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ABSTRACT for both. In score-based ranking, a given set of candidates is sorted

In the past few years, there has been much work on incorporating
fairness requirements into the design of algorithmic rankers, with
contributions from the data management, algorithms, information
retrieval, and recommender systems communities. In this tutorial,
we give a systematic overview of this work, offering a broad per-
spective that connects formalizations and algorithmic approaches
across subfields.

During the first part of the tutorial, we present a classification
framework for fairness-enhancing interventions, along which we
will then relate the technical methods. This framework allows us
to unify the presentation of mitigation objectives and of algorith-
mic techniques to help meet those objectives or identify trade-offs.
Next, we discuss fairness in score-based ranking and in supervised
learning-to-rank. We conclude with recommendations for practi-
tioners, to help them select a fair ranking method based on the
requirements of their specific application domain.
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1 INTRODUCTION

In the past few years, there has been much work on incorporating
fairness requirements into the design of algorithmic rankers. And
while numerous surveys on fairness in machine learning have been
published, they typically focus on classification [4, 12, 32, 35]. In
this tutorial, we give an overview of the large and growing body
of work on fairness in raking, based on a two-part survey that we
published in ACM Computing Surveys in 2022 [51, 52].

We consider two types of ranking tasks — score-based and super-
vised learning — and discuss how fairness has been operationalized
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on the score attribute, which may itself be computed on the fly,
and returned in sorted order. In supervised learning-to-rank, a
preference-enriched training set of candidates is given, with prefer-
ences among them stated in the form of scores, preference pairs,
or lists; this training set is used to train a model that predicts the
ranking of unseen candidates. For both score-based and learning-
to-rank, we typically return the best-ranked k candidates, the top-k.
Set selection is a special case of ranking that ignores the relative
order among the top-k, returning them as a set.

While supervised learning-to-rank appears to be similar to clas-
sification, there is one crucial difference. The goal of classification
is to assign a class label to each item, and this assignment is made
independently for each item. In contrast, learning-to-rank positions
items relative to each other, and so the outcome for one item is
not independent of the outcomes for the other items. This lack of
independence has profound implications for the design of learning-
to-rank methods and, in particular, for fair learning-to-rank.

To make our discussion of fairness in ranking concrete, we now
present an example from university admissions, a domain in which
ranking and set selection are very natural and are broadly used.

1.1 Running example

Consider a university admissions officer who selects candidates
from a large applicant pool. When making their decision, the officer
pursues some or all of the goals listed below. Some of these may
be legally mandated, while others may be based on the policies
adopted by the university, and include admitting students who:

o are likely to succeed: complete the program with high marks
and graduate on time;

o show strong interest in specific majors like computer science,
art, or literature; and

e form a demographically diverse group in terms of their de-
mographics, both overall and in each major.

Figure 1 shows a dataset C of applicants and illustrates the admis-
sions process. Each applicant submits several quantitative scores,
all transformed here to a discrete scale of 1 (worst) through 5 (best)
for ease of exposition: X7 is the high school GPA (grade point av-
erage), X» is the verbal portion of the SAT (Scholastic Assessment
Test) score, and X3 is the mathematics portion of the SAT score.
Attribute Xy (choice) is a weighted feature vector extracted from
the applicant’s essay, with weight ranging between 0 and 1, and
with a higher value corresponding to stronger interest in a specific
major. For example, candidate b is a White male with a high GPA
(4 out of 5), perfect SAT verbal and SAT math scores (5 out of 5), a
strong interest in studying computer science (feature weight 0.9),
and some interest in studying art (weight 0.2).

The admissions officer uses a suite of tools to sift through the
applications and identify promising candidates. These tools include
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candidate Aq A, X1 Xo | X3 Xy Y1 | Y, | Y3
b male |Whitel|| 4 | 5|5 {cs:0.9; art:0.2} 14|19 |1
c male |Asian|| 5| 3 | 4 {math:0.9; cs:0.5} 1219 |1
d female |White|| 5| 4 | 2 {1it:0.8; math:0.8} ||11]| 4| 6
e male |Whitel|| 3 | 3 | 4 || {math:0.8; econ:0.4} ||10| 7 | 6
f female |Asian|| 3 | 2 | 3 || {econ:0.9; math:0.5} || 8 | 5| 8
k female |Black || 2 | 2 | 3 || {lit:0.9;art:0.8}|| 7| 1|9
1 male |Black|| 1 | 1 | 4 {1it:0.5; math:0.7} || 6 | 6 | 2
o female |Whitel|| 1 | 1 | 2 {econ:0.9; cs:0.8} 41718
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Figure 1: (a) dataset C of college applicants, with demographic attributes A; (sex) and A; (race), numerical attributes X; (high
school GPA), X, (verbal SAT), and X3 (math SAT), and attribute X, (choice) that is a vector extracted from the applicants’
essays; (b) is a ranking 77 on Y;, computed as the sum of Xj, X3, and X3; (c) is a ranking on Y;, predicted based on historical
performance of STEM (cs, econ, math) majors; (d) is a ranking on Y3, predicted based on historical performance of humanities
(art, 1it) majors. In all cases, the top-4 candidates will be interviewed in score order, and potentially admitted.

score-based rankers that compute the score of each candidate based
on a formula that the admissions officer gives, and then return some
number of highest-scoring applicants in ranked order. This scoring
formula may, for example, specify the score as a linear combination
of the applicant’s high school GPA and the two components of their
SAT score, each carrying an equal weight. This is done in Figure 1(a),
where a candidate’s score is computed as Y1 = X1 + X2 + X3 and
then ranking 71 in Figure 1(b) is produced.

Predictive analytics are also among the admissions officer’s toolk-
its. For example, multiple ranking models may be trained (e.g., using
any available learning-to-rank methods, such as RankNet [7] or
ListNet [8]), one per undergraduate major or set of majors, on fea-
tures X1, X, X3, X4 of the successful applicants from the past years,
to predict applicant’s standing upon graduation (based, e.g., on their
GPA in the major). These ranking models are then used to predict
a ranking of this year’s applicants. In our example in Figure 1(a),
feature Y predicts performance in a STEM major such as computer
science (cs), economics (econ), or mathematics (math) and leads
to ranking 73 in Figure 1(c), while feature Y3 predicts performance
in a humanities major such as literature (1it) or fine arts (art)
and leads to ranking 73 in Figure 1(d). The promising applicants
identified in this way—with the help of either a score-based ranker
or a predictive analytic—will then be considered more closely, in
ranked order: invited for an interview and potentially admitted.

Let us recall that, in addition to incorporating quantitative scores
and students’ choices, an admissions officer also aims to admit a
demographically diverse group of students to the university and to
each major. Further, the admissions officer is increasingly aware that
the data on which their decisions are based may be biased, in the
sense that this data may carry results of historical discrimination
or disadvantage [38], and that the computational tools at their
disposal may be exacerbating or introducing new forms of bias, or
even creating a kind of a self-fulfilling prophecy. For this reason, the
officer may elect to incorporate one or several fairness objectives
into the ranking process.

For example, they may assert, for legal or ethical reasons, that
the proportion of the female applicants among those selected for

further consideration should match their proportion in the input.
Further, the admissions officer may assert that, because applicants
are interviewed in ranked order, it is important to achieve propor-
tional representation by sex in every prefix of the produced ranking.
In this tutorial, we give an overview of the technical work that
would allow an admissions officer to compute ranked results under
these and other fairness requirements.

1.2 Scope and contributions

We are aware of several recent tutorials on fairness in ranking
at SIGIR 2019 [9], RecSys 2019 [17], VLDB 2020 [2], and ICDE
2021 [36], covering different approaches and pointing to the need
to systematize the work on fairness in ranking. In this tutorial, we
offer a broad perspective, connecting work across subfields. In the
remainder of this document, we give an overview of the content
of the tutorial, and refer the reader to the survey on which this
tutorial is based for additional details [51, 52].

2 CLASSIFICATION FRAMEWORK:
RECONCILING VALUES WITH TECHNICAL
CHOICES

Which specific fairness requirements a decision maker will assert
depends on the values they are operationalizing and, thus, on the
mitigation objectives. An important goal of our tutorial is to present
a classification framework for fair ranking methods that helps es-
tablish the correspondence between normative dimensions and
technical design choices. Figure 2 presents this classification frame-
work as a mind map.

Operationally, algorithmic approaches to fair ranking differ in
how they represent candidates (e.g., whether they support one or
multiple sensitive attributes, and whether these are binary), in what
fairness measure(s) they adopt, in how they navigate the trade-offs
between fairness and utility during mitigation, and at what process-
ing stage a mitigation is applied. Conceptually, these operational
choices correspond to normative statements about the types of bias
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Figure 2: A mind map summary of the classification framework for fair ranking methods.

Table 1: Summary of fair score-based ranking methods.

Method Group structure Bias Worldview EOP Intersectional
Rank-aware proportional . s - -
. one binary sensitive attr. pre-existing WAE luck-egalitarian ~ no
representation [46]
. i, luck-
. . multlple sensitive attrs.; .
Constrained ranking . . egalitarian
. multinary; pre-existing WAE . no
maximization [11] : (1 sensitive
handled independently
attr. only)
Balanced diverse mult}p le sensitive attrs.; pre-existing;; .
. multinary; . WAE luck-egalitarian yes
ranking [44] ; technical
handled independently
Di k-choi
wverse k-choice one multinary sensitive attr. pre-existing WAE luck-egalitarian ~ no
secretary [43]
Utility of selecti ith -existing;
. ' 1.y.0 'se ccnonwi one binary sensitive attr. Pre e.X.IS e WAE N/A no
implicit bias [28] implicit
. . . multiple sensitive attrs.; .
lity of rank h - :
implii s [10] s pler T WAE o e
P handled independently P
. . multiple sensitive attrs.;
Causal intersectionally . - .
. . multinary; pre-existing WAE Rawlsian yes
fair ranking [45] ;
handled independently
Designing fair ranking -
any pre-existing any any yes

functions [1]

being observed and mitigated, and to the mitigation objectives. We
now summarize the facets of the classificaiton framework.

Group structure. Fairness of a method is commonly stated
with respect to a set of categorical sensitive attributes (or fea-
tures). We discuss several orthogonal dimensions of group structure,
based on the handling of sensitive attributes. Some methods con-
sider only binary sensitive attributes, while other methods handle
higher-cardinality domains of sensitive attribute values. If a higher-
cardinality domain is supported, methods differ in whether they
consider one of the values to be protected (a single designated group
that has been experiencing discrimination), or if they treat all sensi-
tive attribute values as potentially being subject to discrimination.

Further, some methods are designed to handle a single sensi-
tive attribute at a time (e.g., they handle either gender or race),
while other methods handle multiple sensitive attributes simulta-
neously (e.g., they handle both gender and race). Methods that
support multiple sensitive attributes differ in whether they handle
these independently (e.g., by asserting fairness constraints w.r.t. the
treatment of both women and Blacks) or in combination (e.g., by
requiring fairness w.r.t. Black women).

Intersectional discrimination. Intersectional Discrimination [14,
30] states that individuals who belong to several protected groups
simultaneously (e.g., Black women) experience stronger discrimi-
nation compared to individuals who belong to a single protected
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Table 2: Summary of fair learning-to-rank methods.

Method Mitigation Group structure Bias Worldview EOP Framework
Point
Itipl 1ti ttr.;
iFair [29] pre-proc. mmuttipre muttmary atir technical WYSWYG formal
independent
DELTR [48] in-proc. one binary attr. pre-existing WAE luck-egalitarian
Fair-PG-Rank [42] in-proc one binary attr. technical WYSIWYG formal
Pairwise Ranking
in- i ? L
Fairness [5] in-proc. one binary attr. ? WYSIWYG formal-plus
FA'IR [47] & [50] - one multinary attr.; existi i formal /
post-proc. combination pre-existing contmuous luck-egalitarian
Fair Ranking ; one multinary attr.; re-existing: technic - ;‘10(:111(6 / alitarian
at LinkedIn [22] post-proc. combination pre-existing; te continuous neeesa
(1 sensitive attr.)
multiple binary attr.; - . formal /
CFA0 [49] post-proc. combination pre-existing continuous substantive
Fairness of ost-proc one binarv attr pre-existing/ WYSIWYG / formal /
Exposure [41] post-proc. y technical WAE luck-egalitarian
Equity of 1ti ttr.; technical
quity o post-proc. one muttmnary attt echnical / WYSIWYG formal
Attention [6] independent emergent

group (e.g., White women or Black men), and that this disadvan-
tage compounds more than additively. This effect has been demon-
strated by numerous case studies, and by theoretical and empirical
work [13, 15, 33, 40]. An immediate interpretation for ranking is
that, if fairness is taken to mean proportional representation among
the top-k, then it is possible to achieve proportionality for each gen-
der subgroup (e.g., men and women) and for each racial subgroup
(e.g., Black, and White), while still having inadequate representa-
tion for a subgroup defined by the intersection of both attributes
(e.g., Black women).

Intersectional concerns also arise in more subtle ways. For exam-
ple, when constraints are stated on individual attributes, like race
and gender, and the goal is to maximize score-based utility subject
to these constraints, then a particular kind of unfairness can arise:
utility loss can be particularly severe in historically disadvantaged
intersectional groups [44].

Type of bias. that a fair ranking method attempts to mitigate
— pre-existing, technical bias [3, 6] or emergent bias [34], as de-
fined by [20] — is another important technical dimension with
far-reaching normative consequences. We give examples of how
each type of bias may arise in ranking, and classify fair ranking
methods based on which bias type they aim to mitigate.

Mitigation objectives. This is a rich normative dimension of
our classification framework that includes both the worldviews fram-
ing of Friedler et al. [19], and the recently-proposed re-interpretation
of equality of opportunity (EO) doctrines for algorithmic fairness by
Arif Khan et al. [27].

We classify some fair ranking methods as those that are consis-
tent with formal EO, interpreted as either fairness through blindness
or formal-plus EO [18]. These methods require calibrated perfor-
mance across groups [24, 28]. We classify other fair ranking meth-
ods as those that are consistent with substantive EO. These are, in
turn, subdivided into backward-facing (i.e., correcting for a history
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of disadvantage and taking the luck-egalitarian perspective [16, 39])
and forward-facing (i.e., ensuring equitable access to opportunity
over a lifetime and taking the Rawls’ Fair EO perspective [37]).

3 FAIRNESS IN SCORE-BASED RANKING

In score-based ranking, we categorize mitigation methods into those
that intervene on the score distribution, on the scoring function,
or on the ranked outcome. Methods that intervene on the score
distribution aim to mitigate disparities in candidate scores, either
before these candidates are processed by an algorithmic ranker
or during ranking. Methods that intervene on the ranking function
identify a function that is similar to the input function but that
produces a ranked outcome that meets the specified fairness criteria.
Methods that intervene on the ranked outcome impose constraints
to require a specific level of diversity or representation among the
top-k as a set, or in every prefix of the top-k.

We present a selection of approaches for fairness in score-based
ranking listed in Table 1. All methods we present are mapped to
our classification framework, bringing out their commonalities
and differences that go beyond the purely technical choices, and
allowing us to reason about trade-offs.

4 FAIRNESS IN LEARNING-TO-RANK

In supervised learning, we categorize mitigation methods into pre-
processing, in-processing, and post-processing. Pre-processing meth-
ods seek to mitigate discriminatory bias in training data, and have
the advantage of early intervention on the pre-existing bias. In-
processing methods aim to learn a bias-free model. Finally, post-
processing methods re-rank candidates in the output subject to given
fairness constraints [23]. To mitigate unfairness, two main lines
of work on fairness-enhancing interventions have also emerged
over the past several years: probability-based [46, 47] and exposure-
based [3, 26]. During the tutorial, we give an overview of the meth-
ods listed in Table 2.
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5 PRACTICAL GUIDANCE

The final part of the tutorial consists of a discussion regarding the
practical aspects of fair ranker design, and recommendations for
the evaluation of fair ranking methods [25, 31].

For example, those methods that explicitly incorporate a notion
of utility into their fairness objective, namely Biega et al. [6], Lahoti
etal. [29], Singh and Joachims [42], and the disparate treatment and
disparate impact definition of Singh and Joachims [41]) generally
lean towards the WYSIWYG worldview and are consistent with
formal EO. In contrast, methods that explicitly exclude a utility
measure from the fairness definition (Geyik et al. [22], Zehlike et al.
[47], Zehlike and Castillo [48], Zehlike et al. [49], and the demo-
graphic parity definition of Singh and Joachims [41]), generally
lean towards the WAE worldview and substantive EO. Additionally,
some methods explicitly allow continuous interpolation between
two worldviews WAE and WYSIWYG, either by introducing a slid-
ing parameter or by allowing a range of values for the fairness con-
straints (Geyik et al. [22], Zehlike et al. [47], Zehlike and Castillo
[48], Zehlike et al. [49]). With these recommendations, we aim to
establish best practices for the development, evaluation, and deploy-
ment of fair ranking algorithms, and to avoid potentially harmful
uninformed transfer of methods between application domains.

As an interactive component of the final portion of the tutorial,
we discuss the fair ranking method by Garcia-Soriano and Bonchi
[21]. This method proposes to trade off the WAE and WYSIWYG
worldviews in a specific way. The goal of the discussion is to situate
this method within the classification framework of Section 2, and to
compare it with some of the other surveyed methods based on the
normative dimensions that are induced by the technical choices.
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