Mixture of Linear Models Co-supervised by Deep
Neural Networks

Beomseok Seo
Department of Statistics, The Pennsylvania State University

Lin Lin
Department of Biostatistics and Bioinformatics, Duke University

Jia Li
Department of Statistics, The Pennsylvania State University

Abstract

Deep neural networks (DNN) have been demonstrated to achieve unparalleled
prediction accuracy in a wide range of applications. Despite its strong performance,
in certain areas, the usage of DNN has met resistance because of its black-box na-
ture. In this paper, we propose a new method to estimate a mixture of linear models
(MLM) for regression or classification that is relatively easy to interpret. We use
DNN as a proxy of the optimal prediction function such that MLM can be effectively
estimated. We propose visualization methods and quantitative approaches to inter-
pret the predictor by MLM. Experiments show that the new method allows us to
trade-off interpretability and accuracy. The MLM estimated under the guidance of a
trained DNN fills the gap between a highly explainable linear statistical model and
a highly accurate but difficult to interpret predictor.

Keywords: Explainable machine learning, DNN co-supervision, Explainable dimensions,
Explainable conditions, Interpretation of DNN

1 Introduction

Deep neural network (DNN) models have achieved phenomenal success for applications in
many domains, ranging from academic research in science and engineering to industry and

business. The modeling power of DNN is believed to have come from the complexity and

over-parameterization of the model, which on the other hand has been criticized for the lack
of interpretation. Although certainly not true for every application, in some applications,
especially in economics, social science, healthcare industry, and administrative decision
making, scientists or practitioners are resistant to use predictions made by a black-box
system for multiple reasons. One reason is that a major purpose of a study can be to make
discoveries based upon the prediction function, e.g., to reveal the relationships between
measurements. Another reason can be that the training dataset is not large enough to
make researchers feel completely sure about a purely data-driven result. Being able to
examine and interpret the prediction function will enable researchers to connect the result
with existing knowledge or gain insights about new directions to explore. Although classic
statistical models are much more explainable, their accuracy often falls considerably below
DNN. In this paper, we propose an approach to fill the gap between relatively simple
explainable models and DNN such that we can more flexibly tune the trade-off between
interpretability and accuracy. Our main idea is a mixture of discriminative models that is
trained with the guidance from a DNN. Although mixtures of discriminative models have

been studied before, our way of generating the mixture is quite different.

1.1 Related Work

Despite the fact that many attempts have been made to make DNN models more inter-
pretable, a formal definition of “human interpretability” has remained elusive. The concept
of interpretability is multifaceted and inevitably subjective. An in-depth discussion about
the meaning of being interpretable is given by the review article of Doshi-Velez and Kim
(2017), which confirms the richness of this concept and provides philosophical viewpoints.
In the literature, different approaches have been proposed to define “interpretation”. A
complete unified taxonomy for all the existing approaches does not exist. Nevertheless,
one way is to categorize recent works into two types: one that builds more interpretable
models by reducing model complexity, and the other that attempts to interpret a complex
model by examining certain aspects of it, e.g., how decisions are made locally. For the

first type of approaches, interpretability is aimed at during the model’s training phase,

and what constitutes good interpretability has been addressed in diverse ways. For ex-
ample, attention-based methods (Bahdanau et al., 2014; Vaswani et al., 2017) propose an
attention score for neural machine translation; generalized additive models (GAM) (Lou
et al., 2013; Agarwal et al., 2020; Guo et al., 2020) interpret pair-wise interaction effects
by imposing an additive structure; and feature selection methods impose cross-entropy er-
ror function (Verikas and Bacauskiene, 2002) or Ly penalization (Tsang et al., 2018). In
contrast, the second type of approaches, the so-called model-agnostic methods (Ribeiro
et al., 2016b), are post-hoc in the sense that they analyze an already trained model using
interpretable measurements. For example, sensitivity analysis (Lundberg and Lee, 2017),
local linear surrogate models (Ribeiro et al., 2016a) and Bayesian non-parametric mixture
model (Guo et al., 2018) search for important features for specific samples according to a
given prediction model. The same aspect of being interpretable can be tackled by either
type of the approaches. For example, Tsang et al. (2017) searches for interaction effects
of original features as captured in a trained neural network by computing a strength score
based on the learned weights. In Tsang et al. (2018), similar results can be obtained by
training the neural network model with a penalty to learn the interaction effects.

Various kinds of interpretation have been suggested, including but not limited to visu-
alizing the result, generating human explainable rules, selecting features, or constructing
prototype cases. The pros and cons of existing methods are discussed in Molnar (2020).
What kind of interpretation is useful also depends on the application field. For instance,
feature selection for image analysis is usually not as meaningful as that for tabular data.
Many proposed methods target particular applications, e.g., image analysis (Zhang et al.,
2018; Chen et al., 2019), text mining (Vaswani et al., 2017), time series (Guo et al., 2019).

Ribeiro et al. (2016a) interprets neural networks by explaining how the decision is
made in the vicinity of every instance. In particular, the trained neural network is used to
generate pairs of input and output quantities, based on which a linear regression model is
estimated. This linear model is used to explain the decision in the neighborhood of that
instance. Although the local linear models help understand the prediction around every

single point, they are far from providing global perspectives. Our new method is inspired

by Ribeiro et al. (2016a), but we tackle two additional problems. First, our method will
produce a stand-alone prediction model that is relatively easy to interpret. In another
word, our method is not the model-agnostic type to explain an actual operating DNN.
Second, our method aims at globally interpreting the decision.

Although motivated from rather different aspects, in terms of the formulation of the
model, our method is related to locally weighted regression (Cleveland and Devlin, 1988). In
other words, our method splits the space of the original independent variables by exploiting
a trained DNN and conducts linear regression inside each local region. In non-parametric
regression, many other flexible regression models have been studied, for instance, kernel
regression (Nadaraya, 1964; Watson, 1964), generalized additive models (Hastie and Tib-
shirani, 1990), and classification and regression trees (CART) (Breiman et al., 1984). Some
of the methods such as CART are by construction highly interpretable, but some are not.
More recently, Guo et al. (2020) have used neural networks to efficiently learn the classic
GAM (Hastie and Tibshirani, 1990) models.

Our method is in spirit similar to the Mixture of Experts (MOE) model or a fuzzy
system (Jacobs et al., 1991; Takagi and Sugeno, 1985) although profound differences exist
in practically important aspects. MOE divides the feature space into regions and applies
localized experts in each region. The study on MOE has focused on finding better ways to
create the individual experts and to combine them into a single predictor. The approaches
for creating the individual experts include stochastic partitioning (Ebrahimpour et al.,
2008), negatively correlated experts (Masoudnia et al., 2012), and clustering-based experts
(e.g., self-organizing maps (SOM)) (Tang et al., 2002). Weights to combine the experts have
been computed by methods such as gating network (Kuncheva, 2014) and boosting (Kégl,
2013). However, the MOE method partitions the feature space using only the features.
Our method is different because it uses a pre-trained DNN to partition the samples, in a
supervised manner based on the prediction of the DNN. Our method is motivated by finding
an easier interpretation while preserving the accuracy of a DNN. Experimental results are

provided to compare our method with the mixture of experts approach.

1.2 Overview of Our Approach

One natural idea to explain a complex model is to view the decision as a composite of
decisions made by different functions in different regions of the input space. Explanation
of the overall model consists of two parts: to explain how the partition of the input space is
formed, and to explain the prediction in each region. This idea points to the construction
of a mixture model in which every component is a linear model, which is called the mixture
of linear models (MLM). Although a linear model is not necessarily always easy to explain,
relatively speaking, it is explainable, and via LASSO-type sparsity penalty (Tibshirani,
1996) it can be made increasingly more explainable.

The main technical hurdle is to find a suitable partition of the instances such that
component-wise linear models can be estimated. The challenge faced here is in stark
contrast to that for building generative mixture models, e.g., Gaussian mixture models
(GMM), where the proximity of the independent variables themselves roughly determines
the grouping of instances into components. The same approach of forming components is
a poor choice for building a mixture of discriminative models. The similarity between the
instances is no longer measured by the proximity of the independent variables but by the
proximity of the relationships between the dependent variable (Y') and the independent
variables (X). As a related approach, cluster-weighted modeling (CWM) (Gershenfeld,
1997; Ingrassia et al., 2012) takes into account the joint distribution of X and Y when
creating a generative mixture model. However, in CWM, the grouping of X and the
estimation of local models are treated separately. We will compare the performance of
CWM and MLM in the experiments.

The dependence between Y and X cannot be adequately captured by the observation of
one instance. In the case of moderate to high dimensions, it is also impractical to estimate
the discriminative function, Y = f(X), based on nearby points. Our key idea is to use the
DNN model as an approximation of the theoretically optimal prediction function, which
is employed to guide the partition of the instances. We also propose to use visualization
based on GMM and decision tree to interpret the partition of the instances, which is crucial

for obtaining interpretation in a global sense.

It is debatable whether DNN serves well as an approximation of the optimal prediction
function. In many applications, we observe that DNN achieves the best accuracy among the
state-of-the-art methods, e.g., support vector machine (SVM) (Cortes and Vapnik, 1995)
and random forest (RF) (Breiman, 2001). It is thus reasonable to exploit DNN in this
manner. However, we acknowledge that a weakness of our approach is that the accuracy
is capped by DNN, and our approach is likely to suffer when DNN itself performs poorly.

The rest of the paper is organized as follows. In Section 2, we introduce notations and
summarize existing methods most relevant to our proposed work. We present MLM in
Section 3.1 and describe the tools developed for interpretation based upon MLM in Section
3.2. In Section 4, experimental results are reported for four real-world datasets including
two clinical datasets for classification and two for regression. For prediction accuracy,
comparisons have been made with multiple approaches including DNN. We also illustrate

how the interpretation tools are used. Finally, conclusions are drawn in Section 5.

2 Preliminaries

Let X € R? be the independent variables (or covariates) and Y € R be the dependent vari-
able. Denote the sample space of X by X. Let {y;}7; and {x;}"; = {(@i1, -, zip) T }1y
be the n observations of Y and X. Denote the input data matrix by X € R™*?. In re-
gression analysis, we are interested in estimating the following regression function for any

x € X (for classification, we simply substitute Y by ¢(Y’) via a link function g(-)).
m(x) =EY|X =x) . (1)

In linear regression, it is assumed that m(x) = a + x’ 3. In non-linear regression, a
linear expansion of basis functions is often used to estimate m(x). For example, Nadaraya-
Watson kernel regression (Nadaraya, 1964; Watson, 1964) assumes m(x) to be an additive

form of kernel functions with a given bandwidth h:

mx) =3 m7 2)

i=1 '21 G(=)

where G(x) = (27)%2e*"*/2_ The locally weighted regression (Cleveland and Devlin,
1988) extends Nadaraya-Watson’s m(x) by changing the constant prediction in each band
to a linear function. Regression splines use piecewise polynomial basis functions between
fixed points, known as knots, and ensure smoothness at the knots (Schoenberg, 1973).
Friedman (1991) extended the spline method to handle higher dimensional data. These
kernel and spline-based approaches use the basic binning strategy to separate the covariate
space into regions, suffering from curse of dimensionality even at moderate dimensions.

In recent years, DNN has become increasingly popular in high-dimensional applications
because of its remarkable prediction accuracy. Consider a feed-forward neural network
with L hidden layers and one output layer. Its regression function, denoted by m(x), is
defined by the composition of the affine transform and a non-linear activation function at
each layer. Let p; be the number of hidden units at the [-th hidden layer, [= 0, ..., L, and
po = p. Let z) € R”t be the outputs of the I-th hidden layer. Set z(®) = x. The mapping
at the [-th hidden layer, z() = h;(z/~V), is defined by

Z(z) _ hl(z(l—l)) _ Jl(vv(l)z(l—l) 4 b(l)), | = 1,---, L, (3)

where 0(+) is a non-linear element-wise activation function such as ReLU (Nair and Hinton,
2010), sigmoid or hyperbolic tangent, and WO ¢ Reexri-1i and b® € R” are the model
parameters. At the output layer, g(z*)), is defined as either a linear or softmax function
depending on whether the purpose is regression or classification. In summary, the neural

network model, m(x), is given by
%) = (g0 hy 0 hy 300 hy)(x), @)

and its parameters are trained by gradient descent algorithm so that the mean squared error
loss for regression or the cross-entropy loss for classification is minimized. Specifically, the
n

mean squared error loss is defined by Z [y; — ﬁl(xi)f /n, and the cross-entropy loss is
i=1

- Z [y; log(m(x;)) + (1 — y;) log(1 — m(x;))] /n. Because of the multiple layers and the
i=1
large number of hidden units at every layer, it is difficult to interpret a DNN model, for

example, to explain the effects of the input variables on the predicted variable.

7

3 Methods

Train DNN Model

Form Cells by Quantization of Hidden Layer Outputs

l

577 -
/ Data input /Hldden layer outputs / / Qu(aﬁltlze;l mflq)mts Cells
ayer (-cells
// x € RP y z(l) . Z® /// /, 0,0, [C1,---,Cx]

DNNNN m\

Train DNN model
m(x) = (gohpo---ohy)(x)

Perform clustering
at each DNN layer

Caneman

q Product)

|_prediction agreement

/ EPICs

Construct MLM from soft-weights of GMM
and local lincar models

) = 32 7 () ().
=1

5() = Px € Pj) =

Train GMM models
for cach EPIC

il ()

S yhy, ()

7 Train local linear models
for cach EPIC
m;j(x) = a; +x7B;
forx e Pj,j=1,..., i

m;(x) = a; +x";,j=1

_Merge into EPICs

Merge cells based on)
—'—‘* local linear models'

:I'rain Local Linear Modelé

Construct Mixture of Linear Model (MLM) ""Train GMM for Each EPIC

Figure 1: A schematic plot showing the steps of creating MLM.

Our core idea is to approximate the prediction function m(x) of a DNN model by a
piecewise linear function 7(x) called Mizture of Linear Models (MLM). We will present in
the context of regression. Adaption to classification will be remarked upon later. Suppose
the input sample space & is divided into K mutually exclusive and collectively exhaustive
sets, {P1, ..., , Pk}
The partition & induces a row-wise separation of the input data matrix X into K sub-

, X) | Within each Py, m

Pr}, which form a partition of X. Denote the partition by 2 = {Px, ...
matrices: X, (x) is approximated by my(x), which is referred
to as the local linear model. To create &, our criterion is not based on the proximity
of x;’s but on the similarity between m(x) in the neighborhood of each x;. Because of
this difference from the conventional mixture model, we are motivated to cluster x;’s by
simulating from the prediction function of an estimated DNN. Without the guidance of the
DNN, there will not be enough training points in the neighborhood of any x; to permit a
reasonable estimation of the prediction function unless the dimension is very low.

Let Ip(x) be the indicator function that equals 1 when x € P and zero otherwise. Given

the partition 9, we express m(x) by

mx) =

mi. (X) =

Iy (<) (%) + -+ Iy () (),

Oék—{—XTﬁk, k= 1,...,K. (5)

A schematic plot is provided in Figure 1 to show the major steps in generating an MLM.
The partition & is obtained by a two-stage process. First, clustering is performed based
on the outputs at each layer of the DNN. This stage provides refined clusters, referred to
as cells, of the data points and helps reduce computation at the next stage. Secondly,
the cells are merged into larger clusters based on the similarity of m(x) computed via
simulations. Clusters obtained at this stage become Py’s in . We refer to Py as an EPIC
(Explainable Prediction-induced Input Cluster). A linear model is then fitted based on the
data points in each EPIC as well as simulated data generated using the DNN. GMM models
are then formed for each EPIC so that test data can be classified into the EPICs. Finally,
a soft-weighted MLM modified from Eq. (5) is used as m(x).

The interpretability of MLM relies on both the local linear models my(x) and the
characterization of EPICs. We develop a visualization method and a decision-tree based
method to help users explain EPICs and to open avenues for potential discovery. These

methods are presented in Section 3.2. Next, we describe the steps to build an MLM.

3.1 Construction of a Mixture of Linear Models

In Subsection 3.1.1, an approach is presented to approximate a neural network by a piece-
wise linear model and obtain cells. The approach to merge cells and obtain EPICs is
described in Subsection 3.1.2. Finally, we describe the soft-weighted form of MLM in
Subsection 3.1.3.

3.1.1 Piecewise Linear Approximation of DNN

The neural network model m(x) in Eq. (4) is non-linear due to the non-linear activation
functions o;(+) at each hidden layer. If the outputs at each layer are partitioned such that
the non-linearity can be neglected within a cluster, the mapping of DNN from the original
input to the prediction is approximately linear for data points that belong to the same
cluster across all the layers. It is difficult to find such a partition directly from the original
feature space X because points yielding similar outputs through the DNN layers are not

necessarily close in X. On the other hand, because the I-th hidden layer output z® in

DNN is formed by the composite of monotone functions and linear functions of the input,
clusters generated based on output z) correspond to polytopes in the input space. Within
each polytope, the mapping from the input to the output is approximately linear. After we
conduct clustering of z) at each layer, the final cluster is determined by the sequence of
clusters through the layers. Within each final cluster, the DNN mapping from the input to
the output at every layer is approximately linear, and thus the overall mapping is linear.
Let {Cfl), e ,C%} be a partition of the [-th layer outputs of the DNN, where Kj is the
number of clusters. We call this partition layer [-cells. Then, with layer [-cells, we can

approximate the [-th hidden layer map hl(z(l_l)) as a piecewise linear function:

ha(zD) = Icgm(z(l_l))(ng)z(l_l) + bgl)) NI]C%)
l

(2 (Wigz ™+ big), - (6)
where W,gl) € RP*Pi-1 and b,(cl) € RP" are model parameters, and [e (z!~1) is the indicator
function.

The layer [-cells are obtained by clustering the observed [-th hidden layer outputs.
Denote by {zgl)}?zl the observed [-th hidden layer outputs corresponding to {x;}?_; respec-
tively, that is, x; — zgl). We apply GMM-based clustering on {zgl)}?zl with K clusters,
and obtain the following GMM model. Denote the density function by f(-), and the prior,

mean, and covariance matrix of each Gaussian component by 71'](;), ,u,(f), and Eg). Then
K;
!) «(
@) = m o0 50). (7)
k=1

As usual, the maximum a posteriori (MAP) criterion is applied to cluster zl(»l)’s based
on the GMM. We apply GMM clustering on each hidden layer separately to compute layer
[-cells. Denote the set of cluster labels for the layer l-cells by K, = {1,---, K;}. The set
of all possible sequences of the cluster labels across the L layers is the Cartesian product
K = K1 x --- x Kr. Let the cardinality of K be [~(0 = ﬁ K;. For each sequence in IE,
(k1,..., kL), k € K, assign it a label k, 1 < k < l?o, accofr;ﬁng to the lexicographic order.
Denote the mapping by (ki, ..., k) — k. Then, the original input x; belongs to cluster Cj
if (ky,...,kr) — k and zgl) € C,(Ci) for [=1,..., L. It can often occur that no x; corresponds
to a particular sequence in K. Thus the actual number of clusters formed, denoted by K ,

is smaller than [?0.

10

We call the clusters Cy cells. After obtaining the cells, we estimate a linear model
for each cell. As in Eq.(5), the linear model for the kth cell is my(x). To train each
local linear model my(x), we use both the original data points that belong to a cell k and
simulated data points perturbed from the original points with responses generated by the
DNN model m(x). A major reason for adding the simulated sample is that a cell usually
does not contain sufficiently many points for estimating my(x), the very difficulty of high
dimensions. By the same rationale, we attempt to mimic the decision of the DNN, which
is an empirically strong prediction model trained using the entire data. If the DNN can be
well approximated, we expect MLM to perform strongly as well. Estimating a linear model
using simulated data generated by the DNN is a data-driven approach to approximate the
DNN locally. We thus aptly call this practice co-supervision by DNN.

Let nj be the number of observations in {x;}!, that belong to cell C;,. We have

K
> nx = n. Without loss of generality, let {x}, ; };*, be the set of points that belong to cell Cy:
k=1

{xhitits = {xjlx; € C for j =1,--- ,n} with an arbitrary ordering of x} ;,--- , %}, , and
let yj,; for i = 1,--- ,ny be the corresponding dependent variable of x} ; for i = 1,--- , n.
We denote by x; the sample mean of x; ;,--+ , X}, 1 X}, = m;;:;“ Then we generate m
perturbed sample points vi1,--- , Vi, by adding Gaussian noise to the mean X) with a
pre-specified variance parameter € for each cell k=1, -- ,[? . That is,

Vii ~ N (X, €l,), fori=1,-+- ny. (8)

For the perturbed sample points {vy;}/",, the predicted dependent variable {wy;}, is
computed using the DNN model m(-):

Wi =m(V:), t=1,---,m. (9)

In the case of classification, the prediction of DNN is the probabilities of the classes. We
then generate a class label by taking the maximum. We combine the original sample points
and the simulated ones,

{0) Vs H Vi wra) Y2
to train my(x) for k =1, ..., K. For each local linear model, if the dimension p of X is large,

we can apply a penalized method such as LASSO to select the variables. For the brevity of

11

presentation below, we introduce unified notations for the original data and the simulated
data within each cell: vj ;= xp;, @ = 1,.,ng, Vi, o = Vi, @ = 1,.m, wp; = Y,
i =1, Ny W, = W, E =1,

We need to pre-choose the hyperparameters K;, [=1,---, L, m, and €. In our experi-
ments, we set m = 100 and € < 0.1, the particular value of which is selected to minimize the
cross-validation error for the training data. In general, when the data dimension is high,
we tend to use a larger m to prevent multicollinearity when estimating the local linear
models. For simplicity, we set K; = Ky = --- K, and choose K using cross-validation.

This method of constructing a piecewise linear function from DNN can be viewed as
model regularization. The DNN prediction function is piecewise linear when ReL.U is used,
usually the number of pieces being enormous. Roughly speaking, the clustering algorithm
combines these linear pieces into a smaller number of regions, and consequently, the model

based on the combined regions reduces the complexity of the original DNN.

3.1.2 MLM based on EPICs

The complexity of MLM in Eq. (5) depends primarily on the number of local linear models.
If we fit a local linear model for each cell, that is, to treat a cell directly as a EPIC, we
usually end up with too many local models. To interpret the model m(x), we must interpret
the EPICs. The task is easier if there are a smaller number of EPICs. Therefore, we further
merge the cells by hierarchical clustering to generate the EPICs. The similarity between
two cells is defined by the similarity of their corresponding local linear models.

For classification, we define d;; using the inverse of Fl-score (Rijsbergen, 1979): d,; =
fr+fn

, where
2-tp

tp = }{Vﬁm|ms(vgm) =1 and mt(vfm) =1, fori=1,--- ,np+m, k= s,t}} ,

fp= }{V}H|ms(vﬁm) =1 and mt(vfm) =0, fore=1,--- ,np+m, k= s,t}} ,

fn = |{V§“|mS(V§“) = (and mt(vfm) =1, fori=1,--- . ny+m, k= s,t}| ,
and | - | denotes the cardinality of a set.
Treating ds; as a distance between the sth and tth cells, s,t € {1,--- ,IN(}, we apply

hierarchical clustering, specifically, Ward’s linkage (Ward Jr, 1963), to merge the cells

12

Ci,---,Cxinto J clusters. Ward’s linkage generates a dendrogram by recursively computing
the distance between a newly merged cluster v of s and ¢, and another cluster v using the

following equation:

vl + Is i + tl o [vl
\/ d2 d?t)

where T = |v|+ |s|+|t|. Ward’s linkage is known to perform well for clusters with spherical
multivariate normal distributions (Kaufman and Rousseeuw, 2009). We provide users the

option of different linkage schemes in our python package. We assume J is user specified.

Let J; be the set of the indices of cells that are merged into the jth cluster, j = 1,..., J.

For example, if cell C; and Cy are merged into the first cluster, then J; = {1,2}. Clearly

J -
U J; ={1,---,K}. We define the merged cells as an EPIC. For j =1, ..., J,
=1

= (10)

keJ;

nk-l—m

The original data and the simulated data contained in P; form the set U {(Viir wy o) HiE

keJ;
based on which we refit a local linear model for the EPIC. With a slight abuse of notation,

Y

we still denote each local linear model by m(x):

m(x) = Ip,(x)mi(x) + -+ Ip (x)mz(x),

mi(x) = a;+x B, forj=1,...J. (11)

3.1.3 Soft-weighted MLM based on EPICs

Although Eq. (11) is used to fit the training data, it is not directly applicable to new test
data because which P; a test point belongs to is unknown. We need a classifier for the
EPICs: Py, ..., P;. Given how the EPICs are generated in training, one seemingly obvious
choice is to compute the DNN inner layer outputs for the test data and associate these out-
puts to the trained cells and subsequently EPICs. However, this approach hinders us from
interpreting the overall MLM because categorization into the EPICs requires complicated
mappings of a DNN model, even though the local linear models in MLM are relatively easy

to interpret. We thus opt for an easy to interpret classifier for EPICs. Instead, we will

13

build a classifier for the EPICs using the original independent variables. In Subsection 3.2,
we will also develop ways for visualization and rule-based descriptions of EPICs.

From now on, we treat the partition of the training data x;, 7 = 1, ..., n, into the EPICs
Pi, ..., Py as the “ground truth” labels when discussing classification of EPICs based on the
original variables. Denote the labels by ¢;. We have x; € P,,. We first construct a GMM
directly from the cells Cy, ..., Ci by fitting a single Gaussian density for each cell. Denote
the estimated prior, mean, and covariance matrix of C, by 7, fix, and f]k, kE=1,.., K.
The estimated prior 74 is simply the empirical frequency, and fi; is given by the sample
mean. The covariance 3, can be estimated with different types of structural constraints,
e.g., diagonal, spherical, or pooled covariance across components. Recall that P; contains

cells C; with k € J;. Let ¢(-) be the Gaussian density. Let the estimated prior of P; be
= Zkejj 7. The density of X given that X € P; is

Fo) = 3 T x| e D), G = (12)

keg; 7

The posterior P(X € P; | X = x) o 7 fp,(x) is used as the weight for the local linear

models in MLM. Let the posterior for P; be v;(x) = ~7ij7>].) . Then the soft-

Zj’:l ﬁ—j’f'Pj/ (X)

weighted MLM is

J
m(x) = Y (x)my(x)

j=1
mi(x) = a;+x' 8, j=1,.., J. (13)
The above soft-weighted MLM yields smoother transitions between the EPICs. As ex-
plained in Subsection 3.1.2, the local linear models m;(x) are fitted by least square regres-
sion using the original and simulated data in P;. We note that the weights v,(x) play a
similar role as the kernel functions in Eq.(2). Instead of using Gaussian density functions
centered at each data point, we use fp,(x), the densities of the EPICs. Another important

difference is that we use local linear models trained under the co-supervision of a DNN.

14

3.2 Interpretation

To interpret MLM, we assume that the local linear model within each EPIC can be in-
terpreted, or useful insight can be gained for each EPIC based on its local linear model.
Although this assumption may not always hold depending on the dataset, our focus here
is to interpret the EPICs. If we can understand the EPICs, we can better understand the
heterogeneity across the sample space in terms of the relationship between the dependent
and independent variables. Our experiments show that the heterogeneity across EPICs can
be large, and MLM can achieve considerably higher accuracy than a single linear model.

To help understand EPICs, we develop two approaches, one based on visualization and
the other based on descriptive rules. For the first approach, we aim at selecting a small
number of variables based on which a EPIC can be well separated from the others. If
such a small subset of variables exist, we can visualize the EPIC in low dimensions. The
second approach aims at identifying easy-to-describe regions in the sample space that are
dominated by one EPIC. We call the first approach the Low Dimensional Subspace (LD)S)
method and the second the Prominent Region (PR) method.

3.2.1 Interpretation of EPIC by LDS

Recall that we model the density of X in each EPIC, denoted by fp, (x), j =1,..., J, by a
GMM in Eq.(12). The marginal density of fp,(x) on any subset of variables of X can be
readily obtained because the marginal density of any Gaussian component in the mixture
is Gaussian. Denote a subset of variable indices by s, s C {1, ...,p}. Denote the subvector
of X specified by s by X5 and correspondingly the subvector of a realization x by xiq.
Denote the marginal density of X by fp, s(X[s)). Using the marginal densities f'pj“S(X[S]),
i=1, .., j, and applying MAP, we can classify whether a sample point x;, + = 1,...,n,
belongs to P;. Let q; = (G;1,...,d;n) be the indicator vector for x; being classified to P;
based on the marginal densities of Xig:
. L 7 fps(Xis) = D jrjisj Tt rys(Xps))

4j1 =)
0 otherwise.

15

Let q; = (gj1, .-, ¢jn) be the indicator for EPIC P; based on the EPIC labels (;, that is,

¢;; = 1 if §; = j, zero otherwise.

Algorithm to find explainable dimensions s} for EPIC P;

Set hyper-parameter 0 < £ < 1
Tt —

si=0;7;=0

Do while r! < ¢ and |sf| < p

Form a collection of sets S = {s|s = s} Us for any s € {1,--- ,p} \ s;r}

Update s': arg maxrs — st
J seS J

1

2

3

4

5 Compute 75 = F1(q;,q;) for alls € S
6

7 Update 7";: Tel — T;r-

8

Return s} and 'r’jT» as (sj, rs;) if r; > &. Otherwise, declare failure to find a valid s}.

Table 1: The algorithm to find explainable dimensions and the corresponding explainable

rate for each EPIC.

We seek for a subset s} such that the cardinality |s;‘| is small and q; is close to qj,
the disparity between them measured by the F1-score between binary classification results.
Denote the F1-score by F1(q;,q;), which is larger for better agreement between the binary
vectors. In the algorithm presented in Table 1, we find s} by step-wise greedy search. In
a nutshell, the algorithm adds variables one by one to a set until Fi(q;,q;) > &, where
0 < & < 1 is a pre-chosen hyper-parameter. It is possible that the search does not yield
any valid s7, which indicates that the EPICs cannot be accurately classified and thus easily
interpreted. We call variables in s} ezplainable dimensions for EPIC P; and the Fl-score

obtained by s} ezplainable rate, which is denoted by Is:-

3.2.2 Interpretation of EPIC by PR

In this subsection, we explore a more explicit way to characterize EPICs. Using a decision
tree, we seek prominent regions that are dominated by points from a single EPIC and can
be characterized by a few conditions on individual variables. Such descriptions of EPICs are

more direct interpretation than visualization in low dimensions. However, the drawback is

16

that prominent regions are not guaranteed to exist. Given a prominent region, researchers
can pose a hypothesis specific to this region rather than for the whole population.

Let D be a decision tree trained for binary classification by CART (Breiman et al.,
1984). Let the training class labels be q = {¢;|¢; € {0,1}, ¢ = 1,--- ,n} and input data
matrix X € R™P. CART recursively divides the data by thresholding one variable at each
split. A leaf node, also called terminal node, is a node that is not split; a pure node is a
node that contains sample points from a single class; and a fully grown tree is a tree whose
leaf nodes either are pure nodes or contain a single point or multiple identical points. It is
assumed that when a node becomes pure, it is not further split. Consider a node denoted
by e. Define the depth of e, d(€), as the number of splits to traverse from the root node to
e. Define the size of ¢, s(¢), as the number of sample points contained in the node. Define
the sample index set u(e) as the set of indices of sample points contained in ¢, and the
decision path of e, denoted by H, as the sequence of split conditions to traverse from the
root node to . H consists of d(e) number of conditions each expressed by thresholding
one variable, e.g., x.; > a or z.; < a.

Again let q; = (g1, , ;) be the indicator vector for any sample point belonging to
EPIC P;. We fit a fully grown decision tree D; based on X and the class labels q; (class
1 means belonging to P;). Let ¢ be a pre-chosen threshold, 0 < ¢» < 1. We prune off the

descendant nodes of ¢ if its proportion of points in class 1 reaches :

n

2 Lue) (1)
Z_T =Y. (14)
We collect all the leaf nodes satisfying Eq.(14) with sizes above a pre-chosen minimum
size threshold 7. Since leaf nodes are not further split, they are ensured to contain non-
overlapping points. Suppose there are x; leaf nodes ¢,, 7 = 1, ..., k;, such that s(&,) > n
and ¢, satisfies Eq.(14). Denote the decision path of €, by H,, which contains d(é,)
conditions. In H,, one variable may be subject to multiple conditions (that is, this variable
is chosen multiple times to split the data). We will identify the intersection region of

multiple conditions applied to the same variable, which is in general a finite union of

intervals. At the end, a decision path H, specifies a region of the sample space X by the

17

Cartesian product Ry X Re X --- x Rp. If Rj» = R, then variable X;/ does not appear in
any condition of H,. Suppose Rj, ..., Rj;, are proper subsets of R. The region given by
H, can be described by {X;; € Ry} N{X; € Ry pN---N {Xj;, € Rj;/}. We call this form
of the region decided by H, an explainable condition.

When the depth of H, is small, the number of conditions p’ in H, will be small, and
thus the explainable condition is simpler. For the sake of interpretation, simpler explainable
conditions are preferred. It is also desirable to have large s(€,), which means that many
data points from P; are covered by this explainable condition. Whether we can find simple
explainable conditions that also have high coverage of points depends strongly on the data
being analyzed. Hence, the search for explainable conditions can only be viewed as a tool to
assist interpretation, but it cannot guarantee that simple interpretations will be generated.
In practice, it may suffice to require that class 1 accounts for a sufficiently high percentage
of points in €, by setting the purity parameter ¢ < 1. With this relaxation, we can find

€,’s with smaller depth.

4 Experiments

In this section, we present experimental results of the proposed methods. We demonstrate
prediction accuracy of MLM based on cells (MLM-cell) and EPICs (MLM-EPIC), and
interpret the formed EPICs by the LDS and PR methods. We use one synthesized dataset
and five real datasets of different fields: two The-Cancer-Genome-Atlas (TCGA) datasets
(Section 4.2.1), one Parkinson’s disease (PD) clinical dataset (Section 4.3) for classification,
the bike sharing demand data (Section 4.2.2), and California housing price data (Section
4.2.3) for regression.

We compare the prediction accuracy of MLM-cell and MLM-EPIC with the following
methods: nearest class mean (NCM) (k-means is applied to the feature vectors to generate
100 classes) (Webb, 2003), random forest (RF) (Breiman, 2001), support vector machine
(SVM) (Cortes and Vapnik, 1995), multilayer perceptron (MLP), linear regression (LR)
(specifically, logistic regression for KIRC, SKCM and PD data, and Poisson regression for
Bike Sharing data), generalized additive model (GAM) (Hastie and Tibshirani, 1990), Spa-

18

tial Autoregressive (SAR) (Rey and Anselin, 2007) (for California housing price data that
include spatial variables), multivariate adaptive regression splines (MARS) (only for regres-
sion tasks, i.e., bike sharing and California housing datasets) (Friedman, 1991), mixture
of expert neural networks (MOE) (Jacobs et al., 1991), cluster-weighted modeling(CWM)
(Gershenfeld, 1997) (for KIRC, SKCM, and PD data, CWM is not applied because the
estimated covariance matrix is singular). The following python packages are used: pygam
for GAM, pyearth for MARS, pysal for SAR, and scikit-learn for LR, RF, SVM. CWM
is provided by the lexCWM R package.

4.1 EPIC Clusters with Synthesized Data

=00 2S00

-0.5 —0.5

10 — = 10

-1.0 —0.5 0.0 0.5 1.0 —1.0 —0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0
X, X X

(a) Ground Truth (b) MLM (c) MOE

-1.0 ~0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

X X

(e) MLM

0.6 %

0.4

0.2

0.0

-10 —0.5 0.0 0.5 1.0 -10 -0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0 -1.0 ~0.5 0.0 0.5 1.0
X, X, X, X,

(h) GAM (i) MARS (j) SVR(RBF kernel) (k) RF

Figure 2: (a-c) Scatter plots on the two explaining variables, X; and X,, with ground
truth groups or convex hulls of estimated clusters for each model. (d-k) Scatter plots on

the predicted values, Y, and an explaining variable, X, for each model.

19

We study a synthesized dataset with given clusters and examine whether MLM can
identify those clusters via EPICs. This dataset is generated by a uniform distribution on
the square [—1,1] x [—1,1] (two independent variables X; and X3). Two thousand sample
points are generated. The dependent variable Y is computed from the following formula,

bearing the shape of a trapezoid bowl plus random noise.

(

X2—0.3+eifX2—X1>OandX1—|—X2>0
X1—0.3+eifX2—X1<OandX1+X2>0
Y=49-X,—03+eif Xo— X, <0and X; + X, <0 (15)

— X1 —03+eif Xo—X;>0and X; +X,<0

0 + e otherwise,
\

where e is a Gaussian noise with standard deviation 0.05.

Clearly the best partition of splitting the sample points into local regions, which of each
is modeled by a linear regression, is to follow the edges of the trapezoid bowl. Figure 2(b)
shows that MLM generates EPICs in better agreement with the geometry of the trapezoid
bowl than the local regions of MOE shown in (c). Figures 2(d-k) show how the nonlinear
methods predict Y. Only the neural-network-based predictors, i.e., MLM, MOE, DNN;,
and the tree-based predictor RF can fit the non-smooth edges of the regression function

well, while the other methods generate over-smoothed prediction functions.

4.2 MLM for Real-world Problems

For the real-world problems, we use five datasets described below. For all the datasets,
we use dummy encoding for nominal variables. That is, we generate ¢—1 binary vectors for
a nominal variable with c-classes. The numbers of samples and features in all the datasets
are shown in Table 2.

e KIRC and SKCM are respectively the Cancer Genome Atlas Kidney Renal Clear

Cell Carcinoma (TCGA-KIRC) (Akin et al., 2016) and The Cancer Genome Atlas
Skin Cutaneous Melanoma (TCGA-SKCM) clinical data. Both are part of a large col-

lection made for studying the connection between cancer phenotypes and genotypes.

20

Bike Cal
Data KIRC | SKCM | PD | Sharing | Housing
Number of samples 430 388 756 | 17379 20640
Number of original features 24 30 753 12 8
Continuous / Ordinal 20 25 753 10 8
Nominal 4 d 0 2 0
After dummy encoding 45 73 753 16 8

Table 2: Data descriptions.

The original datasets include tissue images, clinical, biomedical, and genomics data.
We only use clinical data in this experiment. For both datasets, the target variable
is overall survival (OS) status coded in binary (1 indicating living and 0 deceased).
The covariates consist of demographic and clinical variables (24 for KIRC and 30 for
SKCM) such as age, gender, race, tumor status, dimension of specimen, and so on.
After dummy encoding of categorical variables, KIRC has 45 features and SKCM has

73 features. Both datasets are available in R package TCGAretriever.

Bike Sharing (Fanaee-T and Gama, 2014) is an hourly time series data for bike rentals
in the Capital Bikeshare system between years 2011 and 2012. The count of total
rental bikes is the target variable, and 12 covariates consist of Year € {2011, 2012},
Month € {1,---,12}, Hour € {0,---,23}, Holiday € {0,1}, Weekday € {0,--- ,6},
Working day € {0,1}, Temperature€ (0,1) that is normalized from the original
range of (—8,39), Feeling temperature € (0,1) that is normalized from (—16,50),
Humidity € (0, 1), Wind speed € (0,1), Season € {0O(winter), 1(spring), 2(summer),
3(fall) }, Weather € {0(clear), 1(cloudy), 2(light rain or snow), 3(heavy rain or snow)}.

After dummy encoding of Season and Weather, we get 16 covariates.

Cal Housing (Pace and Barry, 1997) is a dataset for the median house values in
California districts, which are published by the 1990 U.S. Census. In this dataset,
a geographical block group is an instance/unit. The original covariates consist of 8

features including latitude and longitude which are spatial variables, median income,

21

median house age (house age), average number of rooms, average number of bedrooms
(bedrooms), block population (population), average house occupancy (occupancy),
and latitude and longitude. Given the average number of rooms and the average
number of bedrooms, we compute the average number of non-bedroom rooms as a

new covariate to replace the former.

e Parkinson’s Disease (PD) dataset (Sakar et al., 2019) is collected from 188 patients
with PD and 64 healthy individuals to study PD detection from the vocal impairments
in sustained vowel phonations of patients. The target variable is binary, 1 being
PD patients and 0 otherwise. The covariates consist of various clinical information
generated by processing the sustained phonation of the vowel ’a’ from each subject.
A total of 753 features are generated by various speech signal processing algorithms,

e.g., Time Frequency Features, Mel Frequency Cepstral Coefficients (MFCCs).

4.2.1 TCGA Clinical Data

For both KIRC and SKCM data, MLP is constructed using 2 hidden layers that have
respectively 128 and 32 units for KIRC and 256 and 32 units for SKCM, and trained for 10
epochs. Random forest is trained with maximum depth equal to 10. For both MLM-cell
and MLM-EPIC, hyper-parameters K; is set based on 10-fold cross validation (CV) within
training data, and assumed to be equal across the 2 hidden layers. We choose another
hyper-parameter J by comparing the training accuracy obtained at several values. For
KIRC, the number of layer [-cells is set to K; = 4 according to CV for [= 1,2, and 12
cells are formed at the end. These 12 cells are merged into J = 10 EPICs. For SKCM,
the number of layer [-cells is set to K; = 13 according to CV for [= 1,2, and 77 cells are
formed at the end. The cells are merged into J = 10 EPICs.

The first two columns of Table 3 show the prediction accuracy for KIRC and SKCM.
The area under curve (AUC) score is used as the efficacy metric. For both datasets, MLP
achieves the best prediction for the overall survival (OS) status. RF has a higher training
AUC, but not for the test data. Among the interpretable models, GAM does not converge
for SKCM. LR for KIRC and SKCM, and GAM for KIRC have higher test AUC scores

22

Data KIRC SKCM PD Bike Sharing | Cal Housing
(AUC) (AUC) (AUC) (RMSE) (RMSE)

Model Train Test | Train Test | Train Test | Train Test | Train Test
NCM 834 723 | 774 650 | 794 750 | 122.1 127.7 | 795 .815
MOE 888 873 | 973 756 | 891 815 | 476 52.8 | .684 .687
CWM - - - - - - 38.5 109.2 | .369 .623
RF 983 869 | 997 688 | 997 794 | 43.8 522 | 421 .554
SVM 843 856 | .764 .667 | .756 .728 | 145.6 148.1 | .671 .676
MARS - - - - - - 141.1 140.1 | 629 .640
MLP 974 907 | 987 777 | 975 .833 | 40.1 47.6 | .503 .517
LR 853 888 | .826 .702 | 880 .789 | 141.1 140.3 | .723 .727
SAR - - - - - - - - 655 .652
GA™ 838 847 - - - - 99.4 101.1 | .613 .640
MLM-cell 904 .891 | 948 728 | 1.000 .860 | 52.7 60.9 | .560 .570
MLM-EPIC | 902 .891 | .861 .742 | 975 851 | 62.8 66.7 | .569 .584

Table 3: Prediction accuracy of regression and classification methods. We partition these
methods into two categories: complex (top panel) and interpretable models (bottom panel).
For each method, the model parameters are fine tuned. If a method is not applicable to a
dataset, the corresponding entry in the table is not listed. The best test accuracy achieved
for each dataset and by either category of methods is highlighted in bold font. Higher

values of AUC or lower values of RMSE correspond to better performance.

23

compared to other complex models although their training AUC scores are not better than
RF. On the other hand, MLM-cell and MLM-EPIC achieve relatively high AUC scores in

both training and testing accuracy, and outperform LR.

EPIC1 EPIC1 >
EPIC2 g — EPIC2 — .
EPIC3 . EPIC3 e Qe .
EPIC4 Q. EPIC4 R e S
EPICS e EPICS e @
EPIC6 e Q. EPIC6 e
EPIC7 EPIC7
EPIC8 EPIC8
EPIC9 EPIC9 >
EPIC10 EPIC10
2 1 0 1 2 -2 -1 0 1 2
(a) Age (b) Sex
EPIC1 - EPIC1 —
EPIC2 e Qe EPIC2 ——
EPIC3 e Qe . EPIC3 ——
EPIC4 e ——— — EPIC4 s —
EPICS e EPICS
EPIC6 EPIC6 ————
EPIC7 EPIC7
EPIC8 EPIC8 e —
EPIC9 EPIC9 e Qe
EPIC10 EPIC10
15 -10 -05 00 0s 10 15 20 25 2 1 0 1 2
(c¢) Radiation treatment adjuvant (d) History other malignancy

Figure 3: Estimated regression coefficients (blue dots) with ”"naive” confidence intervals
(purple lines) for four selected variables in SKCM. The X-axis indicates the value of each
regression coefficient. The linear effects of age, sex, whether the patient has radiation

treatment adjuvant, and whether the patient has the history of other malignancy, vary by

EPICs.

We interpret MLM-EPIC via local linear models for each EPIC. Figure 3 shows the
estimated regression coefficients and the associated “naive” confidence intervals for four
selected variables of SKCM. The EPICs are sorted in descending order according to their
sizes. Note that the “naive” confidence intervals here are not confidence intervals in a
rigorous sense. They are computed under the assumption that the model structure of
MLM is correct, which involves data-driven model selection. We provide these intervals
as nonstandard quantities to help us understand MLM. A more rigorous study on valid
confidence intervals under the MLM setting is an interesting future work. The work of Leeb
et al. (2015) provides useful insights into similar problems.

Figure 3(a) demonstrates that age is not associated with the OS status in EPICs 1 and

24

8, as the coefficients related to age are shrunk to zero by LASSO penalty. However, the
irrelevance of age does not hold in other EPICs. Such EPIC-specific results enable us to
gain understanding impossible with a single LR model or a DNN. In addition, EPICs 2,
3, 5, 6, and 9 have negative coefficients for age. This result may motivate researchers to
hypothesize whether the impact of age differs between different groups of patients. Similar
analyses can be made on the other three variables. Moreover, Figure 3(d) demonstrates
that the prediction model for subjects belonging to EPIC 5 does not include the variable,
“history of other malignancy”, suggesting a heterogeneous effect of this covariate on the
OS status.

Now, we investigate how EPICs are formed. We compute explainable conditions for
each EPIC to check if they provide any insight for distinguishing the EPICs. Here we
interpret the largest EPIC that consists 59 samples. ¢ and 7 are set to 1 and 4. Table 4
shows explainable conditions for the EPIC 1. More explainable conditions for other EPICs
are provided in Supplementary Material. Specifically, around half of patients in EPIC 1
are relatively young patients who have new tumor events after the initial treatment and
have less than 306 survival months. Combining this information with the information from
Figure 3, an interesting hypothesis can be that for the patients in EPIC 1 under these
conditions, age does not impact the OS status. Such insight is not available from MLP or

other complex models which are hard to interpret.

4.2.2 Bike Sharing Data

The bike sharing dataset is often used to demonstrate the efficacy of complex machine
learning models. For this dataset, RF is set with its maximum depth equal to 10. MLP
is constructed with 3 layers with 30 units per layer, trained by 20 epochs. MLM-cell is
computed using MLP as its co-supervising neural network. The number of cells per layer
is 100, which is chosen by CV. Finally, 1712 cells are formed. MLM-EPIC is constructed
by merging 1712 cells into 150 EPICs. For the estimation of the MLM-EPIC parameters,
we apply pooled covariance to estimate GMM of each EPIC. With pooled covariance, we

essentially assume that the Gaussian components in every EPIC share the same volume

25

EPIC | Descriptions Size

1 Age < 29.0, Days to collection < 10345, Initial pathology DX year > 1996, | 11
New tumor event after initial treatment = 1, Overall survival months < 306.2,

Retrospective collection =1, AJCC staging edition # 5

(59) | Age< 29.0, 8701 < Days to collection > 10345, Initial pathology DX year > 8
1996, New tumor event after initial treatment = 1, Overall survival months <
306.2, Retrospective collection = 1, Submitted tumor DX days > 9737, AJCC

staging edition # 5

Age < 29.0, Days to collection > 10345, ICD-10< 5, ICD-0O-3 site > 23.5, 7
Overall survival months < 306.2, Retrospective collection= 1, AJCC staging
edition # 5

Table 4: Explainable conditions for the largest EPIC for SKCM data. Numbers within the
bracket indicate the size of the EPIC in training data.

and shape in their covariance matrices. This restriction has been stated as a possibility to
regularize a mixture model (Fraley and Raftery, 1998). In our software package, pooled
covariance is provided as an option. Cross-validation on the training samples can be used
to decide whether to use this option. For other methods, we apply the default settings
of the methods from pyearth (for MARS), pygam (for GAM), and scikit-learn python
packages.

First, we examine the prediction accuracy of the methods. Table 3 shows that RF and
MLP achieve higher prediction accuracy in comparison with other simpler methods. The
RMSEs of MLM-cell and MLM-EPIC are considerably lower than any other method except
for RF and MLP. Figure 4 (a) and (b) show the trade-off between the prediction accuracy
and the model complexity of MLM (indicated by K, for MLM-cell in (a) and by J for
MLM-EPIC in (b)). As the model complexity increases, both training and testing RMSE
decreases. We do not observe overfitting as the model complexity of MLM is capped by
the underlying neural network. The measure for agreement between MLP and MLM-cell is
computed by the RMSE between the predicted values of MLP and MLM-cell respectively.

As shown in the figure, the agreement with MLP decreases as the model complexity in-

26

creases. Figure 4 (c) is the histogram of EPIC sizes obtained from the 150 EPICs of the
training data. The histogram shows that many data points belong to small EPICs. For
the sample points in small EPICs, the predicted values based on MLM-EPIC are similar to
using the nearest neighbor method. For example, in the extreme case, if all EPICs consist
of a single point, MLM-EPIC is equivalent to using 1-nearest neighbor method.

Among the other methods, MOE achieves higher accuracy than MLM-cell and MLM-
EPIC. However, although MOE exploits local models, the prediction at any point is rarely
dominated by a single local model. Specifically, the prediction of MOE is a weighted sum
over the predicted values given by its local experts. The weights assigned to the local
experts vary with the input points. If these weights flatly spread over the local experts,
interpretation based on MOE is still difficult. This scenario is what we have observed with
this dataset. For each training sample point, we compute the maximum weight assigned
to the local experts of MOE and find that the average of these maximum weights (across
the sample points) is 0.65 and at half of the sample points, the maximum weight is below
0.31. In contrast, when MLM-EPIC is used, the average maximum weight assigned to a
local model is 0.91, and 73% of the sample points have a maximum weight above 0.9. In
Figure 4 (d), we show the kernel density estimate (KDE) for the maximum weights across
the training data for MOE and MLM-EPIC respectively. For MLM-EPIC, the KDE has a
high peak close to 1.0, while for MOE, the KDE is flat across a wide range.

Figure 5 shows the fitted regression coefficients of MLM-EPIC for the 5 largest EPICs.
The values of the coefficients are indicated by color. Depending on which EPIC a sample
point belongs to, the effect of a covariate is different when predicting the bike rental count.

Specific interpretation of the fitted MLM-EPIC is provided in Supplementary Material.

4.2.3 California Housing Prices

California housing data was first introduced to demonstrate the efficacy of the spatial
autoregressive (SAR) model (Pace and Barry, 1997), yet it is now often used to test neural
network models. Previous works have shown that neural networks perform well with spatial

data (Zhu, 2000; Ozesmi and Ozesmi, 1999), however they cannot be interpreted. We hereby

27

—— MLM-EPIC

0 -
10 40 70 100 130 160 190 10 110 210 310 410 0 200 400 600 800 1000 0.2 0.4 0.6 0.8 1.0
Number of layer I-cells Number of EPICs Size of EPICs Maximum weight of local models

(a) (b) () (d)
Figure 4: Impact of hyper-parameters, K; and J. , on MLM for bike sharing data. (a) RMSE

of MLM-cell at different K;’s (the number of cells at layer 1). (b) RMSE of MLM-EPIC
at different J (the number of EPICs). (c) Histogram of the sizes of the 150 EPICs. (d)

Kernel density estimate (KDE) plot of the maximum weights assigned to an MLM-EPIC

or MOE local expert model, computed at all the training points.

analyze this dataset with MLM for both prediction and interpretation.

RF is fitted with maximum depth 10. MLP contains 3 hidden layers with 30 hidden
units per layer, trained by 50 epochs. SAR is fitted with the consideration of spatially
lagged covariates except for the longitude and latitude. MLM-cell and MLM-EPICs are
fitted based on the MLP model. MLM-cell is constructed with 6 cells per layer, and 64
final cells are formed (some combinations of cells over the 3 layers are empty). MLM-EPIC
merged the 64 cells into 30 EPICs. As shown by Table 3, the prediction accuracy of MLM-
cell and MLM-EPIC is slightly lower (i.e., slightly larger RMSE) than that of MLP or RF,
but they achieve better accuracy than any other interpretable models.

MLM-EPIC provides more useful interpretation than the commonly-used autoregressive
models for California housing price data. Autoregressive models are primarily used to
describe a time-varying or space-varying process, and the interpretation of the model is
based on the model’s representation of time or spatial variables. MLM-EPIC can be utilized
to describe both time and space-varying effects as it divides samples into EPICs in different
time and space. Figure 6 shows the change of regression coefficients for each variable in the
longitude and latitude space. The value of the coefficient for the variable in consideration
is indicated by color. According to the fitted MLM-EPIC, the impact of the median income

on the house values is relatively consistent across the California map. On the other hand,

28

1_
2 100
O
& 31 BT . o
L|J4_
—-100
Sl , , ,
r—rr—T T 11T 1T 1T 17T 1777 17 1T 1777 17T " "T7T7T7T T T T7]TT7T T T"T
S - S>>0 QST >Cc |l >c |- >Cc C|l- >c Cc
S S oo clolodssSlcT==Slad=ES|lad==<
‘”CO'O'O'O_,:_,’E'—SGJE::EEE:EEE:EEE:EE
“SITI=xgwm¥%=cl0o . [Oo |l -2 -
S 002 EVToESNTCESNCTESNOE >
TS 9255 > - > > >
=Y oLt T T T T
SEw S| wi ,
= Winter | Spring [Summer| Fall

Feature

Figure 5: The linear mixture model regression coefficients {lex € Pj}]jzl for the top 5

largest EPICs for bike sharing data.

house age affects the house values differently depending on which EPIC the sample points
belong to. Near the coastal area, old houses tend to be appreciated whereas in the inland
area, house age has a negative impact on the house value. This observed pattern may be
explained by the fact that houses in the highly populated area were built earlier and are
still in high demand. Another interesting pattern in Figure 6 is that the increase of the
number of non-bedroom rooms has a negative impact on the house values in city center
areas. The log-valued confidence intervals and estimates of the 6 covariates are shown in
Figure 7 for the 7 biggest EPICs. These 7 EPICs cover about 70% of the training samples.

For this dataset, we cannot get concise explainable conditions for the EPICs. For
example, an explainable condition for EPIC 1 is ‘Median income < 86.6k and House
age ¢ (3.5,27.5] and Bedrooms ¢ (33.1,33.6] and Population ¢ (32.1k, 35.7k] and Average
occupancy ¢ (1239.6,1241.8] and Latitude ¢ (40.1,40.9] and Longitude ¢ (—121.2, —119.5]".
Instead, we use LDS to find explainable dimensions for the EPICs. The explainable di-
mensions for the 6 biggest EPICs are shown in Figure 8. For example, based on 3 features:
Median income, House age, Longitude, EPIC 1 is distinguishable from the other EPICs
with accuracy 0.84 as measured by F-1 score. EPIC 1 mostly contains points with income
lower than the median, house age older than the median, and located in the middle east

part of California. In EPIC 1, older houses tend to increase the house values slightly. Also,

29

104 «

0.8 4
0.6
0.4 4
0.2 4

0.0 -

1.0
0.8 1 "
0.6
0.4
0.2 4

0.0 -

'\
et %&" “t;

W
R
5

0.0 0.2 0.4 0.6 0.8 1.0

(a) Median income

OjO 0t2 0t4 0.6 0:8

(d) Bedrooms

1.01

0.8

0.6 -

0.4

0.2

0.0

1.09

0.8 1

0.6 -

0.4

0.2 1

0.0

0.2 0.4 0.6 0.8

(b) House age

1.0

3
N
A
‘--%" i 4y
. * 4

(e) Population

OjO 0j2 Oj4 0j6 OtB ltO

(f) Occupancy

Figure 6: Log-valued regression coefficients of local linear models plotted on longitude
(horizontal axis) and latitude (vertical axis) space. The coefficients are transformed by

sign(x) - log(]z|) for better visualization.

having more bedrooms is appreciated in the house value, while the increase of rooms other
than bedrooms tends to decrease the value. EPIC 2 contains mostly points with newer
houses in the middle northern part of California (with the explainable rate equal 0.82). For
points in EPIC 2, in contrast to EPIC 1, the house age has a negative impact on the house
value. Also, the increase in the number of rooms other than bedrooms positively affects

the house value, whereas the impact of the number of bedrooms is less clear.

4.3 Parkinson’s Disease Detection

Many works have studied Parkinson’s disease (PD) to detect PD from vocal impairments in
sustained vowel phonatations of PD patients. Due to the limited understanding of the mech-
anism to detect PD from the complex characteristics of patients’ recorded voices, a dataset

often involves a huge number of covariates that are extracted from various speech signal

30

EPIC1 4

EPIC2 1

EPIC3 4

EPIC4 1

EPIC5 1

EPIC6 1

EPIC7 1

EPIC1 1

EPIC2 -

EPIC3 1

EPIC4 -

EPIC5 1

EPIC6 -

EPIC7 1

EPIC1 4

EPIC2

EPIC3 A

EPIC4

EPIC5 A

EPIC6 -

EPIC7

EPIC1 4

EPIC2 1

EPIC3 4

EPIC4 1

EPIC5 1

EPIC6 1

EPIC7 1

0.0

(a) Median income

0.5 1.0 15

2.0

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00

(b) House age

EPIC1 1

EPIC2 A

EPIC3 1

EPIC4 1

EPIC5 1

EPIC6 -

EPIC7 1

EPIC1 1

EPIC2 A

EPIC3 1

EPIC4 1

EPIC5 1

EPIC6 -

EPIC7 1

(d) Bedrooms

(e) Population

-6 -4 -2

(f) Occupancy

Figure 7: Log-valued “naive” confidence intervals of each variable in the 7 largest EPICs.

processing algorithms. In this subsection, we demonstrate that MLM-cell and MLM-EPIC
work well with this high-dimensional dataset. At reduced complexity, the two methods
achieved slightly better accuracy than the more complex models.

For this dataset, RF is fitted with maximum depth 10. MLP is constructed with 3
layers with 30 hidden units per layer. MLP is trained for 5 epochs. Other methods follow
the default parameter setting from sci-kit learn python package. MLM-cell is constructed
based on MLP with layer-l cells equal to 5, which is chosen by CV, for [= 1,2,3. 52 cells
are formed. We merge the cells into 3 EPICs to build MLM-EPIC. For the local linear
models of MLM-EPIC, we applied LASSO penalty with its weight parameter oo = 0.2.

As shown by Table 3, MLM-cell achieves the highest training and testing accuracy. In
addition, although MLM-EPIC is only a mixture of 3 local linear models, it has better
testing accuracy (lower testing AUC) than MLP. Specifically, MLM-EPIC forms 3 EPICs
with sizes 442, 133, and 29 for the training data. The local linear models respectively have

700, 14, 0 non-zero regression coefficients. The last local linear model is a constant function

31

1.0 = =
0.8 g 1.0
° g 0.8
2061 = 06t
204 : 0.2
0.2 = 0.0
0.0 i = i i . i i 0.0 b
0.0 0.2 OL:titugf 0.8 1.0 Lgigug,ee 0s 000%00
(b) EPIC 2 (0.82) (c) EPIC 3 (0.80)
1.0
0.8 \] 1.0
”%‘ A 08,
%3’ 0.6 » ‘ 065
604 .
- _g“,_, 0.2
02 . U 0.0
' bl 1.0
0.01 ‘ , > . 0.0
0.0 02 OL:tituc?éG 08 1.0 ' ,9,;“1/,%6 00 0‘00.7;0
(d) EPIC 4 (0.88) (e) EPIC 5 (0.58) (f) EPIC 6 (0.81)

Figure 8: Explainable dimensions for the first 6 biggest EPICs. The values in the paren-

theses are explainable rates of the explainable dimensions for each EPIC.

which classifies all the points in EPIC 3 as class 0. In this case, the interpretation of EPIC
3 provides an explanation of a local region for class 0.

We compute the explainable dimensions for each EPIC. We set ¢ = 0.8. EPIC 1 is
distinguishable with only one variable. In fact, 694 single variables achieve an explainable
rate higher than 0.8. Among them, the variable 'tqwt_TKEO_std_dec_12’ achieves the
highest explainable rate of 0.87. Whereas, EPIC 2 needs 7 variables to distinguish the
EPIC with explainable rate higher than 0.8, and EPIC 3 needs 13 variables.

Explainable conditions provide a different perspective for interpreting the EPICs. With
¥ = 0.9 and n = 50 for EPIC 1 and 2, and n = 5 for EPIC 3, we find the explainable
conditions listed in Table 5. In the explainable conditions, tqwt_TKEO_std_dec_12" appears
again as an important feature to distinguish EPIC 1. EPIC 2 and 3 are relatively hard to

32

EPIC | Descriptions Size

1 (442) | std_delta_delta_log_energy > 0.057, tqwt_energy_dec_18 < 0.562, 381

tqwt_TKEO_std_dec_12 < 0.102, tqwt_medianValue_dec_31 < 0.454

2 (133) | mean MFCC_2nd_coef < 0.397, tqwt_entropy_log_dec_27 < 0.696, 75

tqwt_entropy_log_dec_35 > 0.368, tqwt_TKEO_std_dec_17 < 0.216

3 (29) | tqwt_entropy_shannon_dec_8 < 0.007, tqwt_stdValue_dec_19 > 0.373 9

Table 5: Explainable conditions for the 3 EPICs for Parkinson’s disease data. Numbers in
the bracket indicates the size of EPIC in training data.

be distinguished with explainable conditions as the explainable conditions only capture 75

out of 133 points for EPIC 2, and 9 out of 29 points for EPIC 3.

5 Conclusions

In this paper, we develop MLM under co-supervision of a trained DNN. Our goal is to
estimate interpretable models without compromising performance. The experiments show
that MLM achieves higher prediction accuracy than other explainable models. However,
for some data sets, the gap between the performance of MLM and DNN is not negligible.
Interpretation is intrinsically subjective. For different datasets, different approaches can be
more suitable. We have developed a visualization method and a decision rule-based method
to help understand the prediction function. In any case, these methods rely heavily on the
local linear models constructed in MLM. To explore the aspect of interpretation at a greater
depth, we plan to examine applications in more specific contexts. The idea of co-supervision
is interesting in its own right, which can be taken as a principle for developing interpretable
models. The technical components in MLM may be replaced by other approaches, for
example, the regression model used within each EPIC and the method to generate EPICs.
These variations can be explored in future works. Also, the statistical inference of MLM
coefficients is an interesting future direction. For more rigorous interpretation of MLM, we

should validate the model structure using statistical inference methods.

33

Acknowledgments

Li and Lin’s research is supported by the National Science Foundation under grant DMS-

2013905.

References

Agarwal, R., Frosst, N., Zhang, X., Caruana, R., and Hinton, G. E. (2020). Neu-
ral additive models: Interpretable machine learning with neural nets. arXiv preprint

arXiw:2004.13912.

Akin, O., Elnajjar, P., Heller, M., Jarosz, R., Erickson, B., Kirk, S., and Filippini, J.
(2016). Radiology data from the cancer genome atlas kidney renal clear cell carcinoma

[tcga-kirc| collection. The Cancer Imaging Archive.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly

learning to align and translate. arXwv preprint arXiw:1409.0475.
Breiman, L. (2001). Random forests. Machine learning, 45(1):5-32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and

regression trees. CRC press.

Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., and Su, J. K. (2019). This looks like
that: deep learning for interpretable image recognition. Advances in neural information

processing systems, 32:8930-8941.

Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: an approach
to regression analysis by local fitting. Journal of the American statistical association,

83(403):596-610.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273—
297.

34

Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous science of interpretable machine

learning. arXiv preprint arXiw:1702.08608.

Ebrahimpour, R., Kabir, E., Esteky, H., and Yousefi, M. R. (2008). A mixture of multi-
layer perceptron experts network for modeling face/nonface recognition in cortical face

processing regions. Intelligent Automation & Soft Computing, 14(2):151-162.

Fanaee-T, H. and Gama, J. (2014). Event labeling combining ensemble detectors and
background knowledge. Progress in Artificial Intelligence, 2(2):113-127.

Fraley, C. and Raftery, A. (1998). Mclust: Software for model-based cluster and discrim-
inant analysis. Department of Statistics, University of Washington: Technical Report,

342.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics,

pages 1-67.

Gershenfeld, N. (1997). Nonlinear inference and cluster-weighted modeling. Annals of the
New York Academy of Sciences, 808(1):18-24.

Guo, M., Zhang, Q., Liao, X., and Zeng, D. D. (2020). An interpretable neural network

model through piecewise linear approximation. arXww preprint arXiv:2001.07119.

Guo, T., Lin, T., and Antulov-Fantulin, N. (2019). Exploring interpretable Istm neural
networks over multi-variable data. arXiv preprint arXiw:1905.12034.

Guo, W., Huang, S., Tao, Y., Xing, X., and Lin, L. (2018). Explaining deep learning models
— a bayesian non-parametric approach. In Bengio, S., Wallach, H., Larochelle, H., Grau-
man, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information

Processing Systems, volume 31. Curran Associates, Inc.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized additive models, volume 43. CRC

press.

35

Ingrassia, S., Minotti, S. C., and Vittadini, G. (2012). Local statistical modeling via
a cluster-weighted approach with elliptical distributions. Journal of classification,

29(3):363-401.

Jacobs, R. A., Jordan, M. 1., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures
of local experts. Neural computation, 3(1):79-87.

Kaufman, L. and Rousseeuw, P. J. (2009). Finding groups in data: an introduction to

cluster analysis. John Wiley & Sons.

Kégl, B. (2013). The return of adaboost. mh: multi-class hamming trees. arXiv preprint
arXiw:1312.6086.

Kuncheva, L. 1. (2014). Combining pattern classifiers: methods and algorithms. John Wiley
& Sons.

Leeb, H., Pétscher, B. M., and Ewald, K. (2015). On various confidence intervals post-
model-selection. Statistical Science, 30(2):216-227.

Lou, Y., Caruana, R., Gehrke, J., and Hooker, G. (2013). Accurate intelligible models with
pairwise interactions. In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 623-631.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions.

In Advances in neural information processing systems, pages 4765-4774.

Masoudnia, S., Ebrahimpour, R., and Arani, S. A. A. A. (2012). Combining features of
negative correlation learning with mixture of experts in proposed ensemble methods.

Applied Soft Computing, 12(11):3539-3551.
Molnar, C. (2020). Interpretable Machine Learning. Lulu. com.

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability & Its Applications,
9(1):141-142.

36

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann

machines. In Ieml.

Ozesmi, S. L. and Ozesmi, U. (1999). An artificial neural network approach to spatial
habitat modelling with interspecific interaction. Ecological modelling, 116(1):15-31.

Pace, R. K. and Barry, R. (1997). Sparse spatial autoregressions. Statistics & Probability
Letters, 33(3):291-297.

Rey, S. J. and Anselin, L. (2007). PySAL: A Python Library of Spatial Analytical Methods.
The Review of Regional Studies, 37(1):5-27.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016a). ” why should i trust you?” explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, pages 1135-1144.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016b). Model-agnostic interpretability of
machine learning. arXww preprint arXiv:1606.05386.

Rijsbergen, C. V. (1979). Information Retrieval, volume 2. Butterworths.

Sakar, C. O., Serbes, G., Gunduz, A., Tunc, H. C., Nizam, H., Sakar, B. E., Tutuncu,
M., Aydin, T., Isenkul, M. E., and Apaydin, H. (2019). A comparative analysis of
speech signal processing algorithms for parkinson’s disease classification and the use of

the tunable g-factor wavelet transform. Applied Soft Computing, 74:255-263.
Schoenberg, 1. J. (1973). Cardinal spline interpolation. STAM.

Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to

modeling and control. IEEFE transactions on systems, man, and cybernetics, (1):116-132.

Tang, B., Heywood, M. 1., and Shepherd, M. (2002). Input partitioning to mixture of
experts. In Proceedings of the 2002 International Joint Conference on Neural Networks.

IJCNN’02 (Cat. No. 02CHS37290), volume 1, pages 227-232. IEEE.

37

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 58(1):267-288.

Tsang, M., Cheng, D., and Liu, Y. (2017). Detecting statistical interactions from neural
network weights. arXiv preprint arXiv:1705.04977.

Tsang, M., Liu, H., Purushotham, S., Murali, P., and Liu, Y. (2018). Neural interaction
transparency (nit): Disentangling learned interactions for improved interpretability. In

Advances in Neural Information Processing Systems, pages 5804-5813.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. In Advances in neural information

processing systems, pages 5998-6008.

Verikas, A. and Bacauskiene, M. (2002). Feature selection with neural networks. Pattern

recognition letters, 23(11):1323-1335.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of
the American statistical association, 58(301):236-244.

Watson, G. S. (1964). Smooth regression analysis. Sankhya: The Indian Journal of Statis-
tics, Series A, pages 359-372.

Webb, A. R. (2003). Statistical pattern recognition. John Wiley & Sons.

Zhang, Q., Nian Wu, Y., and Zhu, S.-C. (2018). Interpretable convolutional neural net-
works. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 8827-8836.

Zhu, A.-X. (2000). Mapping soil landscape as spatial continua: the neural network ap-
proach. Water Resources Research, 36(3):663-677.

38

