
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Are Turn-by-Turn Navigation Systems of Regular

Vehicles Ready for Edge-Assisted

Autonomous Vehicles?
Syeda Tanjila Atik, Marco Brocanelli , Member, IEEE, and Daniel Grosu , Senior Member, IEEE

Abstract— Private and public transportation will be dominated
by Autonomous Vehicles (AV), which are safer than regular vehi-
cles. However, ensuring good performance for the autonomous
features requires fast processing of heavy tasks. Providing each
AV with powerful computing resources may result in increased
AV cost and decreased driving range. An alternative solution is
to install low-power computing hardware on each AV and offload
the heavy tasks to powerful nearby edge servers. In this case,
the AV’s reaction time depends on how quickly the navigation
tasks are completed in the edge server. To reduce task completion
latency, the edge servers must be equipped with enough network
and computing resources to handle the vehicle demands, which
show large spatio-temporal variations. Thus, deploying the same
resources in different locations may lead to unnecessary resource
over-provisioning. In this paper, we leverage simulations using
real traffic data to discuss the implications of deploying hetero-
geneous resources in different city areas to sustain peak versus
average demand of edge-assisted AVs. Our analysis indicates that
a reduction in network bandwidth and computing cores of up
to 60% and 50%, respectively, is achieved by deploying edge
resources for the average demand rather than peak demand.
We also investigate how the peak-hour demand affects the
safe travel time of AVs and find that it can be reduced by
approximately 20% if they would be rerouted to areas with a
lower edge-resource load. Thus, future research must consider
that traditional turn-by-turn navigation systems may not provide
the fastest routes for edge-assisted AVs.

Index Terms— Autonomous vehicles, navigation systems, edge
computing.

I. INTRODUCTION

A
RECENT report [1] estimates that by 2045 as much as

half of new vehicle sales could be Autonomous Vehicles

(AVs), which are important components of cutting-edge

technologies such as internet-of-vehicles (IoV) [2], [3].

The main advantages of AVs are their ability to provide

increased productivity, reduced driver stress, reduced energy

consumption, and increased safety [4]. In particular, regular

(human driven) vehicle safety is generally measured in terms

of reaction time and breaking time. While the breaking time

is mainly dependent on the mechanical aspects of vehicles

(which might be similar to that of AVs), the average reaction

Manuscript received 23 September 2022; revised 27 March
2023 and 28 April 2023; accepted 8 May 2023. This work was supported in
part by the U.S. National Science Foundation under Grant CCF-2118202 and
Grant CNS-1948365. The Associate Editor for this article was M. Shojafar.
(Corresponding author: Marco Brocanelli.)

The authors are with the Department of Computer Science, Wayne
State University, Detroit, MI 48202 USA (e-mail: tanjilaatik@wayne.edu;
brok@wayne.edu; dgrosu@wayne.edu).

Digital Object Identifier 10.1109/TITS.2023.3275367

time of humans is about 3/4 of a second [5]. To improve

reaction time (i.e., safety) over humans, AVs heavily rely on

a variety of sensor-generated data [6] (e.g., radar, camera,

lidar, ultrasonic sensor) to identify the environment and carry

out safe driving operations automatically. For example, each

camera frame must be processed on the most appropriate unit

(e.g., CPU, GPU, AI accelerator) to identify features such

as lanes and other vehicles directions. The navigation system

then uses this information to react by updating the AV’s speed

and direction [7]. In order to ensure improved safety over

regular vehicles, it is thus crucial for the end-to-end response

time (i.e., from camera frame acquisition to AV reaction) to

be minimized.

Given that AV technology is not yet deployed at large scale

and it is still being studied in both academia and industry, there

are two deployment strategies to help mitigate the challenges.

The first one is to equip the AVs with a very powerful com-

puting system [2] to run heavy tasks locally with low response

time. However, this may lead to an increased production cost,

which may slow down their sale and widespread adoption.

The second strategy is to assist the AVs with edge technology,

where they can offload heavy tasks to powerful nearby edge

servers [8], [9], and achieve faster data processing with lower

response time [10], [11]. Compared to the first strategy, the

capital cost necessary to install/maintain such servers (e.g.,

through government incentives) can be amortized by the fact

that they are shared across multiple AVs, can help reduce AVs’

cost, and may help speed up the transition to a safer and more

efficient traffic circulation. However, this strategy also leads

to additional challenges that must be further explored.

When data is being offloaded to the nearby edge servers,

the analysis or processing of the data vastly depends on the

amount of network and computational resources deployed in

that edge server. Since the AV keeps moving after offloading

its data, it may travel some distance before the computing

result from the edge server is received. We call this distance,

the blind distance since the AV remains blind to new features

found in the last data offloaded until the computation result

is received. With AVs, the blind distance can be bounded

by design to a certain value for guaranteed safety, at least

from the reactiveness point of view. For example, the system

designer may want to guarantee a maximum blind distance for

edge-assisted AVs of 5 meters. Thus, the end-to-end response

time must be lower or equal to the ratio of blind distance

over speed, which can vary over space and time. As a result,

the amount of computing resources deployed at the edge

1558-0016 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Wayne State University. Downloaded on May 29,2023 at 19:59:25 UTC from IEEE Xplore. Restrictions apply.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

responsible for processing the offloaded task can limit the

AV’s safe speed that allows the vehicle to meet the chosen

blind distance requirement.

In order to reduce the response time and maximize the safe

speed, the edge servers must be equipped with enough network

and computing resources to handle the vehicle demands. How-

ever, because of the variable number of vehicles on the road,

this demand is characterized by large spatio-temporal varia-

tions. As a result, deploying the same amount of resources to

all edge servers and/or deploying the resources necessary to

handle the peak-hour demand in a specific area may lead to

costly and unnecessary over-provisioning of edge resources.

On the other hand, deploying a lower amount of resources

to limit costs may lead to lowering the safe speed of AVs

on a specific path in order to keep a desired bounded blind

distance. This may lead to the problem that modern turn-by-

turn navigation systems, which provide the fastest route to

destination for regular (human-operated) vehicles, may not be

able to provide the fastest route for edge-assisted AVs.

In this paper, we explore the design trade offs among the

amount of deployed edge resources, desired blind distance,

and resulting safe speed for edge-assisted AVs. We develop

a simulation environment that leverages a real vehicle transit

dataset [12] from the city of Cologne, Germany, to explore

heterogeneous edge server configurations that satisfy peak and

average AV demand. We find that, when high safety is required

(i.e., short blind distance), the peak configurations lead to

high over-provisioning due to the high variability of traffic

during the day. Thus, cost savings and better utilization can

be achieved by deploying the average configuration. Finally,

we study the effect of deploying average configurations on

the safe speed of autonomous vehicles for various safety

requirements and study its effect on the travel time for

random routes in the city. We find that, due to limitations

on available edge resources, modern turn-by-turn navigation

systems that provide the fastest route to regular vehicles

do not necessarily provide the fastest one for edge-assisted

AVs. We hope the discussion and findings of this paper will

inspire and motivate future research on AV navigation systems

and algorithms, and help determine how to plan resource

deployment for AVs.

Specifically, this paper makes the following contributions:

• To the best of our knowledge, this is the first paper

to highlight the challenges deriving from heterogeneous

edge computing for edge-assisted AVs. Specifically,

we provide the first extensive evaluation of the design

trade offs among edge resource deployment, safety, and

travel time at different city locations and day times.

• We leverage real traffic data from the city of Cologne

(Germany) to study the traffic characteristics, e.g., num-

ber of vehicles and average speed, and find the likely

configuration of edge resources needed in a particular

area to ensure a certain safety bound.

• We study several scenarios and compare how the travel

time through the same route changes for regular vehicles

and edge-assisted AVs. We show that in some cases the

current turn-by-turn navigation system fails to provide the

fastest route for the AVs because they do not consider

the amount of resources deployed at the edge servers and

their load at different day times along the navigation path.

• We have developed a simulation environment in Python

that uses the real traffic data to evaluate the results.

Our analysis has revealed that a reduction in network

bandwidth and computing cores of up to 60% and 50%,

respectively, is achieved by deploying edge resources for

the average demand rather than peak demand. In addition

it has also been found that the safe travel time of AVs

can be reduced by approximately 20% if they would be

rerouted to areas with a lower edge-resource load.

The rest of the paper is organized as follows. Section II

reviews the related work. Section III provides an overview

of edge-assisted navigation for AVs and describes the

approach used for finding the configuration of edge resources.

Section IV describes the dataset along with the results from

our experiments. Section V discusses the experimental results

and Section VI concludes the paper.

II. RELATED WORK

Given that AVs are still in their infancy and have not been

deployed at large scale yet, recent research studies have envi-

sioned they will likely be designed in one of two ways. First,

all the on-board sensor data is exclusively analyzed locally by

deploying powerful computing resources on each AV. Second,

to reduce the amount of computing resources deployed on each

AV, part of the heavy computation is offloaded from AVs to

powerful edge resources shared among nearby AVs.

Mero et al. [13], consider a single computing module to be

installed on board of each AV and capable of handling the

complex autonomous driving tasks by processing sensor data

through deep learning models trained by leveraging Imitation

Learning. Souri [3] analyzes the use of AI in connectivity

management systems for the IoV and Vehicular Ad Hoc

Network (VANET) environments. The study in [6] introduces

a virtual machine (VM) placement algorithm, which utilizes

the maximum flow and minimum cut theory in order to achieve

excellent QoS while reducing the energy usage of IoT devices

in the vehicles. The research presented in [14], [15], [16],

[17], and [18] consider each vehicle having a full sensor

configuration that can navigate on its own without the need for

any cooperation with the other vehicles. Researches in [19],

[20], and [21] use LiDAR point clouds to implement Simulta-

neous Localization and Mapping (SLAM) in AVs. The LiDAR

sensors are generally expensive and the resulting computation

usually needs power-hungry onboard components such as

graphics processing units (GPU) [22]. However, none of the

above solutions consider that, according to a recent study [23],

adding too many resources on board can considerably reduce

the driving range of the vehicle.

In order to deal with these challenges, several studies

suggest computational offloading. Several researchers [8], [9],

[24], [25], propose to offload part of the heavy computation

to the edge. Some studies [26], [27], [28], [29] even proposed

to move the LiDARs to a suitable place out of the vehicle

and move the GPUs at the edge by connecting them with

edge servers to be shared among other AVs. Yang et al. [30]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Wayne State University. Downloaded on May 29,2023 at 19:59:25 UTC from IEEE Xplore. Restrictions apply.

ATIK et al.: ARE TURN-BY-TURN NAVIGATION SYSTEMS OF REGULAR VEHICLES READY FOR EDGE-ASSISTED AVs? 3

mitigate the challenge of low on-board object detection accu-

racy by intelligently offloading blocks of pixels to the edge.

Abdallaoui et al. [31] discuss the most popular path planning

techniques proposed in literature for navigation problems

involving autonomous vehicles. However, none of the above

studies provide insights on how heterogeneous edge servers

may affect AV’s path planning algorithms. To the best of our

knowledge, this is the first work studying the design trade offs

of edge resources for future AVs and their consequences in

terms of safety and travel time compared to regular vehicles.

We hope the discussion and findings of this paper will inspire

new research directions on edge-assisted AVs.

III. SYSTEM MODEL AND METHODOLOGY

In order to conduct our qualitative analysis, we consider a

system model where an edge server is placed at the center

of an area. The network and computing resources of that

server are shared among all the AVs in that area. There are

mainly two ways considered for establishing communication

between the vehicles and the edge server. One is Device-to-

Device (D2D) direct communication and another is multi-hop

communication. In this paper we consider direct communi-

cation between AVs and local edge server to reduce latency.

Figure 1 shows our example system model. An AV offloads

its job (computation) to the nearby edge server while being in

location s0 at time t0 by using the underlying communication

network. After a certain transfer time t , the job is received

at the edge server where it is scheduled concurrently with

other AVs’ jobs, based on a certain policy. After it finishes

its execution, the result is returned to the AV at time t1 in

location s1 and the AV reacts according to the received result,

e.g., brake or steer. The distance that the AV travels between

job offloading and result reception is defined as the blind

distance, L . The time taken for a job to finish processing

at the edge server from the time it is offloaded is defined

as the response time, r of that job. When the AV receives

the result of the previously offloaded job it acquires a new

sensor data and offloads another job. Note that in this paper

we want to determine the conditions to satisfy a certain blind

distance requirement, so considering the AVs to offload jobs

periodically rather than sporadically would not change the

results of our study.

A. Assumptions

In order to simplify the problem for the ease of understand-

ing, we have made the following assumptions:

• AV Computation: All the AVs have the same

autonomous navigation software and the related

computation relies on the nearby edge servers. Thus,

we assume that, by design, all AVs offload the same

amount of per-job computation. Given the complexity

of developing a reliable AV navigation software, car

manufacturers such as General Motors (GM) are likely

going to use the same autonomous navigation software

across different vehicles to improve reliability and

lower the development complexity. We also extend this

assumption across car manufacturers. On the other hand,

having heterogeneous jobs offloaded to the edge server

is unlikely to change the trend of the results presented

in this paper since (1) the approach considered to find

peak and average configurations would adapt network

and computing resources accordingly, and (2) the main

reason for the high variations in edge utilization for peak

configuration is due to large hourly traffic variations

during each day, which is likely to be consistent across

regular and autonomous vehicles.

• Edge-Server Cores: Each edge server is equipped with a

number of generic logical cores and each of them are able

to carryout the requested computation within a bounded

worst case execution time. We make this assumption to

abstract the complexities of dealing with specific CPU

types, frequency, and other hardware characteristics.

Each logical core can be translated to a specific CPU

type with a certain frequency by the system designer.

• Edge-Server Network: The AVs are connected through

a wireless network interface with the edge server

located in the area they are residing in. To keep our

study general and avoid tying the results to a specific

network technology (e.g., 5G, DSRC), we determine the

required total bandwidth, which is the fastest possible

data transfer speed [32]. This will be equally shared by

the number of AVs connected to the edge server at a

particular time in that particular area while jobs are being

offloaded. The system designer can use this information

to determine the necessary network technology to install

and the channel capacity according to parameters such

as transmission power, noise, and distance to vehicles.

• Edge Job Scheduling: We assume that each edge server

schedules jobs according to the non-preemptive Earliest

Deadline First (EDF) policy [33]. Specifically, our system

tasks are modeled as a constrained-deadline sporadic task

model. We choose this policy because it is commonly

used to study the behavior of real-time systems. Other

schedulers could easily be employed for testing.

• Downloading Results: Similar to related work [34], [35],

we assume that the time to send back the computation

results from edge servers to the AV is negligible, due its

generally small data size.

Based on the above assumptions and setup, first we analyze

the hourly average traffic speed and vehicle count using a

comprehensive real dataset. Then, we vary the required blind

distance to obtain a specific deadline for each city area and

hour. In Algorithm 1, which is described in next section,

we use this deadline to compute the total network bandwidth

and number of logical cores required to avoid deadline misses.

We call this the required configuration of resources and

calculate it for every hour of the day and area.

B. Methodology

In this section, we describe the detailed approach we have

used to determine the minimum amount of edge network

and computing resources necessary to satisfy the total vehicle

demand for a fixed maximum blind distance in a certain

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Wayne State University. Downloaded on May 29,2023 at 19:59:25 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 1. Overview of the considered system scenario.

Algorithm 1 Configuration-Search

Input: L , blind distance; V , average number of vehicles; S,

average speed of the vehicles; D, data size; E , processing

time at the edge; W , analysis period; η, multiplicative

factor to account for queuing delay at edge server; 1b,

increment in the bandwidth; 1c, increment in the number

of logical cores; ϵr , response time variation threshold; ϵb,

maximum bandwidth; M, N , sufficiently large numbers.

1: dm ← M ▷ Number of deadline misses

2: d ← L/S ▷ Relative deadline

3: t ← d − ηE ▷ Maximum allowable transfer time

4: b← (D · V)/t ▷ Total bandwidth

5: while dm > 0 and b < ϵb do

6: t ← (D · V)/b ▷ Current transfer time

7: c← 1 ▷ Number of logical cores

8: rmax ← 0 ▷ Maximum response time

9: 1r ← N ▷ Response time variation

10: while dm > 0 and 1r > ϵr do

11: dm, r temp ← SCHED(c, t, E, V, d, W)

12: 1r ←| (rmax − r temp)/r temp |

13: rmax ← r temp

14: if dm > 0 and 1r > ϵr then

15: c← c +1c

16: if dm > 0 then

17: b← b +1b

Output: b, c

geographical area at a specific time of the day. We provide

a complete overview of our method in the next sections.

1) Finding Configuration of Resources: Algorithm 1,

Configuration-Search describes the procedure of finding the

required amount of edge resources for a particular area, time

of the day, and blind distance.

The algorithm first initializes the number of deadline misses

to a sufficiently large number M , which lets the while loop

in Line 5 to execute at least the first iteration. In Line 2, the

deadline for every job offloaded by the AVs is calculated based

on the input blind distance L and input average speed of the

vehicles S. In Line 3, we calculate the maximum allowable

time t for a job to be transferred to the edge server after

it is offloaded. Here, the parameter η ≥ 1 accounts for any

queuing delay that may occur at the edge server before the job

starts executing, e.g., due to contention with jobs of other AVs.

In Line 4, we calculate the initial total bandwidth b required

to satisfy the maximum transfer time t for all vehicles served

by the same local edge servers. The while loop in Line 5 then

searches for the minimum number of logical cores necessary

to have zero deadline misses (starting from one core in Line 7)

and for a progressively increasing network bandwidth, which

reduces the transfer time t in Line 6 in each iteration.

In Line 8, the maximum response time rmax is initialized

to 0. In Line 9, the response time variation 1r is initialized

to a sufficiently large number N , which lets the while loop

in Line 10 to execute the first iteration. The algorithm then

uses the SCHED algorithm (which is discussed in the next

subsection) to schedule vehicle jobs on the edge server and

find the maximum response time rmax as well as number

of deadline misses dm . This analysis is performed based on

the current transfer time t , the number of logical cores c,

the average number of vehicles V , the deadline calculated in

Line 2, and the time period considered for the analysis W .

The while loop in Lines 10-15 keeps increasing the number

of logical cores by a factor of 1c (in Line 15) in each

iteration until it leads to zero deadline misses or it finds

that increasing the number of logical cores c only leads to

a negligible reduction in response time. To check for the

latter condition, the response time variation 1r is calculated

in Line 12 to find how the response time changes compared to

the previous iteration. If the response time variation 1r is less

than a threshold ϵr , the algorithm determines that the current

bandwidth b is a bottleneck to the system performance, so it

needs to be increased. Hence, it is incremented by a factor

of 1b in Line 17 and the first while loop in Line 5 starts

executing again with the new total bandwidth b. The number of

logical cores is reset to one (Line 7) and the search continues

as described above. This process (Lines 6-17) is repeated to

increase the network and computing resources in each iteration

until it obtains zero deadline misses or the bandwidth reaches

a predefined maximum value ϵb. When it terminates, the

algorithm returns the amount of bandwidth b and number of

logical cores c needed to ensure that all the vehicle’s offloaded

jobs are processed within the deadline.

2) Processing of Jobs at the Local Edge Servers: Algo-

rithm 2, SCHED, describes the process of how offloaded jobs

from each AV are processed at the local edge servers. It selects

the vehicle job that arrives at the edge server according to the

EDF scheduling policy and returns the number of deadline

misses as well as the maximum response time of the vehicle

jobs at the end of the analysis period W . It first initializes

the current time unit of the schedule k, number of deadline

misses dm , and maximum response time of a job rmax to 0

(Lines 1-3). In Line 4, based on the input average number

of vehicles V and the required number of logical cores c,

the number of vehicles V c served by each logical core is

calculated. For simplicity, we consider the job processing and

job response time at the heavily loaded logical core. That is

the logical core that serves the highest number of vehicles

assuming a balanced vehicles-per-core allocation, which is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Wayne State University. Downloaded on May 29,2023 at 19:59:25 UTC from IEEE Xplore. Restrictions apply.

ATIK et al.: ARE TURN-BY-TURN NAVIGATION SYSTEMS OF REGULAR VEHICLES READY FOR EDGE-ASSISTED AVs? 5

Algorithm 2 SCHED

Input: c, number of logical cores; t , transfer time; E , pro-

cessing time at the edge; V , average number of vehicles;

d, relative deadline of the jobs; W , analysis period.

1: k ← 0 ▷ Current time unit of the schedule

2: dm ← 0 ▷ Number of Deadline misses

3: rmax ← 0 ▷ Maximum response time

4: V c ← ⌈V/c⌉ ▷ Number of vehicles per logical core

5: Let vi indicate a specific vehicle i .

6: for i ∈ [1, V c] do

7: oi ← 0 ▷ Time of first offload of vehicle i

8: while k < W do

9: for i ∈ [1, V c] do

10: ai ← t + oi ▷ Job arrival time at the edge

11: δi ← oi + d ▷ Absolute deadline of the job

12: S← {vi |ai ≤ k, i ∈ [1, V c]}

13: if S = ∅ then

14: k ← k + 1

15: else

16: j ← argmin vi∈S{di } ▷ Earliest deadline Job

17: s j ← k ▷ Job processing start time of vehicle j

18: if s j > W − E then

19: break

20: f j ← s j + E ▷ Job completion time of vehicle j

21: k ← f j

22: if f j > δi then

23: dm ← dm + 1

24: r ← f j − o j

25: rmax ← max{r, rmax }

26: o j ← f j

Output: dm, rmax

why we use the ceiling function in Line 4. In Line 7, the

algorithm initializes the time oi to zero when the jobs are

offloaded by the vehicles V c. In Line 10, the arrival time of the

vehicle jobs at the edge server queue, ai , is calculated based

on the job offload time, oi , and job transfer time to the edge, t .

In Line 11, the absolute deadline of the jobs δi is calculated

based on the job offload time oi and the relative deadline d.

Here the subscript i denotes a particular vehicle vi ∈ V c.

In Line 12, the vehicle set S is initialized with the vehicles

whose job’s arrival time ai is within the current time slot k.

Among the vehicles in the set S, the vehicle j having a job

with the earliest deadline is chosen to be processed and the

current time slot k is updated to when the job processing is

finished. As long as the vehicle set S is not empty, the jobs

of the vehicles in this set are processed in this manner. This

is done in Line 16 to Line 21. If the job completion time fi

is greater than its absolute deadline δi , the count for deadline

missed jobs dm is incremented by 1 in Line 23. Every time

a job finishes processing, its response time r is calculated

in Line 24. Among all the response times, we consider the

maximum response time rmax to guarantee safety for the AVs

in the worst-case scenario (Line 25). The next job offload

time o j of vehicle j is calculated when its previous job finishes

its processing at the edge server (Line 26). When the vehicle

set S becomes empty, the current time slot is advanced by

1 unit (Lines 13-14). This process is repeated until the end

of analysis period (i.e., while loop in Line 8). Finally, the

algorithm returns the maximum job response time rmax and

the total number of jobs that missed deadlines, dm .

Complexity Analysis. The computational complexity of

Algorithm 1 can be analyzed by considering ϵb, the maximum

bandwidth of the network and 1b, the increment in the

bandwidth, since the while loop in Line 5 executes at most

⌈ϵb/1b⌉ times. Furthermore, Algorithm 2 is executed in each

iteration of the second while loop in Line 10. The computa-

tional complexity of Algorithm 2 can be analyzed considering

W as the length of the total analysis period and V as the

maximum number of vehicles per logical core c. Therefore the

computational complexity of Algorithm 2 is O(W V). In each

iteration of the while loop in Line 10 of Algorithm 1, the

input number of logical cores c is incremented up to V/η,

which leads to computational complexity of the loop to be

O(W V
∑V/η

i=1 1/ i) = O(W V log V). Therefore, the computa-

tional complexity of Algorithm 1 is O(⌈ϵb/1b⌉W V log V).

3) Edge-Assisted AVs Safe Speed: From the required edge

resource configuration of each hour of the day (found using

Algorithm 1), we determine two types of configurations. The

peak configuration is calculated as the maximum required

network bandwidth and number of logical cores over all the

hours. That means the peak configuration handles the peak

demand without causing any deadline misses of the vehicle

jobs. The average configuration is calculated as the average

of the required network bandwidth and the number of logical

cores over all the hours. The average configuration handles the

average demand. Afterwards, in order to determine the edge

assisted AV’s performance with the average configuration and

real traffic data from a dataset (see Section IV-A), we leverage

simulations that use Algorithm 2 to schedule jobs at the edge

server. Specifically, we have used the transfer time calculated

from the network bandwidth and number of logical cores

found in the average configuration to obtain the maximum

response time rmax of the jobs at each hour of the day for a

certain blind distance, L . Then, we have calculated the AV’s

safe speed ss at a particular time and area as follows:

ss = min

{

L

rmax
, st

}

Because the dataset does not provide speed limits, we assume

that the AVs cannot exceed the average traffic speed st of

regular vehicles recorded in the dataset at each specific hour

and area. In fact, regular vehicles usually travel either at the

maximum speed allowed or at a reduced speed in case of

congestion. Note that, the average configuration handles the

average demand, but it may lead to deadline misses if AVs

travel at regular vehicle speed, especially at rush hours. Thus,

for every deadline miss we use the maximum response time

to calculate what the maximum safe speed of the AVs should

have been to meet the required blind distance, i.e., L/rmax .

In the next sections we test the effect of various blind distances

on the requirement of network and computing resources, and

on the AV’s safe speed in terms of those two configurations.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Wayne State University. Downloaded on May 29,2023 at 19:59:25 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Finally, we use this safe speed to further investigate the travel

time of the AVs in several routing scenarios.

IV. EXPERIMENTAL RESULTS

In this section, we leverage the approach described in

Section III to conduct a qualitative study on the implications of

assisting AVs from the edge. Specifically, we first describe our

experimental setup to discuss the baseline and the real-world

dataset used to conduct our study. Second, we use the data

from this dataset to execute Algorithm 1 and compare the

peak and average resource configurations in terms of network

bandwidth and number of logical cores to deploy in different

city areas. Third, we study how using the average configuration

affects the AVs’ response time and evaluate the safe speed to

satisfy a desired blind distance. Finally, we examine the effect

of the safe speed on the travel time of edge-assisted AVs com-

pared to that of regular vehicles using the described baseline.

A. Experimental Setup

We have coded the approach described in Section III in

Python. The simulations have been executed on an Intel Core

i7-8750H CPU at 2.20GHz and 24GB DRAM.

1) Baseline: To the best of our knowledge, there is no

existing work focusing on the design trade offs of heteroge-

neous edge resources providing navigation assistance to AVs.

Therefore, we leverage as baseline one of the most popular

turn-by-turn navigation systems, i.e., Google Maps. After

selecting a random start and end points, we use it to determine

1) the route for regular vehicles with the minimum travel

time, and 2) the travel time on an alternative route. We then

compare the regular vehicles’ travel time on these routes with

the AVs’ travel time, estimated based on traffic speed and

edge resources in each area along the selected route. As a

result, this baseline allows us to determine whether modern

turn-by-turn navigation systems are ready for edge-assisted

autonomous vehicles.

2) Dataset Description: In order to ensure that our exper-

iments are based on realistic data, we have used the vehic-

ular mobility dataset of Cologne, Germany [12]. The dataset

includes 24 hours of car traffic traces comprising an area of

400 square kilometers of a typical working day. Although the

dataset is from 2013, it is quite complete because it contains

timestamps, anonymized vehicle IDs, vehicle speed, longitude

and latitude coordinates of vehicles with a one second time

granularity. Unlike other newer datasets, it is not restricted to

a certain kind of vehicle such as bus or taxi, and includes data

of vehicles traveling through both minor and major city roads.

Due to the vast amount of data in the dataset, we extracted data

for nine sample areas including the heavily congested ones.

We call those areas A1 through A9 as shown in Figure 2.

Based on the range of typical vehicular wireless interfaces

(e.g., DSRC), we choose each area to be of 2 km by 2 km in

size. We also assume that the edge servers are located in the

center of each area.

For each area, we have calculated the average number of

unique vehicles and their average speed in each hour. Figure 3

shows the heatmaps of the average number of vehicles and

Fig. 2. Selected area locations.

TABLE I

EXPERIMENTAL PARAMETER VALUES

Fig. 3. Heatmap of (a) the average number of vehicles and (b) the average
speed (mph) of the vehicles in the nine areas during the entire day.

average speed for each hour in the nine areas extracted.

According to the results in Figure 3(a), similar to most major

cities, 7 am and 4 pm are the rush hours of the day with the

highest vehicle count in each area. For example, at 4 pm areas

A2 and A5 have an average of 1800 vehicles, areas A3 and

A6 have 750 vehicles, and areas A7, A8, and A9 have nearly

400 vehicles. Because of the variable traffic at different times

of the day and areas, the average vehicle speed is also variable.

According to Figure 3(b), during the rush hours the average

speed in the area A2 and A5 is less than 16 mph, while areas

A3, A6, and A9 have higher speed of 24 mph because of

their lower number of vehicles. In order to analyze the effect

of having edge-assisted autonomous vehicles in variable traffic

and speed, we have used the data of Figures 3(a) and 3(b) as

inputs for Algorithm 1. Specifically, while we examine the

general results for all nine areas, in the next sections we are

going to provide in-depth results by focusing on areas A3, A5,

and A7 since they are representative of moderate, heavy, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Wayne State University. Downloaded on May 29,2023 at 19:59:25 UTC from IEEE Xplore. Restrictions apply.

ATIK et al.: ARE TURN-BY-TURN NAVIGATION SYSTEMS OF REGULAR VEHICLES READY FOR EDGE-ASSISTED AVs? 7

Fig. 4. Comparison of (a) the required network bandwidth and (b) the
required number of logical cores between peak and average configurations
for areas A3, A5, and A7.

low traffic areas, respectively. The values of the parameters

used in our experiments are given in Table I.

3) Robustness to Dataset: We have used the number of

regular vehicle data from the above-described dataset in our

experiments as it reports the traffic density of different areas at

different times. In the near future, when AVs will be deployed

at large scale, we can expect to have similar traffic density

with similar traffic patterns, e.g., rush hours in early morning

and afternoon. Also, the AVs would have to go as fast as the

traffic speed of the regular vehicles when there will be traffic

to avoid safety concerns. Our approach can be used for any

number of vehicles and different cities. In addition, we expect

that the trend of the results would not change much as there

would always be peak hours and traffic congestion on the road.

B. Blind Distance vs. Edge Resources

In this section, we use the results from Algorithm 1 to study

how the resources deployed at the edge change for different

input requirements and city areas. The typical human delay

to start reacting to a perceived danger is 3/4 of a second [5].

This means that at a speed of 35 mph (typical on city roads)

to 60 mph (typical on highways), regular vehicles travel 12 to

20 meters before the human starts reacting, respectively. Since

the target of AVs is to improve safety over regular vehicles,

in the following study we only consider a range of blind

distances of up to 20 meters.

1) Blind Distance vs. Network Bandwidth: Figure 4 shows

the network bandwidth and the number of logical cores

required for different blind distances while considering the

average and peak configurations for the three sample areas

A5, A3, and A7, which are representative of higher to lower

traffic density, respectively. As discussed earlier, the peak con-

figuration handles the peak demand without deadline misses.

As shown in Figure 4(a), in the case of peak configuration,

the network bandwidth requirement is 33 Gbps (Giga Bit

per Second), 26 Gbps, and 10 Gbps for areas A5, A3, and

A7, respectively, considering a blind distance of 2 meters.

Thus, area A5, which is the most heavily congested, requires

27% and 230% more network bandwidth than areas A3 and

A7, respectively. This demonstrates that deploying the same

amount of network resources in all city areas would not be

a reasonable choice. The peak network bandwidth could be

considerably reduced by allowing a higher blind distance,

which would come at the cost of a lower AV safety. For

example, increasing the blind distance from 2 meters to

10 meters in A5 would reduce the needed peak bandwidth by

85%. Another way to lower resource deployment is to consider

the average configuration, which allows to reduce area A5’s

bandwidth requirement by 60% and 33% compared to the

peak configuration for lowest (2 meters) and highest blind

distance (20 meters), respectively. However, as we will discuss

in next section, the average configuration may slowdown the

AVs compared to the regular vehicles during rush hours to

meet the required blind distance.

2) Blind Distance vs. Computing Cores: Figure 4(b) shows

the number of logical cores required for different blind

distances considering the peak and average configurations.

Because of the variable traffic density in areas A3, A5, and

A7, using the peak configuration would require 108, 144, and

65 logical cores, respectively, which are enough to sustain the

traffic demand at all times of the day. Similar to the network

requirements, we observe a large spatial variability in the

number of logical cores to be deployed in peak configurations.

For example, area A7 requires about 55% fewer logical cores

compared to area A5 to sustain peak demand. This further

demonstrates the unnecessarily high capital expenditures to

deploy a uniform amount of resources city-wide. Furthermore,

considering the peak configuration, 144 logical cores are

required for blind distance of 2 meters in area A5. For the

same previously described reason, the number of required

logical cores decreases with the increase of the blind distance.

However, using the average configuration, the required number

of logical cores is much lower, approximately 50% less than

what is required for the peak configuration at 2 meters blind

distance. Similarly, a blind distance of 12 meters in area A5

would require 33 and 16 logical cores considering peak and

average configuration, respectively.

3) Key Takeaway 1: In summary, using the peak config-

uration would be beneficial during rush hours (e.g., 7 am)

because all AVs would be able to always meet the blind

distance requirement. However, rush hours only represent a

fraction of the entire day time, which means that the edge

resources would be severely over provisioned on average.

A better strategy to improve resource utilization and lower

capital cost might be to deploy the average configuration and

cap the AV’s speed during rush hours to meet a pre-established

blind distance. In such case, depending on the specific area,

the average configuration can help reduce by 60% and 50%

the deployed network bandwidth and the number of logical

cores, respectively.

C. Blind Distance vs. Safe Speed

Given the potentially high capital expenditure savings of

deploying the average configurations in different city areas,

here we study what would be its effect on the AV’s respon-

siveness and safe speed. Figure 5(a) compares the AV’s safe

speed at blind distances 8, 12, and 16 meters (i.e., circle, star,

and cross markers, respectively) with the average speed of

regular vehicles from the dataset (i.e., red triangle markers)

for areas A3, A5, and A7 (i.e., solid, dashed, and dotted lines,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Wayne State University. Downloaded on May 29,2023 at 19:59:25 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 5. (a) Comparison of the regular vehicles’ speed with the AVs’ safe speed

in the three areas during several hours of the day; (b) Maximum response time
for different blind distances with average configuration in area A5.

respectively). For reasons of clarity, we only show the results

at 7 am, 10 am, 1 pm, 4 pm and 7 pm, but other hours show

similar trends.

1) Blind Distance vs. AV’s Slowdown: To summarize the

results across day times, we leverage the traffic density data

of the dataset to classify each hour in a low, medium, or high

traffic cluster using the K-Means algorithm [36]. On average,

the AV’s slow down is 0%, 2%, and 68% for low, medium, and

high traffic densities, respectively. The worst-case slowdown

scenario we found is at 4 pm area A3 and blind distance

8 meters, where the AV’s safe speed reduces from 25 mph of

the regular vehicles to 21 mph (i.e., 51% slowdown). In gen-

eral, we also observe a large spatial variation in AV slowdown.

For example, at 7pm areas A3 and A5 do not show any

slowdown while area A7 experiences an average slow down of

29% and 9% for 8 and 12 meters blind distances, respectively.

2) A Counter-Intuitive Trend: In general, increasing the

blind distance increases the deadline of each AV’s job, which

means that larger response times can still meet deadlines.

Figure 5(b) shows how the maximum response time increases

with increased blind distance for low, medium, and high traffic.

We have shown this result only for area A5 as the other areas

exhibit similar trends. We observe that larger blind distances

may lead to an overly reduced amount of edge resources

deployed for the average configuration, which may lead to

the counter-intuitive effect of experiencing a larger slowdown

during rush hours. For example, as Figure 5(a) shows, at 4 pm

in area A3, the safe speed of AVs decreases from 15 mph to

13 mph when the blind distance is increased from 12 meters to

16 meters. This effect must be taken into consideration when

designing an under-provisioned edge infrastructure.

3) Key Takeaway 2: In summary, using the average con-

figuration of resources at the edge server may effectively

handle the traffic demands during the medium and low traffic

hours, which constitute more than two thirds of the day. The

slowdown that AVs would experience during rush hours could

be 1) acceptable, given the potentially high cost savings, and

2) handled by integrating the edge load information into the

turn-by-turn navigation system, which could help reduce the

AVs travel time by re-routing them through areas with higher

safe-speed.

Fig. 6. Comparison of the travel time from Google Maps with the estimated
time using the data from the dataset for nine different routes.

D. Travel Time: Regular Vehicles vs. Edge-assisted AVs

Given the spatio-temporal variability of the safe speed based

on time of the day and location for average configurations,

here we leverage the baseline described in Section IV-A to

investigate whether the faster travel path for regular vehicles

provided by modern turn-by-turn navigation algorithms also

maps into the faster path for AVs.

In order to conduct this study, we first need to be able to

accurately estimate the travel time of edge-assisted AVs on

a certain route. To do so, we have created several scenarios

where the AVs need to travel from a certain source to a

certain destination during rush hour (see Figure 2 to locate

each source/destination). Each scenario has the source and

destination located in different areas. Figure 6 compares the

travel time for each scenario as given by the Google Maps

baseline at 4 pm (one of the rush hours) with the one we

calculate using the average speed from the dataset. The results

show a good estimation accuracy on average, which validates

the results presented in the next paragraphs. Among all the

scenarios, we show the detailed results for three of them in

Figure 7 and 8.

1) Scenario I: In Figure 7(a), we consider a scenario where

the AVs have to go from location A, in area A9, to location B,

in area A2, at 4 pm on a working day. We consider two

different routes to reach the destination. The first route (red)

(provided by Google Maps), requires to go through areas

(A9 → A6 → A5 → A2) while the second route (blue),

takes through the same areas except area A5 comprises a larger

portion than area A6. The travel distance of route 1 and route

2 are 6.6 km (kilometers) and 7.6 km, respectively. For regular

vehicles, the travel time for route 1 is 13 minutes and route

2 is 16 minutes, respectively. Similarly, route 1 is the fastest

route also for the AVs. As shown in Figure 8, the AV can

reach the destination 7 minutes, 6 minutes, and 5 minutes

earlier considering blind distance of 8 meters, 12 meters, and

16 meters, respectively, via route 1. The reduction in the travel

time for the baseline route is due to the fact that the increased

travel distance of route 2 is not justified by the AV’s safe speed.

Thus, in this scenario Google Maps provides the fastest route

to both regular vehicles and AVs.

2) Scenario II: There can be cases where the fastest route

for regular vehicles may not always be the fastest route for

edge-assisted AVs. Figure 7(b) shows such a case. In this

scenario, the source (D) is chosen to be in area A5 and

destination (E) in area A2. Route 1 (red) A5 → A2, is the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Wayne State University. Downloaded on May 29,2023 at 19:59:25 UTC from IEEE Xplore. Restrictions apply.

ATIK et al.: ARE TURN-BY-TURN NAVIGATION SYSTEMS OF REGULAR VEHICLES READY FOR EDGE-ASSISTED AVs? 9

Fig. 7. Showing two routes; route 1 (red) given by Google Maps and route 2 (blue), an alternative route for (a) Scenario I: Going from A→ B, (b) Scenario
II: Going from D→ E , and (c) Scenario III: Going from F → G.

Fig. 8. Comparison of travel time between the two routes for different
blind distances for Scenario I (A→ B), Scenario II (D→ E) and Scenario III
(F→ G).

shortest one and it is suggested by Google Maps as the fastest

route for regular vehicles, as shown in Figure 8. However,

this route takes the AV to travel through the two heavy

traffic areas while route 2 (blue) A5 → A6 → A3 → A2,

takes the AVs through the areas having lower traffic at that

time. Although the AV needs to travel a longer distance in

route 2, the increased safe speed allows to lower their travel

time compared to that of route 1. It can be seen from the

results in Figure 8 that the AV can reach the destination

1 minute and 2 minutes earlier considering blind distance of

8 meters and 12 meters, if it takes the second route. On the

other hand, as discussed in the previous section (Figure 5(a)),

sometimes the safe speed is reduced with an increased blind

distance due to the lower resources necessary on average. As a

result, in Figure 8 for scenario I, the travel time increases by

2 minutes while considering blind distance of 16 meters as

compared to 12 meters for route 2. This example scenario

clearly shows that the travel time for the AVs is dependent

not only on the distance and the traffic density in the selected

route but also on the amount of edge resources deployed in

different areas throughout the route. Thus, the fastest route

shown by the traditional navigation system may not always

be the fastest one in case of AVs.

E. Scenario III

Figure 7(c) shows a scenario where the AV has to travel

from location F to location G. Route 1 (red) going through

the areas (A8 → A9 → A6 → A5 → A2 → A3) is shorter

and faster for regular vehicles, as suggested by Google Maps

where the travel time for the regular vehicles is 12.41 minutes.

However, this route includes the heavy traffic areas A5 and A2.

In the case of AVs, with blind distance 8 meters and 12 meters

the travel time is approximately 25 minutes and 22 minutes,

respectively. If the AV can be rerouted to route 2 (blue) shown

in Figure 7(c) avoiding the heavy traffic areas, it can be seen

from Figure 8 that the travel time can be reduced to 20 minutes

and 18 minutes with blind distance 8 meters and 12 meters,

respectively. As the length of the second route is greater than

the first one, the travel time for regular vehicle becomes longer

but in the case of AVs this route takes approximately 20% less

time to reach the destination.

1) Key Takeaway 3: In summary, we can conclude that

while the traditional navigation systems are able to suggest the

fastest route for regular vehicles, they are not always efficient

in suggesting the fastest routes for the edge-assisted AVs as

observed from the results of Scenario III.

V. FUTURE RESEARCH DIRECTIONS AND CHALLENGES

By analyzing all the results shown in Section IV, future

research directions in smart transportation systems need to

further investigate how to consider the large spatio-temporal

variability of edge-assisted AV demands for an optimal deploy-

ment of edge resources in smart cities. While in this paper

we discuss the average configuration that sustains the average

demand, future research should focus on optimizing network

and computing requirements considering multiple objectives

such as total cost, AV slowdown, and safety (in terms of

blind distance). In addition, researchers should consider how to

integrate into the turn-by-turn routing algorithms the current

edge resource load in different city areas to find the fastest

route to destination. Several challenges can arise from tackling

these new issues, including (i) how to measure, exchange,

and predict edge load demand across city areas, and (ii) how

to coordinate real-time AV routing decisions to collectively

optimize travel time considering the predicted edge load

and slowdown.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Wayne State University. Downloaded on May 29,2023 at 19:59:25 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

VI. CONCLUSION

Motivated by the advantage of edge-assisted AVs in provid-

ing greater computing power with reduced capital cost, in this

paper, we discussed the implications of deploying different

amount of edge resources in different city areas to handle

peak versus average traffic demand by leveraging real traffic

data. Considering an example system scenario, we analyzed

the resource requirements for peak and average configurations.

We developed a Python simulation environment that uses real

traffic data to evaluate the results. Our analysis revealed that

a reduction in network bandwidth and computing cores of up

to 60% and 50%, respectively, is achieved by deploying edge

resources for the average demand rather than peak demand.

We also investigated how the peak-hour demand affects the

safe travel time of AVs and find that it can be reduced

by approximately 20% if they would be rerouted to areas

with a lower edge-resource load. Thus, future research must

consider that traditional turn-by-turn navigation systems may

not provide the fastest routes for edge-assisted AVs because

they do not take into consideration the amount of edge server

resources deployed and the computational delay that may

occur in the data processing.

REFERENCES

[1] T. Litman, “Autonomous vehicle implementation predictions: Impli-
cations for transport planning,” Victoria Transp. Policy Inst.,
Victoria, BC, Canada, Tech. Rep. 01727624, 2020. [Online]. Available:
https://trid.trb.org/View/1678741

[2] A. Hammoud, H. Sami, A. Mourad, H. Otrok, R. Mizouni, and
J. Bentahar, “AI, blockchain, and vehicular edge computing for smart
and secure IoV: Challenges and directions,” IEEE Internet Things Mag.,
vol. 3, no. 2, pp. 68–73, Jun. 2020.

[3] A. Souri, “Artificial intelligence mechanisms for management of QoS-
aware connectivity in Internet of Vehicles,” J. High Speed Netw.,
vol. 2022, pp. 1–10, Mar. 2022.

[4] P. J. Schildkraut. (2021). AI Regulation: What You Need to Know to Stay

Ahead of the Curve. [Online]. Available: https://www.arnoldporter.com/
en/perspectives/publications/2021/06/ai-regulation-what-you-need-to-
know

[5] DOT National Highway Traffic Safety Administration. (2015). Why

Your Reaction Time Matters at Speed. [Online]. Available: https://one.
nhtsa.gov/nhtsa/Safety1nNum3ers/august2015/S1N-Aug15-Speeding-
1.html

[6] Z. Zhou, M. Shojafar, R. Li, and R. Tafazolli, “EVCT: An efficient VM
deployment algorithm for a software-defined data center in a connected
and autonomous vehicle environment,” IEEE Trans. Green Commun.

Netw., vol. 6, no. 3, pp. 1532–1542, Sep. 2022.

[7] H. Wang, B. Kim, J. Xie, and Z. Han, “E-auto: A communication scheme
for connected vehicles with edge-assisted autonomous driving,” in Proc.

IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.

[8] A. J. Ben Ali, Z. S. Hashemifar, and K. Dantu, “Edge-SLAM: Edge-
assisted visual simultaneous localization and mapping,” in Proc. 18th

Int. Conf. Mobile Syst., Appl., Services, Jun. 2020, pp. 325–337.

[9] M. Cui, S. Zhong, B. Li, X. Chen, and K. Huang, “Offloading
autonomous driving services via edge computing,” IEEE Internet Things

J., vol. 7, no. 10, pp. 10535–10547, Oct. 2020.

[10] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-
edge-cloud orchestrated network computing paradigms: Transparent
computing, mobile edge computing, fog computing, and cloudlet,” ACM

Comput. Surv., vol. 52, no. 6, pp. 1–36, Nov. 2020.

[11] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, and X. Shen, “Energy-
efficient UAV-assisted mobile edge computing: Resource allocation and
trajectory optimization,” IEEE Trans. Veh. Technol., vol. 69, no. 3,
pp. 3424–3438, Mar. 2020.

[12] S. Uppoor, O. Trullols-Cruces, M. Fiore, and J. M. Barcelo-Ordinas,
“Generation and analysis of a large-scale urban vehicular mobility
dataset,” IEEE Trans. Mobile Comput., vol. 13, no. 5, pp. 1061–1075,
May 2014.

[13] L. Le Mero, D. Yi, M. Dianati, and A. Mouzakitis, “A survey on
imitation learning techniques for end-to-end autonomous vehicles,”
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9, pp. 14128–14147,
Sep. 2022.

[14] J. Knuth and P. Barooah, “Distributed collaborative localization of
multiple vehicles from relative pose measurements,” in Proc. 47th

Annu. Allerton Conf. Commun., Control, Comput. (Allerton), Sep. 2009,
pp. 314–321.

[15] I. M. Rekleitis, G. Dudek, and E. E. Milios, “Multi-robot coopera-
tive localization: A study of trade-offs between efficiency and accu-
racy,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Mar. 2002,
pp. 2690–2695.

[16] A. Asvadi, C. Premebida, P. Peixoto, and U. Nunes, “3D LiDAR-
based static and moving obstacle detection in driving environments:
An approach based on voxels and multi-region ground planes,” Robot.

Auto. Syst., vol. 83, pp. 299–311, Sep. 2016.
[17] N. Bernini, M. Bertozzi, L. Castangia, M. Patander, and M. Sabbatelli,

“Real-time obstacle detection using stereo vision for autonomous ground
vehicles: A survey,” in Proc. 17th Int. IEEE Conf. Intell. Transp. Syst.

(ITSC), Oct. 2014, pp. 873–878.
[18] A. Broggi, S. Cattani, M. Patander, M. Sabbatelli, and P. Zani, “A full-

3D voxel-based dynamic obstacle detection for urban scenario using
stereo vision,” in Proc. 16th Int. IEEE Conf. Intell. Transp. Syst. (ITSC),
Oct. 2013, pp. 71–76.

[19] M. Masmoudi, H. Ghazzai, M. Frikha, and Y. Massoud, “Object detec-
tion learning techniques for autonomous vehicle applications,” in Proc.

IEEE Int. Conf. Veh. Electron. Saf. (ICVES), Sep. 2019, pp. 1–5.
[20] C. Cadena et al., “Past, present, and future of simultaneous localization

and mapping: Toward the robust-perception age,” IEEE Trans. Robot.,
vol. 32, no. 6, pp. 1309–1332, Dec. 2016.

[21] M. Masmoudi, H. Ghazzai, M. Frikha, and Y. Massoud, “Autonomous
car-following approach based on real-time video frames processing,” in
Proc. IEEE Int. Conf. Veh. Electron. Saf. (ICVES), Sep. 2019, pp. 1–6.

[22] V. Venugopal and S. Kannan, “Accelerating real-time LiDAR data
processing using GPUs,” in Proc. IEEE 56th Int. Midwest Symp. Circuits

Syst. (MWSCAS), Aug. 2013, pp. 1168–1171.
[23] S.-C. Lin et al., “The architectural implications of autonomous driving:

Constraints and acceleration,” in Proc. 23rd Int. Conf. Architectural

Support Program. Lang. Operating Syst., Mar. 2018, pp. 751–766.
[24] K.-L. Wright, A. Sivakumar, P. Steenkiste, B. Yu, and F. Bai, “Cloud-

SLAM: Edge offloading of stateful vehicular applications,” in Proc.

IEEE/ACM Symp. Edge Comput. (SEC), Nov. 2020, pp. 139–151.
[25] A. Ashok, P. Steenkiste, and F. Bai, “Adaptive cloud offloading for vehic-

ular applications,” in Proc. IEEE Veh. Netw. Conf. (VNC), Dec. 2016,
pp. 1–8.

[26] M. C. Lucic, H. Ghazzai, A. Alsharoa, and Y. Massoud, “A latency-
aware task offloading in mobile edge computing network for distributed
elevated LiDAR,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Oct. 2020, pp. 1–5.

[27] N. Jayaweera, N. Rajatheva, and M. Latva-aho, “Autonomous driving
without a burden: View from outside with elevated LiDAR,” in Proc.

IEEE 89th Veh. Technol. Conf. (VTC-Spring), Apr. 2019, pp. 1–7.
[28] M. C. Lucic, H. Ghazzai, and Y. Massoud, “A generalized and dynamic

framework for solar-powered roadside transmitter unit planning,” in
Proc. IEEE Int. Syst. Conf. (SysCon), Apr. 2019, pp. 1–7.

[29] M. C. Lucic, H. Ghazzai, and Y. Massoud, “A low complexity space-time
algorithm for green ITS-roadside unit planning,” in Proc. IEEE 62nd Int.

Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2019, pp. 570–573.
[30] Z. Yang et al., “EdgeDuet: Tiling small object detection for edge assisted

autonomous mobile vision,” IEEE/ACM Trans. Netw., early access,
Dec. 2, 2022, doi: 10.1109/TNET.2022.3223412.

[31] S. Abdallaoui, E.-H. Aglzim, A. Chaibet, and A. Kribèche, “Thorough
review analysis of safe control of autonomous vehicles: Path planning
and navigation techniques,” Energies, vol. 15, no. 4, p. 1358, Feb. 2022.

[32] D. Comer, Computer Networks and Internets. Upper Saddle River,
NJ, USA: Prentice-Hall, 2009. [Online]. Available: https://books.google.
com/books?id=tm-evHmOs3oC

[33] A. K. Mok, “Multiprocessor scheduling in a hard real-time environ-
ment,” in Proc. 7th Texas Conf. Compt. Syst., 1978, pp. 1–10.

[34] J. Wang, D. Feng, S. Zhang, J. Tang, and T. Q. S. Quek, “Computation
offloading for mobile edge computing enabled vehicular networks,”
IEEE Access, vol. 7, pp. 62624–62632, 2019.

[35] W. Chen, Y. Zhu, J. Liu, and Y. Chen, “Enhancing mobile edge
computing with efficient load balancing using load estimation in ultra-
dense network,” Sensors, vol. 21, no. 9, p. 3135, Apr. 2021.

[36] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. 28, no. 2, pp. 129–137, 1982, doi: 10.1109/TIT.1982.1056489.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Wayne State University. Downloaded on May 29,2023 at 19:59:25 UTC from IEEE Xplore. Restrictions apply.

ATIK et al.: ARE TURN-BY-TURN NAVIGATION SYSTEMS OF REGULAR VEHICLES READY FOR EDGE-ASSISTED AVs? 11

Syeda Tanjila Atik received the B.Sc. and M.Sc.
degrees in information technology from Jahangir-
nagar University, Bangladesh, in 2015 and 2017,
respectively. She is currently pursuing the Ph.D.
degree with the Department of Computer Science,
Wayne State University. She is also a Student Mem-
ber of the Energy-aware Autonomous Systems Lab-
oratory (EAS-Lab). Her research interests include
edge computing, the Internet of Things, autonomous
mobile robots, and machine learning.

Marco Brocanelli (Member, IEEE) received the
B.E. and M.E. degrees in control systems from
the University of Rome Tor Vergata, Italy, and the
Ph.D. degree in electrical and computer engineering
program from The Ohio State University in August
2018. He is currently an Assistant Professor with
the Department of Computer Science, Wayne State
University, and the Director of the Energy-aware
Autonomous Systems Laboratory (EAS-Lab). His
research interests include cyber-physical systems,
energy-aware systems, the Internet of Things (IoT),

edge computing, embedded, and real-time systems.

Daniel Grosu (Senior Member, IEEE) received the
Diploma degree in engineering (automatic control
and industrial informatics) from the Technical Uni-
versity of Iaşi, Romania, in 1994, and the M.Sc.
and Ph.D. degrees in computer science from The
University of Texas at San Antonio, in 2002 and
2003, respectively. He is currently an Associate
Professor with the Department of Computer Sci-
ence, Wayne State University. His research interests
include parallel and distributed computing, approx-
imation algorithms, and topics at the border of

computer science, game theory and economics. He is a Senior Member of
the ACM and the IEEE Computer Society. He is an IEEE Computer Society
Distinguished Contributor. He serves an Associate Editor and a member for
the editorial boards of ACM Computing Surveys, IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, and IEEE TRANSACTIONS ON

CLOUD COMPUTING.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Wayne State University. Downloaded on May 29,2023 at 19:59:25 UTC from IEEE Xplore. Restrictions apply.

