

on sex and race) is at least as high as when groups are defined based

on each sensitive attribute independently (e.g., on sex or race).

Proposition 3.4 (Intersectional Prevalence Differences).

Given a dataset that is subdivided into two groups, let 0 < 𝑝1 < 𝑛1
and 0 < 𝑝2 < 𝑛2, where 𝑝𝑖 is the number of positive class members
of group 𝑖 , and 𝑛𝑖 is the total number of members in group 𝑖 . Suppose

𝑝1
𝑛1

≤ 𝑝2
𝑛2

. Then the following holds: 𝑝1𝑛1

≤ 𝑝1+𝑝2
𝑛1+𝑛2

≤ 𝑝2
𝑛2

. (Proof deferred
to Appendix G). □

Consider a toy example where there are two binary sensitive

attributes: sex coded as male and female, and race coded as major-

ity and minority. Under the mild assumption of Proposition 3.4,

the prevalence of the minority group as a whole must be between

the prevalence of the intersectional minority male and minority

female groups. The same is true for the prevalence of the majority

group. As a result, the prevalence difference between the four in-

tersectional groups (majority male, majority female, minority male,

minority female) must be greater than or equal to the prevalence

difference between only the majority and the minority group. The

same reasoning can be used to understand prevalence differences

for sex and intersectional sex. The overall implication of Proposi-

tion 3.4 is that considering intersectional groups leads to at least

equal, but more commonly greater, prevalence differences between

groups, which suggests there will be fewer feasible models that are

fair with respect to FNR, FPR, and PPV.

3.3.4 Varying the resource constraint k. We now investigate the

impact of k on our ability to identify a feasible solution.

Proposition 3.5 (Reducing k increases PPV). Given a well-

calibrated classifier being used under a resource constraint k, reducing
the size of kwill monotonically increase the PPV of the classifier. (Proof
deferred to Appendix G) □

The insight of Proposition 3.5 is that reducing k causes a chain

reaction: first, it increases the PPV of the classifier, and second, an

increase in PPV results in a more dense space of feasible solutions

(as observed in Section 3.3.2). Taken together, this suggests that

reducing k can result in a denser space of feasible models on FPR,

FNR and PPV.

4 EXPERIMENTS
The analysis in Section 3 shows that, by slightly relaxing fairness

constraints between metrics, there are a large number of models

satisfying approximate fairness constraints across multiple met-

rics. In this section, we design an experiment to demonstrate the

existence of those models on real data.
Our insights suggest that the possibility of finding fair models is

influenced by (1) the group prevalences’ proximity to 50%, (2) the

differences between group prevalences, and (3) the performance of

the classifier. To better understand how these parameters impact

one’s ability to find fair models on real-world data, we developed

an experiment to answer the following question: Given a dataset 𝑋 ,

a resource constraint k, a set of fairness constraints, and a classifier

with a given PPV, does there exist a set of k observations for which

(1) fairness constraints for FPR, FNR and PPV are satisfied, and

(2) those fairness constraints do not reduce the PPV? If there does

exist a set of observations in 𝑋 that satisfies these requirements,

then there also exists a model that could select those observations.

Trivially, one can think of a function that uses the index of each

element to map to an outcome. In other words, one could use such

a set as the labels 𝑌 for creating a function 𝑖 : 𝑋 → 𝑌 .

To implement the experiment we created a Mixed Integer Linear

Program as follows: The objective function is to maximize the

PPV of a selection of k observations, subject to 5 constraints: (1)
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Figure 2: Effect of varying group prevalence values p
1
, p

2
on the number of feasible models for different values of 𝜖, where

PPV, FNR ∈ [0, 0.99], FPR ∈ [0, 1.0], 𝑁 = 100.

k observations must be selected, (2) the classifier has at most a
pre-defined PPV, (3-5) fairness constraints for FNR, FPR, and PPV

are met. The full program details can be found in Appendix A.
4

One strength of this experiment is that it allows us to work with

datasets that may have non-binary sensitive attributes or multiple

sensitive attributes. This means we can also explore the feasibility

of finding fair sets when there are more than two groups and consider
intersectionality (see Section 3.3.3).

Note that there are two complications in our problem: First,

because PPV cannot be written as a linear constraint [31], we used

an existing approach to refactor our problem into an approximately

equivalent Quadratic Linear Program that includes constraints for

PPV. Second, as a result of the transformations and the inherent

complexity, running times become intractable for large datasets.

To circumvent this problem, we conducted our experiments on

a sample of each dataset stratified on the outcome and sensitive

attributes. We ran several sensitivity analyses and did not find any

meaningful difference in the experimental results due to down-

sampling, but we acknowledge this as a limitation.

4
All data, code, and experimental results are available in the following GitHub reposi-

tory: https://github.com/DataResponsibly/the-possibility-of-fairness

4.1 Datasets
We worked with 5 real-world datasets, all with varying outcome

prevalences, and representing a variety of sensitive attributes, in-

cluding sex, race, and education level. We used these datasets in

scope of 16 tasks (i.e., outcomes): 8 for Ukrainian EIE, 5 for folktables,
1 for each of the other 3 datasets).

Ukranian External Independent Evaluation (EIE). 5 EIE

data contains standardized tests for secondary school graduates in

Ukraine. The 2021 data, used in our experiments, contains 389,322

records. Sensitive attributes include the students’ sex and whether

they live in an urban or a rural area. Outcomes are students’ per-

formance on 5 tests (e.g., history, German).

Portuguese Student Performance. 6 [19]. This dataset con-
tains the performance of Portuguese high school students in twho

subjects, mathematics and Portuguese language arts. The dataset

contains 1,044 records from students at two high schools, and was

collected in 2005 and 2006. Features includes administrative records

5
https://zno.testportal.com.ua/opendata

6
https://archive.ics.uci.edu/ml/datasets/student+performance
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Figure 3: Effect of varying PPV on the fairness region, where |𝜖𝛼 |, |𝜖𝛽 |, |𝜖𝑣 | ≤ 0.05, 𝑁 = 100.

from schools (e.g., grades, number of absences), a lifestyle ques-

tionnaire completed by each student (e.g., how many hours per

week they study), and sensitive attributes like the student’s sex,

their parents’ education levels, and whether the students live in an

urban or rural location. The associated prediction task is identifying

students at risk of failure to provide additional school resources.

Taiwanese Loan Assessment. 7 [63]. This dataset contains

customer loan data from a bank (and cash issuer) in Taiwan. The

data was collected in 2005, has 30,000 records, and includes sensitive

attributes like sex and education level. The associated task is to

identify customers at risk of defaulting on their loan payments.

Bangladeshi Diabetes Risk Assessment. 8[33]. This dataset,
published in 2020, has 520 patient records with information on

diabetes-related symptoms, obtained through a questionnaire by

the Sylhet Diabetes Hospital in Bangladesh. The task is to iden-

tify individuals at risk of early-stage diabetes. Sensitive attributes

include age and sex.

7
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

8
https://archive.ics.uci.edu/ml/datasets/Early+stage+diabetes+risk+prediction+

dataset.

Folktables. 9 [22]. This data is from the American Community

Survey Public Use Microdata Samples (ACM PUMS), and contains

individual-level and household-level data related to income, em-

ployment, health, transportation, and housing in the United States.

The data is updated yearly, is available at both the national or state

level, and contains millions of records. Sensitive attributes include

race and sex. We look at 5 separate pre-defined prediction tasks,

using data from New York state in 2018.

4.2 Results
Full experimental results are reported in Table 2 in Appendix B, and

truncated results are in Table 1. These tables show the “Optimal k

Range” for each (dataset (outcome), sensitive attribute) pair, where
k is expressed as a percentage of the observations. The optimal

range shows for which values of k there is a set of observations

that satisfy fairness constraints for FPR, FNR, and PPV, without

sacrificing any additional classifier PPV. Note that in Table 2, each k

list must contain 30% errors (i.e., false positives). This means that the

precision of the list k is at-most 70%. This was an arbitrary choice;

however, we did conduct extensive sensitivity analysis (see Table 5

9
https://github.com/zykls/folktables
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Table 1: Truncated experimental results.

Dataset (Outcome) Overall Preva-
lence (%)

Sensitive
Attribute

Group Prevalence (%) Maximum
Prevalence
Difference (%)

Optimal k
Range (%
Samples)

EIE (Ukranian) 7.34 Sex Female: 4.26; Male: 10.66 6.4 None

EIE (Ukranian) 7.34 Territory Rural: 10.38; Urban: 6.3 4.08 [5,20]

EIE (Math) 31.1 Sex Female: 30.92; Male: 31.26 0.34 All

EIE (Math) 31.1 Territory Rural: 39.94; Urban: 28.12 11.82 [5,90]

EIE (Geography) 5.3 Sex Female: 4.21; Male: 6.31 2.1 All

EIE (Geography) 5.3 Territory Rural: 6.43; Urban: 4.87 1.56 All

EIE (German) 11.35 Sex Female: 10.03; Male: 13.87 3.84 [5,90]

EIE (German) 11.35 Territory Rural: 26.97; Urban: 8.57 18.4 None
Folktables (Employ-

ment)

46.45 Sex Female: 44.3; Male: 48.74 4.44 All

Folktables (Employ-

ment)

46.45 Race Asian alone: 50.0; Black or

African American alone:

42.08; Other: 41.71; White:

47.36

8.29 All

Folktables (Travel

Time)

53.78 Sex Female: 51.72; Male: 55.8 4.08 All

Folktables (Travel Time) 53.78 Race Asian alone: 66.86; Black

or African American alone:

69.15; Other: 64.63; White:

48.51

20.64 [5,55]

Loan Assessment 22.17 Sex Female: 20.86; Male: 24.16 3.3 All

Diabetes Risk Assess-

ment

61.54 Sex Female: 90.1; Male: 44.82 45.28 [5,10]

Student Performance 22.03 Sex Female: 21.13; Male: 23.22 2.09 All

Student Performance 22.03 Parent’s

education

level

High school: 23.55; Not

high school or university or

greater: 25.85; University or

greater: 16.52

9.33 [5,55]

in the Appendix) and found that increasing the PPV generally

increases the Optimal k Range, as suggested in Section 3.3.2. Note

also that “Maximum Group Difference” refers to the maximum

pairwise difference between group prevalence values.

Recall our discussion about fairness constraints over intersec-

tional groups in Section 3.3.3. In Table 3, we have included results

for Folktables for a new “race-sex” attribute that partitions the data

based on a combination of values of these two attributes. It can

be seen that the same observations made in Section 4.2 hold here,

but with one key difference: in general, the maximum prevalence

difference in groups defined by an intersection of attributes (e.g., on

sex and race) is at least as high as when groups are defined based

on each sensitive attribute independently (e.g., on sex or race). This

is consistent with the insights of Proposition 3.4 in Section 3.3.3.

The results in Table 2 support the conceptual findings presented

in Section 3. The size of the optimal k range mirrors some previous

findings, with evidence of larger k ranges for prevalences closer to

50% and for smaller group prevalence differences. As evidence for

the former, for any row in Table 2 for which the optimal k range is

All, the group prevalence differences are small (less than 10%). For

the latter, consider this interesting observation from the table: for

the (EIE (German), Territory) pair, the maximum group prevalence

difference is 18.4%— yet there is no value of kwhere it is possible to

simultaneously satisfy all three fairness constraints. Notice that the

overall prevalence is ≈ 10.35%. In contrast, the (Folktables (Travel
Time), Race) pair has a maximum prevalence difference that is even

higher at 20.64%, but in this case the group prevalences are closer

to 50%, and the optimal k range spans over half the dataset ([5, 55]).
Another salient result from our experiments is that out of all

32 combinations of (dataset (outcome), sensitive attribute), only 3

have no k value for which it was possible to find a set of obser-

vations satisfying every fairness constraint. This is a promising

result: across five separate and diverse real-world datasets,
we demonstrated that there is nearly always at least some
chance of finding a model that is simultaneously fair with
respect to FPR, FNR, and PPV with a small margin-of-error.

5 DISCUSSION
This paper sought to revisit the impossibility theorem in practical

settings. Taken together, our analytical and experimental results, of-

fer a promising perspective on the feasibility of finding models that

are fair with respect to approximate constraints for FNR, FPR, and

408



FAccT ’23, June 12–15, 2023, Chicago, IL, USA Andrew Bell, Lucius Bynum, Nazarii Drushchak, Lucas Rosenblatt, Tetiana Zakharchenko, and Julia Stoyanovich

PPV: even under slight relaxations, fair models are abundant
rather than rare.

In this section, we present our findings as guidance for practi-

tioners on when it will be feasible to find those fair models. There

are several considerations: (1) group prevalence values, (2) preva-

lence difference between groups, (3) classifier performance, and (4)

resource constraint k.

In the first two considerations, our findings suggest that if one

allows a small margin-of-error difference between metrics, then

there exist many models that simultaneously satisfy parity across

FNR, FPR, PPV even when there is a moderate prevalence differ-

ence between groups. Further exploration is needed to understand

what exactly constitutes small and moderate, but in our analysis

we observed that cases with a 5% margin-of-error and prevalence

differences up to 10% (and in some cases up to 20%) afforded fea-

sible solutions. We are unsure how well these particular settings

will generalize, but the larger implication is hopeful. For example,

revisiting the thought experiment from Section 2: when predict-

ing student graduation in the US where the prevalence difference

between minority and majority students is roughly 10%, we ex-

pect that it is possible to build good models that are fair with re-
spect to multiple metrics. To allow practitioners to answer ques-

tions like these for their own datasets, we offer an open-source

tool they can use to assess the feasibility of finding models that

are fair across multiple constraints, given an input dataset. (See

https://github.com/DataResponsibly/the-possibility-of-fairness.)

Regarding considerations (3) and (4), our analytical work sug-

gests that a higher PPV yields a larger number of feasible models.

This furthers claims by other researchers that increasing the perfor-

mance of a model actually improves the possibility of finding a fair

model [61]. This is in-line with a paradigm shift away from thinking

one must choose between high performance or fairness — from a

fairness perspective, it can be worthwhile to improve the perfor-

mance of your classifier to further enable fairness across multiple

constraints. Connecting this insight to the resource-constrained

setting with k, it follows that resource constraints can, perhaps
counter-intuitively, lead to higher chances of finding fair
models (see Proposition 3.5). This is particularly impactful for

practitioners working in ML for public policy, where resource con-

straints can be as small as 1% (k = 0.01) or 5% (k = 0.05) [6, 50].
We also offer two other meta-considerations. The first is the

𝜖-margin-of-error allowed between fairness metrics. In practice,

𝜖 should be decided a priori, and by consulting stakeholders and

subject area experts [53, 54]—but generally, the guidance here is

unsurprising: the larger the tolerable difference between metrics,

the larger the feasible region of fair models.

The second meta-consideration is the number of groups of sen-

sitive attributes. We find that adding intersectional groups will

increase prevalence differences (see Proposition 3.4), which reduces

the number of possibilities for fair models. However, this is by no

means an argument against considering intersectionality. On the

contrary, we frame this finding as follows: you can continue to

add sensitive attributes and intersectional groups and still have a

chance of finding models that are fair across multiple metrics.

Future work and limitations. Our work leaves open an impor-

tant next step in ensuring fairness across multiple metrics and for

multiple groups: once we know there is a large set of feasible
models, how do we find such a model? Further, does having a
large number of feasible models make it easier to find one of
those models? Answering these questions is beyond the scope of

this current paper, but the authors hope to answer them in follow-

up work. Notably, as of the time this work was published, there

has been at least one effort made to develop an algorithm to find

classifiers that are fair with respect to FPR, FNR, and PPV [31].

Significant additional study of this problem should be done with

closed-form expressions describing model feasibility in terms of

FPR, FNR, and PPV.

6 CONCLUSIONS AND SOCIAL IMPACT
This paper provides evidence that challenges commonly held as-

sumptions about the impossibility theorem in practical settings,

suggesting that practitioners can strive for more fairness in the

algorithms they implement. This is an important part of the social

impact of this paper: it exists as part of a growing body of liter-

ature showing that strong limits to fairness, like trade-offs with

performance, with other metrics, or between groups, may be over-

stated or even self-imposed. The impossibility theorem is not a rigid

barrier to equitable machine learning.

This work also further demonstrates the importance of reduc-

ing societal biases, which are ultimately what cause prevalence

differences between groups to appear in data. There is a similar

implication for designing better models — by knowing that high

model performance and fairness are interrelated, we can shift away

from a paradigm of wanting to build algorithms that are either

better performing or more fair, and towards one where we build

algorithms that are better performing and more fair.

Our efforts, along with related work that challenges commonly-

held beliefs about the fairness-accuracy trade-off, may represent

an inflection point in the fair-ML community: fewer and fewer

researchers and practitioners conform to the idea that we must

choose between (a single notion of) fairness and accuracy [14,

31, 50, 61]. Our main take-away is that achieving fairness along
multiplemetrics, formultiple groups, andwithout sacrificing
accuracy is much more attainable than previously believed.
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A QUADRATIC MIXED INTEGER LINEAR
PROGRAM DETAILS

In this section, we present theMixed Integer Linear Program used in

our experiment in Section 4. The objective function is to maximize

the PPV of a selection of k observations, subject to 5 constraints:

(1) k observations must be selected, (2) the classifier has at most a
predefined PPV, (3-5) fairness constraints for FNR, FPR, and PPV

are met. All data, code, and experimental results are available in

a GitHub repository at https://github.com/DataResponsibly/the-

possibility-of-fairness. The repository will be made public upon

publication.

Note that the fairness constraints are enforced using disparity
ratios where 0.8 ≤ 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 ≤ 1.2, rather than a ±𝜖 distance

between group metrics. We made this decision because disparity

ratios are more robust to small real values. For example, consider

a model that has FPR1 = 0.002 for one group and FPR2 = 0.04

for the other. If 𝜖 = 0.05, technically these values would satisfy a

fairness constraint where |FPR1 − FPR2 | <= 𝜖 , but this is likely

not desirable to practitioners. However, using disparity ratios, this

scenario would be considered unfair since 0.8 ≰ FPR1

FPR2

≤ 1.2.

We frame the Mixed Integer Linear Program in Figure 4.

where 𝑁 is the set of entities, 𝑛 = |𝑁 |; 𝑥 is a binary array of

length 𝑛 where entry 𝑥𝑖 indicates whether or not entity 𝑖 ∈ 𝑁 is

included in the final list; 𝑙 is a binary array of length 𝑛 such that

𝑙𝑖 = 1 if the outcome entity 𝑥𝑖 , 𝑖 ∈ 𝑁 is 1 and 0 otherwise;𝐺 is a set

of protected groups; 𝑔 𝑗 is a binary array of length 𝑛 where entry 𝑔 𝑗𝑖
indicates whether or not entry entity 𝑖 ∈ 𝑁 is in the group 𝑗 (note

that group 𝑔𝑟𝑒 𝑓 is the reference group for disparity calculations); 𝑘

is the final list size; 𝑢𝑏 and 𝑙𝑏 are the upper and lower bounds for

the disparity ratios, respectively.

KLS is the “k-list-size” constraint, FPRU and FPRL are the upper

and lower bounds for the False Positive Rate, respectively, FNRU

and FNRL are the upper and lower bounds for the False Negative

Rate, respectively, and PPVU and PPVL are the upper and lower

bounds for the PPV respectively.

The PPV constraints (PPVU and PPVL) halt the problem from

being the Mixed Integer Linear Programming problem (MILP). We

were inspired by an approach that was used when faced with a

similar obstacle in creating MFOpt (Multiple Fairness Optimization

Framework) [31], and propose a reformulation of the MIP in a way

where we can apply the normalized multiparametric disaggregation

technique (NMDT [2]). We go through the following four steps:

Step 1. Make the following substitution:

𝑃𝑔𝑗 =

𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑔 𝑗𝑖 and 𝑇𝑔𝑗 =

𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑙𝑖 · 𝑔 𝑗𝑖

𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑔 𝑗𝑖

Note that 𝑃𝑔𝑗 is the number of entities from the group 𝑔 𝑗 that

are included in the final list, and 𝑇𝑔𝑗 is the PPV for the group 𝑔 𝑗 .
Step 2. Find the upper 𝑃𝑈𝑔𝑗 and the lower 𝑃𝐿𝑔𝑗 bounds for each

𝑃𝑔𝑗 by solving the following MILP:

maximize𝑥𝑖 𝑃𝑔𝑗
subject to (KLS)

(FPRU), (FPRL)

(FNRU), (FNRL)

Step 3. Find the upper𝑇𝑈𝑔𝑗 and the lower𝑇𝐿𝑔𝑗 bounds for each
𝑇𝑔𝑗 by solving the following MIP with linear constraints but with

the fractional objective:

maximize𝑥𝑖 𝑇𝑔𝑗
subject to (KLS)

(FPRU), (FPRL)

(FNRU), (FNRL)

To solve we use the Charnes-Cooper transformation [15].

Step 4. Reformulate the initial optimization problem in terms of

𝑃𝑔𝑗 and𝑇𝑔𝑗 with corresponding lower and upper bounds from steps

2 and 3 in order to use NMDT transformation, so that it can be easily

handled by MIP solver [28]. Also, note that all denominators there

are constant for the given dataset. This reformulation is shown in

Figure 5.

Note that 𝑃𝑔𝑗 are integer variables, and 𝑇𝑔𝑗 are continuous vari-

ables, but with bounds found in step 3 ( 𝑇𝑔𝑗 ∈ [𝑇𝐿𝑔𝑗 ,𝑇𝑈𝑔𝑗 ]), and
precision factor 𝑝 as a negative integer, we can represent this con-

tinuous variable exactly as

𝑇𝑔𝑗 = (𝑇𝑈𝑔𝑗 −𝑇𝐿𝑔𝑗 ) · 𝜆 +𝑇𝐿𝑔𝑗
where

𝜆 =
∑︁

𝑚∈{−𝑝,...,−1}
2
𝑚 · 𝑧𝑚

and 𝑧𝑚 ∈ {0, 1} are binary optimization variables.

B EXPERIMENTAL RESULTS
Our full experimental results can be found in the Python note-

books in the “experiments” folder of our Github repository at

https://github.com/DataResponsibly/the-possibility-of-fairness. In

this section, we wanted to include examples of the output of our

experiment for each Dataset (Outcome), sensitive attribute pair. Here
we highlight two such pairs from the EIE dataset, which can be seen

in Figure 6. Plot (a) shows results for the EIE (Geography), territory
pair, and plot (b) shows the results for the EIE (Ukrainian), territory
pair. Each of those plots contains two subplots. On top, it shows

the PPV (Precision) and Recall (dotted lines) of an unconstrained

linear program that has the specified PPV. The solid lines show

the PPV and Recall of the selected sets. The bottom plot shows the

disparity of each metric, where the dashed lines show the limits of

1.2 and 0.8. We can tell when a model is no longer optimal when the

constrained PPV and Recall meaningfully deviate from the uncon-

strained PPV and Recall. Note that in some experiments, the PPV,

FPR, and FNR disparities may be outside of the disparity window

([0.8, 1.2]) — but these instances are either pathological or due to

a rounding error. The pathological cases occur when there is only

one or two False Positives or False Negatives in a group.

• Full experimental results: Table 2

• Intersectional results: Table 3

• Sample size sensitivity analysis: Table 4

• PPV sensitivity analysis: Table 5
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maximize𝑥𝑖

𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑙𝑖

subject to

𝑛∑︁
𝑖=1

𝑥𝑖 = 𝑘, (KLS)

𝑛∑︁
𝑖=1

𝑥𝑖 · (1 − 𝑙𝑖 ) · 𝑔 𝑗𝑖
𝑛∑︁
𝑖=1

(1 − 𝑙𝑖 ) · 𝑔 𝑗𝑖

≤ 𝑢𝑏 ·

𝑛∑︁
𝑖=1

𝑥𝑖 · (1 − 𝑙𝑖 ) · 𝑔𝑟𝑒 𝑓𝑖
𝑛∑︁
𝑖=1

(1 − 𝑙𝑖 ) · 𝑔𝑟𝑒 𝑓𝑖

, ∀𝑗 ∈ 𝐺, 𝑗 ≠ 𝑟𝑒 𝑓 (FPRU)

𝑛∑︁
𝑖=1

𝑥𝑖 · (1 − 𝑙𝑖 ) · 𝑔 𝑗𝑖
𝑛∑︁
𝑖=1

(1 − 𝑙𝑖 ) · 𝑔 𝑗𝑖

≥ 𝑙𝑏 ·

𝑛∑︁
𝑖=1

𝑥𝑖 · (1 − 𝑙𝑖 ) · 𝑔𝑟𝑒 𝑓𝑖
𝑛∑︁
𝑖=1

(1 − 𝑙𝑖 ) · 𝑔𝑟𝑒 𝑓𝑖

, ∀𝑗 ∈ 𝐺, 𝑗 ≠ 𝑟𝑒 𝑓 (FPRL)

𝑛∑︁
𝑖=1

(1 − 𝑥𝑖 ) · 𝑙𝑖 · 𝑔 𝑗𝑖
𝑛∑︁
𝑖=1

𝑙𝑖 · 𝑔 𝑗𝑖

≤ 𝑢𝑏 ·

𝑛∑︁
𝑖=1

(1 − 𝑥𝑖 ) · 𝑙𝑖 · 𝑔𝑟𝑒 𝑓𝑖
𝑛∑︁
𝑖=1

𝑙𝑖 · 𝑔𝑟𝑒 𝑓𝑖

, ∀𝑗 ∈ 𝐺, 𝑗 ≠ 𝑟𝑒 𝑓 (FNRU)

𝑛∑︁
𝑖=1

(1 − 𝑥𝑖 ) · 𝑙𝑖 · 𝑔 𝑗𝑖
𝑛∑︁
𝑖=1

𝑙𝑖 · 𝑔 𝑗𝑖

≥ 𝑙𝑏 ·

𝑛∑︁
𝑖=1

(1 − 𝑥𝑖 ) · 𝑙𝑖 · 𝑔𝑟𝑒 𝑓𝑖
𝑛∑︁
𝑖=1

𝑙𝑖 · 𝑔𝑟𝑒 𝑓𝑖

, ∀𝑗 ∈ 𝐺, 𝑗 ≠ 𝑟𝑒 𝑓 (FNRL)

𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑙𝑖 · 𝑔 𝑗𝑖
𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑔 𝑗𝑖

≤ 𝑢𝑏 ·

𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑙𝑖 · 𝑔𝑟𝑒 𝑓𝑖
𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑔𝑟𝑒 𝑓𝑖

, ∀𝑗 ∈ 𝐺, 𝑗 ≠ 𝑟𝑒 𝑓 (PPVU)

𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑙𝑖 · 𝑔 𝑗𝑖
𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑔 𝑗𝑖

≥ 𝑙𝑏 ·

𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑙𝑖 · 𝑔𝑟𝑒 𝑓𝑖
𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑔𝑟𝑒 𝑓𝑖

, ∀𝑗 ∈ 𝐺, 𝑗 ≠ 𝑟𝑒 𝑓 (PPVL)

𝑥𝑖 , 𝑙𝑖 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑛

𝑔 𝑗𝑖 ∈ {0, 1}, 𝑗 ∈ 𝐺

(4)

Figure 4: Mixed Integer Linear Program.
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maximize

𝑛∑︁
𝑗=1

𝑇𝑔𝑗 · 𝑃𝑔𝑗

subject to

𝑛∑︁
𝑗=1

𝑃𝑔𝑗 = 𝑘, (KLS)

𝑃𝑔𝑗 · (1 −𝑇𝑔𝑗 )
𝑛∑︁
𝑖=1

(1 − 𝑙𝑖 ) · 𝑔 𝑗𝑖

≤ 𝑢𝑏 ·
𝑃𝑔𝑟𝑒𝑓 · (1 −𝑇𝑔𝑟𝑒𝑓 )
𝑛∑︁
𝑖=1

(1 − 𝑙𝑖 ) · 𝑔𝑟𝑒 𝑓𝑖

, ∀𝑗 ∈ 𝐺, 𝑗 ≠ 𝑟𝑒 𝑓 (FPRU)

𝑃𝑔𝑗 · (1 −𝑇𝑔𝑗 )
𝑛∑︁
𝑖=1

(1 − 𝑙𝑖 ) · 𝑔 𝑗𝑖

≥ 𝑙𝑏 ·
𝑃𝑔𝑟𝑒𝑓 · (1 −𝑇𝑔𝑟𝑒𝑓 )
𝑛∑︁
𝑖=1

(1 − 𝑙𝑖 ) · 𝑔𝑟𝑒 𝑓𝑖

, ∀𝑗 ∈ 𝐺, 𝑗 ≠ 𝑟𝑒 𝑓 (FPRL)

1 −
𝑃𝑔𝑗 ·𝑇𝑔𝑗
𝑛∑︁
𝑖=1

𝑙𝑖 · 𝑔 𝑗𝑖

≤ 𝑢𝑏 ·
©­­­­­«
1 −

𝑃𝑔𝑟𝑒𝑓 ·𝑇𝑔𝑟𝑒𝑓
𝑛∑︁
𝑖=1

𝑙𝑖 · 𝑔𝑟𝑒 𝑓𝑖

ª®®®®®¬
, ∀𝑗 ∈ 𝐺, 𝑗 ≠ 𝑟𝑒 𝑓 (FNRU)

1 −
𝑃𝑔𝑗 ·𝑇𝑔𝑗
𝑛∑︁
𝑖=1

𝑙𝑖 · 𝑔 𝑗𝑖

≥ 𝑙𝑏 ·
©­­­­­«
1 −

𝑃𝑔𝑟𝑒𝑓 ·𝑇𝑔𝑟𝑒𝑓
𝑛∑︁
𝑖=1

𝑙𝑖 · 𝑔𝑟𝑒 𝑓𝑖

ª®®®®®¬
, ∀𝑗 ∈ 𝐺, 𝑗 ≠ 𝑟𝑒 𝑓 (FNRL)

𝑇𝑔𝑗 ≤ 𝑢𝑏 ·𝑇𝑔𝑟𝑒𝑓 ∀𝑗 ∈ 𝐺, 𝑗 ≠ 𝑟𝑒 𝑓 (PPVU)

𝑇𝑔𝑗 ≤ 𝑙𝑏 ·𝑇𝑔𝑟𝑒𝑓 ∀𝑗 ∈ 𝐺, 𝑗 ≠ 𝑟𝑒 𝑓 (PPVL)

𝑃 𝑗 ∈ {𝑃𝐿𝑔𝑗 , . . . , 𝑃𝑈𝑔𝑗 }, 𝑗 ∈ 𝐺

𝑇𝑗 ∈ [𝑇𝐿𝑔𝑗 ,𝑇𝑈𝑔𝑗 ], 𝑗 ∈ 𝐺

𝑙𝑖 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑛

𝑔 𝑗𝑖 ∈ {0, 1}, 𝑗 ∈ 𝐺

Figure 5: Reformulated initial optimization problem in terms of 𝑃𝑔𝑗 and 𝑇𝑔𝑗 with corresponding lower and upper bounds from
steps 2 and 3 in order to use NMDT transformation, so that it can be easily handled by MIP solver [28].

(a) (b)

Figure 6: Plot (a) shows that overall values of k, PPV, and Recall of the selected set do not substantially deviate from an
unconstrained model, and that PPV, FPR, and FNR remain within the bounds of the disparity window for all values. Plot (b)
shows that over the k range of [5, 20], PPV and Recall of the identified sets are inline with unconstrained Precision and Recall.

414



FAccT ’23, June 12–15, 2023, Chicago, IL, USA Andrew Bell, Lucius Bynum, Nazarii Drushchak, Lucas Rosenblatt, Tetiana Zakharchenko, and Julia Stoyanovich

Table 2: Full empirical results

Dataset (Outcome) Overall
Prevalence
(%)

Sensitive
Attribute

Group Prevalence (%) Maximum
Prevalence
Difference (%)

Optimal
k Range
(% Sam-
ples)

EIE (Ukranian) 7.34 Sex Female: 4.26; Male: 10.66 6.4 None

EIE (Ukranian) 7.34 Territory Rural: 10.38; Urban: 6.3 4.08 [5,20]

EIE (History) 18 Sex Female: 14.48; Male: 22.2 7.72 [5,60]

EIE (History) 18 Territory Rural: 20.27; Urban: 17.05 3.22 All

EIE (Math) 31.1 Sex Female: 30.92; Male: 31.26 0.34 All

EIE (Math) 31.1 Territory Rural: 39.94; Urban: 28.12 11.82 [5,90]

EIE (Physics) 8.33 Sex Female: 10.46; Male: 7.96 2.5 All

EIE (Physics) 8.33 Territory Rural: 12.16; Urban: 7.09 5.07 [5,20]

EIE (Chemistry) 10.68 Sex Female: 11.18; Male: 9.81 1.37 All

EIE (Chemistry) 10.68 Territory Rural: 15.72; Urban: 9.24 6.48 [5,25]

EIE (Geography) 5.3 Sex Female: 4.21; Male: 6.31 2.1 All

EIE (Geography) 5.3 Territory Rural: 6.43; Urban: 4.87 1.56 All

EIE (English) 10.64 Sex Female: 9.55; Male: 11.76 2.21 All

EIE (English) 10.64 Territory Rural: 17.35; Urban: 9.43 7.92 [5,20]

EIE (German) 11.35 Sex Female: 10.03; Male: 13.87 3.84 [5,90]

EIE (German) 11.35 Territory Rural: 26.97; Urban: 8.57 18.4 None

Folktables (Employment) 46.45 Sex Female: 44.3; Male: 48.74 4.44 All

Folktables (Employment) 46.45 Race Asian alone: 50.0; Black or

African American alone: 42.08;

Other: 41.71; White: 47.36

8.29 All

Folktables (Income) 41.51 Sex Female: 35.76; Male: 47.13 11.37 All

Folktables (Income) 41.51 Race Asian alone: 41.05; Black or

African American alone: 31.9;

Other: 25.3; White: 44.91

19.61 [5,50]

Folktables (Medical Cover) 40.09 Sex Female: 38.87; Male: 41.65 2.78 All

Folktables (Medical Cover) 40.09 Race Asian alone: 41.13; Black or

African American alone: 52.43;

Other: 49.06; White: 35.22

17.21 [5,60]

Folktables (Mobility) 78.17 Sex Female: 77.29; Male: 79.07 1.78 [5,70]

Folktables (Mobility) 78.17 Race Asian alone: 75.57; Black or

African American alone: 81.33;

Other: 81.68; White: 77.35

6.11 [5,60]

Folktables (Travel Time) 53.78 Sex Female: 51.72; Male: 55.8 4.08 All

Folktables (Travel Time) 53.78 Race Asian alone: 66.86; Black or

African American alone: 69.15;

Other: 64.63; White: 48.51

20.64 [5,55]

Loan Assessment 22.17 Education

level

High school: 25.38; Not high

school or university or greater:

10.53; University or greater: 21.75

14.85 None

Loan Assessment 22.17 Sex Female: 20.86; Male: 24.16 3.3 All

Diabetes Risk Assessment 61.54 Sex Female: 90.1; Male: 44.82 45.28 [5,10]

Student Performance 22.03 Sex Female: 21.13; Male: 23.22 2.09 All

Student Performance 22.03 Address Rural: 27.27; Urban: 20.05 7.22 All

Student Performance 22.03 Parent’s

education

level

High school: 23.55; Not high

school or university or greater:

25.85; University or greater: 16.52

9.33 [5,55]
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Table 3: Experimental results for Folktables with intersectionality

Dataset (Outcome) Number of
Samples

Overall
Prevalence (%)

Sensitive
Attribute

Group Prevalence (%) Maximum Group
Prevalence
Difference (%)

Optimal
k Range
(% Samples)

Folktables (Employ-

ment)

1970 46.45 Race and sex Asian alone, Female: 46.07;

Asian alone, Male: 54.32;

Black or African American

alone, Female: 44.19; Black

or African American alone,

Male: 39.64; Other; Female:

39.56; Other; Male: 44.05;

White, Female: 44.71; White,

Male: 50.15

14.76 All

Folktables (Income) 1031 41.51 Race and sex Asian alone, Female: 39.13;

Asian alone, Male: 42.86;

Black or African American

alone, Female: 30.77; Black

or African American alone,

Male: 33.33; Other; Female:

21.95; Other; Male: 28.57;

White, Female: 37.82; White,

Male: 51.58

29.63 [5,35]

Folktables (Public

Medical Coverage)

1352 40.09 Race and sex Asian alone, Female: 40.24;

Asian alone, Male: 42.37;

Black or African American

alone, Female: 53.77; Black

or African American alone,

Male: 51.0; Other; Female:

51.14; Other; Male: 46.48;

White, Female: 33.13; White,

Male: 38.02

20.64 All

Folktables (Mobil-

ity)

1214 78.17 Race and sex Asian alone, Female: 74.63;

Asian alone, Male: 76.56;

Black or African American

alone, Female: 81.18; Black

or African American alone,

Male: 81.48; Other; Female:

81.82; Other; Male: 81.54;

White, Female: 76.14; White,

Male: 78.57

7.19 [5,60]

Folktables (Travel

Time)

1824 53.78 Race and sex Asian alone, Female: 65.85;

Asian alone, Male: 67.82;

Black or African American

alone, Female: 69.3; Black

or African American alone,

Male: 68.97; Other; Female:

63.01; Other; Male: 66.22;

White, Female: 45.41; White,

Male: 51.41

23.89 [5,80]
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Table 4: Sample size sensitivity analysis

Dataset (Outcome) Number of
Samples

Overall
Prevalence (%)

Sensitive
Attribute

Group Prevalence (%) Maximum Group
Prevalence
Difference (%)

Optimal
k Range
(% Samples)

EIE (Ukranian) 1445 7.34 Sex Female: 4.26; Male: 10.66 6.4 None

EIE (Ukranian) 1445 7.34 Territory Rural: 10.38; Urban: 6.3 4.08 [5,20]

EIE (History) 1994 18 Sex Female: 14.48; Male: 22.2 7.72 [5,60]

EIE (History) 1994 18 Territory Rural: 20.27; Urban: 17.05 3.22 All

EIE (Math) 1222 31.1 Sex Female: 30.92; Male: 31.26 0.34 All

EIE (Math) 1222 31.1 Territory Rural: 39.94; Urban: 28.12 11.82 [5,90]

EIE (Ukranian) 5777 7.34 Sex Female: 4.26; Male: 10.67 6.41 None

EIE (Ukranian) 5777 7.34 Territory Rural: 10.38; Urban: 6.31 4.07 [5,20]

EIE (History) 5982 17.99 Sex Female: 14.43; Male: 22.23 7.8 [5,60]

EIE (History) 5982 17.99 Territory Rural: 20.21; Urban: 17.05 3.16 All

EIE (Math) 7327 31.05 Sex Female: 30.91; Male: 31.18 0.27 All

EIE (Math) 7327 31.05 Territory Rural: 39.74; Urban: 28.13 11.61 [5,90]

EIE (Ukranian) 51991 7.34 Sex Female: 4.26; Male: 10.68 6.42 None

EIE (Ukranian) 51991 7.34 Territory Rural: 10.37; Urban: 6.31 4.06 [5,20]

EIE (History) 51837 17.98 Sex Female: 14.43; Male: 22.2 7.77 [5,60]

EIE (History) 51837 17.98 Territory Rural: 20.21; Urban: 17.03 3.18 All

EIE (Math) 51283 31.05 Sex Female: 30.92; Male: 31.18 0.26 All

EIE (Math) 51283 31.05 Territory Rural: 39.75; Urban: 28.13 11.62 [5,90]

417



The Possibility of Fairness FAccT ’23, June 12–15, 2023, Chicago, IL, USA

C LIST OF ALL METRICS AND THEIR
EQUATIONS

Metrics. A traditional confusion matrix is a standard tool for un-

derstanding binary classification tasks, and details potential model

outcomes, giving names to the relation between what the model

predicts and what the ground truth labels actually are - see Table 6.

From the confusion matrix comes a set of standard metrics that cap-

ture relationships in the outcomes of a binary classification model.

Here we detail potentially relevant metrics to this paper.

• 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

• 𝑇𝑁𝑅 = 𝑇𝑁
𝑇𝑁+𝐹𝑃

• 𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑁

• 𝐹𝑁𝑅 = 𝐹𝑁
𝐹𝑁+𝑇𝑃• 𝑃𝑃𝑉 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

• ACC = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

Binary Classification. We define binary classification as follows.

Consider dataset𝑋 consisting of observations for individuals 𝑥1, 𝑥2,

. . . , 𝑥𝑛 . For individual 𝑥 ∈ 𝑋 with a target value of interest (or

“label”) 𝑦 ∈ 𝑌 , where 𝑌 ∈ {0, 1}𝑛 , we seek to classify 𝑥 correctly (i.e.

assign label 𝑦 to 𝑥 ). More formally, we attempt to learn a function

𝑌 such that ∀(𝑥𝑖 , 𝑦𝑖 ) ∈ 𝑋 ∪ 𝑌 , 𝑌 (𝑥𝑖 ) → 𝑦𝑖 and 𝑦𝑖 == 𝑦𝑖 .

Often, we utilize a statistical technique to find a function 𝑌

that produces a real valued score 𝑦 ∈ (0, 1), and to binarize the

outputs we apply a standard thresholding function 𝜏 (𝑦) = 𝑦 to

produce a binary label 𝑦 ∈ {0, 1}. For example, if 𝑦 is interpreted as

a probability of 1 being the correct label (a “positive” assignment),

then 𝜏 thresholding at a greater than
1

2
probability of positive class

assignment is a way to convert from score or probability to concrete

class.

𝜏 (𝑦) =
{

1, for
1

2
≤ 𝑦 ≤ 1

0, otherwise

}
However, in situations with a resource constraint 𝑘 that governs

how many positive labels we are allowed to assign (say, in a college

admissions scenario), we may be forced to adjust 𝜏 (𝑦) to accept a

function of 𝑘 , i.e., 𝑓 (𝑘) = 𝑡 where 𝑡 ∈ [0, 1] such that 𝜏 (𝑦, 𝑓 (𝑘))
produces exactly 𝑘 positive classifications. For example:

𝜏 (𝑦, 𝑓 (𝑘)) =
{

1, for 𝑓 (𝑘) ≤ 𝑦 ≤ 1

0, otherwise

}
𝑠 .𝑡 .

𝑛∑︁
𝑖=1

1(𝑦𝑖 = 1) = 𝑘

Fairness Considerations: Binary Classification with Sensitive Fea-
tures. Often, when considering the algorithmic fairness of a binary

classifier, we consider a sensitive or protected attribute in the data

that denotes group membership. For example, many datasets col-

lected in social settings have information about the race or gender
of individuals in the population. Both of these attributes are and

should be “protected,” morally and lawfully. Thus, when we evalu-

ate our binary classifier (say, along FPR or FNR), we can evaluate

each metric for the entire population, and we can also evaluate

each metric conditioned on group membership. In the simplest case

(which is our focus for much of this paper), our sensitive attribute
is binary, and thus we consider FPR1 and FPR2, FNR1 and FNR2,

etc. (metrics evaluated on the disjoint sets of outcomes based on

group conditioning).

D ANALYTICAL APPROACH TO
CHARACTERIZING THE FAIRNESS REGION
USING FPR, FNR, ACC

Corollary D.1 (Impossibility Result Variation [16] [37]).

Consider a binary classification setting. The relationship between
ACC, FNR, FPR and 𝑝 can be characterized by:

𝐴𝐶𝐶 = (1 − 𝐹𝑁𝑅)𝑝 + (1 − 𝐹𝑃𝑅) (1 − 𝑝) (5)

Proof. Consider the following statements over accuracy, and

note that they apply overall as well as for for some Group 𝑖 . Thus,

each of these quantities could be subscripted with 𝑖 i.e.𝐴𝐶𝐶 = 𝐴𝐶𝐶𝑖 ,

etc.

𝐴𝐶𝐶 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(6)

𝐹𝑁𝑅 = 1 − 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7)

𝐹𝑃𝑅 = 1 − 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(8)

𝑝 =
𝑇𝑃 + 𝐹𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(9)

1 − 𝑝 =
𝑇𝑁 + 𝐹𝑃

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(10)

Split the numerator for 𝐴𝐶𝐶 , and multiply by a clever 1:

=
𝑇𝑃

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
+ 𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(11)

=
𝑇𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑁
× 𝑇𝑃

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
+ 𝑇𝑁 + 𝐹𝑃

𝑇𝑁 + 𝐹𝑃
× 𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(12)

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 𝑇𝑃 + 𝐹𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
+ 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 𝑇𝑁 + 𝐹𝑃

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(13)

=(1 − 𝐹𝑁𝑅)𝑝 + (1 − 𝐹𝑃𝑅) (1 − 𝑝 ) (14)

□

Lemma D.2 (Expressing Fairness Area Variation). Consider
Corrolary D.1. Assume that 𝑝2 = 𝑝1 + 𝜖𝑝 , ACC2 = ACC1 + 𝜖ACC,
FPR2 = FPR1+𝜖FPR, and FNR2 = FNR1+𝜖FNR, where each 𝜖FPR, 𝜖ACC,
𝜖FNR, 𝜖𝑝 ∈ (−1, 1) term captures the difference between two groups
for 𝐹𝑃𝑅,𝐴𝐶𝐶 , 𝐹𝑁𝑅, 𝑝 respectively. Then the following equality holds:

FNR =
−𝜖FPR + 𝜖ACC + 𝜖FPR 𝑝 − 𝜖FNR 𝑝 + 𝛼𝜖𝑝 + 𝜖FPR 𝜖𝑝 − 𝜖FNR 𝜖𝑝

𝜖𝑃
(15)

Proof. Consider Corollary D.1 in the setting where there are

two groups. Suppose 𝐴𝐶𝐶1 = 𝐴𝐶𝐶2. Then:

(1−𝐹𝑁𝑅1)𝑝1+(1−𝐹𝑃𝑅1) (1−𝑝1) = (1−𝐹𝑁𝑅2)𝑝2+(1−𝐹𝑃𝑅2) (1−𝑝2)
(16)

Make the same substitutions as in Lemma D.2 to find:

(1 − FNR)𝑝 + (1 − FPR) (1 − 𝑝 ) =(1 − (FNR + 𝜖FNR ) (𝑝 + 𝜖𝑝 ) )+
(1 − (FPR + 𝜖FPR ) ) (1 − (𝑝 + 𝜖𝑝 ) )
+ 𝜖ACC

(17)

Solving for FNR yields (15). □
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Table 5: PPV sensitivity analysis

Dataset (Outcome) Overall Preva-
lence (%)

Sensitive
Attribute

Maximum Group
Prevalence
Difference (%)

Optimal
k Range
(PPV = 0.7)

Optimal
k Range
(PPV = 0.85)

EIE (Ukranian) 7.34 Sex 6.4 None None

EIE (Ukranian) 7.34 Territory 4.08 [5,20] [5,20]

EIE (History) 18 Sex 7.72 [5,60] [5,60]

EIE (History) 18 Territory 3.22 All All

EIE (Math) 31.1 Sex 0.34 All All

EIE (Math) 31.1 Territory 11.82 [5,90] [5,90]

EIE (Physics) 8.33 Sex 2.5 All [5,90]

EIE (Physics) 8.33 Territory 5.07 [5,20] [5,20]

EIE (Chemistry) 10.68 Sex 1.37 All All

EIE (Chemistry) 10.68 Territory 6.48 [5,25] [5,25]

EIE (Geography) 5.3 Sex 2.1 All [5,90]

EIE (Geography) 5.3 Territory 1.56 All All

EIE (English) 10.64 Sex 2.21 All All

EIE (English) 10.64 Territory 7.92 [5,20] [5,20]

EIE (German) 11.35 Sex 3.84 [5,90] [5,90]

EIE (German) 11.35 Territory 18.4 None [5,10]

Folktables (Employment) 46.45 Sex 4.44 All All

Folktables (Employment) 46.45 Race 8.29 All All

Folktables (Income) 41.51 Sex 11.37 All All

Folktables (Income) 41.51 Race 19.61 [5,50] [5,55]

Folktables (Public Medical

Coverage)

40.09 Sex 2.78 All All

Folktables (Public Medical

Coverage)

40.09 Race 17.21 [5,60] [5,60]

Folktables (Mobility) 78.17 Sex 1.78 [5,70] All

Folktables (Mobility) 78.17 Race 6.11 [5,60] All

Folktables (Travel Time) 53.78 Sex 4.08 All All

Folktables (Travel Time) 53.78 Race 20.64 [5,55] [5,70]

Loan Assessment 22.17 Education

level

14.85 None None

Loan Assessment 22.17 Sex 3.3 All All

Diabetes Risk Assessment 61.54 Sex 45.28 [5,10] [5,10]

Student Performance 22.03 Sex 2.09 All All

Student Performance 22.03 Address 7.22 All All

Student Performance 22.03 Parent’s

education

level

9.33 [5,55] [5,55]

Table 6: Standard confusion matrix.

Actual

Positive (1) Negative (0)

P
r
e
d
i
c
t
e
d

Positive (1) TP FP

Negative (0) FN TN

Lemma D.3 (Closed-Form for Fairness Area Variation). As-
sume 𝜖𝑝 < 1 − 𝑝 . Allow ±𝛾 to be the symmetric acceptable error (our
“fair” relaxation) between groups formetrics 𝐹𝑃𝑅, 𝐹𝑁𝑅 and𝐴𝐶𝐶 . Con-
sider the size of the space of possible 𝜖FPR, 𝜖FNR, 𝜖ACC assignments,
given 𝜖𝑝 and 𝑝 , that satisfy the constraints from Lemma D.2. We will
denote the size of that space as |𝐴𝑓 | (as a shorthand, we will call that
the “fairness region”, but the reality is more nuanced). For a set of
fairness constraints 𝜖FPR, 𝜖FNR, 𝜖ACC ∈ (−𝛾,𝛾), where |𝛾 | ≤ 1 and

𝛾 ≠ 0, we have that |𝐴𝑓 | is simply:

|𝐴𝑓 | =
4𝛾

𝜖𝑝
− 4𝛾2

𝜖𝑝
2

(18)

Before proving Lemma D.3, let’s briefly motivate the three pri-

mary assumptions: first, we should expect 𝜖𝑝 << 𝑝 , as our relax-

ation constant should not really be on the same order of magnitude

as our per-group prevalence (think 𝑝 ≈ 0.5 and 𝜖𝑝 ≈ 0.05). Thus,

the assumption that 𝜖𝑝 < 1 − 𝑝 is very reasonable.

Second, pre-specifying an acceptable𝛾 relaxation termmay seem

odd, but it is very common among practitioners, who prefer small

groups variations to large ones. Thus, think of 𝛾 as a small value,

something like 𝛾 ≤ 0.05.

Third, assuming that |𝛾 | > 0 is necessary, as when |𝛾 | = 0 we

recover Corollary D.1.We also ignore the case where 𝜖𝑝 = 0 because

the implications of the impossibility theorem do not apply in the

case of equal base rates.
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Figure 7: A sketch of the integral construction.

Proof. We begin with the result from Lemma D.2. Rearranging

terms, we find the following expression for FPR:(
𝜖ACC + 𝜖FPR − 𝑝 (𝜖FPR − 𝜖FNR)

𝜖𝑝
+ 𝜖FNR − 𝜖FPR

)
+ FNR = FPR

(19)

Set 𝑐 = FPR − FNR =

(
𝜖ACC+𝜖FPR−𝑝 (𝜖FPR−𝜖FNR )

𝜖𝑝
+ 𝜖FNR − 𝜖FPR

)
,

which is fixed for prevalence 𝑝 , prevalence difference 𝜖𝑝 , and a set

relaxation factors 𝜖ACC, 𝜖FNR, 𝜖FPR.

It’s clear that the relationship between FPR and FNR is linear,

and controlled by 𝑐 , which can take on many possible values as we

vary the relaxation parameters. We notate the set of values that 𝑐

can take on as 𝐶 = {𝑐1, 𝑐2 ...𝑐𝑚}. 𝐶 is an infinite set.

However, 𝐶 contains maximum and minimum values. From the

linear relationship between FPR and FNR, we have 𝑐𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝐶)
and 𝑐𝑚𝑖𝑛 =𝑚𝑖𝑛(𝐶). 𝑐𝑚𝑎𝑥 and 𝑐𝑚𝑖𝑛 will help us define the bound-

aries of the solution space 𝐴𝑓 . It follows that |𝐴𝑓 |, the size of the
solution space, when |𝑐 | < 1 and FPR, FNR < 1, is:

|𝐴𝑓 | =
∫

1

−𝑐𝑚𝑎𝑥

(𝑐𝑚𝑎𝑥 + FNR) 𝑑FNR

−
(
2

∫
0

−𝑐𝑚𝑎𝑥

(𝑐𝑚𝑎𝑥 + FNR) 𝑑FNR
)

−
(∫

1

−𝑐𝑚𝑖𝑛

(𝑐𝑚𝑖𝑛 + FNR) 𝑑FNR
) (20)

For a sketch of the integral construction, see Figure 7. Using our

construction over 𝜖ACC, 𝜖FPR, 𝜖FNR ∈ (−𝛾,𝛾), we can deduce 𝑐𝑚𝑎𝑥

and 𝑐𝑚𝑖𝑛 .

𝑐 =
𝜖ACC + 𝜖FPR − 𝑝 (𝜖FPR − 𝜖FNR)

𝜖𝑝
+ 𝜖FNR − 𝜖FPR (21)

=
𝜖ACC

𝜖𝑝
+ 𝜖FPR

𝜖𝑝
− 𝑝𝜖FPR

𝜖𝑝
+ 𝑝𝜖FNR

𝜖𝑝
+ 𝜖FNR − 𝜖FPR (22)

=
𝜖ACC

𝜖𝑝
+ 𝜖FPR

𝜖𝑝
− 𝑝𝜖FPR

𝜖𝑝
− 𝜖FPR + 𝑝𝜖FNR

𝜖𝑝
+ 𝜖FNR (23)

=
𝜖ACC

𝜖𝑝
+ 𝜖FPR

(
1 − 𝑝

𝜖𝑝
− 1

)
+ 𝑝𝜖FNR

𝜖𝑝
+ 𝜖FNR (24)

Note our assumption that 𝜖𝑝 < 1 − 𝑝 gives us that

1 − 𝑝

𝜖𝑝
> 1 which yields:

(25)

≤ 𝛾

𝜖𝑝
+ 𝛾

(
1 − 𝑝

𝜖𝑝
− 1

)
+ 𝑝𝛾

𝜖𝑝
+ 𝛾 (26)

=
𝛾 + 𝛾 − 𝛾𝑝 + 𝛾𝑝

𝜖𝑝
=

2𝛾

𝜖𝑝
= 𝑐𝑚𝑎𝑥 (27)

A symmetric argument gives 𝑐𝑚𝑖𝑛 = − 2𝛾
𝜖𝑝
. To find |𝐴𝑓 |, we set

𝑐 =
2𝛾
𝜖𝑝
, and replace into the above integration:

|𝐴𝑓 | =
∫

1

−𝑐
𝑐 + FNR 𝑑FNR

−
(
2

∫
0

−𝑐
𝑐 + FNR 𝑑FNR

)
−
(∫

1

𝑐

FNR − 𝑐 𝑑FNR

)
= 2𝑐 − 𝑐2 =

4𝛾

𝜖𝑝
− 4𝛾2

𝜖𝑝
2
≤ 1

(28)

This yields the result. □

E ANALYTICAL APPROACH TO
CHARACTERIZING THE FAIRNESS REGION
AREA USING FPR, FNR, PPV

See Figure 8.
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Lemma E.1 (Expressing Fairness Area). Consider groups g
1
with prevalence p

1
and g

2
with prevalence p

2
. Without loss of generality,

let us assume that p
2
= p

1
+𝜖p. Next, let us denote a predictor’s performance as FPR1, FPR1 and PPV1 for g1, and FPR1, FPR1 and PPV1 for

g
2
. Let 𝜖FPR, 𝜖FNR and 𝜖𝑣 denote acceptable differences in FPR, FNR and PPV between groups, respectively. That is, |FPR1 − FPR2 | ≤ 𝜖FPR,

|FNR1 − FNR2 | ≤ 𝜖FNR and |PPV1 −PPV2 | ≤ 𝜖𝑣 . Then, the following equality holds (for the sake of space, let FPR = 𝛼, FNR = 𝛽, 𝑎𝑛𝑑PPV =

𝑣):

𝛽 =
𝜖𝑝 (𝑣2 (𝜖FPR (𝑝 − 1) − 1) + 𝑣𝜖𝑣 (𝜖FPR (𝑝 − 1) − 1) + 𝑝𝜖𝑣 + 𝑣) + (𝑝 − 1) (𝜖FPR (𝑝 − 1)𝑣 (𝑣 + 𝜖𝑣 ) + 𝑝𝜖𝑣 ) − 𝜖FNR (𝑝 − 1)𝑣 (𝑝 + 𝜖𝑝 ) (𝑣 + 𝜖𝑣 − 1)

(𝜖𝑝 (𝑝𝜖𝑣 − 𝑣2 − 𝑣𝜖𝑣 + 𝑣) + (𝑝 − 1)𝑝𝜖𝑣 )
(29)

Proof. Consider (1) in the setting where there are two groups. Let the FPR of the two groups be equal, subject to the relaxation

FPR2 = FPR1 + 𝜖FPR. Make substitutions respective to the assumptions made in Lemma 8 to find:

𝑝

1 − 𝑝

1 − 𝑣

𝑣
(1 − 𝛽) =

𝑝 + 𝜖𝑝

1 − (𝑝 + 𝜖𝑝 )
1 − (𝑣 + 𝜖𝑣)

𝑣 + 𝜖𝑣
(1 − (𝛽 + 𝜖FNR)) + 𝜖FPR

(30)

Solving for 𝛽 yields (29). □

Figure 8: Analytical approach to characterizing the fairness region area with FPR, FNR, PPV.

Figure 9: A full planimeter (g=25).

F INFORMAL ANALYSIS OF THE DOT
PLANIMETER

One of the strategies we undertook in estimating the “fairness

region” of 8 borrowed from previous work on “dot-planimetry,”

a two-dimensional area estimation technique that has been con-

sistently reinvented over the past century, and has been studied

extensively in relation to cartographic area estimation and pure

math (see Gauss’s circle problem) [10, 26, 42] (Perhaps sadly, GPS

has contributed to the under-exploration of this subject in recent

years). Here, we offer a brief informal analysis of our dot-planimetry

strategy, and how we chose values based on approximated upper

bounds on our over-estimation error for the area of the fairness

region when considering FNR, FPR and PPV.

Dot-planimetry provides a simple way of estimating the area of

complex enclosed shapes in a two dimensional space (which can

be difficult to integrate directly). Intuitively, we create a regular

grid over the space composed of points. We refer to each point as a

“detector,” who is responsible for a pre-specified radius 𝑟𝜖 in the 2-

dimensional space of interest. We say that a “detector” 𝑖 is “satisfied”

if the edge of the shape of interest is anywhere within 𝑟𝜖 distance

away from 𝑖 . To compute the final area of the shape, we simply

sum up the total number of satisfied detectors multiplied by each of

their individual areas (i.e. the area of a bunch of circles defined by

𝑟𝜖 ). In our case, we are interested in a very particular space: a 1 × 1

square with the bottom left corner at the origin (this is how we can

visualize two metrics varying based on our relaxations). Our dot

planimeter in this case has 𝑔2 total detectors. They are distributed

so that they are 𝜖 = 1

𝑔−1 apart, and so that the bottom row and

leftmost column each touch the 𝑥 and 𝑦 axis respectively, while the

rightmost and top rows each have 𝑥 and 𝑦 values of 1 respectively.

Thus, each detector has a radius of 𝑟𝜖 = 1

2
𝜖 . Refer to Figure 9 for a

sketch of this setup, and as we walk through the problem.

For our analysis, we will call two detectors 𝑖 and 𝑗 “neighboring”

if 𝑖𝑦 = 𝑗𝑦 and |𝑖𝑥 − 𝑗𝑥 | = 𝜖 i.e. the values of their 𝑦-axis are

equal and they are next to each other. Note that, for any of the

following arguments, symmetric variations apply were we to switch

the definition of “neighboring” to 𝑖𝑥 = 𝑗𝑥 . Neighboring detectors

are shown in Figure 10.

We will also define our “detector function” to be:

𝑓 (𝑖𝑥𝑦, ℎ(𝑥)) =
{
1, |𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 (𝑖𝑥𝑦) → ℎ(𝑥) | ≤ 𝑟𝜖

0, otherwise

Intuitively, our detector function 𝑓 (𝑖𝑥𝑦, ℎ(𝑥)) takes a detector 𝑖𝑥𝑦
and a boundary function of interest ℎ(𝑥) and returns 1 (or true) if,

for any 𝑥 , ℎ(𝑥) passes within 𝑟𝜖 of 𝑖𝑥𝑦 .

Our overall argument for a coarse upper bound on the over-

estimation error when using a dot-planimeter is intuitive: we will

reason about which function through our [0, 1]×[0, 1] metric region

would lead to the highest number of detectors satisfied. We will

then assume that this is the boundary function for our area (i.e.

this function partitions our space, and is dense on one side). Our

estimation error is then the proportion of total detectors satisfied by

the boundary function, assuming that they all makeminimal contact

with the detector radius. Again, this is a very coarse approach,
andwemight assume the actual overestimation error ismuch
lower. Due to the computational nature of the problem, this can

provide us some measure of confidence in selecting a value for for

𝑔 that gives reasonable error (like < 5%).

Critical points all satisfying of neighboring detectors. Consider
two sets of side by side (or “neighboring”) detectors, 𝑖1, 𝑗1 and

𝑖2, 𝑗2 (one can refer to Figure 10). By the definition of a function,
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Figure 10: A set of two sets of side by side detectors, 𝑖1, 𝑗1 and
𝑖2, 𝑗2. Note that a critical point is necessary for ℎ(𝑥) (in

orange) to satisfy all 4.

𝑓 (𝑖1, ℎ(𝑥)) + 𝑓 (𝑖2, ℎ(𝑥)) + 𝑓 ( 𝑗1, ℎ(𝑥)) + 𝑓 ( 𝑗2, ℎ(𝑥)) ≤ 3 unless 𝑔(𝑥)
has a critical point in the window 𝑖𝑥 ≤ 𝑥 ≤ 𝑗𝑥 .

Extending the argument to columns. Consider two columns of

neighboring detectors, which can represented by sets {𝑖1, 𝑖2, ..., 𝑖𝑚} ∈
𝐼 and { 𝑗1, 𝑗2, ..., 𝑗𝑚} ∈ 𝐽 . Note that detectors in 𝐼 share the same 𝑥

value, as for 𝐽 .

What is the maximum number of detectors satisfied by ℎ(𝑥)
between sets 𝑥? If we assume |𝐼 |, |𝐽 | = 𝑔 ≥ 3, then by our argument

that critical points all satisfy neighboring detectors, if ℎ(𝑥) has 0
critical points lie between 𝐼𝑥 and 𝐽𝑥 , then the answer is at most

𝑔 + 1 (this can be seen through a geometric argument). However,

we allow for any critical points, than the answer is 2𝑔 (or, the size

of the entire union between the sets).

These arguments suggest that the determining factor in satis-

fying the highest number of detectors in a space is the number of

critical points allowed for the function ℎ(𝑥). These two column

arguments can be extended to cover all detectors in the space, and

provides a coarse upper bound on the over-estimation error.

Coarse upper bound on error of (𝜖)-dot-planimeter under assump-
tions of fairness region. Assume that ℎ(𝑥) is the boundary function

for our area ∈ [0, 1] × [0, 1] and has at most 𝑏 critical points. Then,

a coarse upper bound on the max detectors satisfied by ℎ(𝑥) is 𝑔 ∗ 𝑐 .
This yields the simple percent error calculator: 𝑐𝑔 (as there are 𝑔2

total detectors in our dot-planimeter).

Thus, for a 5% upper bound on error, assuming no more than

6 critical points for boundary function ℎ(𝑥) for 𝑥 ∈ (0, 1), we
have

6

0.05 = 𝑔 = 120. Thus, with a granularity of 120
2 = 14400

detector in our dot-planimeter, we have high confidence that the

over-estimation error is no higher than 5%, so long as some assump-

tions we made about ℎ(𝑥) hold (experimentally, we found this to

be the case).

Figure 11: A set of two detector columns, 𝐼 and 𝐽 .

G ADDITIONAL PROOFS
Proposition G.1 (Intersectional Prevelance Differences).

Given a dataset that is subdivided into two groups, let 0 < 𝑝1 < 𝑛1

and 0 < 𝑝2 < 𝑛2, where 𝑝𝑖 is the number of positive class members
of group 𝑖 , and 𝑛𝑖 is the total number of members in group 𝑖 . Suppose
𝑝1
𝑛1

≤ 𝑝2
𝑛2

.
The following holds:

𝑝1

𝑛1
≤ 𝑝1 + 𝑝2

𝑛1 + 𝑛2
≤ 𝑝2

𝑛2
(31)

Proof. We know that 0 < 𝑝1, 𝑛1, 𝑝2, 𝑛2. Note that the assump-

tion
𝑝1
𝑛1

≤ 𝑝2
𝑛2

implies 𝑛2 ≤ 𝑛1𝑝2
𝑝1

.

Consider the left hand side of the equality proposed in the theo-

rem statement:

𝑝1

𝑛1
≤ 𝑝1 + 𝑝2

𝑛1 + 𝑛2
(32)

𝑝1 (𝑛1 + 𝑛2) ≤ 𝑛1 (𝑝1 + 𝑝2) (33)

𝑝1𝑛2 ≤ 𝑛1𝑝2 (34)

𝑛2 ≤ 𝑛1𝑝2

𝑝1
(35)

We have now derived an inequality specific to 𝑛2. We can verify

that exceeding this value invalidates the claim by plugging in 𝑛2 =

( 𝑛1𝑝2
𝑝1

+ 𝑎), where 𝑎 > 0 to find a contradiction:

𝑝1 (𝑛1 +
𝑛1𝑝2

𝑝1
+ 𝑎) ≤ 𝑛1 (𝑝1 + 𝑝2) (36)

𝑝1𝑛1 + 𝑛1𝑝2 + 𝑎𝑝1 ≤ 𝑝1𝑛1 + 𝑛1𝑝2 (37)

𝑎𝑝1 ≤ 0 (38)

which contradicts 𝑎 > 0. An analogous argument exists for the

right hand side of the equation. Thus, so long as 𝑛2 ≤ 𝑛1𝑝2
𝑝1

, the

main inequality holds.

□

Proposition G.2 (Reducing k increases PPV). Given a well-
calibrated classifier being used under a resource constraint k, reducing
the size of k will monotonically increase the PPV of the classifier.

Proof. Consider the top k outputs of a well-calibrated classifier.

Since the classifier is calibrated, the list k is ordered in the following

way: those elements closest to the first position have a higher

probability of a positive outcome, and those elements closest to

position k have a lower probability of a positive outcome. In other

words, 𝑝1 ≥ 𝑝2 ≥, . . . , ≥ 𝑝𝑘 , where 𝑝𝑖 is the probability that element

𝑖 is a member of the positive class. The PPV of the classifier, in

expectation, can then be expressed in the following way:

1

𝑘

𝑘∑︁
𝑖=1

𝑝𝑖 =
𝑝1 + 𝑝2 + ... + 𝑝𝑘

𝑘
. (39)

Notice that Equation 39 is simply the average of 𝑝𝑖 over the k

elements. Consider another set of size 𝑘′ < 𝑘 , that is constructed

by removing the elements 𝑝𝑘 ′+1, ...𝑝𝑘 . Since by construction all the

elements in the new set are greater than or equal to to the elements

of the previous set, the average of 𝑝𝑖 in the new set will be greater

than or equal — or in other words, the PPV will be greater than or

equal. □
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