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Abstract—In this paper, we interrogate whether data quality
issues track demographic characteristics such as sex, race and
age, and whether automated data cleaning — of the kind com-
monly used in production ML systems — impacts the fairness of
predictions made by these systems. To the best of our knowledge,
the impact of data cleaning on fairness in downstream tasks has
not been investigated in the literature.

We first analyze the tuples flagged by common error detection
strategies in five research datasets. We find that, while specific
data quality issues, such as higher rates of missing values, are
associated with membership in historically disadvantaged groups,
poor data quality does not generally track demographic group
membership. As a follow-up, we conduct a large-scale empirical
study on the impact of automated data cleaning on fairness,
involving more than 26,000 model evaluations on five datasets. We
observe that, while automated data cleaning has an insignificant
impact on both accuracy and fairness in the majority of cases, it
is more likely to worsen fairness than to improve it, especially
when the cleaning techniques are not carefully chosen. This
finding is both significant and worrying, given that it potentially
implicates many production ML systems. We make our code and
experimental results publicly available.

The analysis we conducted in this paper is difficult, primarily
because it requires that we think holistically about disparities
in data quality, disparities in the effectiveness of data cleaning
methods, and impacts of such disparities on ML model perfor-
mance for different demographic groups. Such holistic analysis
can and should be supported with the help of data engineering
research. Towards this goal, we envision the development of
fairness-aware data cleaning methods, and their integration into
complex pipelines for ML-based decision making.

I. INTRODUCTION

Software systems that learn from user data with machine
learning (ML) are in ubiquitous use in critical decision-making
processes such as loan approvals, hiring, and prioritizing ac-
cess to medical interventions. Unfortunately, if left unchecked,
such applications often reproduce or even amplify pre-existing
bias in the data, leading to unlawful discrimination [1].

Data quality and fairness in production ML. Most ML
applications in production are data-intensive, and require data
cleaning [2]. Such applications regularly acquire new training
data in short intervals (e.g., nightly from log files), and
subsequently retrain and redeploy models, which then make
predictions on previously unseen data. Real-world data —
processed by production ML systems — inevitably includes
data errors [3]-[6]. Due to large data size and short redeploy-
ment intervals, data quality issues are often addressed with
automated cleaning techniques (e.g., to impute missing values,
which many ML models cannot handle directly).
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There are indications that data from historically disad-
vantaged groups may be more likely to suffer from poor
quality, such as higher occurrence of missing values [7]. Such
“heteroskedastic noise” in the data, in turn, has the potential to
negatively impact ML model fairness [8]. Yet, while there is
plenty of evidence that data quality issues hurt the predictive
accuracy of ML models [5], it is unclear whether (1) poor
data quality tracks membership in disadvantaged groups, and
(2) attempts to improve data quality through automated clean-
ing impact the fairness of ML models (e.g., by amplifying
disparities in prediction quality among groups).

To the best of our knowledge, these questions have not
been investigated in prior work. On the one hand, the growing
body of work on joint cleaning and learning [5], [9]-[11]
focuses on predictive accuracy but not on fairness. On the other
hand, research on fairness in ML usually ignores data quality
issues; it is common, for example, to simply remove tuples
with missing values from the data before experimentation [12],
[13]. Moreover, existing data-centric work on fairness either
focuses on coverage (e.g., underrepresentation) at training
time [8], [14], [15] (and not on repairing erroneous tuples),
or it introduces synthetically-generated errors only [16]-[18],
making it difficult to judge how representative the results are
of real world settings.

Quantifying the impact of automated data cleaning on
fair decision-making. What is the impact of data errors and
automated cleaning on model performance, both over-all and
for subsets of the data corresponding to different demographic
groups? This question is both crucial and understudied, with
very real implications for production ML systems currently
used for critical decision-making. A major challenge is that
there is no “clean” ground truth available for datasets that are
commonly used for ML fairness research. Furthermore, such
datasets are hard to clean manually, in part because validating
data errors would require access and corroboration through
secondary data sources (e.g., bank records or medical files),
which raises substantial privacy and data protection concerns.
Therefore, instead of trying to quantify the quality of the
data directly, we tailor our research questions to address the
two common stages of automated data cleaning: (1) error
detection, which flags potentially erroneous tuples, and (2)
data repair, which attempts to correct the erroneous tuples:

e RQI. Does the incidence of data errors track demographic
group membership in ML fairness datasets?
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e RQ2. Do common automated data cleaning techniques
impact the fairness of ML models trained on the cleaned
datasets?

To address RQ1, we analyze the tuples flagged by common er-
ror detection strategies in five widely used fairness benchmark
datasets, with respect to groups based on sex, race, and age
(Section III). To address RQ2, we conduct an empirical study
of the impact of data cleaning on model fairness (Section IV),
by applying common automated data cleaning techniques to
the potentially erroneous tuples detected in RQI. Our study
involves training and evaluating more than 26,000 models and,
in contrast to existing work, does not inject synthetic noise but
works with the raw data as provided.

Contributions. We make the following contributions.

e We find that higher rates of missing values are associ-
ated with membership in historically disadvantaged groups.
However, for other types of data errors, we do not find
sufficient evidence that poor data quality tracks demographic
group membership (Section III).

« We find that, while automated data cleaning has an insignif-
icant impact on both accuracy and fairness in most cases, it
is more likely to worsen fairness than to improve it in cases
where an impact is observed, especially when the cleaning
techniques are not carefully chosen. This finding is both
significant and worrying, given that it potentially implicates
many production ML systems! The observed effect varies
based on dataset, fairness metric, and type of error being
repaired. In many cases, we do not encounter a configuration
that simultaneously improves both fairness and accuracy
(Section 1V).

« We outline which cleaning techniques, error detection strate-
gies and ML models turned out to be most beneficial for
fairness and accuracy in our study (Section IV).

o We discuss the implications of our findings, and outline
research challenges and directions for follow-up work in
Section V. Furthermore, we provide the code and results for
our study and experiments for reproducibility and follow-up
research.!

II. PRELIMINARIES

We introduce sensitive demographic attributes, datasets,
error detection strategies, as well as automated data cleaning
and repair methods used in our study.

Sensitive attributes. We investigate disparities with respect
to sensitive attributes based on which unlawful discrimination
in decision-making has been observed [1], e.g., violating US
labor law [19] or European non-discrimination law [20]. Given
a sensitive attribute, we partition the data into tuples belonging
to a privileged group and all other tuples as belonging to a
disadvantaged group.

We consider sex (with ‘male’ as the privileged group),
race (with ‘white’ as the privileged group) and age (with
people older than 30 years as the privileged group). Note

Thttps://github.com/amsterdata/demodq

that which demographic group is considered privileged vs.
disadvantaged is task-specific, and is designated as appropriate
for the benchmark datasets and tasks described below. For
example, older age is considered privileged in the context of
lending, but disadvantaged in the context of hiring.

Benchmark datasets. We use five publicly available datasets
listed in Table I from three source domains: census, finance,
and healthcare. These datasets are commonly used in research
on responsible machine learning and data management [7],
[8], [12], [21]. Each dataset is associated with a binary
classification task. In our setup, the positive class always
corresponds to the desirable outcome for the individuals in
the dataset, such as being considered creditworthy or being
prioritized for access to healthcare resources. Note that the
choice of sensitive attribute(s) is taken from existing research
on these datasets [7], [8], [12], [21].

number number of sensitive
name source of tuples attributes attribute(s)
adult census 48,844 12 sex, race
folk census 378,817 10 sex, race
credit  finance 150,000 8 age
german finance 1,000 18 age
heart healthcare 70,000 11 sex

TABLE T

BENCHMARK DATASETS USED IN ML FAIRNESS RESEARCH.

The adult? dataset contains demographic and financial
data, and the target variable denotes whether a person earns
more than 50,000 dollars per year or not. This dataset has
been used extensively to evaluate fairness in predictions of
credit-worthiness. Recent work proposes to “retire” this dataset
due to both unclear data origins and the apparent — and
unrepresentative — class-label imbalance, which renders the
prediction task unrealistic [21]. We include this dataset in
our study as a way to complement these concerns from a
data management perspective, exposing additional data quality
issues. The folk? dataset is based on US census data and
has been proposed as a replacement for the problematic
adult [21] dataset, to be used for financial decisions. We
use a subset of the data from the census in California in 2018,
and replicate the prediction task from adult. The credit*
and ge rman’ datasets contain financial information, and the
target variable denotes whether a person has a good credit
score. The heart® dataset consists of patient measurements
with respect to cardiovascular diseases, and the target variable
denotes the presence of a heart disease. This dataset has been
used to evaluate fairness of predictive tasks that allocate access
to priority medical care for individuals.

Error detection strategies. We apply common error detec-
tion strategies that have been proposed in the data cleaning
literature [3], [22], [23] and are also used in studies about the
impact of data cleaning on machine learning tasks [5].

Zhttps://archive.ics.uci.edu/ml/datasets/adult
3https://github.com/zykls/folktables
“https://www.kaggle.com/c/GiveMeSomeCredit
Shttps://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
Shttps://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
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Fig. 1. Disparate proportions of tuples flagged by common error detection strategies for the privileged and disadvantaged groups. The numbers above the
bars denote the number of attributes with a particular error type for the univariate error detection strategies which operate on the attribute-level (missing
values, outliers-sd, outliers—-iqgr). While historically disadvantaged groups are subject to higher rates of missing values in the majority of cases,

we do not find sufficient evidence of a demographic dependency in data errors.

Missing values. We identify tuples with missing values by
detecting NULL and NaN values in the datasets.

Outliers. We detect numerical outliers with the following
techniques: (i) outliers-sd — we consider a value of
a column to be an outlier if it is more than n standard
deviations away from the mean of the column (with n = 3);
(i1) outliers—-igr — we consider a value of a column
to be an outlier if it lies outside of the interval [pas — k -
igr, prs + k -iqr] with & = 1.5. Note that iqr refers to the inter-
quartile range defined as the difference between the 75th and
25th percentile of the column distribution: iqr = pr5 — pas;
(#i1) outliers—if — a tuple is considered to be an outlier
if it is identified as such by an isolation forest trained on
the data with a contamination parameter of 0.01. Note that
outliers-sd and outliers—iqgr are univariate tech-
niques that inspect individual attributes, while the multivariate
approach outliers—1if inspects whole tuples.

Label errors. An ML-specific type of error are mislabeled
examples: tuples with the wrong prediction label assigned to
them. Such errors have recently received a lot of attention, due
to the fact that they are pervasive in widely used benchmarking
datasets for ML [24]. We detect tuples with potential 1abel
errors tuples with the cleanlab [25] library, using a logistic
regression model as the base classifier. Cleanlab identifies label
errors in datasets by estimating the joint distribution between
noisy (given) labels and uncorrupted (unknown) labels.

Limitations. Unfortunately, there are no known integrity con-
straints available for the datasets (e.g., in the form of functional
dependencies or denial constraints [26]) and no verified sets
of clean records, which prevents us from applying more
advanced cleaning and error detection techniques such as
HoloClean [27], HoloDetect [28] or kNN-Shapley [29]. We
consider it an interesting avenue for future work to include
these approaches on appropriate datasets and tasks.

Automated repair methods. We apply standard techniques
for repairing erroneous tuples, which are implemented in
popular data science packages such as scikit-learn’ or pandas,
and used in existing studies on joint cleaning and learning [5].
We apply several methods to impute missing values, namely,
via the column mean or mode for numerical columns, and
via the mode or a constant “dummy” value for categorical
columns. We repair outlier values in numerical columns by
replacing them with the mean or mode of the column. We
repair label errors by flipping the labels of flagged tuples.

ITI. INDICATIONS OF DEMOGRAPHICALLY DISPARATE
DATA QUALITY ISSUES

To address RQI, we search for cases in which the error
detection strategies flag significantly different fractions of the
privileged and disadvantaged groups, based on sex, race or age.
For a dataset D, let the Boolean predicate priv(¢) evaluate
if tuple ¢ € D belongs to the privileged group. Further, let
the Boolean error function o(t) evaluate if ¢ is considered
erroneous by detection strategy o.

To identify statistically significant disparities, we compute
the number of erroneous tuples |{t € D |priv(t) A o(t)}]
from the privileged group, the number of erroneous tuples
|{t € D|—priv(t) A o(t)}| from the disadvantaged group, and
conduct a G? significance test with a threshold of p = .05.
We report only cases that pass this test. We run the error
detectors for disparities w.r.t. sex on the adult, folk, and
heart datasets, w.r.t. race on the adult and folk datasets,
and w.rt. age on the credit and german datasets. We
plot the results in Figure 1, distinguished by dataset, sensitive
attribute, error type and detection strategy. The bars represent
the fraction of tuples from the privileged group and from
the disadvantaged group that were flagged as erroneous. The

7https://scikit-learn.org/stable/modules/generated/sklearn.impute.
SimpleImputer.html
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numbers above the bars denote the number of attributes with
a particular error type for the univariate error detection strate-
gies which operate on the attribute-level (missing values,
outliers-sd, and outliers-iqgr).

Results. We find that all three data errors (missing values,
outliers and label noise) are frequently detected in the research
datasets.® These errors are flagged in disparate proportions for
different datasets and protected characteristics, and, strikingly,
error detection strategies often identify large fractions of
erroneous tuples (e.g., up to 51% of the tuples of a particular
group). Notably, adult — one of the most widely used
datasets in fair ML — is the only dataset for which all six
error detectors flag tuples with significant disparities, for both
sex and race. We interpret this as additional evidence that it
is time to “retire” adult [21].

Disparities in missing values. We find that tuples from the dis-
advantaged group are subject to missing data more frequently:
in four out of six dataset/sensitive attribute combinations, and
in 14 out of 17 attributes with disparate proportions of missing
data, the fraction of tuples from the disadvantaged group is
higher than the fraction of tuples from the privileged group.

Disparities in outliers. We see a mixed picture w.r.t. outliers,
where it varies strongly which group is more affected. Ad-
ditionally, there are several cases where we encounter dis-
parate proportions of outliers with only a particular detection
technique but not with others. Additionally, we find that the
amount of outliers detected heavily varies based on the applied
detection strategy.

Disparities in predicted label errors. For label errors, we
find that, in the majority of cases (4 out of 6), the fraction
of tuples from the privileged group in the mislabeled data
is higher than the fraction of tuples from the disadvantaged
group. (Note that these labeling errors are predicted, and that
we do not have access to the ground truth.) We drill in on
the type of label error — false positive or false negative
— and find no significant differences between the privileged
and the disadvantaged groups in most cases. However, in one
case (in the heart dataset) the fraction of false positives
was significantly higher for the privileged group than for
the disadvantaged (57.7% vs. 52.2%, respectively), and the
trend was reversed for the false negatives (42% vs. 47.8%,
respectively). This is potentially problematic, because false
positives can amplify the advantage, while false negatives can
exacerbate the disadvantage for the respective groups.

Discussion. Overall, while we do find strong indication of a
large number of data quality issues in benchmark datasets, we
do not find sufficient evidence that these potential data errors
track demographic group membership with respect to sex, race
and age. In datasets such as folk and heart, overall, errors
are detected more frequently in the disadvantaged group, but
the disparity in errors between groups is small. In datasets such
as credit and german, where the disparity in the incidence
of errors across groups is large, errors do not systematically

8Note that the heart dataset has no missing values at all.

occur more frequently for the disadvantaged group: in 4 out of
6 configurations, the fraction of errors in the privileged group
is higher than in the disadvantaged group.

The results of RQI are counter-intuitive to the hypothesis
that data from historically marginalized groups is more likely
to be erroneous, and motivates our large-scale empirical study
for a principled answer to RQ2. We discuss further implica-
tions of this finding in Section V.

IV. IMPACT OF AUTOMATED DATA CLEANING
ON FAIRNESS

In the following, we address RQ2 and study the impact

of applying data repairs to the flagged tuples as part of
the training and evaluation of machine learning models for
decision-making.
Setup. Our goal is to quantify the downstream impact of
automated data repairs on the fairness and accuracy of ML
models. We adapt the existing CleanML benchmark for joint
data cleaning and model training [5], and compute several
fairness metrics during evaluation. For that, we integrate our
five datasets into CleanML, and extend its code to record
group memberships per tuple and to compute group-specific
confusion matrices on the test set.

Classification models and training procedure. We use three
different ML models, each of which we tune using 5-fold
cross-validation: logistic-regression (Log—reqg) with a tuned
learning rate, nearest neighbors (knn) with a tuned number
of neighbors, and gradient-boosted decision trees (xgboost)
with a tuned maximum tree depth. During each run, we sample
15,000 records from a given dataset, randomly split these into
train and test set, and evaluate five different model instances
(with different random seeds for the hyperparameter search)
per split. We repeat this 20 times per configuration (dataset/-
model/error/repair), resulting in the training and evaluation of
100 models per configuration.

Evaluation. For each run, we evaluate the predictions of the
corresponding model (learned on the repaired train set) on an
equivalently repaired test set. We compare these predictions to
the “dirty” baseline predictions of a model, trained and eval-
uated on the “dirty” version of the data. For each prediction,
we compute the following two fairness metrics:

o Predictive parity is satisfied if a classifier has equal precision
for the subjects in the privileged and disadvantaged groups.
This metric is computed as Tl TPy and

put TP+ F Py TPus+ F Py’
denotes equal probability of a correct positive prediction for
the groups.

o Equal opportunity is satisfied if a classifier has equal recall
for the subjects in the privileged and disadvantaged groups.
This metric is computed as ——t2—— — —_TPus Note

P TP+ FNpy TPyt FNgy* N0
that only records with a positive label influence this metric.

In line with existing research [13], we choose these two met-
rics because they intuitively represent the opposing interests
of two key stakeholders in many decision making processes
— individuals who seek access to resources, and vendors
who grant access. For example, in lending, the bank, on the
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one hand, wants high precision (to avoid giving loans to
creditors who might not have the means to repay them), while
customers, on the other hand, want high recall (to avoid being
denied a loan that they would have been able to repay).

Error detection and repairs. We detect errors and repair
flagged tuples as outlined in Section II. We select different
variants of missing value imputation as outlined earlier. Note
that most classifiers cannot naturally handle missing values,
which requires us to define a modified version of the data as
the ‘dirty’ version. For the ‘dirty’ setup, we remove tuples with
missing values from the training data and impute them with
the mean for numerical columns and dummy for categorical
columns on the test data. Note that one cannot simply remove
tuples with missing values from the data during prediction in
a real-world setup, therefore we have to impute on the test
set as well for consistency. For other types of errors, missing
values have to be removed from the data beforehand. We detect
outliers and impute them as outlined earlier in Section II. In
the “dirty” setup, we simply retain the outliers in both the
train set and the test set. For labeling errors, we run cleanlab
for detection and flip the labels of identified tuples as a repair
technique. For the “dirty” setup, we leave the labels as is in
both train and test set. Note that we never flip labels on the
test set, as this would make the prediction results incomparable
with the other experiments.

Results and discussion. We evaluate 26,400 models in total,
and compute a result table from our experiments, where each
row contains the result of a particular configuration with
respect to a dataset, sensitive attribute, fairness metric, model,
error type, detection method, repair method, and indicators
for the impact on fairness and accuracy.” The impact on
fairness as well as the impact on accuracy of a configuration
can be positive, negative or insignificant. We determine this
by comparing the resulting 100 fairness and accuracy scores
from the “dirty” baseline (with no cleaning) to the scores
from a cleaning configuration (dataset, sensitive attribute, fair-
ness metric, error, detection, repair). We leverage a sequence
of paired sample t-tests as proposed by CleanML [5] with
a threshold for the p-value of .05 adjusted by Bonferroni
correction to account for multiple hypothesis tests. In the
following, we analyze this result table. Tables II, Il & IV
report the impact of auto-cleaning on fairness and accuracy for
missing values, outliers and label errors (note that the counts
in the cells denote the number of configurations, and that each
configuration represents 100 model evaluations).

Impact of repairing missing values. In general, we find that
auto-cleaning missing values does not degrade downstream
model performance: 38% of the times it has no significant
impact on accuracy, and nearly half of the times (49.1%) it
results in an improvement. Similarly, 59.3% of the times it has
no significant impact on fairness. Worryingly however, when
cleaning does have an impact on fairness, it is more likely to
have an adverse impact (23.6%) than a positive one (17.1%).

9https://github.com/amsterdata/demodg/blob/master/cleanml.csv

accuracy
worse insignificant better
. worse 1.9% (4) 10.6% (23) 11.1% (24) 23.6% (51)
& imsign. | 97% (21)  255% (55)  24.1% (52) | 59.3% (128)
better | 1.4% (3) 1.9% (4) 13.9% (30) | 17.1% (37)
13.0% (28)  38.0% (82) 49.1% (106)
TABLE II

IMPACT OF AUTO-CLEANING MISSING VALUES.

Impact of repairing outliers. We see a similar trend for outlier-
repair: Most of the times, cleaning has an insignificant impact
on both accuracy (49.7%) and fairness (72.2%), and, on bal-
ance, when cleaning does have an impact on fairness, it is more
likely to worsen (19.6%) than improve it (8.2%). Interestingly,
however, we notice that fairness-gains track accuracy-gains:
when cleaning improves accuracy, it is also more likely to
improve fairness (6.1%) than worsen it (4.0%). And, when
it worsens accuracy, it is also much more likely to worsen
fairness (9%) than improve it (1.9%).

accuracy
worse insignificant better
.. worse | 9.0% (34) 4.5% (17) 6.1% (23) 19.6% (74)
& insign. | 114% (43) 42.9% (162)  18.0% (68) | 72.2% (273)
better 1.9% (7) 2.4% (9) 4.0% (15) 8.2% (31)
22.2% (84) 49.7% (188) 28.0% (106)
TABLE III

IMPACT OF AUTO-CLEANING OUTLIERS.

Impact of repairing predicted label errors. For label errors,
the accuracy impact is extremely strong: auto-repairing label
errors does not hurt accuracy in any configuration, and it
improves accuracy over 90% of the time. Interestingly, while
improving accuracy, cleaning is (almost) equally likely to
improve (23.8%), worsen (31%), or have no impact on fairness
(35.7%).

accuracy
worse insignificant better
.. worse | 0.0% (0) 2.4% (1) 31.0% (13) | 33.3% (14)
& insign. | 0.0% (0) 7.1% (3) 35.7% (15) | 42.9% (18)
better | 0.0% (0) 0.0% (0) 23.8% (10) | 23.8% (10)
0.0% (0) 9.5% (4) 90.5% (38)
TABLE IV

IMPACT OF AUTO-CLEANING LABEL ERRORS.

In general, we find that fairness is not significantly impacted
in the majority of cases (42.9% to 72.2%). However, across all
types of errors, automated cleaning is more likely to worsen
than to improve fairness! This finding illustrates that we should
be concerned about the choice of cleaning techniques for
models in production and that we need to develop means to
carefully choose appropriate cleaning techniques to prevent a
negative impact on fairness. When we additionally calculate
the impact dependent on the fairness metric, we find a large
negative imbalance for equal opportunity (worsening of fair-
ness in 32.7% compared to positive impact in 7.5% of cases)
and a slightly positive balance for predictive parity (worsening
of fairness in 11% compared to positive impact in 16.9%
of cases). This result motivates us to look at the impact of
automated cleaning on a more granular level.
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For which cases (dataset, error and fairness metric) is clean-
ing potentially beneficial at all? In order to assess whether
it would be possible to carefully choose a beneficial cleaning
technique for a given setting, we analyze for which of the
cases in our study we encounter a beneficial auto-cleaning
technique at all. We define a case as a combination of a fairness
metric (predictive parity or equal opportunity), a dataset with
a sensitive attribute, and an error type (missing values, outliers
or label errors), resulting in 40 different cases in total.

A promising finding is that for nearly every case (38 out of
40), we encounter at least one cleaning technique which does
not worsen fairness. In half of the cases (20 out of 40), there
exists a cleaning technique which improves fairness, while we
can improve both fairness and accuracy simultaneously only
in 15 out of 40 cases. When taking a deeper look, we find
stark differences with respect to the fairness metrics (for each
of which we have 20 cases). Auto-cleaning is more likely to
improve predictive parity than equal opportunity: In 14 out
of 20 cases, cleaning improves the predictive parity fairness
metric, compared to only 6 cases for equal opportunity. In
13 cases, cleaning improves both accuracy and fairness for
predictive parity, compared to only 2 for equal opportunity.
We attribute this to the fact that equal opportunity is only
influenced by predictions on the smaller fraction of tuples with
the desirable positive label. From these results, we conclude
that the impact and benefits of auto-cleaning on fairness and
accuracy heavily depends on the choice of fairness metric, and
must therefore be carefully evaluated in practice!

Which repair and detection techniques produce the most
gains? Next, we focus on configurations with a positive impact
on fairness, and analyze the applied detection and repair
techniques in such cases.

For missing values, we do not encounter a dominating
imputation approach for numerical columns. However, for
categorical columns, “dummy” imputation with a constant
value turns out to be most beneficial for fairness (with fairness
improvements in 22 cases, compared to only 15 cases with
a different imputation technique). We attribute this to the
fact that dummy imputation allows the model to identify
tuples with missing values and learn extra parameters for them
(which is not the case for mode and mean imputation). For
example, in the folk dataset, the accompanying datasheet
makes it clear that missing values are typically ‘Not Applicable
(N/A)’, based on values in another column; e.g., Occupation
(OCCP) and Class of Worker (COW) are missing for people
with Age (AGEP) less than 18. In this case, the missing value
is actually a special N/A value, and dummy imputation allows
the model to learn such a dependency.

For outliers, we observe no noticeable differences between
the repair techniques. However, we find a clear difference
when analyzing the detection techniques. In 16 cases, clean-
ing the outliers detected with the standard deviation rule
(outliers-sd) increases the fairness of the resulting model,
compared only 11 cases for detection with an isolation for-
est (outliers—-if) and 4 cases for detection with the

auto-cleaning makes
fairness worse | fairness better | fairness & accuracy
model better
xgboost 21.2% (45) 10.8% (23) 6.6% (14)
knn 24.5% (52) 13.7% (29) 11.8% (25)
log-reg 19.8% (42) 12.3% (26) 7.5% (16)
TABLE V

IMPACT OF AUTO-CLEANING ON ACCURACY AND FAIRNESS FOR
DIFFERENT ML MODELS ON 212 CONFIGURATIONS IN TOTAL. WE LIST
CASES WHERE FAIRNESS GETS WORSE, FAIRNESS GETS BETTER, AND
WHERE BOTH FAIRNESS AND ACCURACY GET BETTER. AUTO-CLEANING
IS MORE LIKELY TO WORSEN THAN TO IMPROVE FAIRNESS ACROSS ALL
MODELS.

interquartile range rule (outliers—-iqgr). In combination
with the fractions of flagged tuples from Figure 1, these
findings uncover the efficacy of different detection techniques:
outliers—iqgr flags a large amount of records, but ap-
parently catches less impactful examples, and demonstrates a
high incidence of false positives. Conversely, outliers—if
shows more false negatives and flags too few records to have
a positive downstream effect. outliers—sd seems to have
best performance in optimally flagging data outliers.

Model choice. We also investigate the influence of the choice
of ML model on the impact on fairness and accuracy. The
highest accuracy over all tasks is provided by the gradient
boosted trees technique xgboost. Apart from that, we find
that all models perform comparably with respect to the impact
of auto-cleaning on the fairness of their predictions (Table V).
In the majority of cases, this impact is insignificant, however,
if there is an impact, auto-cleaning is more likely to worsen
(19.8% to 24.5% of the cases) than to improve fairness (10.8%
to 12.3% of the cases).

Logistic regression (Log—reg) turns out to be the “safest”
choice in our study, with the smallest fraction of cases with
negative impact (19.8%), while xgboost benefits least from
cleaning (fairness and accuracy improve in only 6.6% of
cases). Still, xgboost would be the model of choice in
general, as it had the highest accuracy in light of missing
values and outliers, while log-reg only had the highest
accuracy in cases with cleaned label errors. We find that knn
benefits most from cleaning, but does not outperform the other
models in terms of accuracy in any configuration.

V. VISION: FAIRNESS-AWARE DATA CLEANING

The analysis we conducted in this paper is difficult, pri-
marily because it requires that we think holistically about
disparities in data quality, disparities in the effectiveness of
data cleaning methods, and impacts of such disparities on
ML model performance for different demographic groups.
Such holistic analysis can and should be supported by data
engineering tools, but it requires substantial future research.
To detect disparities in data quality, and mitigate the impact
of such disparities on the performance of ML models down-
stream, we envision the development of fairness-aware data
cleaning methods and their integration into complex data-
intensive pipelines.
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Implications for ML in production. While we did notice that
historically disadvantaged groups are subject to higher rates of
missing values in the majority of cases, we did not find suf-
ficient evidence of a demographic dependency in data errors.
This is counter-intuitive to a socio-technical framing, which
posits that marginalized groups also appear noisier in the data
(have more data errors), and could embolden data scientists
to not worry about disparate effects along demographic lines
when applying automated cleaning procedures.

However, our second result about the downstream effect
of automated cleaning demonstrates that repairing data errors
does, in fact, distribute gains disparately across demographic
groups! In Section IV, we found that automated data cleaning
can have a negative impact on fairness, and was, in our study,
more likely to worsen fairness than to improve it. This is
extremely worrying, due to the potential negative impact on
the fairness of decisions made by many ML systems that are
already in production.

The good news is, however, that we encountered at least
one configuration for almost every case (dataset, error type,
cleaning method, fairness metric) that did not negatively
impact the fairness of model predictions. This indicates that
we can — and should — mitigate any potential negative
impact of automated cleaning with the help of a principled
methodology for selecting an appropriate cleaning procedure.
Our results underscore the importance of such a methodology,
and motivate its development.

Open questions and research directions. Our findings in-
dicate that we are either unable to detect demographically-
salient data errors with current approaches, or that current
cleaning procedures are not equally ‘effective’ for different
demographic groups, or — most disturbingly — we are seeing
failure modes in both detection and repair. In order to confirm
whether the disparate proportions of tuples flagged by the error
detection strategies in Section III correspond to actual errors,
one would need to repeat this analysis on a dirty fairness-
critical dataset where the clean ground truth is available. Thus
future work on fairness-aware data cleaning must include
additional empirical evaluation.

Our findings from the study in Section IV impose the

designing new cleaning techniques is the identification of input
tuples with negative impact on fairness, which would then
need to be cleaned in a fairness-enhancing manner. Several
techniques for identifying such tuples have recently been
proposed, e.g., by computing Shapley values with respect to
a given fairness metric [30] or via causal explanations [13].
Finally, two limitations of our study are that we did not
consider intersectional formulations of demographic charac-
teristics, and mainly worked with US-centric datasets (which
are common in fairness research). These limitations should be
overcome in future work on fairness-aware data cleaning.
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