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REGULARITY OF SOLUTIONS

FOR NONLOCAL DIFFUSION EQUATIONS

ON PERIODIC DISTRIBUTIONS

ILYAS MUSTAPHA, BACIM ALALI AND NATHAN ALBIN

This work addresses the regularity of solutions for a nonlocal diffusion equation over the space of

periodic distributions. The spatial operator for the nonlocal diffusion equation is given by a nonlocal

Laplace operator with a compactly supported integral kernel. We follow a unified approach based on

the Fourier multipliers of the nonlocal Laplace operator, which allows the study of regular as well as

distributional solutions of the nonlocal diffusion equation, with integrable as well as singular kernels, in

any spatial dimension. In addition, the results extend beyond operators with singular kernels to nonlocal

superdiffusion operators. We present results on the spatial and temporal regularity of solutions in terms of

regularity of the initial data or the diffusion source term. Moreover, solutions of the nonlocal diffusion

equation are shown to converge to the solution of the classical diffusion equation for two types of limits:

as the spatial nonlocality vanishes or as the singularity of the integral kernel approaches a certain critical

singularity that depends on the spatial dimension. Furthermore, we show that, for the case of integrable

kernels, discontinuities in the initial data propagate and persist in the solution of the nonlocal diffusion

equation. The magnitude of a jump discontinuity is shown to decay over time.

1. Introduction

In this work, we study the regularity of solutions to the nonlocal diffusion equation given by

(1)

{

ut(x, t)= Lδ,βu(x, t)+ b(x), x ∈ T n, t > 0,

u(x, 0)= f (x),

over the space of periodic distributions H s(T n), with s ∈ R. Here T n denotes the periodic torus in R
n

and Lδ,β is a nonlocal Laplace operator defined by

(2) Lδ,βu(x)= cδ,β
∫

Bδ(x)

u(y)− u(x)

‖y − x‖β dy, x ∈ R
n,

where Bδ(x) denotes a ball in R
n , δ > 0 is called the horizon or the nonlocality, and the kernel exponent β

satisfies β < n + 2 [12; 13]. The scaling constant cδ,β is given by

cδ,β =
2(n + 2 −β)Ŵ

(

n
2
+ 1

)

π
n
2 δn+2−β

.
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Nonlocal integral operators with compact support of the form (2) have their roots in peridynamics [24; 25]

and have been introduced in nonlocal vector calculus [13]. These nonlocal operators have been used in

different applied settings; see for example [4; 6; 7; 17; 19]. The work in [3] proposed a nonlocal model

for transient heat transfer, which is valid when the body undergoes damage or evolving cracks. There

have been many mathematical analysis studies involving nonlocal Laplace operators and peridynamic

operators including the works [2; 12; 15; 21; 22; 23]. In general, exact solutions are not readily available

for nonlocal models, however, different computational techniques and numerical analysis methods have

been developed for solving nonlocal equations such as [1; 5; 8; 9; 10; 11; 14; 16; 20; 26].

The work in [2] introduces the Fourier multipliers for nonlocal Laplace operators, studies the asymptotic

behavior of these multipliers, and then applies the asymptotic analysis in the periodic setting to prove

regularity results for the nonlocal Poisson equation. In this work, we apply the Fourier multipliers

approach developed in [2] to study the regularity of solutions to the nonlocal diffusion equation over

the space of periodic distributions. The organization of this article and a brief description of the main

contributions of this study are as follows.

• A review of the Fourier multipliers analysis for the nonlocal Laplace operator (2) is provided in

Section 2.

• In Section 3, we present the regularity of solutions analysis for the nonlocal diffusion equation with

initial data in H s(T n), but without a diffusion source.

– Theorem 3 and Proposition 5 provide the spatial and temporal regularity results, respectively, in any

spatial dimension. The temporal regularity for a general periodic distribution in H s(T n), with s ∈ R,

is studied in the sense of Gateaux differentiation.

– In the case when the Fourier coefficients of the initial data f ∈ H s(T n) are summable

∑

k∈Zn

| f̂k |<∞,

we have the solution of the nonlocal diffusion equation, considered as a function of the spatial

variable x , is a regular L2(T n) function and Proposition 10 of Section 3.3 provides the temporal

regularity of the solution with respect to the classical derivative.

– Theorems 13 and 14 provide convergence results for the solution of the nonlocal diffusion equation,

without a diffusion source, to the solution of the corresponding classical diffusion equation with

respect to two different limits: as δ → 0+ or as β → n + 2, respectively.

• In Section 4, we present the regularity of solutions analysis for the nonlocal diffusion equation when a

diffusion source b ∈ H s(T n), for some s ∈ R, is present.

– Theorem 15 and Proposition 17 provide the spatial and temporal regularity results, respectively, in

any spatial dimension. The temporal regularity for a general periodic distribution in H s(T n), with

s ∈ R, is studied in the sense of Gateaux differentiation.

– In the case when the Fourier coefficients of the source term b ∈ H s(T n) are summable

∑

k∈Zn

|b̂k |<∞,
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we have the solution of the nonlocal diffusion equation, considered as a function of the spatial

variable x , is a regular L2(T n) function and Proposition 20 of Section 4.1 provides the temporal

regularity of the solution with respect to the classical derivative.

– Theorems 22 and 24 provide convergence results for the solution of nonlocal diffusion equation with

a nonzero diffusion source to the solution of the corresponding classical diffusion equation with

respect to two kinds of limits: as δ → 0+ or as β → n + 2, respectively.

• In Section 5, we show that, for the case of integrable kernels, that is, when β < n, discontinuities in the

initial data propagate and persist in the solution of the nonlocal diffusion equation. The magnitude of a

jump discontinuity is shown to decay as time increases.

2. Fourier multipliers

In this section, we give a summary of the Fourier multiplier results introduced in [2], which are relevant

to the work presented in Section 3. These multipliers are defined through the Fourier transform by

(3) Lδ,βu(x)= 1

(2π)n

∫

Rn

mδ,β û(ν)eiν·x dν,

where mδ,β(ν) is given by

(4) mδ,β(ν)= cδ,β
∫

Bδ(0)

cos(ν · z)− 1

‖z‖β dz,

for β < n +2. The following theorem gives a representation of these multipliers using the hypergeometric

function 2 F3, which is defined by

2 F3(a1, a2; b1, b2, b3, z) :=
∞

∑

k=0

(a1)k(a2)k

(b1)k(b2)k(b3)k

zk

k! ,

where (a)k = a(a +1)(a +2) · · · (a +k −1) is the rising factorial, also known as the Pochhammer symbol.

Theorem 1. Let n ≥ 1, δ > 0 and β < n + 2. Then the Fourier multipliers can be written as

(5) mδ,β(ν)= −‖ν‖2
2 F3

(

1, 1
2
(n + 2 −β); 2, 1

2
(n + 2), 1

2
(n + 4 −β); −1

4
‖ν‖2δ2

)

.

The hypergeometric function 2 F3 on the right-hand side is well defined for any β 6= n + 4, n + 6, . . . ,

hence, using (5), the definition of the multipliers is extended to the case when β ≥ n + 2 with β 6=
n +4, n +6, . . . . Consequently, the operator Lδ,β is extended to these larger values of β using the Fourier

transform. In particular, for the case when β = n +2, and since mδ,n+2(ν) is equal to −‖ν‖2, the extended

operator Lδ,β coincides with the classical Laplace operator 1. For the case n + 2 < β < n + 4, the

extended operator Lδ,β corresponds to a nonlocal superdiffusion operator [1].

The representation (5) is used to provide the asymptotic behavior of mδ,β(ν) for large ‖ν‖. This is

given by the following result [2].
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Theorem 2. Let n ≥ 1, δ > 0 and β /∈ {n + 2, n + 4, n + 6, . . .}. Then, as ‖ν‖ → ∞,

(6) mδ,β(ν)∼











−2n(n + 2 −β)
δ2(n −β) + 2

(

2

δ

)n+2−β Ŵ
(

n+4−β
2

)

Ŵ
(

n+2
2

)

(n−β)Ŵ
(

β
2

) ‖ν‖β−n, if β 6= n,

−2n

δ2

(

2 log ‖ν‖ + log
(

δ2

4

)

+ γ −ψ
(

n

2

))

, if β = n,

where γ is Euler’s constant and ψ is the digamma function.

To simplify the notation, throughout this article we will denote mδ,β simply by m. However, in places

in which there is a need to emphasize the dependence of the multipliers on the parameters δ and β, such

as when we take limits in those parameters, we will revert to the notation mδ,β .

3. Regularity of solutions for the peridynamic diffusion equation

In this section, we focus on the nonlocal diffusion equation with initial data and no diffusion source

(7)

{

ut(x, t)= Lδ,βu(x, t), x ∈ T n, t > 0,

u(x, 0)= f (x).

In order to study the existence, uniqueness, and regularity of solutions to (7) over the space of periodic

distributions, we consider the identification U (t)= u( · , t), with U : [0,∞)→ H s(T n).

3.1. Eigenvalues on periodic domains. Let Lδ,β be defined on the periodic torus

T n =
n

∏

i=1

[0, ri ], ri > 0, i = 1, 2, . . . , n.

Define

νk =
(

2πk1

r1

,
2πk2

r2

, . . . ,
2πkn

rn

)

,

for any k ∈ Z
n . Let φk(x)= eiνk ·x . Then,

(8) Lδ,βφk(x)= mδ,β(νk)φk(x),

which shows that φk is an eigenfunction of Lδ,β with eigenvalues mδ,β(νk). To simplify the notation, we

will often suppress the dependence of the multipliers on δ and β and use m(ν) to denote mδ,β(ν).

Consider the nonlocal diffusion equation defined in (1). For s ∈ R, let H s(T n) be the space of periodic

distributions h on T n such that

‖h‖2
H s(T n) :=

∑

k∈Zn

(1 + ‖k‖2)s |ĥk |2 <∞.

3.2. Distributional solutions for nonlocal diffusion equation. Let f ∈ H s(T n) and define U, V :
[0,∞)→ Hq(T n), for some q ∈ R, by

U (t)=
∑

k

f̂k em(νk)t eiνk ·x ,(9)

V (t)=
∑

k

f̂k m(νk)e
m(νk)t eiνk ·x .(10)
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Observe that for any t ≥ 0, U (t) and V (t) are well-defined periodic distributions, since em(νk)t and

m(νk)e
m(νk)t are both bounded functions in k.

Theorem 3. Let n ≥ 1, δ > 0 and β < n + 4. Let ǫ1 and ǫ2 be such that 0 < ǫ1 < ǫ2 < 1. Assume that

f ∈ H s(T n) for some s ∈ R. Then for any fixed t > 0, U (t) ∈ H p(T n) and V (t) ∈ H r (T n), where

(11) p =











s, if β < n,

s + 4nt

δ2
(1 − ǫ1), if β = n,

∞, if β > n,

r =











s, if β < n,

s + 4nt

δ2
(1 − ǫ2), if β = n,

∞, if β > n,

with H∞(T n) :=
⋂

s∈R
H s(T n).

Proof. We observe that
∑

0 6=k∈Zn

(1 + ‖k‖2)p|Ûk |2 =
∑

0 6=k∈Zn

(1 + ‖k‖2)p−s(1 + ‖k‖2)s | f̂kem(νk)t |2.

Since f ∈ H s(T n), the result that U (t) ∈ H p(T n) follows by showing that

(1 + ‖k‖2)p−se2m(νk)t

is bounded for k 6= 0. To see this, we consider three cases. For the case β < n, we have p − s = 0 and

e2m(νk)t(1 + ‖k‖2)p−s = e2m(νk)t ,

which is bounded since m(νk)≤ 0.

For the case when n < β < n + 4, let q ∈ R be arbitrary. Then,

(1 + ‖k‖2)q−se2m(νk)t = (1 + ‖k‖2)q−s

e2t |m(νk)| ,

which vanishes as ‖k‖→∞, and hence boundedness follows. Thus, U (t)∈ Hq(T n) for all q and therefore,

U (t) ∈
⋂

q∈R

Hq(T n)= H∞(T n).

For the case when β = n, we have p − s = ((4nt)/δ2)(1 − ǫ1). From Theorem 2, we have

m(νk)∼ −4n

δ2
log ‖νk‖,

which implies that

(12) lim
‖νk‖→∞

m(νk)

−4n
δ2 log ‖νk‖

= 1.

Thus, for any ǫ1 > 0, there exists N ∈ N such that

(13) −4n

δ2
(1 + ǫ1) log ‖νk‖ ≤ m(νk)≤ −4n

δ2
(1 − ǫ1) log ‖νk‖,

for all ‖νk‖ ≥ N . Therefore,

(14) e2m(νk)t ≤ e
− 8nt

δ2
(1−ǫ1) log ‖νk‖ = ‖νk‖− 8nt

δ2
(1−ǫ1).
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Since there exists A > 0 such that A‖k‖ ≤ ‖νk‖, we have

(1 + ‖k‖2)p−se2m(νk)t ≤ (1 + ‖k‖2)
4nt

δ2
(1−ǫ1)

‖νk‖
8nt

δ2
(1−ǫ1)

≤ (1 + ‖k‖2)
4nt

δ2
(1−ǫ1)

(A‖k‖)
8nt

δ2
(1−ǫ1)

,

which is bounded.

Similarly, to show that V (t) ∈ H r (T n), we show that

(1 + ‖k‖2)r−sm(νk)
2e2m(νk)t

is bounded for k 6= 0. For the case when β < n, we have r − s = 0 and there exists a constant C > 0 such

that |m(νk)| ≤ C . Thus,

(1 + ‖k‖2)r−sm(νk)
2e2m(νk)t = m(νk)

2e2m(νk)t

is bounded. For the case when n < β < n + 4, for an arbitrary q ′ ∈ R, we have

(1 + ‖k‖2)q
′−sm(νk)

2e2m(νk)t = m(νk)
2(1 + ‖k‖2)q

′−s

e2t |m(νk)| ,

which vanishes as ‖k‖ → ∞, and therefore boundedness follows. Thus, V (t) ∈ Hq ′
(T n) for all q ′ ∈ R

and hence,

V (t) ∈
⋂

q ′∈R

Hq ′
(T n)= H∞(T n).

When β = n, we have r − s = ((4nt)/δ2)(1 − ǫ2). From (13),

(15) |m(νk)|2 ≤
(

4n

δ2
(1 + ǫ1)

)2

(log ‖νk‖)2.

In addition, there exists N2 ∈ N such that

(16) log(‖νk‖)≤ ‖νk‖
4nt

δ2
(ǫ2−ǫ1),

for all ‖νk‖> N2. Moreover, there exists B > 0 such that ‖νk‖ ≤ B‖k‖. Hence, by using (14), (15), and

(16), we obtain

(1+‖k‖2)r−s |m(νk)|2e2m(νk)t ≤
(1+‖k‖2)

4nt

δ2
(1−ǫ2)

(

4n
δ2 (1+ǫ1)

)2
(B2‖k‖2)

4nt

δ2
(ǫ2−ǫ1)

(A‖k‖)
8nt

δ2
(1−ǫ1)

= M
(1+‖k‖2)

4nt

δ2
(1−ǫ2)

‖k‖
8nt

δ2
(1−ǫ2)

,

where

M =
(

4n
δ2 (1 + ǫ1)

)2
B

8nt

δ2
(ǫ2−ǫ1)

A
8nt

δ2
(1−ǫ1)

.

This shows boundedness and therefore completes the proof. �

For any J ∈ H s(T n), s ∈ R, define

Lδ,β J =
∑

k∈Zn

m(νk) Ĵkeiνk ·x .(17)

Lemma 4. Let U and V be as defined in (9) and (10) respectively. Then Lδ,βU (t)= V (t).
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Proof. By (17), we have

Lδ,βU (t)=
∑

k∈Zn

m(νk)Ûk(t)e
iνk ·x =

∑

k∈Zn

m(νk) f̂k em(νk)t eiνk ·x = V (t). �

Proposition 5. Let N ∈ N ∪ {0} and define

U (N )(t)=
∑

k

f̂k m(νk)
N em(νk)t eiνk ·x and V (N )(t)=

∑

k

f̂k m(νk)
N+1em(νk)t eiνk ·x .

Then d
dt

U (N )(t)= V (N )(t), for all t ∈ (0,∞). Equivalently,

d N

dt N
U (t)=

∑

k

f̂k m(νk)
N+1em(νk)t eiνk ·x ,

where the differentiation here is in the sense of Gateaux differentiation.

Remark 6. We note that U (0)(t) = U (t) and V (0)(t) = V (t). In addition, similar to the argument in

Theorem 3, for any t ≥ 0, both U (N )(t) and V (N )(t) are in H s(T n) when β ≤ n, and both are in H∞(T n)

when n < β < n + 4.

Proof. Let t > 0. We show that d
dt

U (N )(t)= V (N )(t), where the differentiation is in the Gateaux sense,

which is given by

lim
h→0

∥

∥

∥

∥

1

h
[U (N )(t + h)− U (N )(t)] − V (N )(t)

∥

∥

∥

∥

2

Hq (T n)

= 0,

where q = s when β ≤ n and q is arbitrary when n < β < n + 4. Equivalently, we show that

lim
h→0

∑

k∈Zn

(1 + ‖k‖2)q | f̂k |2m(νk)
2N

[

1

h
(em(νk)h − 1)em(νk)t − m(νk)e

m(νk)t

]2

= 0.(18)

This result follows from passing the limit inside the sum, which we justify next by the dominated

convergence theorem.

When β < n, we have q = s and there exists a constant C1 > 0 such that |m(νk)| < C1. Moreover,

there exists C2 > 0 such that
∣

∣

∣

∣

em(νk)h − 1

h

∣

∣

∣

∣

< C2,(19)

for all k and for sufficiently small h. Combining this with the fact that f ∈ H s(T n), it follows that the

summand in the left-hand side of (18) is uniformly bounded.

For the cases β > n and β = n, we first note that the summand in (18) can be written as

(1 + ‖k‖2)s | fk |2
(

em(νk)h − 1 − m(νk)h

h

)2

e2m(νk)t m(νk)
2N (1 + ‖k‖2)q−s .

Since f ∈ H s(T n), it is left to show that

(20)

(

em(νk)h − 1 − m(νk)h

h

)2

e2m(νk)t m(νk)
2N (1 + ‖k‖2)q−s
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is uniformly bounded. By Taylor’s theorem,

(21)

(

em(νk)h − 1 − m(νk)h

h

)

≤ m(νk)
2

2
,

for all h ∈ (0, 1). Therefore,

(

em(νk)h − 1 − m(νk)h

h

)2

e2m(νk)t m(νk)
2N (1 + ‖k‖2)q−s ≤ 1

4
(1 + ‖k‖2)q−sm(νk)

2N+4e2m(νk)t .

For β = n, we have q − s = 0, and since m(νk)→ −∞ as ‖k‖ → ∞, we find

1
4
m(νk)

2N+4e2m(νk)t → 0

as ‖k‖ → ∞, showing that (20) is uniformly bounded.

For β > n, by using Theorem 2, we have that

1
4
(1 + ‖k‖2)q−sm(νk)

2N+4e2m(νk)t = (1 + ‖k‖2)q−sm(νk)
2N+4

4e2|m(νk)|t → 0

as ‖k‖ → ∞, showing that (20) is uniformly bounded and therefore completing proof. �

The following theorem summarizes the results in this subsection.

Theorem 7. Let f ∈ H s(T n), β < n + 4, and s ∈ R. Then, there exists a unique solution U (t) to the

nonlocal diffusion equation

(22)







dU

dt
= Lδ,βU (t),

U (0)= f.

Moreover, U ∈ C∞((0,∞); H p(T n)), where p is as defined in (11).

Remark 8. The time regularity in Theorem 7 is in the sense of Gateaux differentiation.

Proof. The existence follows from Lemma 4 and Proposition 5 by taking N = 0. For the uniqueness, let

U2(t) be another solution of (22). We define W (t)= U (t)− U2(t). Then, W (t) satisfies






dW

dt
= Lδ,βW,

W (0)= 0.

Represent W (t) by its Fourier series

W (t)=
∑

k∈Zn

Ŵk(t)e
iνk ·x .

Lemma 4 implies that

Lδ,βW (t)=
∑

k∈Zn

m(νk)Ŵk(t)e
iνk ·x and

dW

dt
=

∑

k∈Zn

dŴk

dt
(t)eiνk ·x .
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From (22) and the uniqueness of Fourier coefficients, we have that

dŴk

dt
(t)= m(νk)Ŵk(t),

for all k. This implies that Ŵk(t)= Aem(νk)t , where A is a constant. Since Ŵk(0)= 0, we have Ŵk(t)= 0,

for all k, which implies that W (t) = 0. Therefore, U (t) = U2(t). The spatial regularity follows from

Theorem 3. �

3.3. Regular functions as solutions of the nonlocal diffusion equation. In this section, we focus on

functions f with absolutely summable Fourier coefficients, that is,
∑

k∈Zn | f̂k | < ∞. The following

theorem gives a class of functions that satisfy this condition; see [18].

Theorem 9. Let s be a nonnegative integer and let 0 ≤ α < 1. Assume that f is a function defined on

T n all of whose partial derivatives of order s lie in the space of Holder continuous functions of order α.

Suppose that s +α > n/2. Then f has an absolutely convergent Fourier series.

Next we provide results on the temporal regularity of the nonlocal diffusion equation.

Proposition 10. Let f ∈ H s(T n) such that
∑

k∈Zn | f̂k |<∞ and let β < n + 4. Then,

u(x, · ) ∈ C∞((0,∞)),

for all x ∈ T n .

Proof. We use the Leibniz integral rule for the counting measure to differentiate under the summation.

Let gk(t)= f̂k em(νk)t eiνk ·x and consider

∑

k∈Zn

|gk(t)| =
∑

k∈Zn

| f̂k em(νk)t eiνk ·x | =
∑

k∈Zn

| f̂k |em(νk)t ≤
∑

k∈Zn

| f̂k |.

Since
∑

k∈Zn | f̂k |<∞, we find gk(t) is summable for any fixed t . Moreover,

dgk

dt
= f̂k m(νk)e

m(νk)t eiνk ·x

is continuous for all k. Now fix t > 0. Then there exists τ such that 0 < τ < t . We define θk :=
| f̂k ||m(νk)|em(νk)τ . When β < n, there exists C > 0 such that |m(νk)| ≤ C . Thus

θk = | f̂k ||m(νk)|em(νk)τ ≤ C | f̂k |,

showing that θk is summable. When β ≥ n, we have em(νk)τ → 0 as ‖k‖ → ∞. Thus |m(νk)|em(νk)τ ≤ 1

for sufficiently large ‖k‖. Hence θk ≤ | f̂k |, showing that θk is summable. Moreover
∣

∣

∣

dgk

dt

∣

∣

∣
= | f̂k ||m(νk)|em(νk)t ≤ | f̂k ||m(νk)|em(νk)τ = θk .

Therefore, we can differentiate under the summation,

∂u(x, t)

∂t
= d

dt

∑

k∈Zn

gk(t)=
∑

k∈Zn

dgk

dt
=

∑

k∈Zn

f̂k m(νk)e
m(νk)t eiνk ·x .
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For higher derivatives, we observe that

d N gk

dt N
= f̂k |m(νk)|N em(νk)t eiνk ·x .

Define ψk = | f̂k ||m(νk)|N em(νk)τ . Then ψk is summable by following similar arguments as above.

Furthermore,
∣

∣

∣

∣

d N gk

dt N

∣

∣

∣

∣

= | f̂k ||m(νk)|N em(νk)t ≤ | f̂k ||m(νk)|N em(νk)τ = ψk .

This implies that u(x, · ) is N -times continuously differentiable and

∂N u(x, t)

∂t N
= d N

dt N

∑

k∈Zn

gk(t)=
∑

k∈Zn

d N gk

dt N
=

∑

k∈Zn

f̂k |m(νk)|N em(νk)t eiνk ·x .

Since N is arbitrary, it follows that u(x, · ) ∈ C∞((0,∞)). �

From Theorem 3 and Proposition 10 we obtain the following regularity result.

Theorem 11. Let n ≥ 1, δ > 0, ǫ > 0 and β < n +4. Assume that f ∈ H s(T n) and its Fourier coefficients

are summable. Then

(1) u ∈ C∞((0,∞); H s(T n)) for β < n,

(2) u ∈ C∞((0,∞); H
s+ 4nt

δ2
(1−ǫ)

(T n)) for β = n,

(3) u ∈ C∞((0,∞); H∞(T n)) for β > n.

The following lemma will be used to prove Theorem 13 on the convergence of solutions of the nonlocal

diffusion equation as δ → 0+.

Lemma 12. Let n < β < n + 2 and δ ≤ 1. Then, there exist c1 > 0 and c2 > 0 such that, for all ν ∈ R
n ,

mδ,β(ν)≤ max{−c1‖ν‖β−n,−c2‖ν‖2}.

Proof. From Theorem 2, we have

m1,β(ν)∼ c‖ν‖β−n,

where

c = (2)2n+2−β Ŵ
(

n+4−β
2

)

Ŵ
(

n+2
2

)

(β − n)Ŵ
(

β

2

)
> 0.

This is equivalent to

lim
‖ν‖→∞

m1,β(ν)

−‖ν‖β−n
= c,

which implies that there is c1 > 0 and N > 0 such that for all ‖ν‖> N

(23) m1,β(ν)≤ −c1‖ν‖β−n.

On the other hand, from [1], we have

lim
‖ν‖→0

m1,β(ν)

−‖ν‖β−n
= 1.
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Thus, there exists c2 > 0 such that, for all ‖ν‖< N ,

(24) m1,β(ν)≤ −c2‖ν‖2.

Combining (23) and (24), we have

(25) m1,β(ν)≤ max{−c1‖ν‖β−n,−c2‖ν‖2},

for all ν ∈ R
n . Using (25) and the fact that mδ,β(ν)= 1

δ2 m1,β(δν), which follows from (5), we obtain

mδ,β(ν)= 1

δ2
m1,β(δν)≤ 1

δ2
max{−c1‖δν‖β−n,−c2‖δν‖2}

= max{−c1‖ν‖β−nδβ−(n+2),−c2‖ν‖2}.

Since δ ≤ 1, we have −δβ−(n+2) ≤ −1 and hence

mδ,β(ν)≤ max{−c1‖ν‖β−n,−c2‖ν‖2}. �

Convergence of solutions of the nonlocal diffusion equation (7) to the solution of the corresponding

classical diffusion equation is given next in Theorem 13 and Theorem 14.

Theorem 13. Let n ≥ 1, s ∈ R and let f ∈ H s(T n). Suppose u is the solution of the classical diffusion

equation ut =1u with initial condition u|t=0 = f . For any δ > 0, let uδ,β be the solution of the nonlocal

diffusion equation in (7). Then, for t > 0 and β ≤ n,

lim
δ→0+

uδ,β( · , t)= u( · , t) in H s(T n),

and, for n < β ≤ n + 2,

lim
δ→0+

uδ,β( · , t)= u( · , t) in H∞(T n).

Proof. The Fourier coefficients satisfy û
δ,β

k = f̂k em(νk)t and ûk = f̂k e−‖νk‖2t . When β ≤ n, we observe

‖uδ,β( · , t)− u( · , t)‖2
H s(T n) =

∑

0 6=k∈Zn

(1 + ‖k‖2)s |ûδ,βk − ûk |2

=
∑

0 6=k∈Zn

(1 + ‖k‖2)s |em(νk)t − e−‖νk‖2t |2| f̂k |2.

To pass the limit δ → 0+ inside the sum, it is sufficient to show that |em(νk)t − e−‖νk‖2t |2 as a function of

k is uniformly bounded. Using (4), it is straightforward to see that m(ν)≤ 0 for ν ∈ R
n . Thus,

|em(νk)t − e−‖νk‖2t |2 ≤ (em(νk)t + e−‖νk‖2t)2 ≤ 4.

Since limδ→0+ m(νk)= −‖νk‖2, we have

lim
δ→0+

uδ,β( · , t)= u( · , t) in H s(T n).
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For the case β > n, fix an arbitrary p ∈ R. Then,

‖uδ,β( · , t)− u( · , t)‖2
H p(T n) =

∑

06=k∈Zn

(1 + ‖k‖2)p|ûδ,βk − ûk |2

=
∑

0 6=k∈Zn

(1 + ‖k‖2)s (1 + ‖k‖2)p−s |em(νk)t − e−‖νk‖2t |2 | f̂k |2.

Since (1 + ‖k‖2)s | f̂k |2 is summable, to pass the limit inside the above sum, we show that the following

function in k, that is given by

(1 + ‖k‖2)p−s |em(νk)t − e−‖νk‖2t |2,

is uniformly bounded. First, we rewrite the above expression as

(1 + ‖k‖2)p−s |em(νk)t − e−‖νk‖2t |2 = (1 + ‖k‖2)p−se2m(νk)t(1 − e−(m(νk)+‖νk‖2)t)2.

Then, we observe that

mδ,β(νk)+ ‖νk‖2 = −‖νk‖2
2 F3

(

1, 1
2
(n + 2 −β); 2, 1

2
(n + 2), 1

2
(n + 4 −β); −1

4
‖νk‖2δ2

)

+ ‖νk‖2

= ‖νk‖2
(

1 − 2 F3

(

1, 1
2
(n + 2 −β); 2, 1

2
(n + 2), 1

2
(n + 4 −β); −1

4
‖νk‖2δ2

))

.

Since 2 F3

(

1,
n+2−β

2
; 2, n+2

2
,

n+4−β
2

; x
)

≤ 1 for all x ≤ 0, we have mδ,β + ‖νk‖2 ≥ 0. Therefore,

1 − e−(m(νk)+‖νk‖2)t < 1.

Using this fact, we have

(1 + ‖k‖2)p−s |em(νk)t − e−‖νk‖2 | = (1 + ‖k‖2)p−se2m(νk)t(1 − e−(m(νk)+‖νk‖2t)2

< (1 + ‖k‖2)p−se2m(νk)t .

Lemma 12 implies that there exist c1 > 0 and c2 > 0 such that

em(νk)t ≤ max{e−c1‖νk‖β−n t , e−c2‖νk‖2t }.
Consequently,

(1 + ‖k‖2)p−se2m(νk)t ≤ (1 + ‖k‖2)p−s

min
{

exp(2c1‖νk‖β−n t), exp(2c2‖νk‖2t)
} ,

which is bounded for sufficiently large k for all δ ∈ [0, 1]. �

Theorem 14. Let n ≥ 1, s ∈ R and let f ∈ H s(T n). Suppose u is the solution of the classical diffusion

equation ut =1u, with u|t=0 = f , and for any β < n +4, let uδ,β be the solution of the nonlocal diffusion

equation (7). Then for t > 0

lim
β→n+2

uδ,β( · , t)= u( · , t) in H∞(T n).

Proof. Let q ∈ R be arbitrary. Consider

‖uδ,β( · , t)− u( · , t)‖2
Hq (T n) =

∑

k∈Zn

(1 + ‖k‖2)q−s |em(νk)t − e−‖νk‖2t |2(1 + ‖k‖2)s‖ f̂k‖2.
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We observe that for β near n + 2, m(νk)→ −∞ as ‖k‖ → ∞. Thus, we can pass the limit in β inside

the sum above, since f ∈ H s(T n) and the expression

(1 + ‖k‖2)q−s |em(νk)t − e−‖νk‖2t |2

is uniformly bounded. Since limβ→n+2 m(νk)= −‖νk‖2, the result follows. �

4. Nonlocal diffusion equation with a diffusion source

In this section, we focus on the nonlocal diffusion equation with a diffusion source and zero initial data

(26)

{

ut(x, t)= Lδ,βu(x, t)+ b(x), x ∈ T n, t > 0,

u(x, 0)= 0.

In order to study the existence, uniqueness, and regularity of solutions to (26) over the space of periodic

distributions, we consider the identification U (t)= u( · , t), with U : [0,∞)→ H s(T n).

Let b ∈ H s(T n) and define U, V : [0,∞)→ Hq(T n), for some q ∈ R, by

U (t)= b̂0 t +
∑

0 6=k∈Zn

em(νk)t − 1

m(νk)
b̂k eiνk ·x ,(27)

V (t)=
∑

k∈Zn

em(νk)t b̂k eiνk ·x .(28)

Observe that for any t ≥ 0, U (t) and V (t) are well-defined periodic distributions, since (em(νk)t −1)/m(νk)

and em(νk)t are bounded functions in k.

Theorem 15. Let n ≥ 1, δ > 0, and β < n +4. Assume that ǫ1 > 0 and b ∈ H s(T n) for some s ∈ R. Then,

for any fixed t > 0, U (t) ∈ H p(T n) and V (t) ∈ H r (T n), where

(29) p =
{

s, if β ≤ n,

s +β − n, if β > n,
and r =











s, if β < n,

s + 4nt

δ2
(1 − ǫ1), if β = n,

∞, if β > n.

Proof. We observe that

‖U (t)− b̂0t‖2
H p(T n) =

∑

0 6=k∈Zn

(1 + ‖k‖2)p|Ûk(t)|2

=
∑

0 6=k∈Zn

(1 + ‖k‖2)p−s

|m(νk)|2
(em(νk) − 1)2(1 + ‖k‖2)s |b̂k |2.

Since b ∈ H s(T n) and em(νk)t is bounded because m(νk) < 0, then the result follows by showing that

(1 + ‖k‖2)p−s

|m(νk)|2
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is bounded for k 6= 0. When β ≤ n, we have p − s = 0, and by using Theorem 2, there exist C1 > 0 and

r1 > 0 such that |m(νk)| ≥ C1, for all ‖k‖ ≥ r1. Thus,

(1 + ‖k‖2)p−s

|m(νk)|2
≤ 1

C2
1

.

When β > n, we have p − s = β − n, and by using Theorem 2, there exist C2 > 0 and r2 > 0 such that

|m(νk)| ≥ C2‖k‖β−n , for all ‖k‖ ≥ r2. This implies that

(1 + ‖k‖2)p−s

|m(νk)|2
≤ 1

C2
2

(

1 + ‖k‖2

‖k‖2

)β−n

,

which is bounded. The proof of V (t) ∈ H r (T n) is similar to the proof of Theorem 3. �

Lemma 16. Let U and V be as defined in (27) and (28), respectively. Then

V (t)= Lδ,βU (t)+ b.

Proof. By using (17), for any x ∈ T n and t > 0, we have

Lδ,βU (t)(x)= Lδ,β(b̂0 t)+
∑

06=k∈Zn

m(νk)Ûk(t)e
iνk ·x

=
∑

0 6=k∈Zn

m(νk)
(em(νk)t − 1)

m(νk)
b̂k eiνk ·x

=
∑

0 6=k∈Zn

b̂k em(νk)t eiνk ·x −
∑

06=k∈Zn

b̂k eiνk ·x

= V (t)(x)− b(x). �

Proposition 17. Let U (t) and V (t) be as defined in (27) and (28), respectively. Then,

dU

dt
= V (t).

Moreover, for N ≥ 1,

d N U

dt N
=

∑

k∈Zn

b̂k m(νk)
N−1em(νk)t eiνk ·x ,

for all t ∈ (0,∞), where the differentiation here is in the sense of Gateaux differentiation.

Proof. We show that

lim
h→0

∥

∥

∥

∥

1

h
[U (t + h)− U (t)] − V (t)

∥

∥

∥

∥

2

Hq (T n)

= 0,

where q = s when β ≤ n and q is arbitrary when β > n. Equivalently, we show that

(30) lim
h→0

∑

06=k∈Zn

(1 + ‖k‖2)q |b̂k |2
[

1

h
(em(νk)h − 1)

em(νk)t

m(νk)
− em(νk)t

]2

= 0.

This result follows from passing the limit inside the sum, which we justify next by the dominated

convergence theorem.
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When β < n, we have q = s and similar to (19), there exists a constant C2 > 0 such that
∣

∣

∣

∣

em(νk)h − 1

h

∣

∣

∣

∣

< C2,

for all k and for sufficiently small h. Moreover, em(νk)t and 1/m(νk), for k 6= 0, are bounded. Combining

this with the fact that b ∈ H s(T n), it follows that the summand in the left-hand side of (30) is uniformly

bounded.

For the cases β > n and β = n, we first note that the summand in (30) can be written as

(1 + ‖k‖2)s |bk |2(1 + ‖k‖2)q−s e2m(νk)t

m(νk)2

(

em(νk) − 1 − m(νk)h

h

)2

.

Since b ∈ H s(T n), it is left to show that

(31) (1 + ‖k‖2)q−s e2m(νk)t

m(νk)2

(

em(νk) − 1 − m(νk)h

h

)2

is uniformly bounded. Using (21), we have

(1 + ‖k‖2)q−s e2m(νk)t

m(νk)2

(

em(νk) − 1 − m(νk)h

h

)2

≤ 1
4
(1 + ‖k‖2)q−sm(νk)

2e2m(νk)t .

When β = n, we have q − s = 0 and since m(νk)→ −∞ as ‖k‖ → ∞, we find

1
4
m(νk)

2e2m(νk)t → 0

as ‖k‖ → ∞ showing that (31) is uniformly bounded.

When β > n, by using Theorem 2, we have that

1
4
(1 + ‖k‖2)q−sm(νk)

2e2m(νk)t = (1 + ‖k‖2)q−sm(νk)
2

4e2|m(νk)|t → 0

as ‖k‖ → ∞, showing that (31) is uniformly bounded and therefore completing the proof of the first part.

The second part of this proposition follows from arguments similar to those in the proof of Proposition 5. �

The following regularity theorem summarizes the results of this subsection.

Theorem 18. Let b ∈ H s(T n) with s ∈ R. Then there exists a unique solution U to the nonlocal diffusion

equation

(32)







dU

dt
= Lδ,βU (t)+ b,

U (0)= 0.

Moreover, U ∈ C∞((0,∞); H p(T n)), where p is as defined in (29).

Remark 19. The temporal regularity is in the sense of Gateaux differentiation.

Proof. The existence follows from Lemma 16 and Proposition 17. For the uniqueness, the proof is similar

to the proof of uniqueness in Theorem 7. The spatial regularity follows from Theorem 15 and the temporal

regularity follows from Proposition 17. �
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4.1. Regular functions as solutions of nonlocal diffusion equations with diffusion source. In this

section, we focus on functions b with absolutely summable Fourier coefficients, that is,
∑

k∈Zn |b̂k |<∞.

Proposition 20. Let b ∈ H s(T n) such that
∑

k∈Zn |b̂k |<∞ and let β < n + 4. Then

u(x, · ) ∈ C∞((0,∞)),

for all x ∈ T n .

Proof. We use the Leibniz rule to differentiate under the sum. Let gk(t)= ((em(νk)t − 1)/m(νk)) b̂k eiνk ·x

and consider

∑

06=k∈Zn

|gk(t)| =
∑

06=k∈Zn

∣

∣

∣

∣

em(νk)t − 1

m(νk)
b̂k eiνk ·x

∣

∣

∣

∣

=
∑

0 6=k∈Zn

|b̂k |
∣

∣

∣

∣

em(νk)t − 1

m(νk)

∣

∣

∣

∣

≤
∑

0 6=k∈Zn

|b̂k |
1

|m(νk)|
,

where in the last inequality, we used the fact that m(νk) < 0. Since 1/|m(νk)|, k 6= 0, is bounded and
∑

k∈Zn |b̂k |<∞, we have gk(t) is summable for any fixed t . Moreover,

dgk

dt
= b̂k em(νk)t eiνk ·x

is continuous for all k. Now fix t > 0. Then there exists τ such that 0< τ < t . We define θk := |b̂k |em(νk)τ .

Since m(νk)≤ 0, for all k, we have

θk = |b̂k |em(νk)τ ≤ |b̂k |,

showing that θk is summable. Moreover,

∣

∣

∣

∣

dgk

dt

∣

∣

∣

∣

= |b̂k |em(νk)t ≤ |b̂k |em(νk)τ = θk .

Therefore,

∂u(x, t)

∂t
= b̂0 + d

dt

∑

0 6=k∈Zn

gk(t)= b̂0 +
∑

0 6=k∈Zn

dgk

dt
=

∑

k∈Zn

b̂k em(νk)t eiνk ·x .

This shows that u is differentiable with respect to t . For higher derivatives, let N ≥ 2 be an integer. We

observe that

d N gk

dt N
= b̂k(m(νk))

N−1em(νk)t eiνk ·x .

Define θk = |b̂k ||m(νk)|N−1em(νk)τ . When β < n, there exists C > 0 such that |m(νk)| ≤ C . Thus,

θk = |b̂k ||m(νk)|N−1em(νk)τ ≤ C N−1|b̂k |,

showing that θk is summable. When β ≥ n, then em(νk)τ → 0 as ‖k‖ → ∞. Thus, |m(νk)|N−1em(νk)τ ≤ 1

for sufficiently large ‖k‖. Hence θk ≤ |b̂k |, showing that θk is summable. Furthermore,

∣

∣

∣

∣

d N gk

dt N

∣

∣

∣

∣

= |b̂k ||m(νk)|N−1em(νk)t ≤ |b̂k ||m(νk)|N−1em(νk)τ = θk .
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This implies that u(x, · ) is N -times continuously differentiable and

∂N u(x, t)

∂t N
= d N

dt N

∑

k∈Zn

gk(t)=
∑

k∈Zn

d N gk

dt N
=

∑

k∈Zn

b̂k |m(νk)|N−1em(νk)t eiνk ·x .

Since N is arbitrary, it follows that u(x, · ) ∈ C∞((0,∞)). �

From Theorem 15 and Proposition 20 we obtain the following regularity result.

Theorem 21. Let n ≥ 1, δ > 0 and β < n + 4. Assume that b ∈ H s(T n) and its Fourier coefficients are

summable. Then

(1) u ∈ C∞((0,∞); H s(T n)), for β ≤ n,

(2) u ∈ C∞((0,∞); H s+β−n(T n)), for β > n.

Convergence of solutions of the nonlocal diffusion equation (26) to the solution of the corresponding

classical diffusion equation is given next in Theorem 22 and Theorem 24.

Theorem 22. Let n ≥ 1 and b ∈ H s(T n), with s ∈ R. Suppose u is the solution of the classical diffusion

equation ut = △u + b with initial condition u|t=0 = 0. For any δ > 0, let uδ,β be the solution of the

nonlocal diffusion equation

(33)

{

u
δ,β
t (x, t)= Lδ,βuδ,β(x, t)+ b(x), x ∈ T n, t > 0,

uδ,β(x, 0)= 0, x ∈ T n.

Then, for t > 0 and β ≤ n,

lim
δ→0+

uδ,β( · , t)= u( · , t) in H s(T n),

and, for n < β ≤ n + 2,

lim
δ→0+

uδ,β( · , t)= u( · , t) in H s+β−n(T n).

Proof. The Fourier coefficients satisfy û
δ,β

k =((em(νk)t−1)/m(νk)) b̂k and ûk =((e−‖νk‖2t−1)/(−‖νk‖2)) b̂k ,

for k 6= 0. For β ≤ n, we have

‖uδ,β( · , t)− u( · , t)‖2
H s(T n) =

∑

0 6=k∈Zn

(1 + ‖k‖2)s |ûδ,βk − ûk |2

=
∑

0 6=k∈Zn

(1 + ‖k‖2)s
∣

∣

∣

∣

(em(νk)t − 1)

m(νk)
− (e−‖νk‖2t − 1)

−‖νk‖2

∣

∣

∣

∣

2

|b̂k |2.

To pass the limit δ → 0+ inside the sum, it is sufficient to show that

∣

∣

∣

∣

(em(νk)t − 1)

m(νk)
− (e−‖νk‖2t − 1)

−‖νk‖2

∣

∣

∣

∣

is uniformly bounded. Using (4), m(ν)≤ 0 for ν ∈ R
n , and thus,

∣

∣

∣

∣

(em(νk)t − 1)

m(νk)
− (e−‖νk‖2t − 1)

−‖νk‖2

∣

∣

∣

∣

≤ 1

|m(νk)|
+ 1

‖νk‖2
.
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Since 1/m(νk), k 6= 0, and 1/(‖νk‖2), k 6= 0, are bounded, we conclude that

∣

∣

∣

∣

(em(νk)t − 1)

m(νk)
− (e−‖νk‖2t − 1)

−‖νk‖2

∣

∣

∣

∣

is uniformly bounded. For the case β > n, consider

‖uδ,β( · , t)−u( · , t)‖2
H s+β−n(T n)

=
∑

0 6=k∈Zn

(1+‖k‖2)s+β−n|ûδ,βk −ûk |2

=
∑

0 6=k∈Zn

(1+‖k‖2)s(1+‖k‖2)β−n

∣

∣

∣

∣

(em(νk)t −1)

m(νk)
− (e

−‖νk‖2t −1)

−‖νk‖2

∣

∣

∣

∣

2

|b̂k |2.

Since (1 + ‖k‖2)s |b̂k |2 is summable, to pass the limit inside the above sum, we show that the following

function in k that is given by

(1 + ‖k‖2)β−n

∣

∣

∣

∣

(em(νk)t − 1)

m(νk)
− (e−‖νk‖2t − 1)

−‖νk‖2

∣

∣

∣

∣

2

is uniformly bounded. Since m(ν)≤ 0 for all ν ∈ R
n , we have

(1 + ‖k‖2)β−n

∣

∣

∣

∣

(em(νk)t − 1)

m(νk)
− (e−‖νk‖2t − 1)

−‖νk‖2

∣

∣

∣

∣

2

≤ (1 + ‖k‖2)β−n

(

1

|m(νk)|
+ 1

‖νk‖2

)2

.

By using Theorem 2, there exists constant C>0 such that |m(νk)|>C ‖k‖β−n . Furthermore, using the fact

that A‖k‖≤‖νk‖≤ B ‖k‖ for positive constants A and B and since β−n ≤ 2, we have ‖νk‖2 ≥ A2‖k‖β−n .

Therefore,

(1 + ‖k‖2)β−n

(

1

|m(νk)|
+ 1

‖νk‖2

)2

≤ (1 + ‖k‖2)β−n

(

1

C ‖k‖β−n
+ 1

A2 ‖k‖β−n

)2

≤ max

(

1

C2
,

1

A4

)(

1 + ‖k‖2

‖k‖2

)β−n

,

showing uniform boundedness. Whether β≤ n or n<β≤ n+2, we have limδ→0+ m(νk)=−‖νk‖2, which

implies that limδ→0+ ‖uδ,β( · , t)− u( · , t)‖H s(T n) = 0, or limδ→0+ ‖uδ,β( ·, t)− u( · , t)‖H s+β−n(T n) = 0,

respectively, and therefore completes the proof. �

A proof of the following lemma on the monotonicity of the multipliers can be found in [2].

Lemma 23. Let β ′ < β ≤ n + 2. Then, for all ν 6= 0, mδ,β(ν) < mδ,β ′
(ν).

Theorem 24. Let n ≥ 1, s ∈ R and let b ∈ H s(T n). Suppose u is the solution of the classical diffusion

equation ut = 1u + b, with u|t=0 = 0, and for any β < n + 2, let uδ,β be the solution of the nonlocal

diffusion equation (33). Then, for t > 0 and 0< ǫ < 2,

lim
β→(n+2)−

uδ,β( · , t)= u( · , t) in H s+2−ǫ(T n).

Proof. For 0 < ǫ < 2, define β ′ = n + 2 − ǫ. For any β > β ′, we have from Theorem 15 that

uδ,β ∈ H s+β−n(T n)⊂ H s+2−ǫ(T n). Furthermore, u ∈ H s+2(T n)⊂ H s+2−ǫ(T n). Thus the limit makes
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sense. Consider

‖uδ,β( · , t)− u( · , t)‖2
H s+2−ǫ(T n)

=
∑

0 6=k∈Zn

(1 + ‖k‖2)2−ǫ
∣

∣

∣

∣

emδ,β (νk)t − 1

mδ,β(νk)
− e−‖νk‖2t − 1

−‖νk‖2

∣

∣

∣

∣

2

(1 + ‖k‖2)s‖b̂k‖2.

Since b ∈ H s(T n), in order to pass the limit in β inside the sum, we show that the expression

(1 + ‖k‖2)2−ǫ
∣

∣

∣

∣

emδ,β (νk)t − 1

mδ,β(νk)
− e−‖νk‖2t − 1

−‖νk‖2

∣

∣

∣

∣

2

is uniformly bounded for k 6= 0 and β ∈ [β ′, n + 2). Applying Lemma 23,

(1 + ‖k‖2)2−ǫ
∣

∣

∣

∣

emδ,β (νk)t − 1

mδ,β(νk)
− e−‖νk‖2t − 1

−‖νk‖2

∣

∣

∣

∣

2

≤ (1 + ‖k‖2)2−ǫ
(

1

|mδ,β(νk)|
+ 1

‖νk‖2

)2

≤ (1 + ‖k‖2)2−ǫ
(

1

|mδ,β ′
(νk)|

+ 1

‖νk‖2

)2

.

From Theorem 2, there exists C > 0 such that |mδ,β ′
(νk)| ≥ C ‖k‖2−ǫ . Furthermore, there exists A > 0

such that ‖νk‖ ≥ A‖k‖. Thus,

(1 + ‖k‖2)2−ǫ
(

1

|mδ,β ′
(νk)|

+ 1

‖νk‖2

)2

≤ (1 + ‖k‖2)2−ǫ
(

1

C ‖k‖2−ǫ + 1

A2 ‖k‖2

)2

≤ (1 + ‖k‖2)2−ǫ
(

1

C ‖k‖2−ǫ + 1

A2 ‖k‖2−ǫ

)2

,

which is uniformly bounded. Since limβ→(n+2)− m(νk)= −‖νk‖2, the result follows. �

5. Propagation of discontinuities for the nonlocal diffusion equation

In this section, we study the propagation of discontinuities for the nonlocal diffusion equation in (7).

We emphasize that Theorem 11 implies that the nonlocal diffusion equation satisfies an instantaneous

smoothing effect when the integral kernel is singular with β > n and a gradual (over time) smoothing

effect for when β = n. However, for integrable kernels (β < n), the nonlocal diffusion equation is

nonsmoothing. We investigate this latter case further by studying the propagation of discontinuities. To

this end, given a discontinuous initial data f ∈ L2(T n), we show that for certain conditions on f and β,

discontinuities persist and propagate. In particular, we show that in one-dimension, if f is piecewise

continuous, then the solution u is piecewise continuous and both f and u share the same locations of

jumps.

To study the propagation of discontinuities, we look for a decomposition of u, the solution of (7), of

the form

u(x, t)= v(x, t)+ g(t) f (x),

for some function v(x, t), which is continuous in x and satisfies v(x, 0) = 0, and some function g

satisfying g(0)= 1. This would imply that any discontinuity in f will persist to be a discontinuity in u

for all t > 0. We show that the magnitude of a jump discontinuity decays as t increases.
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We observe that v satisfies

vt = ut − g′(t) f (x)= Lδ,βu − g′(t) f (x)= Lδ,βv+ g(t)Lδ,β f (x)− g′(t) f (x).

Since β < n, we observe that

Lδ,β f (x)= cδ,β
∫

Bδ(x)

f (y)− f (x)

‖y − x‖β dy = h(x)−α f (x),

where

(34) h(x)= cδ,β
∫

Bδ(x)

f (y)

‖y − x‖β dy =
(

cδ,β

‖ · ‖β χBδ (0)
( · )

)

∗ f (x),

and α is a constant given by

(35) α = cδ,β
∫

Bδ(x)

1

‖y − x‖β dy = 2n(n + 2 −β)
δ2(n −β) .

Therefore,

vt = Lδ,βv+ g(t)h(x)−αg(t) f (x)− g′(t) f (x)

= Lδ,βv+ g(t)h(x)− f (x)(αg(t)− g′(t)).

Since g(t) is unknown and we are looking for v(x, t), a continuous function in x which is independent

of f (x), we set αg(t)− g′(t)= 0. Thus g(t)= e−αt and v solves

(36)

{

vt = Lδ,βv+ e−αt h(x), x ∈ T n, t > 0,

v(x, 0)= 0,

and therefore,

(37) u(x, t)= v(x, t)+ e−αt f (x).

Hence,

(38) v̂k = ûk − e−αt f̂k = f̂k em(νk)t − e−αt f̂k = f̂k(1 − e−(m(νk)+α)t)em(νk)t .

It remains to find conditions on f and β to guarantee the continuity of v. Towards this end, we make

use of the following lemma, whose proof is similar to the proof of Theorem 3.2 in [2]. We note that the

constant α appears in the asymptotics formula (6).

Lemma 25. Let ν ∈ R
n and let β < n. Suppose α is as defined in (35). Then

m(ν)+α ∼



















4(n + 2 −β)Ŵ
(

n
2
+ 1

)

δ2
Ŵ

(

n
2

)

Ŵ
(

n+2−β
2

)

Ŵ
(

β

2

)

(

δ‖ν‖
2

)β−n
if n−1

2
< β < n,

4(n + 2 −β)Ŵ
(

n
2
+ 1

)

δ2
(n −β)Ŵ

(

n
2

)

4
√
π

(

δ‖ν‖
2

)− n+1
2 if β ≤ n−1

2
.

In addition, we make use of the following lemma.
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Lemma 26. Let α be as defined in (35). Then,

(1 − e−(m(νk)+α)t)em(νk)t ∼















C1te−αt

‖k‖n−β if
n−1

2
< β < n,

C2te−αt

‖k‖ n+1
2

if β ≤ n−1

2
,

for some positive constants C1 and C2.

Proof. When n−1
2
< β < n, by using Lemma 25 and the definition of νk , there exists C1 > 0 such that

lim
‖k‖→∞

(m(νk)+α)‖k‖n−β = C1,

which implies that, for any ǫ > 0,

C1(1 − ǫ)
‖k‖n−β < m(νk)+α <

C1(1 + ǫ)
‖k‖n−β ,

for sufficiently large ‖k‖. Thus

‖k‖n−β(1 − e
− C1(1−ǫ)t

‖k‖n−β ) < ‖k‖n−β(1 − e−(m(νk)+α)t) < ‖k‖n−β(1 − e
− C1(1+ǫ)t

‖k‖n−β ),

and consequently,

C1(1 − ǫ)t < lim
‖k‖→∞

‖k‖n−β(1 − e−(m(νk)+α)t) < C1(1 + ǫ)t.

Since ǫ is arbitrary, we obtain

lim
‖k‖→∞

‖k‖n−β(1 − e−(m(νk)+α)t)= C1t,

and thus,

(1 − e−(m(νk)+α)t)em(νk)t ∼ C1te−αt

‖k‖n−β .

The proof is similar for the case β ≤ n−1
2

. �

Conditions on f and β to guarantee the continuity of v are given in the following result.

Theorem 27. Let v(x, t) be as in (37) and assume that f̂k satisfies

f̂k ∼











1

‖k‖β+ǫ if
n−1

2
< β < n,

1

‖k‖ n−1
2

+ζ
if β ≤ n−1

2
,

for ǫ, ζ > 0. Then, v(x, t) is continuous.

Proof. For n−1
2
< β < n with f̂k ∼ (1/(‖k‖β+ǫ)), by using Lemma 26, we have

v̂k = f̂k(1 − e−(m(νk)+α)t)em(νk)t ∼ Cte−αt

‖k‖n+ǫ .
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Figure 1. The slow decay of a discontinuity in the nonlocal diffusion equation with β < n.

Similarly, for β ≤ n−1
2

with f̂k ∼ (1/(‖k‖ n−1
2

+ζ )), we have

v̂k = f̂k(1 − e−(m(νk)+α)t)em(νk)t ∼ Cte−αt

‖k‖n+ζ .

By Proposition 3.3.12 in [18], we conclude that, for t > 0, v( · , t) is continuous in both cases. �

The following theorem summarizes the results in this section.

Theorem 28. Let β < n and let u be as given in (37) and assume that

f̂k ∼











1

‖k‖β+ǫ if 1
2
(n − 1) < β < n,

1

‖k‖ n−1
2

+ζ
if β ≤ 1

2
(n − 1),

for some ǫ, ζ > 0. Then, if f is discontinuous at x then u is discontinuous at x.

Corollary 29. If f ∈ L2(T ) is piecewise continuous, then u is piecewise continuous and f and u share

the same locations of jumps. Furthermore, the magnitude of a jump decays as t increases.

This is an immediate consequence of Theorem 28, since, for a piecewise continuous function f ∈ L2(T ),

we have f̂k ∼ C
|k| , for some C > 0.

A one-dimensional example for the propagation of a discontinuity in the nonlocal diffusion equation is

described below. Figure 1 shows the results of a numerical solution to the periodic nonlocal diffusion

problem ut = Lδ,βu on the interval (−10, 10) with δ = 1, β = 1
3
, and initial condition

u(x, 0)=







x + 1 if − 1< x ≤ 0,

x − 1 if 0< x < 1,

0 otherwise.

In Figure 1, function values for x < 0 were plotted separately from those for x > 0 so that the jump is

apparent. The dashed lines indicate the values ±e−αt , showing the theoretical extremes of the jump.
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