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ABSTRACT
Computational simulation of biomolecules can provide important insights into protein design, protein-ligand binding interactions, and
ab initio biomolecular folding, among other applications. Accurate treatment of the solvent environment is essential in such applications,
but the use of explicit solvents can add considerable cost. Implicit treatment of solvent effects using a dielectric continuummodel is an attrac-
tive alternative to explicit solvation since it is able to describe solvation effects without the inclusion of solvent degrees of freedom. Previously,
we described the development and parameterization of implicit solvent models for small molecules. Here, we extend the parameterization
of the generalized Kirkwood (GK) implicit solvent model for use with biomolecules described by the AMOEBA force field via the addition
of corrections to the calculation of effective radii that account for interstitial spaces that arise within biomolecules. These include element-
specific pairwise descreening scale factors, a short-range neck contribution to describe the solvent-excluded space between pairs of nearby
atoms, and finally tanh-based rescaling of the overall descreening integral. We then apply the AMOEBA/GK implicit solvent to a set of ten
proteins and achieve an average coordinate root mean square deviation for the experimental structures of 2.0 Å across 500 ns simulations.
Overall, the continued development of implicit solvent models will help facilitate the simulation of biomolecules on mechanistically relevant
timescales.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0158914

INTRODUCTION

Biomolecular simulation is a powerful tool that can be used
to understand important biological processes such as biomolecu-
lar folding1,2 and binding interactions3,4 while also playing a role
in the biomolecular design5 and interpretation of experiments.6
Often, simulations are limited by the use of accurate but costly
explicit descriptions of solvents, making it difficult to achieve bio-
logically relevant timescales. Implicit solvent models that represent
solvent effects using a dielectric continuum provide a complemen-
tary alternative that eliminates the explicit representation of solvent
molecules.7 The total implicit solvent potential of themean force can
be divided into polar (electrostatic) and non-polar terms. The polar
term can be calculated numerically using Poisson–Boltzmann (PB)

solvers such as the adaptive Poisson–Boltzmann solver (APBS),8
ddX,9 and PyGBe.10,11 Alternatively, the popular generalized Born
(GB)12–14 model for fixed partial charges or the generalized Kirk-
wood (GK)15 model for polarizable multipoles offer efficient analytic
approximations.

A foundational component of biomolecular simulations is the
selection of a force field. Various GB implicit solvent models for pro-
teins and nucleic acids have been described for fixed charge force
fields. An early GB implicit solvent model developed by Hawkins,
Cramer, and Truhlar16 (HCT) presented a pairwise descreening
method to calculate effective radii (Fig. 1) analytically based on
a van der Waals solute volume. Alternatively, the GBSW (GB
simple switching)17,18 model, implemented in Chemistry at Har-
vardMolecularMechanics (CHARMM),19,20 samples atomic density
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FIG. 1. Pictorial representation of effective radii for an arbitrary globular molecule
in implicit water. The effective radii, ai and aj , for atoms i and j, respectively, are
larger than the intrinsic radii for both atoms (ρi and ρj ). Since atom j is more deeply
buried within the molecule than atom i, aj is larger than ai . The effective radius for
ion k is approximately equivalent to its intrinsic radius ρk but could be slightly larger
due to descreening by the nearby molecule.

around individual atoms to determine contributions to effective
radii and employs a switching function to smooth the dielectric
boundary. Ideally, effective radii should be computed using an inte-
gral over molecular volume (i.e., Lee–Richards21). This motivates
the GBMV (GB molecular volume)22 and GBMV223 models, also
implemented in CHARMM, that leverage a close approximation
of molecular volume to calculate effective radii. Further work in
AMBER24 led to a model from Onufriev, Bashford, and Case25
(OBC) that added a molecular volume correction in the form of
tanh rescaling of effective radii. This correction to effective radii
calculated based on pairwise descreening of van der Waals radii
helps to account for high dielectric interstitial spaces. An addi-
tional molecular volume correction was introduced by Mongan
et al.26 for the Coulomb field approximation (CFA) and later by
Aguilar et al.27 for the Grycuk28 solvent field approximation (SFA),
which both use an approximate “neck” contribution to describe
the solvent-excluded space between pairs of nearby atoms. Both
tanh and CFA neck corrections were implemented in AMBER
within the GB-neck2 models for proteins29 and nucleic acids,30 and
were shown to increase the accuracy of effective radii. A broader
description of GBmodels is presented in a recent review by Onufriev
and Case.14

As an alternative to fixed charge force fields, polarizable force
fields have been developed that, in principle, should provide a more
transferable description of biomolecular electrostatics. Early work
by Maple et al. combined a polarizable force field with numerical
PB continuum solvation to study protein-ligand interactions.31 Sim-
ilarly, the AMOEBA force field for proteins32 and nucleic acids33 has
been combined with PB,8,11 ddCOSMO,34 and GK15,35 continuum
electrostatic models. More recently, the Drude oscillator’s polariz-
able force field36–50 has been combined with PB electrostatics and
used to study pKa shifts.51,52

Previously, we described a polarizable implicit solvent model
for small molecules based on the AMOEBA force field and GK

electrostatics.35 As this model was designed for small molecules,
effective radii were computed using an integral over solute van
der Waals volume rather than an integral over molecular vol-
ume. Here, we describe three modifications to extend the model
to biomolecules. These include using element-specific HCT overlap
scale factors for pairwise descreening, the addition of a pairwise neck
correction to account for solvent-excluded volumes between nearby
atoms, and finally a tanh correction to account for three-body (or
higher) interstitial spaces. The non-polarmodel described in the pre-
vious work is also extended to biomolecules, which includes a cavi-
tation term based on GaussVol53 and a Weeks–Chandler–Anderson
(WCA)54 dispersion term. Protein simulations are presented to
demonstrate the stability of the model, while future work to sup-
port the simulation of nucleic acids and biomolecular complexes is
discussed. This AMOEBA/GK model is currently implemented in
Force Field X (FFX),55 FFX-OpenMM,56 and Tinker.57,58

THEORY

The aqueous solvation free energy difference of a molecule
(ΔGsolv) is the change in free energy between a molecule in a vacuum
and water. To formulate an implicit solvent, ΔGsolv can be decom-
posed into three separate path dependent free energy differences7 to
give

ΔGsolv = ΔGcav + ΔGdisp + ΔGelec, (1)

where ΔGcav is the unfavorable formation of the molecule-shaped
cavity in water and ΔGdisp is the favorable addition of solute-water
dispersion interactions in the previously formed cavity. Collec-
tively, these first two terms combine to make up the non-polar
portion of solvation free energy differences (ΔGnon − polar = ΔGcav
+ ΔGdisp). Overall, our non-polar term builds on the many advance-
ments and insights contained in the AGBNP family of implicit
solvents.59–62 The final term ΔGelec accounts for the interaction of
solute charge density (e.g., fixed partial atomic charges or polarizable
atomic multipoles) with the continuum solvent. The implementa-
tion and parameterization of the non-polar term for the current
AMOEBA implicit solvent model, as well as the implementation
and parameterization of the polar term for small molecules, have
been described previously.35 Here, updates to the AMOEBA GK
implicit solvent model to facilitate its use with biomolecules are
described.

Reference values for ΔGelec in the specific case of the polariz-
able AMOEBA force field can be determined either by solving the
Poisson–Boltzmann equation (PBE) numerically using the APBS
multigrid finite-difference solver8,63,64 or via a boundary integral
approach implemented in PyGBe. While numerical solutions to the
PBE can be systematically improved (e.g., by using progressively
finer grids or surface meshes), they are generally too expensive to
be used for molecular dynamics simulations. For this reason, sev-
eral approximations have been proposed, including the well-known
generalized Born approximation. GB employs a summation over
pairwise and self-interactions for fixed atomic partial charge force
fields to yield the electrostatic solvation free difference as

ΔGGB =
1
2
( 1
εs
− 1
εh
)∑

i,j

qiq j

fij
, (2)
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where εs is the permittivity of the solvent (78.3 for water), εh is
the permittivity of the homogeneous reference state (1.0 for vac-
uum), qi and qj are the partial charges of atoms i and j, respectively,
and a commonly used form of the generalizing function fij is
given by

fij =

¿
ÁÁÀr2ij + aia j exp(−

r2ij
caia j

), (3)

where rij = ∥r j − ri∥ is the atomic separation distance in Angstroms,
ai and aj are the effective Born radii, and c controls the transition
from the Born regime ( fi= j = 1/ai) to the screened Coulomb’s law
regime ( fij = 1/rij). For most GB implementations, c = 4, but here
we treat c as a tunable parameter and fix its value to 2.455 as deter-
mined previously.15 GK extends the GB approximation to arbitrary
degree multipole moments, which facilitates the use of polarizable
atomic multipole solute electrostatics. The GK monopole energy
ΔG(q,q)GK is equivalent to the GB charge–charge term given in Eq. (2).
As a second example, the GK dipole energy ΔG(μ,μ)GK is presented
beginning from the electrostatic potential at rj due to all permanent
atomic dipole moments is given by

Φ(μ)GK (r j) = [
1
εh

2(εh − εs)
2εs + εh

]∑
i

rαμi,α
f 3ij

, (4)

where μi is the permanent atomic dipole moment vector, the sub-
script α denotes the use of the Einstein summation convention,
and rα = rj,α − ri,α. The interaction between all permanent dipole
moments, including their self-energies, is then given by

ΔG(μ,μ)GK = 1
2∑j

μ j,β∇βΦ
(μ)
GK (r j)

= 1
2
[ 1
εh

2(εh − εs)
2εs + εh

]∑
i,j

μi,αμ j,β[
3rαrβgij

f 5ij
+ δαβ

f 3ij
], (5)

where gij = exp (−r2ij/caia j)/c − 1 is the chain rule term, and δαβ is
the Kronecker delta. This expression can be simplified to the total
permanent atomic dipole self-energy by setting rij = 0 and summing
over atomic sites to give

ΔG(μself)GK = 1
2
[ 1
εh

2(εh − εs)
2εs + εh

]∑
i

μ2x,i + μ2y,i + μ2z,i
a3i

. (6)

Higher-order GK interaction tensors have been described previ-
ously15 and can be generated to a desired order using a tensor
recursion65 for two Cartesian multipoles in the global frame or
after rotation into their quasi-internal (QI) frame.66 For the inter-
action between two multipoles truncated at quadrupole order, the
use of the QI frame is ∼30% faster for computing the pairwise GK
energy, force, and torque (despite the cost of rotating both multi-
poles from the global frame into the QI frame and the cost of rotating
both forces and torques back into the global frame). Reference GK
tensor recursion code is available in the “multipole” package of
Force Field X (https://ffx.biochem.uiowa.edu)55 and can be lever-
aged to create an O(N log N) treecode-based GK implementation in
the future.67,68

For the GB or GK approximation to concord with numerical
solutions to the Poisson equation (PE), it has been demonstrated
that effective radii should approach being perfect.69 The reference
perfect effective Born radius for an atom with a fixed partial charge
(q) is defined based on its self-energy, ΔGself , as determined using a
numerical solution of the PE with all other atoms in the molecule
uncharged,

ai =
1
2
( 1
εs
− 1
εh
) q2i
ΔGself

. (7)

Although perfect effective Born radii enforce that the electrostatic
potential at atomic centers match those from the numerical PE solu-
tions, neither the electric field nor its gradient are guaranteed to be
correct (i.e., permanent dipole and/or quadrupole self-energy con-
tributions computed using perfect effective Born radii deviate from
their reference numerical PE values). As an alternative, the contri-
bution of higher order atomic multipole moments to the self-energy
can be included to calculate a perfect effective Kirkwood radius using
the following equation,70 which was originally derived by Kirkwood
using spherical harmonics and later converted by Applequist to a
traceless Cartesian tensor form:71

ΔGself =
1
2
[ε0

q2i
ai
+ ε1

μ2x,i + μ2y,i + μ2z,i
a3i

+ ε2
2
3
Θ2

xx,i +Θ2
yy,i +Θ2

zz,i + 2(Θ2
xy,i +Θ2

xz,i +Θ2
yz,i)

a5i
], (8)

whereΘ is the traceless permanent quadrupole, and the permittivity
function εn for a multipole moment of order n is given by70,72

εn =
1
εh
(n + 1)(εh − εs)
(n + 1)εs + nεh

. (9)

The perfect effective Kirkwood radius ai can then be determined
using Eq. (8) and a simple numerical search. Note that the right-
hand side of Eq. (8) neglects polarization energy (i.e., the interaction
of an induced dipole at site i with the reaction field of its perma-
nent dipole), and the computed ΔGself is based on the input of an
AMOEBA permanent atomic multipole. In practice, perfect effective
Born radii and perfect effective Kirkwood radii agree to be within
∼2% on average (see Table I), and both represent the degree of
burial of an atom within a molecule. Mean perfect effective Born
radii and perfect effective Kirkwood radii for several biomolecules
are shown in Table I, along with the regression slope, correlation,
and MUE of perfect Kirkwood radii relative to perfect Born radii.
The full regression of radii for ubiquitin (PDB ID: 1UBQ) is shown
in the supplementary material, Fig. S1, as an example.

Element-specific overlap scale factors

For the calculation of effective radii, the GK implicit solvent
model combines the analytic HCT pairwise descreening approxi-
mation16 with the SFA proposed by Grycuk.28 As a part of this
approximation, a unitless scale factor was previously set at 0.72 to
account for the atomic overlaps that would otherwise lead to over-
estimated effective radii.35 While a single scale factor worked well, it
was straightforward to achieve a modest improvement in accuracy

J. Chem. Phys. 159, 054102 (2023); doi: 10.1063/5.0158914 159, 054102-3

Published under an exclusive license by AIP Publishing

 01 August 2023 13:24:35

https://pubs.aip.org/aip/jcp
https://ffx.biochem.uiowa.edu


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

TABLE I. Mean perfect Born radii and perfect Kirkwood radii for each tested molecule. On average, perfect Kirkwood radii
are slightly smaller than perfect Born radii based on AMOEBA permanent multipoles. The slope, correlation, and MUE are
presented for each molecule by comparing perfect Kirkwood radii to perfect Born radii. An example regression for 1UBQ is
given in the supplementary material, Fig. S1.

Molecule

Average perfect
Born radius for
all atoms (Å)

Average perfect
Kirkwood radius for

all atoms (Å)
Slope (Born vs
Kirkwood) R2 MUE (Å)

1MIS 2.93 2.86 0.982 0.992 0.209
2JXQ 2.91 2.86 0.988 0.992 0.203
1F5G 2.93 2.88 0.986 0.992 0.206
2L8F 3.03 2.97 0.990 0.988 0.244
1ZIH 3.12 3.07 0.990 0.990 0.237
1SZY 2.94 2.88 0.987 0.992 0.202
2KOC 2.87 2.82 0.989 0.991 0.205
1D20 2.88 2.86 0.997 0.988 0.244
2HKB 2.91 2.88 0.991 0.990 0.232
1BPI 3.48 3.41 0.987 0.989 0.274
1L2Y 2.96 2.89 0.984 0.989 0.240
1UBQ 4.14 4.08 0.995 0.992 0.302
1UCS 4.00 3.92 0.988 0.990 0.315
1VII 3.12 3.05 0.984 0.989 0.248
1WM3 3.94 3.87 0.990 0.992 0.286
2OED 3.53 3.45 0.980 0.990 0.267
2PPN 4.16 4.09 0.991 0.992 0.302
7SKW 4.57 4.51 0.994 0.991 0.338

Average 3.36 3.30 0.988 0.990 0.253

using element specific overlap scale factors. The current implemen-
tation of the GK pairwise descreening term with element specific
scale factors is given by

Ivdw(rij) =
π
12

⎛
⎜
⎝

3(r2ij − (SHCT,j ∗ ρ j)
2) + 6u2 − 8urij

u4rij

−
3(r2ij − (SHCT,j ∗ ρ j)

2) + 6l2 − 8lrij
l4rij

⎞
⎟
⎠
, (10)

where ρj is the radius of atom j used for descreening, SHCT, j is the
element-specific scaling factor for atom j, and u and l are the upper
and lower integration bounds, determined based on the overlap of
atoms i and j. A detailed description of how to determine the upper
and lower integration bounds has been described previously.16,35

Pairwise neck interstitial space correction

Descreening for the AMOEBA small molecule implicit solvent
was based on using a van der Waals definition of solute volume.
This approximation is not appropriate for large biomolecules where
interstitial spaces become increasingly important, which motivates
the use of the more physically realistic Lee–Richards molecular vol-
ume. In particular, the use of a van der Waals volume leads to
an underestimation of the effective radii for biomolecules by fail-
ing to account for descreening due to interstitial spaces that are
too small to accommodate water molecules. Although too small to

accommodate an explicit water molecule, these interstitial spaces are
nonetheless “filled” by continuumwater, leading to artificially favor-
able electrostatic hydration. A more accurate descreening integral
must account for interstitial spaces and properly exclude continuum
water. The concept of “neck” regions between pairs of nearby atoms,
as shown in Fig. 2, was first proposed by Mongan and co-workers
for the Coulomb field approximation (CFA) ∣r∣−4 integral26 and later
refined by Aguilar and co-workers for the solvent field approxima-
tion (SFA) ∣r∣−6 integral.27 The functional form of the latter is given
by

Ineck(rij) =
4π
3
Sneck,ij ∗Aij(rij − Bij)4(ρi + ρ j + 2ρw − rij)4, (11)

where ρi and ρj are the descreening radii of atoms i and j, respec-
tively; ρw is the radius of water (1.4 Å); and rij is the atomic
separation distance.

The Aij and Bij constants were originally determined using
benchmark values from a numerically exact method of calculating
effective Born radii called NSR6, which has been described previ-
ously.27 In this work, values of Aij and Bij were calculated for an
expanded set of descreening radii using perfect effective radii from
APBS calculations. The procedure for determining Aij and Bij was
otherwise analogous; for pairs of atoms, APBSwas used to determine
the value of the neck integral at various separation distances. The
separation distance at which the value of the neck integral is at its
maximum (neckmax) was recorded as rmax

ij for that pair of radii. The
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FIG. 2. Shown is the neck region (shaded) between two atoms. A neck is only
formed when the atoms are close enough to exclude water, which is represented
here by a sphere with radius ρw .

value of Bij was then calculated as Bij = 2rmax
ij − (ρi + ρ j + 2ρw) and

Aij was calculated such that Ineck(rmax
ij ) = neckmax. A slight change

to the determination of Aij values in this work was to explicitly
include the 4π/3 constant in the neck integral equation instead of
including it in the Aij values—this was done to facilitate consistency
in the components of the descreening integral. A full tabulation of
these updated Aij and Bij constants is available in the supplementary
material, Tables S1 and S2.

For a single pair of atoms, the neck between them perfectly
describes the correction from the van der Waals volume to the
Lee–Richards molecule volume. For more than two atoms, however,
neck regions can overlap and lead to an overestimation of the inter-
stitial volume. For this reason, a scale factor (Sneck) is introduced
to prevent over-counting neck overlaps, which is analogous to the
HCT scale factors that account for overlap during pairwise descreen-
ing. Neck contributions to the molecular volume are only calculated
for pairs of atoms that are close enough to exclude water between
them such that their separation distance ( rij) satisfies the following
criterion:

rij ≤ ρi + ρ j + 2ρw. (12)

To calculate forces (e.g., for optimization or molecular dynam-
ics) the neck correction must be differentiable with respect to the
separation distance. This derivative is given by

∂ Ineck(rmax
ij )

∂rij
= 16π

3
∗ (Sneck,ij ∗Aij(rij − Bij)3

× (ρi + ρ j + 2ρw − rij)4

− Sneck,ij ∗Aij(rij − Bij)4(ρi + ρ j + 2ρw − rij)3).
(13)

In previous implementations of the neck correction, a single Sneck
scaling factor was used in all cases. In this work, we propose a mod-
ification to the neck scaling factor based on the number of heavy
atoms bound to a particular atom of interest. If no heavy atoms are
bound to atom i, then Sneck, i = 1.0. For all other cases, the scaling
factor for atom i is calculated based on the relationship,

Sneck,i = Sneck ∗
5.0 − nheavy

4.0
, (14)

where nheavy is the number of heavy atoms bound to the atom
of interest, and Sneck is the maximum fit scale factor. A pictorial
representation of this Sneck scheme is shown in Fig. 3.

This modification to the treatment of interstitial space necks
preserves accuracy for free ions (Fig. 4) and results in atoms with
fewer bound heavy atoms forming more significant necks than
atoms with more bound heavy atoms. Finally, the following combin-
ing rule is used to weight the chemical environment of both atoms
that form the neck,

Sneck,ij = (Sneck,i + Sneck,j)/2. (15)

Hyperbolic tangent interstitial space correction

The pairwise neck correction, described above, is helpful in
accounting for short-range [Eq. (12)] underestimation of molecular
volume but does not account for three-body (or higher) effects. A

FIG. 3. Shown are the bonding aware neck scaling scheme and associated equations used to calculate an individual atomic Sneck, i scale factor. The scaling factor is reduced
as the number of heavy atoms bound to the atom of interest increases. If the atom of interest has no bound heavy atoms, the scale factor is set to 1.0.
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FIG. 4. Demonstration of the bonding aware neck scaling scheme for two ions
in the AMOEBA GK implicit solvent. Using a single, fixed scaling factor leads to
underestimation of the neck integral value at all separation distances for pairs of
ions, while chemically aware scaling concords with reference PB calculations.

function based on the hyperbolic tangent (tanh) is used to smoothly
scale up effective radii, increasing the radii of deeply buried atoms
more than the radii of atoms closer to the surface. This type of
tanh rescaling function has been used previously as part of both CFA
∣r∣−4 interstitial space corrections26,69 and, more recently, SFA ∣r∣−6
interstitial space corrections.27 The tanh correction used in the cur-
rent model follows the latter, where the maximum effective radius
is capped at 30 Å but does not consider the electrostatic size of
the solute.27 The tanh rescaling function and associated component
functions are presented below,

ci =
4π
3
( 1
ρ3i
− 1
303
), (16)

Ψi =∑
i≠ j

Ivdw(rij) +∑
i≠ j

Ineck(rij), (17)

1
ai
= 3
4π
(4π
3
ρ−3i − ci tanh(β0Ψiρ3i − β1(Ψiρ3i )

2

+ β2(Ψiρ3i )
3))

1/3
. (18)

Here ai is the effective radius of atom i; β0,β1, and β2 are tun-
able parameters; Ivdw(rij) is the ∣r∣−6 integral over all van der Waals
spheres in the solute [Eq. (10)]; and Ineck(rij) are short-range pair-
wise neck contributions [Eq. (11)]. The tanh correction to the
effective radius and its derivative is given by

scale(Ψi) = ci tanh(β0Ψiρ3i − β1(Ψiρ3i )
2 + β2(Ψiρ3i )

3) (19)

and

∂scale(Ψi)
∂Ψi

= ci(β0ρ3i − 2β1Ψiρ6i + 3β2Ψi
2ρ9i )

× (1 − tanh(β0Ψiρ3i − β1(Ψiρ3i )
2 + β2(Ψiρ3i )

3)
2
).
(20)

PARAMETERIZATION
Element-specific scale factors

Element-specific scaling factors were determined using a lim-
ited memory BFGS optimizer and five different target molecules—
two proteins, two RNAs, and one DNA—that were chosen from
the set of biomolecules used to validate the small molecule implicit
solvent models.35 The optimizer target function is given by

E(P) =WMUE

n

∑
i=1
(ΔGPB

i,sel f − ΔGGK
i,sel f )

2

+WMSE(
n

∑
i=1
ΔGPB

i,sel f −
n

∑
i=1
ΔGGK

i,sel f )
2

+WRegularization

Nelements

∑
i=1
(Selement

HCT − 0.72)
2
, (21)

where WMUE = 1.0, WMSE = 10.0, and WRegularization = 1.0 × 104.
Here, ΔGi,self is the self-energy for the atom i calculated using either
PB or GK for n atoms and Selement

HCT is the element-specific scale fac-
tor for each element (C, N, O, P, and S), where Nelements = 5. The
HCT scale factors were optimized for each molecule individually
and then averaged. Benchmark permanent AMOEBA electrostatic
solvation energy values were calculated using APBS based on a van
der Waals definition of the solute volume. The decision to use per-
manent self-energy values was motivated by the expense of using
APBS to compute self-consistent reaction fields and by the relatively
smaller contribution of self-polarization. Van der Waals radii were
used for consistency between the PB and GK electrostatics mod-
els and to prevent HCT scale factors from implicitly accounting
for interstitial spaces. The benchmark self-energies, ΔGPB

i,sel f , used in
the HCT scale factor optimizer were determined using monopoles
without considering higher order multipole moments. These self-
energies are consistent with perfect effective Born radii and promote
transferability of the final Selement

HCT to other force fields, including
those based on fixed partial charges.

Starting from the initial small molecule scale factor (0.72),
element-specific scaling factors were fit for C, N, O, P, and S. Due
to the high degree of overlap with their bound heavy atom, the
choice was made to exclude hydrogen atoms from contributing to
descreening for the AMOEBA GK implicit solvent. For this reason,
no scale factor was fit for hydrogen atoms (i.e., the HCT scale factor
for hydrogen atoms is 0). The final element-specific scaling factors
(Selement

HCT ) are shown in Table II.
As the Selement

HCT scale factors were fit using a van der Waals
description of solute volume; only the neck and tanh corrections
account for molecular volume based descreening of biomolecules.21
The final scale factors agree with chemical intuition regarding heavy
atom overlaps. Carbon atoms can form four bonds, often with other
heavy atoms, necessitating a smaller scale factor than the base value
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TABLE II. Element-specific SHCT scale factors optimized for individual protein (1BPI and 1UCS), RNA (1MIS and 1ZIH), and
DNA (1D20) molecules. The final scale factors are averages.

Element and Bondi73
radius (Å) 1BPI 1UCS 1MIS 1ZIH 1D20 Final

C (1.70) 0.7151 0.7294 0.6694 0.6975 0.6634 0.6950
N (1.55) 0.8348 0.7614 0.7659 0.7365 0.7377 0.7673
O (1.50) 0.7635 0.7785 0.8098 0.8048 0.8261 0.7965
P (1.80) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.6173 0.6300 0.5878 0.6117
S (1.80) 0.7214 0.7194 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.7204

of 0.72. Phosphorous atoms can form four bonds as well (e.g., to
oxygen atoms in the tested nucleic acids) and are larger than carbon
atoms, which explains why phosphorous has the smallest HCT scale.
Conversely, nitrogen and oxygen atoms are smaller than carbon and
phosphorous while also generally forming fewer bonds with other
heavy atoms. This is consistent with fewer overlaps and explains
the relative increase in those two scale factors during fitting. In the
tested protein systems, sulfur atoms form either one or two bonds
with heavy atoms. Due to sulfur atoms being larger than nitrogen
or oxygen but forming fewer bonds than carbon or phosphorous,
an intermediate amount of overlap is expected, which is consistent
with the sulfur HCT scale remaining close to the base value. Final
SHCT scale factors were used to compute the electrostatic portion of
solvation free energy differences for all 18 molecules used to validate
the small molecule implicit solvent models.35 When compared with
APBS results, GK energy differences produced a slope of 1.0001 and
an R-squared of 0.9971 (Fig. 5). This supports the conclusion that
the relatively simple HCT pairwise descreening approach is reliable
for integration over van der Waals solute volumes.

FIG. 5. Comparison of permanent electrostatic energies for biomolecules calcu-
lated in APBS and GK using a van der Waals definition of the solute volume. GK
values used element specific HCT scaling factors. The dashed gray line is the best
fit regression line with slope = 1.0001 and R2

= 0.9971. The solid black is x = y to
guide the eye.

Neck and tanh interstitial space corrections

To facilitate the use of the GK implicit solvent model with
mixed protein/nucleic acid simulations, a single set of tanh β para-
meters was fit for all target biomolecules. During initial MD testing
with the full biomolecule test set, proteins and nucleic acids showed
distinct sensitivities to the magnitude of the neck scaling factor. The
original goal of fitting a single neck scaling factor for use with both
proteins and nucleic acids led to a balancing of errors whereby folded
protein electrostatic energies were too negative and folded nucleic
acid electrostatic energies were too positive (compared to PB ref-
erence values). For this reason, neck scale factors for proteins and
nucleic acids will be fitted to separate optimal values.

The {β0,β1,β2} parameters were initially optimized simultane-
ously using a genetic algorithm. Each run of the genetic algorithm
included 1000 generations of 500 individuals, with the top 20%
of individuals being carried over directly to the next generation
and a mutation rate of 0.3. Permanent self-energies (ΔGSelf ,Perfect

i ),
permanent electrostatic energies (ΔGElec,Perfect

i ), and perfect effective
Kirkwood radii (Rperfect) were calculated using APBS and used as
target data for optimization according to the following objective
function:

E(P) =WMUE(
n

∑
i=1
∣ΔGElec,GK

i − ΔGElec,Perfect
i ∣

2

+
n

∑
i=1
∣ΔGSelf ,GK

i − ΔGSelf ,Perfect
i ∣

2
)

+WMSE(
n

∑
i=1
ΔGElec,GK

i −
n

∑
i=1
ΔGElec,Perfect

i )
2

+WRad(
n

∑
i=1
(R perfect − RGK)

2), (22)

where WMUE = 0.001, WMSE = 1.0, and WRad = 1.0. The para-
meters for each new (non-mutant) individual were selected ran-
domly from uniform distributions across the following ranges: β0
∈ {0.5000, 1.5000}, β1 ∈ {0.1000, 0.4000}, and β2 ∈ {0.0004, 0.2000}.
The permanent energies and perfect effective Kirkwood radii used as
benchmarks were from a set of nine proteins (1BPI, 1L2Y, 1UBQ,
1UCS, 1VII, 1WM3, 2OED, 2PPN, 7SKW) and nine nucleic acids
(1MIS, 2JXQ, 1F5G, 2L8F, 1SZY, 1ZIH, 2KOC, 1D20, 2HKB). The
fitting of tanh parameters is a multiple-minima problem,25,27,30 and
for this reason, a local optimization approach (e.g., using an L-BFGS
optimizer) will not explore the parameter space effectively. Instead,
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FIG. 6. Effective radii for a molecule with a 1.7 Å base radius (carbon atom) with-
out rescaling (dashed line) and with the final tanh rescaling function based on
β0 = 0.9563, β1 = 0.2578, and β2 = 0.0810 (solid line) across a range of input
volume integrals (Ψ).

the genetic algorithmwas used to control parameter ranges based on
results from prior work25,29,30 and trial and error.

The candidate parameter sets produced by the optimization
runs were used to calculate GK permanent electrostatic energies
for the biomolecule target set. Additionally, the GK effective radii
were plotted against the tanh input (Ψ) to check the shape of the
tanh function for given β parameter sets. Any tanh function that
did not have a positive first derivative across the full functional
range was eliminated. Output parameters from the genetic algo-
rithm were slightly adjusted manually to improve the electrostatic
energy regression for all tested biomolecules, resulting in the follow-
ing parameter set: {β0 = 0.9563,β1 = 0.2578,β2 = 0.0810}, which is
plotted in Fig. 6.

With the tanh β parameters fixed, the final Sneck scaling fac-
tor for proteins was then determined using progressively finer
Sneck scans. The bonding awareness scheme described above was
used for all scans. The final protein scale factor (Sneck, pr = 0.1350)
helped improve permanent self-energies relative to only using a
tanh correction (Fig. 7). The final optimized parameters are given
in Table III.

Effective radii calculated in GK using the protein parameter set
and thioredoxin (2TRX), which was not used for fitting, are plotted
against perfect effective Kirkwood radii (calculated using APBS) in
Fig. 8.

In Fig. 9, total electrostatic hydration free energy differences
calculated using APBS with a molecular surface are plotted against
total electrostatic hydration free energy differences calculated using
GK with interstitial space corrections for all target molecules.

FIG. 7. Comparison of permanent self-energies with perfect effective Kirkwood
radii and GK fit radii for proteins. Energies calculated with only the tanh correction
have a slope of 1.192 and a R2 of 0.997; energies calculated with the full correction
(neck and tanh) have an improved slope of 0.987 and a R2 of 0.998. The solid black
line is x = y to guide the eye.

TABLE III. The implicit solvent parameters are used to correct from a van der Waals
volume integral to a molecular volume integral with interstitial spaces. The neck scale
factor is applied in a bonding aware manner, as described in Fig. 3.

Parameter Value

β0 0.9563
β1 0.2578
β2 0.0810
Sneck, protein 0.1350

Tuning based on molecular dynamics trajectories

The original base radii for the GK implicit solvent model were
previously fitted using small molecule solvation free energy differ-
ences.35 During initial molecular dynamics tests on biomolecules, in
some cases, overcounting in the pairwise descreening integrals was
observed. This was traced to the SFA ∣r∣−6 descreening integral eval-
uating to its largest values for small separation distances (i.e., the
HCT overlap scale factors are appropriate on average but can be
too large for some overlaps at very short ranges). To alleviate this,
a small descreening offset of 0.3 Å was added to push the beginning
of the descreening integral away from the atomic center. It was also
observed that repeated backbone atoms tended to favor intramolec-
ular interactions (such as hydrogen bonding) over interactions with
the GK continuum. This is in part due to the lack of hydrogen bond-
ing within the fitting set of small molecule solvation free energy
differences. Slight alterations to selected atomic base radii for pro-
teins helped alleviate the incorrect preference of certain groups to
form intramolecular hydrogen bonds with backbone groups in place
of interacting with implicit water. Radii for protein carbonyl carbon
and oxygen atoms, asparagine and glutamine amide nitrogen atoms,
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FIG. 8. Comparison of 2TRX effective radii calculated in GK without interstitial space corrections (orange plusses) and with interstitial space corrections (blue circles) to
perfect effective Kirkwood radii calculated in APBS. Fit GK base radii are used for both series. The first plot (left) shows all effective radii for 2TRX (thioredoxin), while the
second plot (right) shows the range of effective radii from 1 to 5 Å. The solid black line is x = y to guide the eye.

and lysine and arginine HN atoms were modified slightly—a tabula-
tion of the updated GK base radii is available in the supplementary
material, Table S3.

A known limitation of the current implicit solvent model
involves the use of GaussVol to determine the surface area used in
cavitation free energy calculations. GaussVol is comparable to the

FIG. 9. Electrostatic hydration energy of target proteins was calculated using APBS
and GK, including contributions from permanent multipoles and induced dipoles
determined via a self-consistent reaction field. APBS used a molecular surface
based on fit GK base radii. GK also used fit radii, with effective Born radii computed
with (Slope: 0.987, R2: 0.9937) and without (Slope: 1.575, R2: 0.9907) interstitial
space corrections.

more general algorithms by Connolly74,75 when calculating a van der
Waals surface area, but GaussVol cannot be used to compute molec-
ular surface area at this time. Due to the Connolly algorithms not
being available on graphics processing units (GPUs) (e.g., neither in
Tinker nor OpenMM), the use of the molecular surface area is not
currently feasible. For these reasons, an inflated van der Waals sur-
face area computed using GaussVol via scaling up atomic radii by
15% was selected as the best available option (i.e., to approximately
remove interstitial spaces). This modest increase in atomic radii pre-
served simulation efficiency, while even small additional increases
(e.g., to 20% or 25%) reduced simulation speed by almost a factor
of 2 (due to the nonlinear increase in GaussVol atomic overlaps as
a function of atomic radii). Future work to extend the GaussVol
approach to efficiently handle molecular surface areas will benefit
both fixed charge and polarizable implicit solvents.

RESULTS

The parameterization of the AMOEBA/GK biomolecular
implicit solvent model was designed to enable simulations of both
proteins and nucleic acids. The results for proteins are presented
here, while those for nucleic acids will be described in a later
contribution. MD simulations were performed for the set of 10 pro-
teins previously studied during the development of the AMOEBA
protein force field.32 The 7SKW structure of lysozyme was used
in this work in place of the 6LYT structure used previously due
to the improved resolution of 7SKW across the same lysozyme
sequence. Final implicit solvent parameters (Table III) and updated
GK base radii (the supplementary material, Table S3) were used
for all simulations. Each molecule was simulated continuously for
500 ns. Explicit neutralizing chloride ions (nine total ions) were
added to the lysozyme simulation (7SKW) and restrained using flat-
bottom potentials. These restraints help maintain the neutralizing
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TABLE IV. Average backbone (BB) heavy atom RMSD values across 500 ns MD trajectories for protein molecules in
Angstroms.

Average BBRMSD with Average non-terminal
PDB ID No. Residues Formal charge all residues (Å) BBRMSD (Å)

30 ns 500 ns 30 ns 500 ns

1BPI 58 6.0 1.73 1.69 1.37 1.57
1EJG 46 0.0 0.78 1.13 0.76 1.09
1L2Y 20 1.0 1.99 2.86 1.24 2.10
1UBQ 76 1.0 2.98 3.97 1.48 1.94
1UCS 64 0.0 1.22 1.76 0.83 1.12
1VII 76 2.0 2.18 2.76 2.01 2.56
1WM3 88 1.0 1.51 3.23 1.48 3.08
2OED 56 −2.0 1.80 2.03 1.78 2.02
2PPN 107 4.0 2.89 3.47 1.65a 2.05a

7SKW 129 9.0 2.53 2.86 2.44 2.73
Average 1.96 2.58 1.50 2.03
aIn addition, excludes flexible loop (residues 82–96).

ion cloud around the solute and prevent diffusion toward entropi-
cally favored states. The restraints enforced a maximum separation
distance of 45.0 Å from the center of mass of the lysozyme pro-
tein, while no minimum distance penalty was used. Explicit ions
were energy-minimized to an rms gradient of 1.0 kcal/(mol Å) and
then equilibrated for 1 ns at 100 K, 1 ns at 200 K, and 1 ns at 300 K
with the position of the biomolecule fixed. Each protein was energy-
minimized to an rms gradient of 1.0 kcal/(mol Å), then equilibrated
for 1 ns at 100 K, 1 ns at 200 K, and 1 ns at 300 K. During equilibra-
tion, protein C-alpha atoms were fixed to promote relaxation of side
chains before allowing the full biomolecule to move. The production
runs completed 500 ns of sampling at 298.15 K with self-consistent
field (SCF) convergence to 1.0 × 10−6 rms D. A 2 fs Langevin multi-
ple time step integrator was used for all simulations, along with mass
repartitioning from heavy atoms to their bound hydrogen atoms. All
production simulations were run on either NVIDIA GeForce RTX
2080TI or NVIDIA A10 Tensor Core GPUs. The wall clock time to
generate 500 ns for the smallest tested system (1L2Y, trp-cage) was
428.9 h (∼17.8 days), and that for the largest tested system (7SKW,
lysozyme) was 1076.3 h (∼44.8 days).

Output MD trajectories were compared to the experimental
structure for each protein system. Where experimental structures
consisted of NMR ensembles, the first structure in the ensemble
was selected for comparison. Coordinate root mean square devia-
tions (RMSDs) for proteins are reported in Table IV. All RMSDs
reported are for peptide backbone heavy atoms and were calculated
in FFX using the Superpose utility script. Average backbone heavy
atom RMSDs for proteins were 2.58 Å for all residues and 2.03 Å
for non-terminal residues (Table IV). Average RMSDs after 30 ns of
simulation are also available in Table IV in order to directly compare
them to previous protein simulations in explicit AMOEBA water.32
The average backbone RMSD for explicit AMOEBA water simula-
tions after 30 ns as reported in the original paper was 1.33Å,32 while
the average backbone RMSD for implicit AMOEBA water simula-
tions was 1.96 Å (Table IV). Part of this difference is likely due to
the reduced viscosity of continuum solvents, which results in faster
kinetics. Trajectory snapshots were clustered based on non-terminal

backbone heavy atom RMSD into ten clusters, and representative
structures from the largest clusters are presented superposed with
the base experimental structures in Fig. 10. Representative struc-
tures were the minimum RMSD structures from the second half
of the trajectory (250 ns and beyond) in the largest cluster. RMSD
trajectories across the full 500 ns simulation time are presented
in Fig. 11.

FIG. 10. Superposition of the deposited x-ray crystallography or NMR structure
(gray) with the lowest-RMSD structure from the largest cluster (green). The time
step of the snapshot in the 500 ns trajectory and its RMSD to the experimental
structure are displayed. All representative snapshots were taken from the second
half of the trajectories.
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FIG. 11. Protein non-terminal backbone RMSDs to the experimental x-ray crystallography or NMR structure across 500 ns production trajectories (Å).

Testing of the GBNeck2 implicit solvent model29 included sim-
ulations of the trp-cage protein, which was also simulated here
(1L2Y). A histogram of RMSD probability across two trajectories
at 300 K was presented, analogous to the 1L2Y histogram (second
row, left) in Fig. 12. GBNeck2 trajectories, reported in the original
paper in the supplementary material, (Fig. S9), are for 160 ns tra-
jectories at 300 K with enhanced sampling from replica exchange

molecular dynamics (REMD). The use of REMD simulations facil-
itates comparison to our 500 ns trajectories that do not include
enhanced sampling. For both models, trp-cage RMSDs at or below
2.0 Å are the most probable, although the distributions exhibit dif-
ferent features. RMSD histograms for all proteins tested in this
work are shown in Fig. 12. The percentage of snapshots across
the 500 ns trajectory that fall into each of the RMSD bins used to
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FIG. 12. Histograms of RMSD values across 500 ns of simulation for AMOEBA/GK implicit solvent are shown for each protein.

create the histograms is tabulated in the supplementary material,
Table S4.

Average dipole moment magnitudes across production MD
trajectories were calculated for all proteins in both vacuum and GK
implicit solvents. Dipole moment magnitudes in GK implicit sol-
vents were calculated with and without interstitial space corrections.

Average magnitudes in GK implicit solvent were ∼30% to 35% larger
than those in vacuum, with the addition of interstitial space correc-
tions slightly reducing average dipole moment magnitudes (Fig. 13).
The change between vacuum and condensed phase dipole moment
magnitudes can only be captured using polarizable force fields, such
as the AMOEBA and Drude models.
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FIG. 13. Comparison of average dipole moment magnitudes across production MD
trajectories in a vacuum and GK implicit solvent. Implicit solvent dipole moment
magnitudes are reported with (blue circles) and without (orange pluses) interstitial
space corrections. The dashed lines are the best fit regression lines for GK dipole
moment magnitudes, while the solid black line is x = y to guide the eye.

CONCLUSIONS

In this work, updates to the AMOEBA GK implicit solvent
to support protein simulations have been described. We detailed
the addition of nine parameters to the original implicit solvent
model to improve its performance for interstitial spaces that arise
commonly in biomolecules. Element-specific HCT scale factors
Sx(x = [C,N,O,P,S]) are used for pair-wise descreening,16 which
are strictly less than 1.0 since their role is to avoid overcount-
ing of overlaps. The neck scaling factor, Sneck, corrects for overlaps
between atomic neck regions (Fig. 2) and is also strictly less than
1.0. Finally, a tanh function with three parameters βx(x = 0, 1, 2)
increases the descreening integral to account for interstitial spaces
due to many-body interactions, especially for deeply buried atoms.

The model was tested by running 5 μs of MD simulation for
a varied set of proteins. The protein trajectories were generally sta-
ble across 500 ns, with an average (non-terminal) backbone RMSD
of 2.03 Å. The current fitting of GK base radii is biased toward
experimentally available small molecule solvation free energy dif-
ferences, which do not feature repetitive elements such as those
in a protein or nucleic acid backbone. For this reason, additional
tuning of base radii to account for repeated chemical groups was
performed. Tensor recursion formulations for GK using both Carte-
sian andQI frames have beenmade available to ease implementation
in software packages such as FFX,55 OpenMM,56 and Tinker.57,58

This recursive scheme will help to facilitate n ⋅ log (n) implicit sol-
vent implementations based multipolar methods,76 including fixed
charge GB models.77

Future work may benefit from force matching78,79 data from
explicit solvent biomolecular simulations to augment traditional fit-
ting based on small molecule solvation free energy differences. One
forcematching parameterizationmethodwas described for 16 GRO-
MOS atom types by Kleinjung,80 and similar procedures could be

used with AMOEBA implicit solvent model fitting. The parameter-
ization of interstitial space correction terms was designed to ensure
that the implicit solvent model can be used to simulate proteins
and nucleic acids simultaneously. The fitting of nucleic acid specific
parameters, including the nucleic acid neck scale factor, and tun-
ing of previously fit electrostatic radii for nucleic acid atom types
to account for repetitive backbone chemistries will be addressed in
future work.

The implicit solvent model for proteins is currently being
used in the development of new protein optimization and design
methods within FFX, including a family of side-chain optimiza-
tion methods. These algorithms use a many-body energy expansion
to determine optimal side chain conformations and titration states
(e.g., for LYS, HIS, ASP, and GLU residues) from a set of low-energy
conformations known as rotamers. Typically, the polypeptide back-
bone remains fixed while the side chains are moved through their
rotamers. The use of a continuum solvent is essential to eliminate
steric clashes with explicit solvent molecules as the energy of each
rotamer (or pair of rotamers) is computed. This approach can be
used in conjunction with new techniques for experimental structure
determination (e.g., CryoEM, time resolved x-ray crystallography)
that leverage the AMOEBA force field during refinement.6,81–85

However, the experimental resolution is rarely high enough to assign
titratable amino acid protons. Additionally, manual placement of
side chains during model building is time-consuming and can result
in energetically nonoptimal structures. Using global sidechain opti-
mization methods built on rotamer libraries,86 it is possible to
optimize both side-chain conformations and their titration states
during model building and refinement.

This GK implicit solvent for proteins can also facilitate the
development of constant pH molecular dynamics (CpHMD) algo-
rithms for the AMOEBA force field. Implicit solvents have already
been shown to work well with CpHMD methods using fixed charge
force fields.52,87–89 For example, GB-CpHMD90 in the AMBER sim-
ulation package has been used to predict pKa shifts using the Amber
ff14sb force field. The advantage of using an implicit solvent for
CpHMD simulations is two-fold. First, the number of atoms being
simulated is reduced. A second advantage is that solvents relax
instantaneously to changes in ionization state, which avoids the rela-
tively slow kinetics associated with water reorientation. This is espe-
cially apparent for enhanced sampling methods such as pH replica
exchange, where different ionization states are immediately accom-
modated by continuum water during exchanges (i.e., promoting
efficient pH replica exchange rates).

An implicit solvent was recently used in conjunction with
a deep learning approach to calculate the absolute binding free
energy difference of a host-guest system via the DeepBAR method
presented by Ding and Zhang.91 With the implicit solvent model
described here, the DeepBAR approach could now be applied to the
series of host-guest systems modeled successfully by the AMOEBA
polarizable force field in the context of the SAMPL challenges.92,93

Additional applications that stand to benefit from implicit solva-
tion, such as the simulation of protein/nucleic acid complexes30 or
intrinsically disordered proteins,94,95 could be explored in future
work. While the current model is parameterized for use with the
AMOEBA force field, it will also be adapted for force fields with sim-
ilar electrostatics models (e.g., AMOEBA+96 and HIPPO97) as they
are developed. This will ensure transferability and the continued use
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of more advanced force fields. Overall, the stability of the current
model for a broad array of proteins with the addition of only a few
new parameters shows promise for the expanded use of GK implicit
solvent for biomolecular simulations.

SUPPLEMENTARY MATERIAL

The supplementary material contains (1) a Word document
with two tables of neck integral constants, a plot showing perfect
effective Born radii vs perfect effective Kirkwood radii for 1UBQ,
GK diameters for selected AMOEBA protein atoms, and the numer-
ical data used to generate the RMSD histograms; and (2) a tar archive
with Force Field X input files that can be used to generate the protein
simulation trajectories.
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