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AbstractÐThis paper shows the first side-channel attack on
neural network (NN) IPs through a remote power monitor. We
demonstrate that a remote monitor implemented with time-to-
digital converters can be exploited to steal the weights from
a hardware implementation of NN inference. Such an attack
alleviates the need to have physical access to the target device
and thus expands the attack vector to multi-tenant cloud FPGA
platforms. Our results quantify the effectiveness of the attack
on an FPGA implementation of NN inference and compare it
to an attack with physical access. We demonstrate that it is
indeed possible to extract the weights using DPA with 25000
traces if the SNR is sufficient. The paper, therefore, motivates
secure virtualizationÐto protect the confidentiality of high-
valued NN model IPs in multi-tenant execution environments,
platform developers need to employ strong countermeasures
against physical side-channel attacks.

Index TermsÐNeural networks, model stealing, time-to-digital
converters, secure virtualization

I. INTRODUCTION

Stealing machine learning (ML) models from embedded
devices using physical side-channel attacks has become a new
booming threat. Several recently published attacks show the
possibility to steal the model’s internals from a variety of target
platforms like microcontrollers [1], GPUs [2], FPGAs [3], and
domain-specific accelerators such as Intel’s Neural Compute
Stick [4]. Meanwhile, the cloud providers like Amazon have
started to host FPGAs as services on which a user can run
a custom application on a pay-per-use business model. Thus,
apart from the edge FPGA platforms, users have also started
running ML applications on cloud-based FPGAs because of
the cost-effectiveness: the user does not have to permanently
buy the FPGA and rent it without the cost of its maintenance.

A single user might not require the resources of an entire
FPGA. Thus, it may be economically more feasible to have
the cloud provider support multi-tenancy on the FPGA fabric
in which the users utilize distinct regions of the same FPGA
fabric. Multi-tenancy works well for both the cloud provider
that can rent out the same FPGA to multiple users, and the
user that can request and pay for only the resources needed for
the target application. The users access their allocated regions
via authenticated shells to instantiate digital designs and run
software on themÐfor example, a neural network accelerator
design and inference. However, sharing the same resources
by multiple users can create unintentional and potentially
dangerous security vulnerabilities [5].

Prior works have demonstrated the presence of side-
channels between designs co-located on the same FPGA fabric
due to the shared power distribution network. Schellenberg et

al. first showed how to extract the secret AES key from an
FPGA remotely using a time-to-digital converter (TDC) [6].
Zhao et al. demonstrated a successful remote SPA attack to
recover the secret key from an RSA module using a ring-
oscillator-based attack circuit [7]. We refer interested readers
to a recent survey that categorizes works on this topic [5].

However, early works on remote side-channels were only
focused on cryptographic ciphers: the victim is an encryption
module co-located with a malicious attack circuit on the
FPGA. The research on exploring such attacks in the context
of machine learning applications is limited. We argue that it
is critical to explore such remote attacks for ML applications
because of two reasons: 1) the number of published side-
channel attacks on ML accelerators has significantly increased
over the past few years, and 2) a large fraction of ML
applications are deployed on the cloud these days [8].

To the best of our knowledge, there is no work that
demonstrates the extraction of model parameters remotely
from an ML accelerator yet. Among similar works, Moini et

al. show how to remotely extract the MNIST input images fed
to a CNN accelerator and how to extract the model structure
(a.k.a., hyperparameters) using a TDC [9], [10], and Zhang
et al. showed how to remotely extract model structure using
a ring-oscillator-based attack circuit [11].

In this work, we show for the first time how to extract the
weights of a trained binarized neural network running on an
FPGA through physical side-channel attacks but without any
physical access. We target a high-fidelity extraction that aims
at extracting exact values of parameters [12]. Using a TDC
to remotely measure the power variations on the FPGA, we
conduct a differential power analysis (DPA) attack to extract
the model weights successfully. Our results show that with
25000 TDC measurements, we can successfully extract the
weights of the neural network and that remote access reduces
the attack effectiveness1 by 62.5×. Therefore, our paper urges
the need to develop secure virtualization solutions for multi-
tenant use in cloud FPGA infrastructures.

1By attack effectiveness, we mean the number of measurements needed for
a successful attack.
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II. ADVERSARY MODEL AND PRELIMINARIES

In this section we state our assumptions on the adversary
and present background information on neural networks and
remote side-channel attacks.

A. Adversary Model

We follow the threat model of the prior works published on
remote side-channel attacks [9], [10]. A summary is given
as follows. The malicious attack circuit is co-located with
the victim circuit on the FPGA fabric. We assume that the
adversary knows the inputs fed to the model and the model
hyperparameters. If they are unknown, the adversary can use
the techniques proposed in the prior literature to extract the
inputs as well as the hyperparameters [11].

The goal of the adversary is to extract the model weights
that are highly lucrative because of the expensive training
process required to generate them. The adversary by no means
can physically access the FPGA. However, the adversary does
have the capability to instantiate a DUT on the same FPGA
(remotely) and execute computations with it.

B. Neural Networks

Neural networks have become a popular choice for ML
applications, especially for common use-cases such as image
classification, speech recognition, and cybersecurity, among
others. It consists of smaller units called neurons that are
arranged in groups called layers. The neurons of one layer
may feed the neurons of the next layer through a weighted
connection. The neuron then applies a non-linear function on
the weighted summation of all the incoming connections. The
weights of these connections are determined during training
through a process called backpropagation [13]. These weights
play a crucial role in determining the accuracy of the network.

The typical floating-point weights make inference quite
expensive in terms of memory and computation. Thus, the past
few years have seen a significant research in building the so-
called quantized neural networks±the weights and activations
are represented using lower number of bits in fixed point that
reduces the memory footprint and enables efficient bit-level
operations such as xnor-popcount. Binarized neural networks
(BNN) are the extreme case of quantization where the weights
and activations are binary. Prior works have proposed BNN
architectures with accuracy as good as the conventional neural
networks [14]. Due to the huge memory, computation, and
energy savings, BNNs have become a popular choice in both
academia and industry [15], [16].

C. Remote Side-Channel Attacks

The key idea behind remote power side-channel attacks is
that the designs instantiated on the same chip share the power-
distribution network which makes the power variations mutu-
ally observable. This become a security issue if some design A

is processing confidential data because another design B can
use a power sensor to observe A’s power consumption and to
potentially get information about the confidential data.

Prior works show how to launch remote power analysis
attacks using circuits such as a ring-oscillator and TDC [6],

Fig. 1. (a) shows the conceptual remote attack setup that we create for our
experiments and (b) shows the actual floorplan of the MAC units and TDC
circuit on the FPGA highlighted in red and blue, respectively. The figure on
the right zooms in to a portion of the TDC that depicts the CARRY4 primitives
serially connected via the carry-in and carry-out ports to eventually feed an
LD (latch) and FDRE (flip flop) cell.

[7]. A ring oscillator circuit can act as a power sensor
because its frequency of oscillations varies with the power
supplied to it. A TDC can also act as a power sensor because
the propagation delay of the buffers varies with the power
supplied. Specifically, a voltage drop anywhere in the FPGA
will increase the buffer delay and reduce the number of buffers
that the pulse crosses, thus reducing the TDC counts.

III. NEURAL NETWORK AND REMOTE MONITOR DESIGN

A. Hardware Design Details

The victim circuit in our attack model is a neural network
accelerator, which primarily consists of multiply-accumulate
(MAC) units along with some other blocks for non-linear
operations. We focus on the MAC units since they are a good
first point of attack in DPAÐthe known input data combines
with unknown weights for the first time. We design a hardware
that first loads all the inputs in an on-chip memory and then
processes them sequentially every cycle. The weights of the
neural network are already stored before the computations
begin in another on-chip memory. The hardware loads each
input every cycle and then either keeps it unchanged or
computes its two’s complement based on whether its weight
is a one or zero, respectively. Next, it feeds this result to the
accumulator, which keeps adding all the partial summations
to eventually generate the complete summation for one node
of a layer [17], [18].
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B. Remote Monitor Details

We adopt the design of Schellenberg et al. in our work [6].
Fig. 1 shows the design details. The remote power monitor
primarily consists of a chain of buffers (also called the delay
chain), sequential elements to capture buffer outputs, and an
encoder to compress the final output. The input to the delay
chain is a clock, which gets slightly delayed everytime it
crosses a buffer on the chain. The outputs from the buffers
are tapped using latches which also run at the same clock
as the delay chain’s input clock. The initial part of the chain
implemented using LUTs, and it is not observed since the
variations only show up towards the end. The observable
portion of the chain uses the built-in CARRY4 primitive of
the FPGA because of its low propagation delay that helps to
improve the TDC’s resolution.

The buffer outputs are tapped using the Xilinx’s latch
primitives named LD that consume the same clock as the delay
chain. Thus, the latches capture how many buffers did the
high portion of the clock (i.e., half clock cycle) cross before
going low during its active region. The latch outputs are finally
registered by the TDC output register implemented using the
Xilinx’s register primitives called FDRE. A priority encoder
translates the number of ones seen on the delay path, thereby
compressing the size of outputs from N to log2N .

A controller ensures that the TDC measurements are made
when the target operation±the MAC operations in this case±
executes in the victim circuit. In our experiments, we initiate
the victim operations and the TDC measurements simultane-
ously, which keeps the traces synchronized in time. We agree
that triggering the side-channel measurements at the right
point in time is indeed a challenge in a remote attack since
the attacker does not have a direct visibility over the target
computations. This challenge is not unique to our scenario. A
typical way to address this is to actually start with randomly
choosing the windows and then align them later based on the
patterns seen in the traces [6], [11]. For example, in Fig. 2
it is evident that each summation causes a sharp drop in the
count and that can be used to identify the point where the
first summation is computed. The controller writes the TDC
outputs to a register file of parameterized depth. The depth
and the frequency of the controller governs the width of the
capture window. The attacker later exports the stored TDC
counts to an external host PC and launches the DPA.

IV. RESULTS

A. Experimental Setup

We use the Sakura-X FPGA board as our testing platform.
The board provides a Kintex-7 FPGA on which we run the
MAC operations alongwith the TDC-based attack circuit. We
use Verilog to develop the RTL and Xilinx Vivado 2021.1
for synthesis, implementation, and bitstream generation. A
C#-based software code on the host PC communicates with
the FPGA for register reads and writes. Essentially, it is the
software that sends the input data for MAC units, receives
the output from the MAC units, verifies the outputs and also
receives the stored TDC measurements.

Fig. 2. The left three figures show the DPA results using real power traces
from an oscilloscope and the right three figures show the results using TDC
counts; the dark and light colored lines denote the correct and incorrect weight
guesses. The Pearson correlation coefficient crosses the 99.99% confidence
interval (dotted lines) at 400 traces with real power measurements and at 25k
traces with the TDC measurements.

B. Attack Results and Comparison

We run a DPA attack on the accumulation register of the
MAC units. As Section III-A describes, the hardware adds the
product of each pixel with its corresponding weight to the
accumulated sum in each cycle. Thus, we can hypothesize on
the weights using this knowledge and create the power model
for the accumulator register.

We next the derive the power model of the attack in detail.
We denote the inputs and the corresponding weights pi and
wi, respectively, where i is the index of the pixel. Thus, in
each cycle i, the value of the accumulator register updates
from the sum of first (i − 1) partial products to the sum of
first i partial products. Since the power activity of an FPGA
depends on the number of toggles in the registers, we assume
the power model for cycle i to be the hamming distance (HD)
of the (i− 1)th and ith summations, given as follows:

HD(

i−1∑

k=0

pk × wk ,

n∑

k=0

pk × wk)

.

Since we target a binarized neural network, the weights can
only be ±1. We propose a sequential attack: extract the first n
weights w0 − wn−1 by hypothesizing on the nth partial sum

given as
∑

n−1

k=0
pk × wk. The 2n possibilities for w0 − wn−1

yields a hypothesis table of size 2n. Then, starting from the
nth summation, we hypothesize on the next nth partial sum
to extract the next n weights and so on.

The proposed attack platform faces challenges that we
describe next. The signal-to-noise ratio on Sakura-X for a
single MAC unit was too low. We believe two factors attribute
to this effect: 1) a single MAC unit is a relatively small
hardware when compared to a larger design such as AES, and
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2) the power consumption of the cells on the Kintex-7 is low
due to the smaller technology node, when compared to other
common targets such as Sakura-G with a Spartan-6 FPGA.
Even for AES, we observe a voltage drop of only ±1mV, when
measured using an oscilloscope. Nevertheless, there is still
enough signal to run a DPA attack because the 10 peaks are
clearly visible. Thus, we first increase the SNR of our design
to create a noticeable power difference between idle and active
regions, like we see for AES. We instantiate multiple copies
of the same MAC unit in the design which creates noticeable
power variations at 256 instantiations. Note that the proposed
attack works regardless but instantiating multiple copies will
result in using fewer number of traces.

Fig. 2 shows the DPA results when we attack the first three
weights (n=3) using both real and TDC measurements. The
correlations cross the 99.99% confidence interval when the
number of measurements reach 400 and 25000 with the real
and TDC traces, respectively. The number of traces needed
for a successful attack is low in this experiment because of
sufficient SNR due to 256 instantiations of the target block and
the low noise platform of Sakura-X2. From prior works [19],
we know that the number of traces required for a successful
attack inversely varies with the SNR. Thus, we believe that
the attack will still be successful with lesser number of MAC
instantiations but would require more measurements.

There is no prior work on remote DPA of ML accelera-
tors to extract the parameters but some works have shown
vulnerabilities using profiling to extract the image and hyper-
parameters [9]±[11]. Those works required 10 and 50 traces
to construct the power profile of each possible image and
hyperparameters, respectively. It is difficult to make a fair
comparison between our attack results and prior works given
the differences in the goals, post-processing techniques, and
most importantly the attack class.

V. CONCLUSION

We expose the feasibility of remotely extracting the weights
of an ML model running on an FPGA using a TDC-based
remote power monitor. The current large-scale deployment
of machine-learning applications on cloud FPGAs makes this
work very relevant and warrants immediate research to explore
countermeasures against such attacks. More research is needed
on the attacks front too, to explore how well the attacks scale
with other neural network topologies.
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2Sakura-X board provides the the isolated power line as a direct output.
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