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Abstract: Localizing pipe leaks is a significant challenge for water utilities worldwide. Pipe leaks in water distribution systems (WDSs) can
cause the loss of a large amount of treated water, leading to pressure loss, increased energy costs, and contamination risks. What makes
localizing pipe leaks challenging is the underground location of the water pipes and the similarity in impact on hydraulic properties
(e.g., pressure, flow) due to leaks as compared to the effects of WDS operational changes. Physical methods to locate leaks are expensive,
intrusive, and heavily localized. Computational approaches such as data-driven machine learning models provide an economical alternative to
physical methods. Machine learning models are readily available and easily customizable to most problems; therefore, there is an increasing
trend in their application for leak localization in WDSs. While several studies have applied machine learning models to localize leaks in single
pipes and small test networks, these studies have yet to thoroughly test these models against the different complexities of leak localization
problems, and hence their applicability to real-world WDSs is still unclear. The simplicity of the WDSs, the oversimplification of leak
characteristics, and the lack of consideration of modeling and measuring device uncertainties adopted in most of these studies make
the scalability of their proposed approaches questionable to real-world WDSs. Our study addresses this issue by devising four study cases
of different complexity that account for realistic leak characteristics and model- and measuring device-related uncertainties. Two established
machine learning models—multilayer perceptron (MLP) and convolutional neural network (CNN)—are trained and tested for their ability to
localize the leaks and predict their sizes for each of the four study cases using different simulated hydraulic inputs. In addition, the potential
benefit of combining different types of hydraulic data as inputs to the machine learning models in localizing leaks is also explored. Pressure
and flow, two common hydraulic measurements, are used as inputs to the machine learning models. Further, the impact of single and multiple
time point input in leak localization is also investigated. The results for the L-Town network indicate good accuracies for both the models for
all study cases, with CNN consistently outperforming MLP. DOI: 10.1061/ JWRMD5.WRENG-6047. © 2023 American Society of Civil
Engineers.

Introduction property damage, and traffic disruptions. Therefore, timely locali-
zation and prevention of pipe leaks are paramount. However, pipe
leaks are challenging to locate because their impact on hydraulic
properties such as flow and pressure are not easily discernible (Yu
et al. 2021) and can be similar to the effects of WDS operational
changes. In addition, the pipes being underground makes it even
harder to locate leaks. Field methods to locate leaks are expensive
and can cause interruption to water service (Rajeswaran et al.

2018). Computational approaches provide an economical alterna-

Localizing pipe leaks is a significant challenge for water utilities
worldwide. An estimated 126 billion cubic meters of water is lost
worldwide through water distribution systems (WDSs) due to pipe
leaks and breaks yearly (Liemberger and Wyatt 2019), which
causes billions of dollars in revenue loss. Further, it jeopardizes
the growing imbalance between water supply and demand, espe-
cially in the face of water scarcity and climate change. Pipe leaks

can also pose risks of water contamination (Fontanazza et al. 2015),
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tive to field methods [an extensive review of the computational
approaches for leak characterization is provided by Hu et al. (2021)].
Machine learning approaches are one of the data-driven computa-
tional approaches that have gathered increasing interest in the last
two decades in leak characterization studies (Zaman et al. 2020).
Data related to the hydraulic properties of WDSs, such as pressure,
flow, acoustics, optics, or temperature, can be used to localize
leaks. Pressure and flow are the most common measurements used
with machine learning approaches for leak localization (Abdulla
and Herzallah 2015).

While many research studies on applying machine learning
approaches for leak characterization (i.e., detection and localization)
in pipes have been conducted (Wu and Liu 2017), their applicabi-
lity and effectiveness toward the different complexities of leak
characterization problems are yet to be fully tested. This lack of
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thorough testing makes the applicability of these approaches to
real-world WDSs unclear. One of the complexities of leak charac-
terization problems involves the size of the WDS, which dictates
the scalability of the applied models to real-world WDSs. Zhou
et al. (2019a) and Shukla and Piratla (2020) used convolutional
neural network (CNN) models for leak detection in a single pipe
using simulated negative pressure wave and scalogram images of
vibration signals as inputs, respectively. Pérez-Pérez et al. (2021)
used a multilayer perceptron (MLP) model with a cascade-forward
back-propagation to detect leaks in a single pipe using simulated
pressure data. However, analyzing leaks by isolating individual
pipes in complex interconnected WDSs is not viable in the field
because it is difficult to isolate specific pipes. Further, the tools
and resources required to collect some of these input data for
individual pipes in large real-world WDSs are infeasible. Beyond
single-pipe analyses, several studies have considered complete or
partial hydraulic systems. Bohorquez et al. (2020) used an MLP
to predict leaks in a simple hydraulic system using numerically
obtained fluid transient waves as input. Mashford et al. (2012)
used a support vector machine to predict leak size and location
for an isolated section of a WDS based on simulated pressure
data. Soldevila et al. (2016) used a model-based k-nearest neigh-
bors (k-NN) classifier to identify leak events and locations. Lucin
et al. (2021) used a random forest model to locate leaks in two
small-sized networks. These studies still face the challenge of
scalability because extrapolating their results and, therefore,
application to larger WDS networks typical of real-world systems
is very challenging.

Another key complexity of the leak localization problem is
associated with the characteristics of pipe leaks. In real-world WDSs,
multiple leaks of varying sizes can occur simultaneously at differ-
ent locations within the WDS, making leak localization very chal-
lenging. Furthermore, the uncertainties associated with hydraulic
simulation models and the imprecision of measurement devices
in real-world WDSs add more complexity to the leak localization
problem. For example, the parameters such as demands, pipe
roughness, pipe diameters, and lengths used in the hydraulic mod-
els have associated uncertainties (Blesa and Pérez 2018). These un-
certainties affect the accuracy of the simulated pressure and flow
data. Zhou et al. (2019b) account for the hydraulic model parameter
uncertainties by adding noise to these parameters prior to simula-
tion. However, their approach does not account for the uncertainties
related to the imprecision of measurement devices such as pressure
sensors and flow meters of the real-world WDSs. If some knowl-
edge about the anticipated uncertainties is available, we can train
machine learning approaches using simulated data corrupted with
noise that takes into account these uncertainties, as shown by
Soldevila et al. (2017), Mohammed et al. (2021), and Santos-Ruiz
et al. (2020). While these studies have successfully identified the
different forms of the leak localization problem complexities, they
failed to analyze them comprehensively. These complexities are
not mutually exclusive and are highly likely to manifest together
at once. Therefore, any selective analyses that assume the presence
of one complexity and the absence of another is inadequate.
Soldevila et al. (2017) and Santos-Ruiz et al. (2020) are limited
to the analysis of single leaks only; they fail to provide any under-
standing of how their approach would perform for multiple leaks.
Mohammed et al. (2021) considers single leak only for cases with
uncertainties and implicitly assumes the absence of any form of
uncertainties for multiple leak scenarios. Furthermore, all of these
studies use a small-sized network in their analysis, therefore, suffer
from scalability, as aforementioned.

Leak characterization studies that rely on a hydraulic model
use conventional optimization approaches (i.e., genetic algorithms,
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quadratic programming, linear programming, etc.) that seek to
minimize the differences between measured and simulated pressures
or flows (e.g., Berglund et al. 2017; Ponce et al. 2014; Steffelbauer
and Fuchs-Hanusch 2016; Wu et al. 2010). However, this is an in-
verse problem and can suffer from ill-posedness under noisy con-
ditions if the leak signature is weak or non-existent at one or more
sensors. In contrast, machine learning models are trained to min-
imize the difference between actual and predicted leak values and
can learn to disregard false pressure and flow responses that do not
correlate with leaks. This ability to learn under noisy conditions is a
significant advantage of machine learning methods over conven-
tional approaches. When it comes to the choice of machine learning
models, depending on their architecture, way of handling different
inputs, and ability to learn spatial and temporal patterns, different
machine learning models may perform differently for the same
level of complexities of leak localization problems. A comparison
of the performance of machine learning models that vary in archi-
tecture, input handling, and learning ability for the different prob-
lem complexities can provide clarity.

Different hydraulic measurements can provide different infor-
mation regarding leaks; therefore, there is a possibility to improve
leak localization performance if multiple hydraulic data are used.
However, to the authors’ knowledge, studies concerning machine
learning approaches have yet to explore this possibility. A quick
way to test this possibility is by analyzing the leak localization per-
formance of machine learning models trained with a single input to
the models trained with two simultaneous inputs. For example,
pressure and flow can be used as two inputs because they have been
used widely in leak localization studies. Mohammed et al. (2021)
used pressure and flow inputs in their statistical approach for leak
localization. However, their study did not analyze the impact of
additional flow data on the accuracies obtained using pressured
data only. Finally, for time series inputs such as pressure and
flow, the number of time points can also impact the performance
of machine learning models in localizing leaks. Therefore, inves-
tigation of leak localization performances for single and multiple
time point data is also necessary.

This study proposes a machine learning—based approach to
evaluate the impact of the different complexities of leak localization
problems on the applicability and effectiveness of the prediction
models. This approach compares two different readily available
and widely used neural network—based models, examines the ben-
efit of combining different types of hydraulic data (i.e., pressure
and flow), considers multiple realistic leak scenarios, and accounts
for hydraulic model uncertainties and instrument imprecision. The
key contributions of this study with respect to previous studies
include the following:

1. Comprehensively analyzing the various complexities of leak
localization problem by:

* Overcoming the unrealistic simplification; that is, the occur-
rence of a single leak at a time assumed in most state-of-the-
art techniques (Soldevila et al. 2017) by generalizing it to
multileak problems.

* Considering leaks of varying sizes to represent more realistic
leak scenarios.

e Accounting for the realistic nature of leak locations by con-
sidering the possibility of random leak locations anywhere
within a WDS.

e Consideration of the most common and impactful hydraulic
model uncertainty; that is, demand uncertainty, as well as
measuring instrument imprecision through the addition of
noise to the input data.

2. Analysis of the interplay of the complexities of the leak loca-
lization problem with the different machine learning models.
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3. Research on the implication of simultaneous use of multiple
hydraulic data and the impact of additional time points on leak
localization.

4. Simultaneous prediction of location as well as the size of the
leaks. Leak size information can be beneficial for decision-
making on repairs and replacement, especially when consider-
ing budgeting and resource constraints.

Even though the data used to train the machine learning models
are simulated data, they are applicable to localize leaks using real-
world measurements as long as the hydraulic model reasonably
represents the actual WDS. However, if the existing hydraulic
model is calibrated with background leaks, any approach based
on the simulated hydraulic data can only be used to locate new
leaks. On the other hand, for WDSs that have abundant real-world
pressure and flow sensor measurements, these models can easily be
fine-tuned and tested using real data.

Methods

General Framework

Fig. 1 illustrates the general framework proposed in this study to
localize leaks in WDS pipes. The framework starts with a WDS
hydraulic model that generates simulated pressure and flow data.
First, pressure and flow data are generated for a leak-free scenario
by simulating the hydraulic model using the EPANET simulator
(Eliades et al. 2016). It is then followed by generating pressure
and flow data for multiple different leak scenarios. Pressure and
flow differences between the leak and leak-free scenarios are
then computed and stored as pressure and flow data, respectively.

Multiple Inputs

E 3Ng Pressure
Difference
Study Network (L-Town)

Hydraulic Flow
Simulator Difference

Leak
Values

Leak Scenario

Train-Test
Split Training

The corresponding leak scenarios are stored as a leak values data
set. Next, noise is added to the pressure and flow data sets as re-
quired by the case under study described in the “Study Cases” sec-
tion. The data sets are then randomly shuffled and split into training
and testing sets. The training data sets consist of the pressure and
flow data (covariates) and the leak values (response). These data are
scaled and fed to the machine learning models for training and tun-
ing, and the optimized models are selected for localizing the leaks.
As a final step, the leak prediction (location and size of the leaks)
and model evaluation are performed on the test data sets using the
optimized models; predicted model outputs are compared with the
corresponding true leak values.

Machine Learning Models

Multilayer Perceptron

MLP models are supervised-learning models based on deep neural
networks. MLP models consist of an input layer, an output layer,
and a selected number of dense hidden layers between the input and
the output layers (Fig. 2). Each unit of a hidden layer consists of an
activation subunit that activates or deactivates the received signals
(Fig. 3). Multiple activation functions are available to be used
within these activation subunits.

One-Dimensional Convolutional Neural Network

Like MLP models, CNN models are supervised learning—based
deep neural networks. The key difference between CNN and
MLP models is the presence of convolutional and pooling layers
in CNN models. As shown in Fig. 4, the convolutional layers pro-
duce convolved feature maps, which allow for contextual learning,
and the pooling layers downsample these maps to extract abstract

Leak Location

A

Trained
Model

ML Model

Performance
Evaluation

Fig. 1. General framework for detecting leaks in WDS.
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Fig. 2. Multilayer perceptron.
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Fig. 4. Convolutional neural network.

features from the data. The convolutional layers use kernels or
filters to extract the features. A one-dimensional (1D) CNN model
uses filters that only vary in depth (i.e., one dimension). Like MLP
models, 1D CNN models also consist of an input layer, an output
layer, dense hidden layers, and activation layers.

Multiple Input Models

Deep neural network—type machine learning models are generally
built using a sequential architecture where one hidden layer is built
on top of another (i.e., linear). Sequential-type architectures limit
the data flow into the models and restrict these models to only a
single input. However, some machine learning model packages
provide additional nonlinear-type architectures. For example, the
Keras package of TensorFlow (Abadi et al. 2016) in Python used
in this study provides a different functional-type architecture where
multiple sets of hidden layers can be built independently and com-
bined later, as required. This flexibility of functional-type architec-
ture means multiple types of inputs can be used simultaneously to
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train machine learning models. Fig. 5 shows the architecture of the
CNN and MLP models developed for this study; the models use
pressure and flow as two simultaneous inputs. The two inputs train
the models independently before being combined into a single
training construct. This model construct is particularly advanta-
geous for fully connected models such as the MLP, where one
perceptron can affect the learning of all other perceptrons and in
cases where one input may be uninformative or noisy compared
to the other. In the latter case, as the uninformative/noisy data goes
through a set of layers, the uninformative data fails to activate the
perceptrons and dies out; thus, preventing any carryover that might
adulterate the other informative input data.

Hyperparameters and Model Tuning

Total Number of Iterations (Epochs)
MLP and CNN models are trained for several iterations (epochs) to
ensure stability in the training process. The optimal model and its
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Fig. 5. Modified architecture for input data consisting of multiple types: (a) CNN; and (b) MLP.

corresponding weights are determined by monitoring the training
and validation errors over the entire number of epochs.

Loss Function

The functions to calculate the training and validation errors are
chosen based on the nature of the problem. In this study, leak
localization is formulated as a regression-type problem to solve
simultaneously for both leak locations and sizes. Therefore, the
mean square error (MSE) function is used; mean absolute error
(MAE) can be used as an alternative to MSE. The MSE loss
function minimized during training to determine the optimal
model is

S 33
MSE =)~ " (xF - x4)? (1)
j=1 i=1

where X 5- is the model predicted leak size for ith candidate leak
region of jth leak scenario, and Xj-‘j is the actual leak size for ith
candidate leak region of jth leak scenario.
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Activation Function

A trial-and-error evaluation of multiple activation functions iden-
tified the leaky rectified linear unit (L-ReL.U) (Maas and Ng 2013)
as a suitable activation function for this study. L-ReLU prevents the
problem of vanishing gradients during forward propagation like the
regular rectified linear unit (ReLU) and has the added advantage of
preventing vanishing gradients during backward propagation
(Goodfellow et al. 2016).

Optimizer
The Adam algorithm (Kingma and Ba 2014) is used as the optimizer
in this study.

Study Network

In this study, the leak localization models are applied to a standard
test network called the L-Town water network (Fig. 6). The L-Town
network is a city-scale model based on a coastal city in Cyprus.
This network has been previously used in several modeling and
simulation-related researches. For example, this network was also
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Fig. 6. L-Town water network.

used in the leakage detection and isolation methods (BattLeDIM
2020; Vrachimis et al. 2020) competition to evaluate the perfor-
mances of different machine learning and computational models
for leak detection. The L-Town network consists of 905 pipes
and 782 junctions and is primarily a tank-regulated model network.

Candidate Leak Regions

Localizing leaks to the pipe- or junction-level requires a large
amount of data, which is infeasible to obtain from real-world
WDSs. Therefore, a lesser resolution needs to be adopted for leak
localization. This study divided the entire L-Town water network
into several subareas considered candidate leak regions. The L-Town
network is divided into 33 candidate leak regions [Fig. 7(a)] using a

k-means clustering technique (Lloyd 1982) based on Euclidean dis-
tances. A hydraulic distance-based clustering, applied by Zhang
et al. (2016), is not used in this study because it resulted in
noncontiguous ununiformly sized clusters. For practitioners, such
noncontiguous and ununiform clusters are impractical to be used in
the field. Further, the clusters obtained using Euclidean distance-
based measures are hydraulically less homogeneous and pose a
more significant challenge for the leak localization models. There-
fore, the Euclidean distance-based clustering used here is a more
conservative approach.

In this study, leaks are modeled as emitters using EPANET and
are assumed to occur at the center of the pipes. Because EPANET
supports emitters only on nodes, new junction nodes are inserted in
the middle of the leaky pipe in the network using the Morph

@ pressure sensors (33)
A flow meters (10)

(@)

(b)

Fig. 7. Candidate leak regions: (a) 33 leak regions; and (b) pressure (circle) and flow (triangle) sensors.
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package in WNTR (Klise et al. 2017). Candidate leak nodes rep-
resenting each leak region are assumed to be at the centroid of each
leak region. Centroids of leak regions are estimated using the k-NN
search algorithm. For any given leak scenario, this region defines a
leak located anywhere within the boundaries of a candidate leak
region.

A pressure node is assigned to each of the 33 candidate regions
to track the pressure changes due to a leak in that region. These
pressure nodes represent pressure sensors in real-world WDSs.
The locations of the pressure nodes are based on the locations used
in BattLeDIM 2020 and are shown in Fig. 7(b). Only 10 flow
meters are assumed to be located in the WDS. Fig. 7(b) shows
the location of these flow meter nodes.

Study Cases

Four study cases are considered to represent the complexities
associated with real leak characteristics and the uncertainties in
input data due to water network model inaccuracies and measuring
device imprecision.

Case A: No-Noise

Input pressure and flow difference data are free of noise. The
no-noise case represents the ideal but unrealistic case with accurate
WDS models and precise measuring devices. Leaks are assumed to
occur at the centroid of each leak region.

Case B: Demand-Noise

Input data accounts for the WDS model inaccuracies. Random
Gaussian noise is added to the demands prior to simulation to
mimic the inaccuracies in demand values in the WDS model. While
exponential-type noise can better capture the pulsed nature of de-
mand, the Gaussian-type noise was found to affect the model per-
formance more. Simulated pressure and flow data are then generated
using the modified WDS model. A 10% Gaussian noise is added to
the demand parameters. Leaks are assumed to occur at the centroid
of each leak region.

Case C: Mixed-Noise

Input data accounts for the WDS model inaccuracies and the meas-
uring device imprecision. Leaks are assumed to occur at the cent-
roid of each leak region. Noise is added to the pressure and flow
differences between the leak and leak-free scenarios after the
hydraulic simulations. A 10% Gaussian noise is added to the pres-
sure and flow differences. An analysis of the coverage of error
residuals due to a 10% Gaussian noise indicated that it accounts
for error residuals due to a combination of demand parameter un-
certainty (10%), pipe roughness coefficient uncertainty (£1), and
node elevation uncertainty (£0.15 m) in addition to any anticipated
measurement errors. Moser et al. (2018) analyzed these three model
parameter uncertainties individually.

Case D: Random Leaks

Unlike the previous three cases, the leaks are not fixed at the cent-
roid of the leak regions. Instead, the leaks can be located anywhere
within the boundaries of the candidate leak regions. Two or more
leaks located anywhere within the same leak region are labeled
identically. No additional noise is imposed on the hydraulic inputs
(flow and pressure).

Data Generation

The input data sets used in this study constitute the leak scenario and
the pressure difference data sets, which are generated sequentially in
the following order.
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Leak Scenario Generation
The following four assumptions are considered for the generation
of realistic leak scenarios in this study:
e A leak scenario must consist of at least 1 leak.
e A leak scenario can include a maximum of 3 leaks.
* A leak can be located in any of the 33 candidate leak regions.
e The leak size ranges from 0 to 5 as compared to the O to 3 range
used in BattLeDIM 2020.
The leak size is the discharge/emitter coefficient in the leak

q=Cp’ (2)

where ¢ is the flow rate, p is the pressure, C is the discharge/emitter
coefficient, and YT (= 0.5) is the pressure exponent.

Applying these assumptions, leak scenarios are generated using
the following general procedure:

Step 1. For a leak scenario, the total number of leaks is deter-
mined by randomly drawing a number n from the set {1, 2, 3}.

Step 2. Based on the outcome 7 of the previous draw, n candi-
date leak regions are drawn randomly out of the 33 candidate leak
regions.

Step 3. For each of the n candidate leak regions, the leak size is
randomly drawn from the O to 5 range.

Step 4. Store these leak sizes in a vector (size =33 x 1) at
locations corresponding to their candidate leak region number.
For example, the leak size for candidate region 1 is stored at vector
position (1, 1). Candidate regions with no leak are assigned a value
equal to zero.

Step 5. Repeat steps 1-4 for 100,000 times to generate 100,000
leak scenarios.

Step 6. Store the resulting 100,000 leak scenarios as a leak
scenario data set (a matrix of size = 100,000 x 33).

Pressure and Flow Data Generation
Simulated pressure data are generated by the following procedure:

Step 1. Simulate a leak-free scenario for the specified study case
by running the base model with the EPANET simulator. Then, store
the resulting pressure and flow at the 33 pressure nodes and the 10
flow sensor nodes, respectively.

Step 2. Pick a leak scenario from the leak scenario data set and
add the associated leaks to the base model. Then, run this modified
model with the EPANET simulator and store the resulting pressure
and flow at the 33 pressure nodes and the 10 flow sensor nodes,
respectively.

Step 3. Repeat Step 3 for all the 100,000 leak scenarios in the
leak scenario data set.

Step 4. Compute the pressure and flow differences between
the leak scenarios (100,000 scenarios) and the leak-free scenario
to generate the pressure difference data set (matrix of size =
100,000 x 33) and the flow difference data set (matrix of size =
100,000 x 10), respectively.

Step 5. Add noise to the pressure and flow data sets if needed for
the study case.

Model Validation and Testing

Train-Test Split

The pressure, flow, and leak data sets are divided into training
and test data. A training—test ratio of 80:20 is used to split the data.
The two models are validated using the test data sets.

Metrics and Thresholds
The performance of the two machine learning models in localizing
the leaks is evaluated using the two standard classification metrics:
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Table 1. Machine learning model details

Model Architecture Hidden layers Convolution layers Activation functions Learning rate Optimizer
CNN—single input 33-256-128-500-100-33 2 2 L-ReLU 0.05 Adam
CNN—two inputs Fig. 4(a) 2 4 L-ReLU 0.05 Adam
MLP—single input 33-64-128-33 2 — L-ReLU 0.05 Adam
MLP—two inputs Fig. 4(b) 3 — L-ReLU 0.05 Adam

precision and recall. In addition, their harmonic mean referred to as
the Fl-score is also calculated

TP
Precision(P) = ——=x 1
recision(P) TP L FP> 00 (3)
TP
Recall(R) = ———x 1 4
ecall(R) TP+FNX 00 (4)
2xP xR
F1 —score(F1) = SxrxR (5)
P+R

where TP is the true positives; F'P is the false positives; and FN is
the false negatives.

In the context of this study, precision is the percentage of actual
leaks predicted correctly out of all leak predictions of the models.
Recall is the percentage of actual leaks out of all the leaks in the
data set predicted correctly by our models.

In this study, the problem of leak localization is formulated as a
regression-type problem to solve simultaneously for both leak
locations and sizes. Postprocessing of model outputs is required to
calculate precision and recall. This postprocessing involves using
thresholds to determine correct/incorrect location and size classifi-
cations. A set of nine thresholds ranging from 0.1 to 0.9, increasing
incrementally by 0.1, are used. The thresholds are in the same unit
as leak sizes and represent the precision of the measuring devices
for real-world systems. For example, a threshold of 0.1 means that
the leaks smaller than 0.1 in the data set are considered no-leaks,
and only the predictions within 0.1 units of the actual leak values
are considered correct classifications. A model prediction is
assumed to be correct in both location and size if the position
of the predicted leak size (within the 33 x 1 vector) is correct
and the absolute difference between the predicted and the actual
value is within the threshold.

Software and Tools

The following software and tools were used in this study:

e EPANET Simulator 2.0 version—Hydraulic simulations are
performed using EPANET simulator.

e WNTR Morph package—For splitting the network to add
junction nodes at the middle of each pipe.

e Matlab 2019b version—Input data generation is done by
running the EPANET simulator in Matlab. Matlab is also used
to generate candidate leak regions and nodes.

e Python version 3.7—Model training, testing, and validation is
done in Python.

e Tensorflow version 2.1.6—Machine learning models are built
using the Tensorflow package.

Results and Discussions

The leak prediction performances of the MLP and CNN models are
evaluated for the four study cases. The two models are compared by
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calculating precision and recall accuracies for the test data set. In
addition, with both models, the potential benefit of using multiple
hydraulic properties as simultaneous inputs is investigated by com-
paring the model accuracies for a single input (pressure data) to two
simultaneous inputs (pressure and flow data). Table 1 summarizes
the architecture and hyperparameters for the optimal MLP and
CNN models for the single and multiple input cases. Fig. 5 shows
the architecture of the optimal multiple-input CNN and MLP mod-
els. All models use L-ReLU as the activation function and the
Adam algorithm as the optimizer. This is because our preliminary
experimentation indicated that the combination of L-ReLLU and
Adam optimizer performed better than other activation functions
(e.g., sigmoid and ReLU) and optimizers (e.g., RMSprop, SGD)
and their various combinations. Fig. 8 shows the trend of the train-
ing and validation MSEs for the no-noise case for the two models.
The validation errors show a general decreasing trend that stops
after the 100th epoch, indicative of model overfitting beyond
100 epochs. The same is true for the validation errors for the other
three study cases. Therefore, the required number of iterations for
all model training was set to 100 epochs.

Problem Complexity due to Real-World Leak
Characteristics

The precision and recall for the four study cases (with both CNN
and MLP) were compared to understand the complexity of the leak
localization task due to real-world leak characteristics. The com-
plete model performances for the MLP and CNN models for the
four study cases (no-noise, demand-noise, mixed-noise, and ran-
dom leaks) are summarized in Tables 2 and 3. The no-noise study
case represents the ideal but unrealistic condition where the input
data is noiseless and perfect. Both precision and recall at all thresh-
olds for the no-noise case rank highest compared to the other three
study cases for both MLP and CNN models. Precision and recall
are comparatively high (>40%) even at the most stringent threshold
(0.1) for the no-noise case. These high accuracies can be attributed
to the fact that the leak signatures in the input pressure difference
data that are key to locating leaks are unaffected in the absence of
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Fig. 8. Training and validation error dynamics.
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Table 2. MLP model performance for the four study cases

No-noise Demand-noise Mixed-noise Random leaks

Threshold P R F1 P R F1 P R F1 P R F1

0.1 50.8 43.6 46.9 31.9 35.1 334 16.3 23.6 19.3 35 8.2 4.9
0.2 82.2 70.1 75.7 69.5 59.8 64.3 44.1 42.0 43.0 11.7 16.1 13.6
0.3 91.1 82.8 86.8 83.8 73.8 78.5 62.9 55.2 58.8 21.3 23.7 22.4
04 94.8 89.6 92.1 89.9 82.4 86.0 73.4 64.4 68.6 31.2 31.1 31.1
0.5 96.5 93.2 94.8 93.0 87.8 90.3 79.9 71.2 75.3 40.0 37.7 38.8
0.6 97.4 95.4 96.4 94.9 91.2 93.0 84.1 76.4 80.1 48.1 44.1 46.0
0.7 98.0 96.8 97.4 96.0 93.4 94.7 87.1 80.4 83.6 54.9 49.6 52.1
0.8 98.4 97.5 97.9 97.0 95.0 96.0 89.3 83.4 86.2 60.7 54.5 57.4
0.9 98.7 98.0 98.3 97.6 96.2 96.9 91.0 85.9 88.4 65.8 58.9 62.2

Note: P = precision; R = recall; and F1 = Fl-score.

noise. The demand-noise case considers the possibility of uncer-
tainty in the demand parameters of hydraulic models. It ranks sec-
ond among the four study cases based on precision and recall
values. While the uncertainty in demand parameters in the
hydraulic model can generate noise in the simulated pressure data,
the noise is not comparatively large and minimally affects the leak
signatures. For the mixed-noise case, a 10% Gaussian noise is
added to the input pressure differences to account for measurement
imprecision and model uncertainties. The noise introduces random-
ness in the data, affecting the leak signatures to a higher degree.
Therefore, the precision and recall of the two models for the
mixed-noise case are considerably low compared to no-noise and
demand-noise cases. The leak signatures are affected to the highest
degree for the random leaks case; that is, the fourth study case.
While no direct noise is added to the input data, the randomness
in leak locations within a candidate leak region introduces the pos-
sibility of a multitude of unique leak signatures for multiple leak
scenarios considered the same (i.e., labeled identically); as defined
previously, leaks located differently within the same candidate leak
region are labeled identically. The degree of dissimilarity of the
different leak signatures for identically labeled leak scenarios is
widened further because the candidate regions are Euclidean
distance-based clusters and not hydraulically similar clusters.
Therefore, the random leaks case presents the most challenging
task for machine learning models to learn. Consequently, the pre-
cision and recall accuracies for the random leaks case are the
lowest. The effect of the complexity of the mixed-noise and the
random leaks cases is profound at the lower thresholds, especially
at 0.1, because the noise and randomness in the input data drown
out the leak signature in the pressure input resulting from such
small leak sizes or leak size differences.

Table 3. CNN model performance for the four study cases

Comparison of CNN and MLP Model Performance

Tables 2 and 3 summarize the model performances of the MLP and
the CNN model for the four study cases at all nine thresholds con-
sidered in this study. Figs. 9-12 compare precision and recall for
the two models at three selected thresholds (0.1, 0.5, and 0.9) for
the four study cases. The results at these three thresholds represent
all nine thresholds, with 0.1, 0.5, and 0.9 indicating the most-, the
mild-, and the least-stringent conditions, respectively.

The figures show that precision for the CNN model is higher
than the MLP model at all thresholds for all four study cases.
At the 0.1 thresholds, the precision for CNN is almost twice the
precision for MLP for all study cases. For the no-noise and
demand-noise cases, the precision for CNN is more than 30% higher
than the precision for MLP. The difference, however, starts to di-
minish as the threshold becomes less stringent (0.5 and higher
thresholds) and the leak localization problem becomes compara-
tively less complex. The higher precision for the CNN model
compared to the MLP model for all four study cases indicates
its superiority in minimizing false leak predictions and hence better
reliability in its predictions even when noise and randomness are
present in the input data.

Like precision, recall for the CNN model is higher than the MLP
model at all thresholds for all four study cases. However, while
recall for CNN is considerably higher than for MLP at the 0.1
thresholds, the difference is not as high as the difference in preci-
sion. At the less stringent thresholds, particularly at 0.9, the differ-
ence in recall for the two models is almost negligible for the simple
no-noise and the less complex demand-noise cases. However,
the difference is greater (5%—12%) for the challenging mixed-noise
case and even more so for the most challenging random leaks case
at all thresholds, with the CNN model outperforming the MLP

No-noise Demand-noise Mixed-noise Random leaks

Threshold P R F1 P R F1 P R F1 P R F1
0.1 82.1 65.5 72.9 69.6 55.0 61.4 28.6 28.1 28.3 6.8 134 9.0
0.2 94.2 86.1 90.0 89.9 78.3 83.7 61.6 49.1 54.6 24.0 25.1 24.5
0.3 96.6 92.7 94.6 94.4 87.7 90.9 75.2 62.9 68.5 40.4 35.5 37.8
0.4 97.8 95.5 96.6 96.4 92.3 94.3 82.2 71.6 76.5 52.2 44.3 47.9
0.5 98.3 97.0 97.6 97.4 94.8 96.1 86.2 77.7 81.7 60.7 51.4 55.7
0.6 98.7 97.8 98.2 98.1 96.2 97.1 88.9 81.9 85.3 66.9 57.5 61.8
0.7 98.9 98.3 98.6 98.5 97.2 97.8 90.8 85.2 87.9 71.7 62.6 66.8
0.8 99.1 98.7 98.9 98.7 97.8 98.2 92.3 87.6 89.9 75.4 66.8 70.8
0.9 99.2 98.9 99.0 99.0 98.3 98.6 93.4 89.5 91.4 78.5 70.5 74.3
Note: P = precision; R = recall; and F1 = Fl-score.
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Fig. 9. Comparative model performance (CNN versus MLP) for no-noise case: (a) precision; and (b) recall.
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Fig. 10. Comparative model performance (CNN versus MLP) for demand-noise case: (a) precision; and (b) recall.
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Fig. 11. Comparative model performance (CNN versus MLP) for mixed-noise case: (a) precision; and (b) recall.
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Fig. 12. Comparative model performance (CNN versus MLP) for random leaks case: (a) precision; and (b) recall.
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model. Overall, the recall results are consistent with the precision
results in implying the superior performance of the CNN model
over the MLP for leak localization for the L-Town network.

The superiority of the CNN model to the MLP model can be
attributed to several reasons. First, CNN models can account for
any spatial relationships present in the data (LeCun et al. 1998).
MLP models cannot do so because the inputs to MLP models
are required to be flattened into vectors. Each vector element is then
fed to a different perceptron (single unit). The model weight of one
perceptron is independent of the other; therefore, any relationship
within the input data is lost. CNN models treat inputs as tensors,
allowing the CNN filters (learning units) to look for specific pat-
terns anywhere in the data. In this study, the 33 pressure sensors are
spatially related to each other with respect to leak scenarios. In most
instances, spatially similar leak scenarios (leak scenarios with sim-
ilar leak locations) tend to induce leak signatures at some common
set of pressure sensors. CNN models can learn this spatial relation-
ship, while MLP models cannot. This difference in spatial aware-
ness of the two models is evident in the higher difference in
performance between the CNN and the MLP model for the random
leaks case, which has a higher number of spatially similar leak
scenarios compared to the other three cases.

The second reason for the superior performance of CNN models
is related to their ability to handle noise in the data. As shown in
studies by Lan et al. (2021) and Rhodin and Kvist (2019), models
that are based on CNN architecture are better at reducing noise in
the data. Consequently, the CNN model performs better for the
demand-noise and mixed-noise cases. Finally, due to the fully con-
nected nature of MLP models and their need for an additional per-
ceptron for each additional input data, the number of parameters of
MLP models increases rapidly (LeCun et al. 1998, 1990), forming a
redundant and inefficient web structure. This structure is difficult to
train and suffers from overfitting. CNN models do not face this prob-
lem because they treat the input as tensors, which enables parameter
sharing (LeCun et al. 1998, 1990; Krizhevsky et al. 2017). In this
study, when the input increases from a single time point to 24 time
points, the number of MLP parameters increases by 329% compared
to a mere 1% for the CNN model. Such a high increase in the number
of parameters makes the MLP model susceptible to overfitting.
Therefore, at the lowest threshold (0.1), where overfitting has a high
impact on the accuracies, the CNN accuracies are vastly superior to
the MLP accuracies.

Single Time Input versus Multiple Time Input

In real-world systems, the pressure sensors are programmed to
record pressure readings at a particular time interval, which are
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transferred back to the central control unit or SCADA. The leak
localization algorithm, therefore, has a choice to use one or multi-
ple time point pressure data. The general assumption is that multi-
ple time point pressure data contains more leak information than
single time point data, which can improve leak localization accu-
racies. This assumption is tested by comparing the precision and
recall for a single time point pressure input and a 24 time points
(multiple time) pressure input for the four study cases (with both
CNN and MLP).

Little-to-no improvements in precision and recall are observed
for the no-noise study case with the 24 time points pressure data
(Fig. 13). Because the single time point data for the no-noise case
are noiseless pressure readings recorded at the 33 pressure nodes
1 h after the leaks are introduced, there is ample unaltered leak sig-
nature in the first-hour pressure data itself, which is evident by the
high precision and recall values with single time point data. There-
fore, incorporating additional time points data does not improve the
precision or recall further. Similarly, the accuracy of the demand-
noise case (Fig. 14) is almost unaltered when additional time point
data are incorporated. Because the noise added to the demand
parameters of the hydraulic model prior to simulation induces com-
paratively small resultant noise in the pressure readings, the single
point data carries as much information as the 24 time point data for
the demand-noise case.

In contrast to the first two cases, considerable improvements
(>10%) in the precision and recall are observed for the mixed-noise
case with the 24 time point data with both models (Fig. 15). Even
though 10% gaussian noise is added to the pressure data, the noisy
pressure data are still distributed around the actual pressure signal.
A better approximation of the actual pressure signal is possible with
24 time points compared to a single time point. These approximate
pressure signals can contain sufficient information, especially when
the actual signatures are prominent. Therefore, machine learning
models can learn better with 24 time points compared to a single
time point. Hence, the accuracies improve when multiple time
points data are incorporated. For the random leaks case (Fig. 16),
precision and recall improve for both MLP and CNN models; how-
ever, the improvement is comparatively less (<4%). As previously
discussed, the complexity of the random leaks case is due to the
ambiguity caused by the possibility of a multitude (all unique) of
leak signatures (pressure signals) for multiple leak scenarios con-
sidered the same (leaks in the same candidate region but located
differently within the candidate region). This ambiguity would be
removed if the pressure signals for the multiple leak scenarios
(considered the same) shared similarity at most of the available
24 time points. Even though there exists a possibility that a few of
the time points may share some similarity, the chances that most
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Fig. 13. Comparative model performance (single versus 24 time points) for no-noise case: (a) precision; and (b) recall.
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Fig. 14. Comparative model performance (single versus 24 time points) for demand-noise case: (a) precision; and (b) recall.
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Fig. 15. Comparative model performance (single versus 24 time points) for mixed-noise case: (a) precision; and (b) recall.
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Fig. 16. Comparative model performance (single versus 24 time points) for random leaks case: (a) precision; and (b) recall.

or all time points will be the same are rare. Therefore, using
24 time points pressure data induces minimal improvement in the

accuracies, if any.

Single Input (Pressure Data) versus Multiple Input

(Pressure and Flow Data)

Precision and recall for three selected study cases (with both
CNN and MLP) are compared to understand the potential of us-
ing multiple types of inputs simultaneously for leak localization.
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The three study cases are no-noise, mixed-noise, and random
leaks. The results for the demand-noise case are highly similar
to the no-noise as observed in the previous sections; therefore,
they are not presented.

Flow data are fed simultaneously along with the pressure data to
train the models and localize the leaks. The flow data consists of the
flow from the ten sensors recorded for the first hour after the leaks.
Improvements in both precision and recall at one or all thresholds
are observed for all study cases with both CNN and MLP models
(Figs. 17-19). The critical difference between the no-noise and the
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Fig. 17. Comparative model performance (pressure versus pressure and flow) for no-noise case: (a) precision; and (b) recall.
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Fig. 18. Comparative model performance (pressure versus pressure and flow) for mixed-noise case: (a) precision; and (b) recall.
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Fig. 19. Comparative model performance (pressure versus pressure and flow) for random leaks case: (a) precision; and (b) recall.

other cases is the thresholds where the improvements occur due to
the additional flow data. For the no-noise case, considerably large
(>25%) improvements are observed at the lower thresholds and
slight improvements (<2%) are observed at the higher thresholds.
For the remaining cases, the improvements are low (<10%) at the
lower and high (>20%) at the higher thresholds. This difference
between the no-noise and the other cases can be attributed to
two main reasons. First, the precision and recall at the higher
thresholds for the no-noise case are very high (>80%) compared
to the lower thresholds (<45%), leaving less room for improvement
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at the higher thresholds. The other reason is associated with the data
quality and the problem complexity. The no-noise case, as previ-
ously discussed, is an ideal simplistic problem assisted by the lack
of noise in any available data. Therefore, depending upon the qual-
ity of leak information in the flow data, additional flow input can
proportionally improve the leak localization performance. The
mixed-noise and random leaks cases are challenging due to noise
and ambiguity in the data. Even with additional flow input data,
these challenges still exist, and affect the model accuracies. The
impact of this noise and ambiguity is especially more at the lower
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thresholds where we are trying to pinpoint the size of the leaks (in
addition to the location) within such low tolerances. With pressure
data only, the precision and recall for the mixed-noise and random
leaks cases are less than 10% at the 0.1 thresholds (Figs. 18 and 19).
With additional flow data, minor improvements, less than 10% for
mixed-noise and less than 5% for random leaks, are observed at
the 0.1 thresholds. Considerably high improvements (>20%) are
observed at higher thresholds as the problem comparatively
simplifies.

Similar results are observed for CNN and MLP models. Pre-
cision and recall improve for both models due to additional flow
data, but the amount of improvement is more for the MLP model
compared to the CNN model. The CNN model, however, still
outperforms the MLP model for all cases with the additional flow
input.

Summary and Conclusions

In this study, a machine learning—based approach is proposed for
localizing leaks in WDSs that evaluates the impact of the different
complexities of leak localization problems. The impact of WDS
leak characteristics (varying size, multiple occurrences, and ran-
dom location) and the uncertainties associated with the hydraulic
model parameter and measuring devices, the possible benefit of
multiple time points data, and the potential of multiple different
simultaneous input data are studied by analyzing the performance
of two different readily available and widely used machine learning
models. The results of this study highlight the necessity of consid-
ering the various characteristics of real-world leaks in creating leak
scenarios to properly understand the applicability and effectiveness
of the leak localization models. Simplistic and unrealistic leak sce-
narios, such as the no-noise case, overestimate the performance of
the models, as seen in this study. Models trained with only such
scenarios can severely underperform and be deemed useless for real
WDSs. However, the high accuracies of the CNN and the MLP
models trained and tested with the three realistic study cases involv-
ing data noise, random leaks, and model and instrument uncertain-
ties prove their potential for application to real-world leak
localization problems. This study also found that the effectiveness
of the machine learning—based leak localization method is model-
dependent; the level of challenge posed by the same complexity of
the leak localization problem affects the performance of varying
machine learning models differently. In this study, the CNN model
is more effective than the MLP model in localizing leaks. The CNN
model’s superior architecture, input handling, and learning ability
enable it to learn the spatial relationship in the input data, better
tackle noise in the data, and share parameters to produce more
generalizable results than the MLP model. Future researchers
can take guidance from these results when faced with the task
of selecting machine learning models for their leak localization
studies.

It is also important to point out that the locations of the pressure
sensors used to generate the input data in this study are not based
on hydraulic analysis and, therefore, are not optimal. Optimally
located pressure nodes can further improve the accuracies of the
models. The results from this study also concur with the general
understanding that additional time point data improves leak locali-
zation accuracies. However, the improvements are not always
comparable or substantial due to noisy data and complex leak
characteristics. Finally, this study shows that it is feasible to simul-
taneously use multiple types of input data to improve the localiza-
tion of leaks. However, ensuring that these inputs are reliable in
terms of quality and leak information is necessary. One potential
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limitation of any simulated data—based approaches, including this
study, is associated with the calibration conditions of the hydraulic
model representing the actual WDS. For cases where the calibration
is conducted in the presence of background leaks in the system, the
resulting models can characterize new leaks only.

Several possibilities remain open for extending this study fur-
ther. First, various other types of noise can be considered in the
input data to account for any additional real-world leak complexity.
Next, the findings of the simultaneous use of pressure and flow data
also open the possibility of using other types of information, such
as acoustics, water quality, and more. Ultimately, the goal is to use
these models in practice. Therefore, the final step will test these
leak detection models to real-world WDSs to truly understand their
potential.
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