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Abstract— Private and public transportation will be dominated
by Autonomous Vehicles (AV), which are safer than regular vehi-
cles. However, ensuring good performance for the autonomous
features requires fast processing of heavy tasks. Providing each
AV with powerful computing resources may result in increased
AV cost and decreased driving range. An alternative solution is
to install low-power computing hardware on each AV and offload
the heavy tasks to powerful nearby edge servers. In this case,
the AV’s reaction time depends on how quickly the navigation
tasks are completed in the edge server. To reduce task completion
latency, the edge servers must be equipped with enough network
and computing resources to handle the vehicle demands, which
show large spatio-temporal variations. Thus, deploying the same
resources in different locations may lead to unnecessary resource
over-provisioning. In this paper, we leverage simulations using
real traffic data to discuss the implications of deploying hetero-
geneous resources in different city areas to sustain peak versus
average demand of edge-assisted AVs. Our analysis indicates that
a reduction in network bandwidth and computing cores of up
to 60% and 50%, respectively, is achieved by deploying edge
resources for the average demand rather than peak demand.
We also investigate how the peak-hour demand affects the
safe travel time of AVs and find that it can be reduced by
approximately 20% if they would be rerouted to areas with a
lower edge-resource load. Thus, future research must consider
that traditional turn-by-turn navigation systems may not provide
the fastest routes for edge-assisted AVs.

Index Terms— Autonomous vehicles, navigation systems, edge
computing.

I. INTRODUCTION

RECENT report [1] estimates that by 2045 as much as

half of new vehicle sales could be Autonomous Vehicles
(AVs), which are important components of cutting-edge
technologies such as internet-of-vehicles (IoV) [2], [3].
The main advantages of AVs are their ability to provide
increased productivity, reduced driver stress, reduced energy
consumption, and increased safety [4]. In particular, regular
(human driven) vehicle safety is generally measured in terms
of reaction time and breaking time. While the breaking time
is mainly dependent on the mechanical aspects of vehicles
(which might be similar to that of AVs), the average reaction
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time of humans is about 3/4 of a second [5]. To improve
reaction time (i.e., safety) over humans, AVs heavily rely on
a variety of sensor-generated data [6] (e.g., radar, camera,
lidar, ultrasonic sensor) to identify the environment and carry
out safe driving operations automatically. For example, each
camera frame must be processed on the most appropriate unit
(e.g., CPU, GPU, AI accelerator) to identify features such
as lanes and other vehicles directions. The navigation system
then uses this information to react by updating the AV’s speed
and direction [7]. In order to ensure improved safety over
regular vehicles, it is thus crucial for the end-to-end response
time (i.e., from camera frame acquisition to AV reaction) to
be minimized.

Given that AV technology is not yet deployed at large scale
and it is still being studied in both academia and industry, there
are two deployment strategies to help mitigate the challenges.
The first one is to equip the AVs with a very powerful com-
puting system [2] to run heavy tasks locally with low response
time. However, this may lead to an increased production cost,
which may slow down their sale and widespread adoption.
The second strategy is to assist the AVs with edge technology,
where they can offload heavy tasks to powerful nearby edge
servers [8], [9], and achieve faster data processing with lower
response time [10], [11]. Compared to the first strategy, the
capital cost necessary to install/maintain such servers (e.g.,
through government incentives) can be amortized by the fact
that they are shared across multiple AVs, can help reduce AVs’
cost, and may help speed up the transition to a safer and more
efficient traffic circulation. However, this strategy also leads
to additional challenges that must be further explored.

When data is being offloaded to the nearby edge servers,
the analysis or processing of the data vastly depends on the
amount of network and computational resources deployed in
that edge server. Since the AV keeps moving after offloading
its data, it may travel some distance before the computing
result from the edge server is received. We call this distance,
the blind distance since the AV remains blind to new features
found in the last data offloaded until the computation result
is received. With AVs, the blind distance can be bounded
by design to a certain value for guaranteed safety, at least
from the reactiveness point of view. For example, the system
designer may want to guarantee a maximum blind distance for
edge-assisted AVs of 5 meters. Thus, the end-to-end response
time must be lower or equal to the ratio of blind distance
over speed, which can vary over space and time. As a result,
the amount of computing resources deployed at the edge
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responsible for processing the offloaded task can limit the
AV’s safe speed that allows the vehicle to meet the chosen
blind distance requirement.

In order to reduce the response time and maximize the safe
speed, the edge servers must be equipped with enough network
and computing resources to handle the vehicle demands. How-
ever, because of the variable number of vehicles on the road,
this demand is characterized by large spatio-temporal varia-
tions. As a result, deploying the same amount of resources to
all edge servers and/or deploying the resources necessary to
handle the peak-hour demand in a specific area may lead to
costly and unnecessary over-provisioning of edge resources.
On the other hand, deploying a lower amount of resources
to limit costs may lead to lowering the safe speed of AVs
on a specific path in order to keep a desired bounded blind
distance. This may lead to the problem that modern turn-by-
turn navigation systems, which provide the fastest route to
destination for regular (human-operated) vehicles, may not be
able to provide the fastest route for edge-assisted AVs.

In this paper, we explore the design trade offs among the
amount of deployed edge resources, desired blind distance,
and resulting safe speed for edge-assisted AVs. We develop
a simulation environment that leverages a real vehicle transit
dataset [12] from the city of Cologne, Germany, to explore
heterogeneous edge server configurations that satisfy peak and
average AV demand. We find that, when high safety is required
(i.e., short blind distance), the peak configurations lead to
high over-provisioning due to the high variability of traffic
during the day. Thus, cost savings and better utilization can
be achieved by deploying the average configuration. Finally,
we study the effect of deploying average configurations on
the safe speed of autonomous vehicles for various safety
requirements and study its effect on the travel time for
random routes in the city. We find that, due to limitations
on available edge resources, modern turn-by-turn navigation
systems that provide the fastest route to regular vehicles
do not necessarily provide the fastest one for edge-assisted
AVs. We hope the discussion and findings of this paper will
inspire and motivate future research on AV navigation systems
and algorithms, and help determine how to plan resource
deployment for AVs.

Specifically, this paper makes the following contributions:

o To the best of our knowledge, this is the first paper
to highlight the challenges deriving from heterogeneous
edge computing for edge-assisted AVs. Specifically,
we provide the first extensive evaluation of the design
trade offs among edge resource deployment, safety, and
travel time at different city locations and day times.

« We leverage real traffic data from the city of Cologne
(Germany) to study the traffic characteristics, e.g., num-
ber of vehicles and average speed, and find the likely
configuration of edge resources needed in a particular
area to ensure a certain safety bound.

« We study several scenarios and compare how the travel
time through the same route changes for regular vehicles
and edge-assisted AVs. We show that in some cases the
current turn-by-turn navigation system fails to provide the
fastest route for the AVs because they do not consider
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the amount of resources deployed at the edge servers and
their load at different day times along the navigation path.
o We have developed a simulation environment in Python
that uses the real traffic data to evaluate the results.
Our analysis has revealed that a reduction in network
bandwidth and computing cores of up to 60% and 50%,
respectively, is achieved by deploying edge resources for
the average demand rather than peak demand. In addition
it has also been found that the safe travel time of AVs
can be reduced by approximately 20% if they would be
rerouted to areas with a lower edge-resource load.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III provides an overview
of edge-assisted navigation for AVs and describes the
approach used for finding the configuration of edge resources.
Section IV describes the dataset along with the results from
our experiments. Section V discusses the experimental results
and Section VI concludes the paper.

II. RELATED WORK

Given that AVs are still in their infancy and have not been
deployed at large scale yet, recent research studies have envi-
sioned they will likely be designed in one of two ways. First,
all the on-board sensor data is exclusively analyzed locally by
deploying powerful computing resources on each AV. Second,
to reduce the amount of computing resources deployed on each
AV, part of the heavy computation is offloaded from AVs to
powerful edge resources shared among nearby AVs.

Mero et al. [13], consider a single computing module to be
installed on board of each AV and capable of handling the
complex autonomous driving tasks by processing sensor data
through deep learning models trained by leveraging Imitation
Learning. Souri [3] analyzes the use of Al in connectivity
management systems for the IoV and Vehicular Ad Hoc
Network (VANET) environments. The study in [6] introduces
a virtual machine (VM) placement algorithm, which utilizes
the maximum flow and minimum cut theory in order to achieve
excellent QoS while reducing the energy usage of IoT devices
in the vehicles. The research presented in [14], [15], [16],
[17], and [18] consider each vehicle having a full sensor
configuration that can navigate on its own without the need for
any cooperation with the other vehicles. Researches in [19],
[20], and [21] use LiDAR point clouds to implement Simulta-
neous Localization and Mapping (SLAM) in AVs. The LiDAR
sensors are generally expensive and the resulting computation
usually needs power-hungry onboard components such as
graphics processing units (GPU) [22]. However, none of the
above solutions consider that, according to a recent study [23],
adding too many resources on board can considerably reduce
the driving range of the vehicle.

In order to deal with these challenges, several studies
suggest computational offloading. Several researchers [8], [9],
[24], [25], propose to offload part of the heavy computation
to the edge. Some studies [26], [27], [28], [29] even proposed
to move the LiDARs to a suitable place out of the vehicle
and move the GPUs at the edge by connecting them with
edge servers to be shared among other AVs. Yang et al. [30]
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mitigate the challenge of low on-board object detection accu-
racy by intelligently offloading blocks of pixels to the edge.
Abdallaoui et al. [31] discuss the most popular path planning
techniques proposed in literature for navigation problems
involving autonomous vehicles. However, none of the above
studies provide insights on how heterogeneous edge servers
may affect AV’s path planning algorithms. 7o the best of our
knowledge, this is the first work studying the design trade offs
of edge resources for future AVs and their consequences in
terms of safety and travel time compared to regular vehicles.
We hope the discussion and findings of this paper will inspire
new research directions on edge-assisted AVs.

III. SYSTEM MODEL AND METHODOLOGY

In order to conduct our qualitative analysis, we consider a
system model where an edge server is placed at the center
of an area. The network and computing resources of that
server are shared among all the AVs in that area. There are
mainly two ways considered for establishing communication
between the vehicles and the edge server. One is Device-to-
Device (D2D) direct communication and another is multi-hop
communication. In this paper we consider direct communi-
cation between AVs and local edge server to reduce latency.
Figure 1 shows our example system model. An AV offloads
its job (computation) to the nearby edge server while being in
location sp at time ¢y by using the underlying communication
network. After a certain transfer time ¢, the job is received
at the edge server where it is scheduled concurrently with
other AVs’ jobs, based on a certain policy. After it finishes
its execution, the result is returned to the AV at time f; in
location s1 and the AV reacts according to the received result,
e.g., brake or steer. The distance that the AV travels between
job offloading and result reception is defined as the blind
distance, L. The time taken for a job to finish processing
at the edge server from the time it is offloaded is defined
as the response time, r of that job. When the AV receives
the result of the previously offloaded job it acquires a new
sensor data and offloads another job. Note that in this paper
we want to determine the conditions to satisfy a certain blind
distance requirement, so considering the AVs to offload jobs
periodically rather than sporadically would not change the
results of our study.

A. Assumptions

In order to simplify the problem for the ease of understand-

ing, we have made the following assumptions:

e AV Computation: All the AVs have the same
autonomous navigation software and the related
computation relies on the nearby edge servers. Thus,
we assume that, by design, all AVs offload the same
amount of per-job computation. Given the complexity
of developing a reliable AV navigation software, car
manufacturers such as General Motors (GM) are likely
going to use the same autonomous navigation software
across different vehicles to improve reliability and
lower the development complexity. We also extend this
assumption across car manufacturers. On the other hand,

having heterogeneous jobs offloaded to the edge server
is unlikely to change the trend of the results presented
in this paper since (1) the approach considered to find
peak and average configurations would adapt network
and computing resources accordingly, and (2) the main
reason for the high variations in edge utilization for peak
configuration is due to large hourly traffic variations
during each day, which is likely to be consistent across
regular and autonomous vehicles.

« Edge-Server Cores: Each edge server is equipped with a
number of generic logical cores and each of them are able
to carryout the requested computation within a bounded
worst case execution time. We make this assumption to
abstract the complexities of dealing with specific CPU
types, frequency, and other hardware characteristics.
Each logical core can be translated to a specific CPU
type with a certain frequency by the system designer.

o Edge-Server Network: The AVs are connected through
a wireless network interface with the edge server
located in the area they are residing in. To keep our
study general and avoid tying the results to a specific
network technology (e.g., 5G, DSRC), we determine the
required total bandwidth, which is the fastest possible
data transfer speed [32]. This will be equally shared by
the number of AVs connected to the edge server at a
particular time in that particular area while jobs are being
offloaded. The system designer can use this information
to determine the necessary network technology to install
and the channel capacity according to parameters such
as transmission power, noise, and distance to vehicles.

« Edge Job Scheduling: We assume that each edge server
schedules jobs according to the non-preemptive Earliest
Deadline First (EDF) policy [33]. Specifically, our system
tasks are modeled as a constrained-deadline sporadic task
model. We choose this policy because it is commonly
used to study the behavior of real-time systems. Other
schedulers could easily be employed for testing.

+ Downloading Results: Similar to related work [34], [35],
we assume that the time to send back the computation
results from edge servers to the AV is negligible, due its
generally small data size.

Based on the above assumptions and setup, first we analyze
the hourly average traffic speed and vehicle count using a
comprehensive real dataset. Then, we vary the required blind
distance to obtain a specific deadline for each city area and
hour. In Algorithm 1, which is described in next section,
we use this deadline to compute the total network bandwidth
and number of logical cores required to avoid deadline misses.
We call this the required configuration of resources and
calculate it for every hour of the day and area.

B. Methodology

In this section, we describe the detailed approach we have
used to determine the minimum amount of edge network
and computing resources necessary to satisfy the total vehicle
demand for a fixed maximum blind distance in a certain
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Fig. 1. Overview of the considered system scenario.

Algorithm 1 Configuration-Search

Input: L, blind distance; V, average number of vehicles; S,
average speed of the vehicles; D, data size; E, processing
time at the edge; W, analysis period; n, multiplicative
factor to account for queuing delay at edge server; A’,
increment in the bandwidth; A€, increment in the number
of logical cores; €”, response time variation threshold; b,
maximum bandwidth; M, N, sufficiently large numbers.

Ld" <M > Number of deadline misses
2:.d<«L/S > Relative deadline
3:t<d—nE > Maximum allowable transfer time
4: b« (D-V)/t > Total bandwidth
5: while d" > 0 and b < €” do

6: t<—(D-V)/b > Current transfer time
7: c<«1 > Number of logical cores
8: r'" «— 0 > Maximum response time
9: A" <~ N > Response time variation
10: while d" > 0 and A" > € do

11: d™,r'm? « SCHED(c,t, E, V,d, W)

12: AT <_| (’,.max _ rtemp)/rtemp |

13: rmax <« rtemp

14: if d" > 0and A" > € then

15: c<—c+ A°

16: if d™ > 0 then

17: b < b+ AP

Output: b, c

geographical area at a specific time of the day. We provide
a complete overview of our method in the next sections.

1) Finding Configuration of Resources: Algorithm 1,
Configuration-Search describes the procedure of finding the
required amount of edge resources for a particular area, time
of the day, and blind distance.

The algorithm first initializes the number of deadline misses
to a sufficiently large number M, which lets the while loop
in Line 5 to execute at least the first iteration. In Line 2, the
deadline for every job offloaded by the AVs is calculated based
on the input blind distance L and input average speed of the
vehicles S. In Line 3, we calculate the maximum allowable
time ¢ for a job to be transferred to the edge server after
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it is offloaded. Here, the parameter n > 1 accounts for any
queuing delay that may occur at the edge server before the job
starts executing, e.g., due to contention with jobs of other AVs.
In Line 4, we calculate the initial total bandwidth b required
to satisfy the maximum transfer time ¢ for all vehicles served
by the same local edge servers. The while loop in Line 5 then
searches for the minimum number of logical cores necessary
to have zero deadline misses (starting from one core in Line 7)
and for a progressively increasing network bandwidth, which
reduces the transfer time ¢ in Line 6 in each iteration.

In Line 8, the maximum response time r™%* is initialized
to 0. In Line 9, the response time variation A" is initialized
to a sufficiently large number N, which lets the while loop
in Line 10 to execute the first iteration. The algorithm then
uses the SCHED algorithm (which is discussed in the next
subsection) to schedule vehicle jobs on the edge server and
find the maximum response time r”%* as well as number
of deadline misses d"”. This analysis is performed based on
the current transfer time #, the number of logical cores c,
the average number of vehicles V, the deadline calculated in
Line 2, and the time period considered for the analysis W.
The while loop in Lines 10-15 keeps increasing the number
of logical cores by a factor of A (in Line 15) in each
iteration until it leads to zero deadline misses or it finds
that increasing the number of logical cores ¢ only leads to
a negligible reduction in response time. To check for the
latter condition, the response time variation A” is calculated
in Line 12 to find how the response time changes compared to
the previous iteration. If the response time variation A" is less
than a threshold €”, the algorithm determines that the current
bandwidth b is a bottleneck to the system performance, so it
needs to be increased. Hence, it is incremented by a factor
of A’ in Line 17 and the first while loop in Line 5 starts
executing again with the new total bandwidth . The number of
logical cores is reset to one (Line 7) and the search continues
as described above. This process (Lines 6-17) is repeated to
increase the network and computing resources in each iteration
until it obtains zero deadline misses or the bandwidth reaches
a predefined maximum value €”. When it terminates, the
algorithm returns the amount of bandwidth b and number of
logical cores ¢ needed to ensure that all the vehicle’s offloaded
jobs are processed within the deadline.

2) Processing of Jobs at the Local Edge Servers: Algo-
rithm 2, SCHED, describes the process of how offloaded jobs
from each AV are processed at the local edge servers. It selects
the vehicle job that arrives at the edge server according to the
EDF scheduling policy and returns the number of deadline
misses as well as the maximum response time of the vehicle
jobs at the end of the analysis period W. It first initializes
the current time unit of the schedule k£, number of deadline
misses d”*, and maximum response time of a job r** to 0
(Lines 1-3). In Line 4, based on the input average number
of vehicles V and the required number of logical cores c,
the number of vehicles V¢ served by each logical core is
calculated. For simplicity, we consider the job processing and
job response time at the heavily loaded logical core. That is
the logical core that serves the highest number of vehicles
assuming a balanced vehicles-per-core allocation, which is
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Algorithm 2 SCHED
Input: ¢, number of logical cores; 7, transfer time; E, pro-
cessing time at the edge; V, average number of vehicles;
d, relative deadline of the jobs; W, analysis period.
1: k<0 > Current time unit of the schedule
2:d™ <0 > Number of Deadline misses
3 MY «— 0 > Maximum response time
4 VC «—[V/c] > Number of vehicles per logical core
5: Let v; indicate a specific vehicle i.
6
7
8
9

- fori €1, V] do

: 0; < 0

: while k < W do

for i € [1,V‘] do

10: a; < t+o; > Job arrival time at the edge
11: 8 < o0; +d > Absolute deadline of the job
12: S <« {vila; <k,i e[1,V°]}
13: if S = ¢ then

> Time of first offload of vehicle i

14: k<—k+1

15: else

16: J < argmin, . ¢{d;} > Earliest deadline Job
17: sj <k > Job processing start time of vehicle j
18: if s; > W — E then

19: break

20: fj < sj + E > Job completion time of vehicle j
21: k < f;

22: if fj > &; then

23: d" <~ d"+1

24: r< fi—oj

25: r'"* <« max{r, r'"*}

26: oj < fj

Output: d", rm

why we use the ceiling function in Line 4. In Line 7, the
algorithm initializes the time o; to zero when the jobs are
offloaded by the vehicles V€. In Line 10, the arrival time of the
vehicle jobs at the edge server queue, a;, is calculated based
on the job offload time, o;, and job transfer time to the edge, .
In Line 11, the absolute deadline of the jobs §; is calculated
based on the job offload time o; and the relative deadline d.
Here the subscript i denotes a particular vehicle v; € V°.

In Line 12, the vehicle set S is initialized with the vehicles
whose job’s arrival time a; is within the current time slot k.
Among the vehicles in the set S, the vehicle j having a job
with the earliest deadline is chosen to be processed and the
current time slot k is updated to when the job processing is
finished. As long as the vehicle set S is not empty, the jobs
of the vehicles in this set are processed in this manner. This
is done in Line 16 to Line 21. If the job completion time f;
is greater than its absolute deadline §;, the count for deadline
missed jobs d™ is incremented by 1 in Line 23. Every time
a job finishes processing, its response time r is calculated
in Line 24. Among all the response times, we consider the
maximum response time r*** to guarantee safety for the AVs
in the worst-case scenario (Line 25). The next job offload
time o; of vehicle j is calculated when its previous job finishes
its processing at the edge server (Line 26). When the vehicle

set S becomes empty, the current time slot is advanced by
1 unit (Lines 13-14). This process is repeated until the end
of analysis period (i.e., while loop in Line 8). Finally, the
algorithm returns the maximum job response time r™%* and
the total number of jobs that missed deadlines, d™.

Complexity Analysis. The computational complexity of
Algorithm 1 can be analyzed by considering €?, the maximum
bandwidth of the network and A?, the increment in the
bandwidth, since the while loop in Line 5 executes at most
[e?/ AP times. Furthermore, Algorithm 2 is executed in each
iteration of the second while loop in Line 10. The computa-
tional complexity of Algorithm 2 can be analyzed considering
W as the length of the total analysis period and V as the
maximum number of vehicles per logical core c. Therefore the
computational complexity of Algorithm 2 is O(W V). In each
iteration of the while loop in Line 10 of Algorithm 1, the
input number of logical cores ¢ is incremented up to V/n,
which leads to computational complexity of the loop to be
owv Zlvz/? 1/i) = O(WV log V). Therefore, the computa-
tional complexity of Algorithm 1 is O([€?/APTWV log V).

3) Edge-Assisted AVs Safe Speed: From the required edge
resource configuration of each hour of the day (found using
Algorithm 1), we determine two types of configurations. The
peak configuration is calculated as the maximum required
network bandwidth and number of logical cores over all the
hours. That means the peak configuration handles the peak
demand without causing any deadline misses of the vehicle
jobs. The average configuration is calculated as the average
of the required network bandwidth and the number of logical
cores over all the hours. The average configuration handles the
average demand. Afterwards, in order to determine the edge
assisted AV’s performance with the average configuration and
real traffic data from a dataset (see Section IV-A), we leverage
simulations that use Algorithm 2 to schedule jobs at the edge
server. Specifically, we have used the transfer time calculated
from the network bandwidth and number of logical cores
found in the average configuration to obtain the maximum
response time r"*“* of the jobs at each hour of the day for a
certain blind distance, L. Then, we have calculated the AV’s
safe speed s* at a particular time and area as follows:

. L
s =min{—, s’
rmax

Because the dataset does not provide speed limits, we assume
that the AVs cannot exceed the average traffic speed s’ of
regular vehicles recorded in the dataset at each specific hour
and area. In fact, regular vehicles usually travel either at the
maximum speed allowed or at a reduced speed in case of
congestion. Note that, the average configuration handles the
average demand, but it may lead to deadline misses if AVs
travel at regular vehicle speed, especially at rush hours. Thus,
for every deadline miss we use the maximum response time
to calculate what the maximum safe speed of the AVs should
have been to meet the required blind distance, i.e., L/r™%*.
In the next sections we test the effect of various blind distances
on the requirement of network and computing resources, and
on the AV’s safe speed in terms of those two configurations.
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Finally, we use this safe speed to further investigate the travel
time of the AVs in several routing scenarios.

IV. EXPERIMENTAL RESULTS

In this section, we leverage the approach described in
Section III to conduct a qualitative study on the implications of
assisting AVs from the edge. Specifically, we first describe our
experimental setup to discuss the baseline and the real-world
dataset used to conduct our study. Second, we use the data
from this dataset to execute Algorithm 1 and compare the
peak and average resource configurations in terms of network
bandwidth and number of logical cores to deploy in different
city areas. Third, we study how using the average configuration
affects the AVs’ response time and evaluate the safe speed to
satisfy a desired blind distance. Finally, we examine the effect
of the safe speed on the travel time of edge-assisted AVs com-
pared to that of regular vehicles using the described baseline.

A. Experimental Setup

We have coded the approach described in Section III in
Python. The simulations have been executed on an Intel Core
i7-8750H CPU at 2.20GHz and 24GB DRAM.

1) Baseline: To the best of our knowledge, there is no
existing work focusing on the design trade offs of heteroge-
neous edge resources providing navigation assistance to AVs.
Therefore, we leverage as baseline one of the most popular
turn-by-turn navigation systems, i.e., Google Maps. After
selecting a random start and end points, we use it to determine
1) the route for regular vehicles with the minimum travel
time, and 2) the travel time on an alternative route. We then
compare the regular vehicles’ travel time on these routes with
the AVs’ travel time, estimated based on traffic speed and
edge resources in each area along the selected route. As a
result, this baseline allows us to determine whether modern
turn-by-turn navigation systems are ready for edge-assisted
autonomous vehicles.

2) Dataset Description: In order to ensure that our exper-
iments are based on realistic data, we have used the vehic-
ular mobility dataset of Cologne, Germany [12]. The dataset
includes 24 hours of car traffic traces comprising an area of
400 square kilometers of a typical working day. Although the
dataset is from 2013, it is quite complete because it contains
timestamps, anonymized vehicle IDs, vehicle speed, longitude
and latitude coordinates of vehicles with a one second time
granularity. Unlike other newer datasets, it is not restricted to
a certain kind of vehicle such as bus or taxi, and includes data
of vehicles traveling through both minor and major city roads.
Due to the vast amount of data in the dataset, we extracted data
for nine sample areas including the heavily congested ones.
We call those areas Al through A9 as shown in Figure 2.
Based on the range of typical vehicular wireless interfaces
(e.g., DSRC), we choose each area to be of 2 km by 2 km in
size. We also assume that the edge servers are located in the
center of each area.

For each area, we have calculated the average number of
unique vehicles and their average speed in each hour. Figure 3
shows the heatmaps of the average number of vehicles and
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Fig. 2. Selected area locations.

TABLE I
EXPERIMENTAL PARAMETER VALUES

Parameter Value

Blind distance (L) [2-20] meters
Data size (D%7*¢) 1.8 Mb

Edge processing time (F) 16 ms
Bandwidth increment (A®) 2 Mbps
Logical core increment (A€) 5

Working period duration (V) 60 seconds
Initial value of d™ and A" 100

Max bandwidth (®) 118 Gbps

Min response time variation (¢")  0.005 seconds
Edge queuing delay factor (1) 2
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Fig. 3. Heatmap of (a) the average number of vehicles and (b) the average
speed (mph) of the vehicles in the nine areas during the entire day.

average speed for each hour in the nine areas extracted.
According to the results in Figure 3(a), similar to most major
cities, 7 am and 4 pm are the rush hours of the day with the
highest vehicle count in each area. For example, at 4 pm areas
A2 and A5 have an average of 1800 vehicles, areas A3 and
A6 have 750 vehicles, and areas A7, A8, and A9 have nearly
400 vehicles. Because of the variable traffic at different times
of the day and areas, the average vehicle speed is also variable.
According to Figure 3(b), during the rush hours the average
speed in the area A2 and A5 is less than 16 mph, while areas
A3, A6, and A9 have higher speed of 24 mph because of
their lower number of vehicles. In order to analyze the effect
of having edge-assisted autonomous vehicles in variable traffic
and speed, we have used the data of Figures 3(a) and 3(b) as
inputs for Algorithm 1. Specifically, while we examine the
general results for all nine areas, in the next sections we are
going to provide in-depth results by focusing on areas A3, AS,
and A7 since they are representative of moderate, heavy, and
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required number of logical cores between peak and average configurations
for areas A3, A5, and A7.

low traffic areas, respectively. The values of the parameters
used in our experiments are given in Table L.

3) Robustness to Dataset: We have used the number of
regular vehicle data from the above-described dataset in our
experiments as it reports the traffic density of different areas at
different times. In the near future, when AVs will be deployed
at large scale, we can expect to have similar traffic density
with similar traffic patterns, e.g., rush hours in early morning
and afternoon. Also, the AVs would have to go as fast as the
traffic speed of the regular vehicles when there will be traffic
to avoid safety concerns. Our approach can be used for any
number of vehicles and different cities. In addition, we expect
that the trend of the results would not change much as there
would always be peak hours and traffic congestion on the road.

B. Blind Distance vs. Edge Resources

In this section, we use the results from Algorithm 1 to study
how the resources deployed at the edge change for different
input requirements and city areas. The typical human delay
to start reacting to a perceived danger is 3/4 of a second [5].
This means that at a speed of 35 mph (typical on city roads)
to 60 mph (typical on highways), regular vehicles travel 12 to
20 meters before the human starts reacting, respectively. Since
the target of AVs is to improve safety over regular vehicles,
in the following study we only consider a range of blind
distances of up to 20 meters.

1) Blind Distance vs. Network Bandwidth: Figure 4 shows
the network bandwidth and the number of logical cores
required for different blind distances while considering the
average and peak configurations for the three sample areas
AS, A3, and A7, which are representative of higher to lower
traffic density, respectively. As discussed earlier, the peak con-
figuration handles the peak demand without deadline misses.
As shown in Figure 4(a), in the case of peak configuration,
the network bandwidth requirement is 33 Gbps (Giga Bit
per Second), 26 Gbps, and 10 Gbps for areas A5, A3, and
A7, respectively, considering a blind distance of 2 meters.
Thus, area AS, which is the most heavily congested, requires
27% and 230% more network bandwidth than areas A3 and
A7, respectively. This demonstrates that deploying the same
amount of network resources in all city areas would not be
a reasonable choice. The peak network bandwidth could be
considerably reduced by allowing a higher blind distance,

AVs compared to the regular vehicles during rush hours to
meet the required blind distance.

2) Blind Distance vs. Computing Cores: Figure 4(b) shows
the number of logical cores required for different blind
distances considering the peak and average configurations.
Because of the variable traffic density in areas A3, AS, and
A7, using the peak configuration would require 108, 144, and
65 logical cores, respectively, which are enough to sustain the
traffic demand at all times of the day. Similar to the network
requirements, we observe a large spatial variability in the
number of logical cores to be deployed in peak configurations.
For example, area A7 requires about 55% fewer logical cores
compared to area AS to sustain peak demand. This further
demonstrates the unnecessarily high capital expenditures to
deploy a uniform amount of resources city-wide. Furthermore,
considering the peak configuration, 144 logical cores are
required for blind distance of 2 meters in area AS. For the
same previously described reason, the number of required
logical cores decreases with the increase of the blind distance.
However, using the average configuration, the required number
of logical cores is much lower, approximately 50% less than
what is required for the peak configuration at 2 meters blind
distance. Similarly, a blind distance of 12 meters in area A5
would require 33 and 16 logical cores considering peak and
average configuration, respectively.

3) Key Takeaway 1: In summary, using the peak config-
uration would be beneficial during rush hours (e.g., 7 am)
because all AVs would be able to always meet the blind
distance requirement. However, rush hours only represent a
fraction of the entire day time, which means that the edge
resources would be severely over provisioned on average.
A better strategy to improve resource utilization and lower
capital cost might be to deploy the average configuration and
cap the AV'’s speed during rush hours to meet a pre-established
blind distance. In such case, depending on the specific area,
the average configuration can help reduce by 60% and 50%
the deployed network bandwidth and the number of logical
cores, respectively.

C. Blind Distance vs. Safe Speed

Given the potentially high capital expenditure savings of
deploying the average configurations in different city areas,
here we study what would be its effect on the AV’s respon-
siveness and safe speed. Figure 5(a) compares the AV’s safe
speed at blind distances 8, 12, and 16 meters (i.e., circle, star,
and cross markers, respectively) with the average speed of
regular vehicles from the dataset (i.e., red triangle markers)
for areas A3, AS, and A7 (i.e., solid, dashed, and dotted lines,
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Fig. 5. (a) Comparison of the regular vehicles’ speed with the AVs’ safe speed
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for different blind distances with average configuration in area AS.

respectively). For reasons of clarity, we only show the results
at 7 am, 10 am, 1 pm, 4 pm and 7 pm, but other hours show
similar trends.

1) Blind Distance vs. AV’s Slowdown: To summarize the
results across day times, we leverage the traffic density data
of the dataset to classify each hour in a low, medium, or high
traffic cluster using the K-Means algorithm [36]. On average,
the AV’s slow down is 0%, 2%, and 68% for low, medium, and
high traffic densities, respectively. The worst-case slowdown
scenario we found is at 4 pm area A3 and blind distance
8 meters, where the AV’s safe speed reduces from 25 mph of
the regular vehicles to 21 mph (i.e., 51% slowdown). In gen-
eral, we also observe a large spatial variation in AV slowdown.
For example, at 7pm areas A3 and AS do not show any
slowdown while area A7 experiences an average slow down of
29% and 9% for 8 and 12 meters blind distances, respectively.

2) A Counter-Intuitive Trend: In general, increasing the
blind distance increases the deadline of each AV’s job, which
means that larger response times can still meet deadlines.
Figure 5(b) shows how the maximum response time increases
with increased blind distance for low, medium, and high traffic.
We have shown this result only for area AS as the other areas
exhibit similar trends. We observe that larger blind distances
may lead to an overly reduced amount of edge resources
deployed for the average configuration, which may lead to
the counter-intuitive effect of experiencing a larger slowdown
during rush hours. For example, as Figure 5(a) shows, at 4 pm
in area A3, the safe speed of AVs decreases from 15 mph to
13 mph when the blind distance is increased from 12 meters to
16 meters. This effect must be taken into consideration when
designing an under-provisioned edge infrastructure.

3) Key Takeaway 2: In summary, using the average con-
figuration of resources at the edge server may effectively
handle the traffic demands during the medium and low traffic
hours, which constitute more than two thirds of the day. The
slowdown that AVs would experience during rush hours could
be 1) acceptable, given the potentially high cost savings, and
2) handled by integrating the edge load information into the
turn-by-turn navigation system, which could help reduce the
AVs travel time by re-routing them through areas with higher
safe-speed.
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Fig. 6. Comparison of the travel time from Google Maps with the estimated
time using the data from the dataset for nine different routes.

D. Travel Time: Regular Vehicles vs. Edge-assisted AVs

Given the spatio-temporal variability of the safe speed based
on time of the day and location for average configurations,
here we leverage the baseline described in Section IV-A to
investigate whether the faster travel path for regular vehicles
provided by modern turn-by-turn navigation algorithms also
maps into the faster path for AVs.

In order to conduct this study, we first need to be able to
accurately estimate the travel time of edge-assisted AVs on
a certain route. To do so, we have created several scenarios
where the AVs need to travel from a certain source to a
certain destination during rush hour (see Figure 2 to locate
each source/destination). Each scenario has the source and
destination located in different areas. Figure 6 compares the
travel time for each scenario as given by the Google Maps
baseline at 4 pm (one of the rush hours) with the one we
calculate using the average speed from the dataset. The results
show a good estimation accuracy on average, which validates
the results presented in the next paragraphs. Among all the
scenarios, we show the detailed results for three of them in
Figure 7 and 8.

1) Scenario I: In Figure 7(a), we consider a scenario where
the AVs have to go from location A, in area A9, to location B,
in area A2, at 4 pm on a working day. We consider two
different routes to reach the destination. The first route (red)
(provided by Google Maps), requires to go through areas
(A9 —- A6 — A5 — A2) while the second route (blue),
takes through the same areas except area A5 comprises a larger
portion than area A6. The travel distance of route 1 and route
2 are 6.6 km (kilometers) and 7.6 km, respectively. For regular
vehicles, the travel time for route 1 is 13 minutes and route
2 is 16 minutes, respectively. Similarly, route 1 is the fastest
route also for the AVs. As shown in Figure 8, the AV can
reach the destination 7 minutes, 6 minutes, and 5 minutes
earlier considering blind distance of 8 meters, 12 meters, and
16 meters, respectively, via route 1. The reduction in the travel
time for the baseline route is due to the fact that the increased
travel distance of route 2 is not justified by the AV’s safe speed.
Thus, in this scenario Google Maps provides the fastest route
to both regular vehicles and AVs.

2) Scenario II: There can be cases where the fastest route
for regular vehicles may not always be the fastest route for
edge-assisted AVs. Figure 7(b) shows such a case. In this
scenario, the source (D) is chosen to be in area A5 and
destination (E) in area A2. Route 1 (red) A5 — A2, is the
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Fig. 7. Showing two routes; route 1 (red) given by Google Maps and route 2 (blue), an alternative route for (a) Scenario I: Going from A — B, (b) Scenario

II: Going from D — E, and (c) Scenario III: Going from F — G.
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Fig. 8. Comparison of travel time between the two routes for different
blind distances for Scenario I (A— B), Scenario II (D— E) and Scenario III
(F—~ G).

shortest one and it is suggested by Google Maps as the fastest
route for regular vehicles, as shown in Figure 8. However,
this route takes the AV to travel through the two heavy
traffic areas while route 2 (blue) AS — A6 — A3 — A2,
takes the AVs through the areas having lower traffic at that
time. Although the AV needs to travel a longer distance in
route 2, the increased safe speed allows to lower their travel
time compared to that of route 1. It can be seen from the
results in Figure 8 that the AV can reach the destination
1 minute and 2 minutes earlier considering blind distance of
8 meters and 12 meters, if it takes the second route. On the
other hand, as discussed in the previous section (Figure 5(a)),
sometimes the safe speed is reduced with an increased blind
distance due to the lower resources necessary on average. As a
result, in Figure 8 for scenario I, the travel time increases by
2 minutes while considering blind distance of 16 meters as
compared to 12 meters for route 2. This example scenario
clearly shows that the travel time for the AVs is dependent
not only on the distance and the traffic density in the selected
route but also on the amount of edge resources deployed in
different areas throughout the route. Thus, the fastest route
shown by the traditional navigation system may not always
be the fastest one in case of AVs.

E. Scenario 111

Figure 7(c) shows a scenario where the AV has to travel
from location F to location G. Route 1 (red) going through

the areas (A8 — A9 — A6 — A5 — A2 — A3) is shorter
and faster for regular vehicles, as suggested by Google Maps
where the travel time for the regular vehicles is 12.41 minutes.
However, this route includes the heavy traffic areas AS and A2.
In the case of AVs, with blind distance 8 meters and 12 meters
the travel time is approximately 25 minutes and 22 minutes,
respectively. If the AV can be rerouted to route 2 (blue) shown
in Figure 7(c) avoiding the heavy traffic areas, it can be seen
from Figure 8 that the travel time can be reduced to 20 minutes
and 18 minutes with blind distance 8 meters and 12 meters,
respectively. As the length of the second route is greater than
the first one, the travel time for regular vehicle becomes longer
but in the case of AVs this route takes approximately 20% less
time to reach the destination.

1) Key Takeaway 3: In summary, we can conclude that
while the traditional navigation systems are able to suggest the
fastest route for regular vehicles, they are not always efficient
in suggesting the fastest routes for the edge-assisted AVs as
observed from the results of Scenario II1.

V. FUTURE RESEARCH DIRECTIONS AND CHALLENGES

By analyzing all the results shown in Section IV, future
research directions in smart transportation systems need to
further investigate how to consider the large spatio-temporal
variability of edge-assisted AV demands for an optimal deploy-
ment of edge resources in smart cities. While in this paper
we discuss the average configuration that sustains the average
demand, future research should focus on optimizing network
and computing requirements considering multiple objectives
such as total cost, AV slowdown, and safety (in terms of
blind distance). In addition, researchers should consider how to
integrate into the turn-by-turn routing algorithms the current
edge resource load in different city areas to find the fastest
route to destination. Several challenges can arise from tackling
these new issues, including (i) how to measure, exchange,
and predict edge load demand across city areas, and (ii) how
to coordinate real-time AV routing decisions to collectively
optimize travel time considering the predicted edge load
and slowdown.
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VI. CONCLUSION

Motivated by the advantage of edge-assisted AVs in provid-
ing greater computing power with reduced capital cost, in this
paper, we discussed the implications of deploying different
amount of edge resources in different city areas to handle
peak versus average traffic demand by leveraging real traffic
data. Considering an example system scenario, we analyzed
the resource requirements for peak and average configurations.
We developed a Python simulation environment that uses real
traffic data to evaluate the results. Our analysis revealed that
a reduction in network bandwidth and computing cores of up
to 60% and 50%, respectively, is achieved by deploying edge
resources for the average demand rather than peak demand.
We also investigated how the peak-hour demand affects the
safe travel time of AVs and find that it can be reduced
by approximately 20% if they would be rerouted to areas
with a lower edge-resource load. Thus, future research must
consider that traditional turn-by-turn navigation systems may
not provide the fastest routes for edge-assisted AVs because
they do not take into consideration the amount of edge server
resources deployed and the computational delay that may
occur in the data processing.
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