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REGULARITY OF SOLUTIONS
FOR NONLOCAL DIFFUSION EQUATIONS
ON PERIODIC DISTRIBUTIONS

ILYAS MUSTAPHA, BACIM ALALI AND NATHAN ALBIN

This work addresses the regularity of solutions for a nonlocal diffusion equation over the space of
periodic distributions. The spatial operator for the nonlocal diffusion equation is given by a nonlocal
Laplace operator with a compactly supported integral kernel. We follow a unified approach based on
the Fourier multipliers of the nonlocal Laplace operator, which allows the study of regular as well as
distributional solutions of the nonlocal diffusion equation, with integrable as well as singular kernels, in
any spatial dimension. In addition, the results extend beyond operators with singular kernels to nonlocal
superdiffusion operators. We present results on the spatial and temporal regularity of solutions in terms of
regularity of the initial data or the diffusion source term. Moreover, solutions of the nonlocal diffusion
equation are shown to converge to the solution of the classical diffusion equation for two types of limits:
as the spatial nonlocality vanishes or as the singularity of the integral kernel approaches a certain critical
singularity that depends on the spatial dimension. Furthermore, we show that, for the case of integrable
kernels, discontinuities in the initial data propagate and persist in the solution of the nonlocal diffusion
equation. The magnitude of a jump discontinuity is shown to decay over time.

1. Introduction

In this work, we study the regularity of solutions to the nonlocal diffusion equation given by
{ut(x, 1) =L%Pu(x,t)+b(x), xeT", t>0,
u(x, 0) = f(x),

over the space of periodic distributions H*(7T"), with s € R. Here T" denotes the periodic torus in R”
and L%? is a nonlocal Laplace operator defined by

) L3Pu(x) = c‘s’ﬁ/ M dy, xeR",
By Iy —x|IP

where Bgs(x) denotes a ball in R”, § > 0 is called the horizon or the nonlocality, and the kernel exponent
satisfies B < n + 2 [12; 13]. The scaling constant ¢ is given by

e 2+2-B)I(5+1)
mw28n+2-p .
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Nonlocal integral operators with compact support of the form (2) have their roots in peridynamics [24; 25]
and have been introduced in nonlocal vector calculus [13]. These nonlocal operators have been used in
different applied settings; see for example [4; 6; 7; 17; 19]. The work in [3] proposed a nonlocal model
for transient heat transfer, which is valid when the body undergoes damage or evolving cracks. There
have been many mathematical analysis studies involving nonlocal Laplace operators and peridynamic
operators including the works [2; 12; 15; 21; 22; 23]. In general, exact solutions are not readily available
for nonlocal models, however, different computational techniques and numerical analysis methods have
been developed for solving nonlocal equations such as [1; 5; 8; 9; 10; 11; 14; 16; 20; 26].

The work in [2] introduces the Fourier multipliers for nonlocal Laplace operators, studies the asymptotic
behavior of these multipliers, and then applies the asymptotic analysis in the periodic setting to prove
regularity results for the nonlocal Poisson equation. In this work, we apply the Fourier multipliers
approach developed in [2] to study the regularity of solutions to the nonlocal diffusion equation over
the space of periodic distributions. The organization of this article and a brief description of the main
contributions of this study are as follows.

e A review of the Fourier multipliers analysis for the nonlocal Laplace operator (2) is provided in
Section 2.

 In Section 3, we present the regularity of solutions analysis for the nonlocal diffusion equation with
initial data in H*(7T"), but without a diffusion source.

— Theorem 3 and Proposition 5 provide the spatial and temporal regularity results, respectively, in any
spatial dimension. The temporal regularity for a general periodic distribution in H*(T"), with s € R,
is studied in the sense of Gateaux differentiation.

— In the case when the Fourier coefficients of the initial data f € H*(T") are summable

D 1l < o0,

kez"

we have the solution of the nonlocal diffusion equation, considered as a function of the spatial
variable x, is a regular L>(T") function and Proposition 10 of Section 3.3 provides the temporal
regularity of the solution with respect to the classical derivative.

— Theorems 13 and 14 provide convergence results for the solution of the nonlocal diffusion equation,
without a diffusion source, to the solution of the corresponding classical diffusion equation with
respect to two different limits: as § — 01 or as B — n + 2, respectively.

 In Section 4, we present the regularity of solutions analysis for the nonlocal diffusion equation when a
diffusion source b € H*(T"), for some s € R, is present.

— Theorem 15 and Proposition 17 provide the spatial and temporal regularity results, respectively, in
any spatial dimension. The temporal regularity for a general periodic distribution in H*(T"), with
s € R, is studied in the sense of Gateaux differentiation.

— In the case when the Fourier coefficients of the source term b € H*(T") are summable

Y lbil < oo,

keZ"
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we have the solution of the nonlocal diffusion equation, considered as a function of the spatial
variable x, is a regular L2(T") function and Proposition 20 of Section 4.1 provides the temporal
regularity of the solution with respect to the classical derivative.

— Theorems 22 and 24 provide convergence results for the solution of nonlocal diffusion equation with
a nonzero diffusion source to the solution of the corresponding classical diffusion equation with
respect to two kinds of limits: as § — 0T or as 8 — n + 2, respectively.

 In Section 5, we show that, for the case of integrable kernels, that is, when 8 < n, discontinuities in the
initial data propagate and persist in the solution of the nonlocal diffusion equation. The magnitude of a
jump discontinuity is shown to decay as time increases.

2. Fourier multipliers
In this section, we give a summary of the Fourier multiplier results introduced in [2], which are relevant

to the work presented in Section 3. These multipliers are defined through the Fourier transform by

(3) L3Pu(x) =

m>Pa)e’V ™ dv,
Q1) Ja

where m%# (v) is given by

-1
(4) m5,/3(v) :CS,IB/ COS(V Z) dZ,
Bs(0) lzl#

for B < n+ 2. The following theorem gives a representation of these multipliers using the hypergeometric
function ; F3, which is defined by

(a)r(a2)k i
(b)k(b2)k (b3)i k!

(0,0)
2 F3(ay, az; by, ba, b3, 2) = Z
k=0

where (a)y =a(a+1)(a+2)---(a+k—1) is the rising factorial, also known as the Pochhammer symbol.

Theorem 1. Letn > 1,8 > 0 and B < n + 2. Then the Fourier multipliers can be written as
(5) m*P ) = —|v|2F3(1, 2 +2— B); 2. S +2), S +4 — B); — 1 1Iv]*8?).

The hypergeometric function , F3 on the right-hand side is well defined for any 8 #n+4,n+6, ...,
hence, using (5), the definition of the multipliers is extended to the case when 8 > n 4 2 with 8 #
n+4,n+6, .... Consequently, the operator L%# is extended to these larger values of S using the Fourier
transform. In particular, for the case when 8 = n 42, and since m®"+2(v) is equal to —||v||?, the extended
operator L%# coincides with the classical Laplace operator A. For the case n +2 < 8 < n + 4, the
extended operator L%# corresponds to a nonlocal superdiffusion operator [1].

The representation (5) is used to provide the asymptotic behavior of m®#(v) for large ||v||. This is
given by the following result [2].
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Theorem 2. Letn> 1, >0and B¢ {n+2,n+4,n+6,...}. Then, as ||v| — oo,

2n(n+2—,3) 2 n+2—p F( )1‘*("—0—2) e ‘
- +2( 3 n
(6) m®P (v) ~ 2n—p) (8) a—pr(2) wIP=", if B #n,

2 (210g vl +10g(%) +y —w (%)), i =n,

where y is Euler’s constant and  is the digamma function.

To simplify the notation, throughout this article we will denote m%# simply by m. However, in places
in which there is a need to emphasize the dependence of the multipliers on the parameters é and 3, such
as when we take limits in those parameters, we will revert to the notation m%#,

3. Regularity of solutions for the peridynamic diffusion equation

In this section, we focus on the nonlocal diffusion equation with initial data and no diffusion source
{ut(x, t)=L%Pu(x,1), xeT" t>0,
u(x, 0) = f(x).

In order to study the existence, uniqueness, and regularity of solutions to (7) over the space of periodic
distributions, we consider the identification U (t) = u( -, t), with U : [0, c0) — H*(T").

(7

3.1. Eigenvalues on periodic domains. Let L°# be defined on the periodic torus

n

T”:H[O,ri], r>0,i=1,2,....n
i=1

(27'rk1 2mky 27Tkn>
Vi = s

Define

9 R

rnoor Ty
for any k € 7. Let ¢ (x) = €'**. Then,
(8) Ly (x) = m* P (u) i (x),

which shows that ¢ is an eigenfunction of L%# with eigenvalues m®# (1y). To simplify the notation, we
will often suppress the dependence of the multipliers on 8 and 8 and use m(v) to denote m%# (v).

Consider the nonlocal diffusion equation defined in (1). For s € R, let H*(T") be the space of periodic
distributions 4 on 7" such that

A3 rmy ==Y (L4 [IKIP) 1 < oo
keZ"

3.2. Distributional solutions for nonlocal diffusion equation. Let f € H*(T") and define U, V :
[0, 00) = HI(T"), for some g € R, by

©) Ut)y=)_ fre" ™ e,
k

(10) V()= Z ﬂm(vk)em(”k)tei”k'x.
k
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m(vg)t

Observe that for any ¢+ > 0, U(¢) and V(¢) are well-defined periodic distributions, since e and

m(vr) €™ are both bounded functions in k.

Theorem 3. Letn > 1,8 > 0and B <n+4. Let €| and € be such that 0 < €; < €y < 1. Assume that
f € H(T") for some s € R. Then for any fixedt >0, U (t) € HP(T") and V(t) € H" (T"), where

S, ifB<n, S, if B <n,

4nt . 4nt .
(11) p= S+8—2(1—€1), ifp=n, 1= S+8—2(1—€2), if B=n,
00, if B >n, 00, if B >n,

with H(T") 1= ;e H*(T")
Proof. We observe that
ST AP0 = D" A+ kPP A+ K| fee 0" 2,
O#kez" 0#keZn

Since f € H*(T"), the result that U () € H”(T") follows by showing that
(1 [k ]3Pt
is bounded for k # 0. To see this, we consider three cases. For the case 8 < n, we have p —s =0 and
ezm(vk)t(l + ||k||2)p—s — eZm(vk)t’

which is bounded since m(v;) < 0.
For the case when n < 8 < n+4, let g € R be arbitrary. Then,

(1+ [Ik]?)*

2Ng—s 2m(vp)t __
(1 + ”k” ) e - 62f|m(Vk)|

which vanishes as ||k|| — oo, and hence boundedness follows. Thus, U (t) € H?(T") for all g and therefore,
U(t) e (\HUT™) = HX(T").
qeR
For the case when 8 = n, we have p —s = ((4nt)/8%)(1 — €;). From Theorem 2, we have

4n
m(vy) ~ _8_210g vl

which implies that

m (Vi)

(12) B " o0 tlo
Ivli—oc0 —22 Tog || |

Thus, for any €; > 0, there exists N € N such that

4n 4n
(13) —5—2(1 +ep)log vl <m(vg) < —5—2(1 —e€1) log [Jvell,

for all ||vg|| > N. Therefore,

(14) 2ot < =5 =enlog vl _ ”vk”—%u—a)
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Since there exists A > 0 such that A||k|| < ||vk||, we have

4nt 4nt
25 5 (1—€1) 2\ o5 (1—€1)
_ AR (A 1K)

2\p—s 2m(v)t
(L+ k7P e = ey — 81 (1 _¢))
lvell 2 (Allk]) 52

which is bounded.
Similarly, to show that V(t) € H" (T"), we show that

(14 [[k]D)" S m(vp) e !

is bounded for k£ # 0. For the case when 8 < n, we have r —s = 0 and there exists a constant C > 0 such
that |m(vy)| < C. Thus,
(1 + ”k”z)r—sm(vk)ZeZm(vk)t — m(vk)ze2m(vk)t

is bounded. For the case when n < 8 < n +4, for an arbitrary ¢’ € R, we have

m()2(1+ k|27

2Nq'—s 2 2m(vi)t _
(14 IR (e o0 = 2 2m

9’

which vanishes as ||k|| — oo, and therefore boundedness follows. Thus, V() € H q/(T”) for all ¢’ € R

and hence,
vine ) HY(T") = H®(T™).
q'eR

When 8 =n, we have r —s = ((4nt)/82)(1 —¢€7). From (13),

2 4n ’ 2
(15) Im(v)|” < 8—2(1+61) (log [lvelD~.
In addition, there exists N> € N such that
4nt
(16) log([[vgll) < [lvgll 70,

for all ||vk|| > N,. Moreover, there exists B > 0 such that ||vi|| < BJ/k||. Hence, by using (14), (15), and
(16), we obtain

Ba- 2 M (ey—e1) dnt (1 _¢y)
1+k252(1 62)4—n1+€ B2k252 )—€] | k2 : ,
(L KRS [ () 2200 < (I+11&]1%) (B (1+e€)) (B2[Ik]|*) :M( +1kN1?)

(Al] I # €=

where o

(1 +en)’Bs @

B A A=en '
This shows boundedness and therefore completes the proof. U
Forany J € H*(T"), s € R, define
(17) L3Py = Z m(vg) Jpe' .
kezn

Lemma 4. Let U and V be as defined in (9) and (10) respectively. Then L>PU (t) = V (¢).
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Proof. By (17), we have

LYPU@) =Y mu) U™ =Y " m(u) fre" ™ e =V (1), O
keZ" kez"

Proposition 5. Let N € NU {0} and define

UM @)= fimwoNe" ™™ and VNV (1) =" fim(u)NHem e,
k k

Then %U(N) (1) = VM), forall t € (0, 00). Equivalently,
an A Nl .
U@ =) fum(uTlemtremn,
k

where the differentiation here is in the sense of Gateaux differentiation.

Remark 6. We note that U?(r) = U(¢) and VO (¢) = V(¢). In addition, similar to the argument in
Theorem 3, for any ¢ > 0, both UM (t) and VM (¢) are in H*(T™) when B <n, and both are in H*(T")
whenn < 8 <n—+4.

Proof. Let t > 0. We show that %U N (1) = VIV (1), where the differentiation is in the Gateaux sense,
which is given by
2

=0,

1
lim H UMt +n)—UNM )] = v @)
h—)O h Hq(Tn)

where ¢ = s when 8 <n and q is arbitrary when n < 8 < n + 4. Equivalently, we show that

2
(18) lim > 21+ kI felPm (v [%(e’"@k’h = Dt — m(vk>em<"k”] =0.
kez"
This result follows from passing the limit inside the sum, which we justify next by the dominated
convergence theorem.
When 8 < n, we have g = s and there exists a constant C; > 0 such that |m(vx)| < C;. Moreover,
there exists C, > 0 such that

eMmih _ 1
h

for all k£ and for sufficiently small 4. Combining this with the fact that f € H*(T"), it follows that the
summand in the left-hand side of (18) is uniformly bounded.
For the cases 8 > n and B = n, we first note that the summand in (18) can be written as

19)

'<C2,

"R _ 1 —m(v)h
h

2
(1+ ||k||2>~‘|fk|2< ) 2O g ()N (14 ||k |45,

Since f € H*(T"), it is left to show that

m(ih _ 1 _ h
20) (e a m(vy)

2
) e m ()N (1 + (1K)
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is uniformly bounded. By Taylor’s theorem,

(em(vk)h 11— m(vk)h) - m(vy)?

2D ; 5

for all 4 € (0, 1). Therefore,

(d“mh—l—mwwh

2
p ) " m ()2 (14 K17 < 3 (14 K27 m (>N e 0,

For g = n, we have ¢ —s =0, and since m(v;) — —o0 as | k|| — oo, we find

2N+482m (vt

%m(vk) — 0

as ||k|| — oo, showing that (20) is uniformly bounded.
For B > n, by using Theorem 2, we have that

(L4 [N m (v >N+

1 2\g—s 2N+4 2m(v)t
L+ KT mu) ™" e = 42molr

-0

as ||k|| — oo, showing that (20) is uniformly bounded and therefore completing proof. U
The following theorem summarizes the results in this subsection.

Theorem 7. Let f € H*(T"), B <n+4, and s € R. Then, there exists a unique solution U (t) to the
nonlocal diffusion equation

dU _ s
(22) m_L v,
U= f.

Moreover, U € C*°((0, 00); HP(T™)), where p is as defined in (11).
Remark 8. The time regularity in Theorem 7 is in the sense of Gateaux differentiation.

Proof. The existence follows from Lemma 4 and Proposition 5 by taking N = 0. For the uniqueness, let
U,(t) be another solution of (22). We define W(t) = U (t) — U,(t). Then, W (¢) satisfies

Represent W (¢) by its Fourier series

W@:Xﬁmmww

keZ"

Lemma 4 implies that

. . dwW aw, .
L¥BwW () = mwIWi(t)e'"** and — = — (1) e,
(t) k;Zn (V) Wi (1) - kXZj -
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From (22) and the uniqueness of Fourier coefficients, we have that
dW .
7(0 =m(vp) Wi (1),

for all k. This implies that Wk(t) = Ae" "' where A is a constant. Since Wk (0) =0, we have Wk (t)=0,
for all k, which implies that W (¢) = 0. Therefore, U(t) = U,(t). The spatial regularity follows from
Theorem 3. ]

3.3. Regular functions as solutions of the nonlocal diffusion equation. In this section, we focus on
functions f with absolutely summable Fourier coefficients, that is, ) ;.| fx| < co. The following
theorem gives a class of functions that satisfy this condition; see [18].

Theorem 9. Let s be a nonnegative integer and let 0 < o < 1. Assume that f is a function defined on
T" all of whose partial derivatives of order s lie in the space of Holder continuous functions of order «.
Suppose that s + o > n/2. Then f has an absolutely convergent Fourier series.

Next we provide results on the temporal regularity of the nonlocal diffusion equation.
Proposition 10. Let f € H*(T") such that ) _; _yn |fk| < oo and let B <n+4. Then,
l/l(x, ) € COO((O’ OO)),
forall x e T".

Proof. We use the Leibniz integral rule for the counting measure to differentiate under the summation.
Let g (¢) = fre™V e and consider

Do lekOI= D /e e =Y | frle™ ™ < Y fil.

kez" kez" kez" kez"
Since Zkezn | fx| < oo, we find gi(¢) is summable for any fixed . Moreover,

a8k
dt

is continuous for all k. Now fix r > 0. Then there exists T such that 0 < 7 < r. We define 6, :=
| il Im (ve)| €™ ")T. When B < n, there exists C > 0 such that |m(v)| < C. Thus

— fkm(vk)em(vk)teivk-x

O = | fil Im ()| €™M < C| fal,

showing that 6 is summable. When 8 > n, we have ¢”("W7 — 0 as ||k|| — oo. Thus |m(vy)|e™ W7 < 1
for sufficiently large ||k||. Hence 6y < | fx|, showing that 6; is summable. Moreover

d r ~
86| = | el )€™ < | fl (v |07 = 6.

Therefore, we can differentiate under the summation,

du(x,t) d dgk A mut vy
= Z gr(1) = Z dr Z Sfem(vg)e™ et Ve r

ot keZ" keZ" keZz"
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For higher derivatives, we observe that
d" gi
dtN

— ﬂ |m(vk)|Nem(Vk)teiUk~x'

Define ¢ = | fk| |m(vi)|Ne™ )T Then vy is summable by following similar arguments as above.
Furthermore,

d" g
dtN

= | fillm )N "M < | fil Im) |V e T =y

This implies that u(x, - ) is N-times continuously differentiable and

E)Nu(x, [) dN ngk ) -
T Z 8lt) = Z diN Z Fi lm(u) |V ™! v,
kezn kezn ez

Since N is arbitrary, it follows that u(x, - ) € C*°((0, 00)). [

From Theorem 3 and Proposition 10 we obtain the following regularity result.

Theorem 11. Letn >1,6 >0,€ > 0and B <n+4. Assume that f € H*(T") and its Fourier coefficients
are summable. Then

(1) u e C*®0, 00); H*(T")) for B <n,
(2) u € C®((0, 00); HF#1=(T™) for g =n,
3) u e C*((0, 00); H*(T™)) for B > n.

The following lemma will be used to prove Theorem 13 on the convergence of solutions of the nonlocal
diffusion equation as § — 0.

Lemma 12. Letn < 8 <n+2 and § < 1. Then, there exist c; > 0 and c, > 0 such that, for all v € R",
m®P () < max{—ci[v|’~", —calv|?}.

Proof. From Theorem 2, we have
mbP () ~clvllP,

where

PRIV G i L

) N
G-wr@)

This is equivalent to
m"P(v) B
e I
which implies that there is ¢y > 0 and N > 0 such that for all ||v|| > N
(23) m" (v) < —ci|v]F".
On the other hand, from [1], we have

m1P (v)
m ——— =
lvl—0 —[[v]|A="
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Thus, there exists ¢, > 0 such that, for all ||[v|| < N,
(24) m"P () < —ca|vll*.
Combining (23) and (24), we have
(25) m"P () < max{—ci V|77, —ea v,
for all v € R". Using (25) and the fact that m%#(v) = S%ml’ﬂ(év), which follows from (5), we obtain
> () = Sm"P(6v) = < max(—e1 |3v]P~", —calov )
= max{—c; [v]|P 6P, —cpv]?).
Since § < 1, we have —8#~"*+2 < _1 and hence
m®F (V) < max{—ci v, —eal|v]?). O

Convergence of solutions of the nonlocal diffusion equation (7) to the solution of the corresponding
classical diffusion equation is given next in Theorem 13 and Theorem 14.

Theorem 13. Letn > 1,5 € Rand let f € H*(T"). Suppose u is the solution of the classical diffusion
equation u, = Au with initial condition u|,—o = f. For any 8 > 0, let u>? be the solution of the nonlocal
diffusion equation in (7). Then, fort > 0 and B < n,

lim u®2(-,0)=u(-,1) in H(T"),

§—0t

and, forn < f <n+2,

lim «®P(-,0)=u(-, 1) in H®(T").

§—07t

. . . A N ~ o 2
Proof. The Fourier coefficients satisfy u,‘i’ﬂ = fre™" and f; = fre "I When 8 < n, we observe

A8, ~
NP —uC Oy = Y L+ 1K P — i
0z£keZ"

) A
= D (L4 [klP) [em®r — e 2| 2,
0s£keZn

To pass the limit § — 0% inside the sum, it is sufficient to show that |e" () — eIt | as a function of

k is uniformly bounded. Using (4), it is straightforward to see that m(v) < 0 for v € R". Thus,
MO _ o=l < (om0t o o=’y < 4
Since limg_, o+ m(vg) = —||vk||?, we have

lim u®P(-, ) =u(-,t) in H*(T").

§—0t
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For the case B > n, fix an arbitrary p € R. Then,

~3, ~
1P —uC O = Y A+ KPP lag? — iyl
0£keZn

_ _ 2 A
= D (4K (14 (kPP et — 2| £ 2,
0£keZ™

Since (1 + [|k[%)] fkl2 is summable, to pass the limit inside the above sum, we show that the following
function in k, that is given by

(L4 [[k]2)P 0" — eI,
is uniformly bounded. First, we rewrite the above expression as
_ il 2 _ _ 2
(1+ ”k”Z)P S|em(vk)l — e lIvell t|2 =(1+ ”k”Z)p SeZWt(Vk)l(l — e~ m+lvel )1)2.
Then, we observe that

m>P () + [vell> = =2 F3 (1, s(n+2— B); 2, 3(n +2), 3(n +4 — B); — 111w |*8%) + [k |1?
= vel?(1 —2F5(1, A +2=B); 2, 2(n +2), S(n +4 — B); —2[IvelI*8%)).

Since 2F3(1, "’Lg_ﬂ; 2, ”2i2, "+;_ﬁ; x) <1 for all x <0, we have m®# + ||v¢||> > 0. Therefore,

1— e_(m(vk)+||vk“2)t <1.

Using this fact, we have
(1+ ||k||2)p—S|em(Vk)t _ e—IIVkH2| =(1+ ||k||2)p—se2m(Vk)t(1 _ e—(m(vk)+IIVk||2t)2
< (14 [lk[PP—se>m ot
Lemma 12 implies that there exist ¢; > 0 and ¢, > 0 such that

_ p—n . 2
em(vk)l < max{e crllvell f’ e vl l}-

Consequently,

(1 4+ [|k||?)P~
min{exp(2cy[[v[|#" 1), expea [l [126)}

(1+ [[K[[?)P =m0 <

which is bounded for sufficiently large k for all § € [0, 1]. O

Theorem 14. Letn > 1,5 € Rand let f € H*(T"). Suppose u is the solution of the classical diffusion
equation u; = Au, with u|,—o = f, and for any B < n+4, let u®>? be the solution of the nonlocal diffusion
equation (7). Then fort > 0

lim u®P(-,0)=u(-,1) in H®(T").
B—n+2

Proof. Let g € R be arbitrary. Consider

1Py = D = 3 (L TR 10— eI 2004 12 fol.
keZ"
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We observe that for g near n + 2, m(vy) — —oo as ||k|| — oo. Thus, we can pass the limit in 8 inside
the sum above, since f € H*(T") and the expression

1+ ||k||2)q—S|em(Vk)t _ e—llvk||2t|2

is uniformly bounded. Since limg_, ;12 m(vi) = —||vk |%, the result follows. [

4. Nonlocal diffusion equation with a diffusion source
In this section, we focus on the nonlocal diffusion equation with a diffusion source and zero initial data

u(x, 1) =L%Pu(x,t)+b(x), xeT",t>0,

26
(26) u(x,0)=0.

In order to study the existence, uniqueness, and regularity of solutions to (26) over the space of periodic
distributions, we consider the identification U (¢) = u( -, t), with U : [0, c0) — H*(T").
Let b € H*(T") and define U, V : [0, c0) — HY(T"), for some g € R, by

em(vk)t -1

7) U(t) = byt + S WAL
ng m (Vi)
(28) V(i)=Y " Wihel,
kez"

Observe that for any ¢ >0, U (¢) and V (¢) are well-defined periodic distributions, since (e —1)/m ()
and """ are bounded functions in k.

Theorem 15. Letn > 1,8 > 0, and B < n+4. Assume that €, > 0 and b € H*(T") for some s € R. Then,
forany fixedt >0, U (t) € HP(T") and V(t) € H" (T"), where

s, if B <n,

b / S b 4 .
(29) p:{i—i—ﬂ—n, gg;}z’ and r = s+8i;(1—e1>, if B =n.
00, if B> n.

Proof. We observe that

WU @) = bot oy = Y A+ kI T

O0£keZ" 5
(1+ k)27~ i
> e DA Ik b
0£kezn

Since b € H*(T") and """ is bounded because m (v;) < 0, then the result follows by showing that

(1+ [[k]I%P—
m (ve)]?
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is bounded for k # 0. When 8 < n, we have p —s = 0, and by using Theorem 2, there exist C; > 0 and
r1 > 0 such that |m(v)| > Cy, for all ||k|| > r;. Thus,

(1+||k||2)1’_5<i
iml? T C

When g > n, we have p —s = 8 —n, and by using Theorem 2, there exist C; > 0 and r, > 0 such that
lm(vp)| = Ca k||, for all ||k|| > r,. This implies that

(14 [lklI)P— - i(l + ||k||2)’3‘"
ml> T 3\ kI ’
which is bounded. The proof of V(tr) € H"(T") is similar to the proof of Theorem 3. L]
Lemma 16. Let U and V be as defined in (27) and (28), respectively. Then
V(t)=L>PU @) +b.
Proof. By using (17), for any x € T" and ¢t > 0, we have

LPU@ ) =L boty+ Y mw) Ur(t) ™
0z£keZ"
(em(vk)t —1) .

= Z m(\)k)ka €ivk'x

0£kezn
— Z Bk em(Uk)leikaC _ Z ék eivk~x
0£kezn 0£kezn
=V(@)(x)—b(x). ]
Proposition 17. Let U(t) and V (t) be as defined in (27) and (28), respectively. Then,
au V)
dt '

Moreover, for N > 1,
dNU A N—1 _m(v)t ivi-x
dt—N = E brm(vi) e e )

keZ"

forall t € (0, 00), where the differentiation here is in the sense of Gateaux differentiation.

Proof. We show that
2
=0,

lim H l[U(t +h)=U@®)] =V ()
h—0|l h Ha(T™)

where ¢ = s when 8 <n and q is arbitrary when 8 > n. Equivalently, we show that

em(vk)t

. T ?
30 lim Y (1 + kDb | (@ — 1) —— — "0 | =0,
(30) hl_r)lg)o#kezn( + [I&117)? [br| [h(e )m(vk) e

This result follows from passing the limit inside the sum, which we justify next by the dominated
convergence theorem.
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When S < n, we have ¢ = s and similar to (19), there exists a constant C, > 0 such that
em(vk)h -1
h

'<C2,

for all k and for sufficiently small #. Moreover, e™ )" and 1/m(vy), for k # 0, are bounded. Combining
this with the fact that b € H*(T"), it follows that the summand in the left-hand side of (30) is uniformly
bounded.

For the cases 8 > n and 8 = n, we first note that the summand in (30) can be written as

eZm(vk)t em(Vk) —1—= m(uk)h 2
m(vp)? h |

(1 (1K) b > (1 4 1K [| 27~

Since b € H*(T"), it is left to show that

2mt [ pm) _ ] — h\2
31) (1 + K25 (e m(ve) )

I’l’l(l)k)2 h

is uniformly bounded. Using (21), we have

(14 k|37

e2m ot (em(vk) — 1 —m(v)h
h

2
1 2g— 2 2m(v)t
)2 ) < (LK m(vg) e

When g = n, we have ¢ —s = 0 and since m(v;) — —o0 as ||k|| — oo, we find

2m (v )t

%m(uk)ze —0

as ||k|| — oo showing that (31) is uniformly bounded.
When S > n, by using Theorem 2, we have that
(14 [IkI*)7 m(v)?

1 2Ng—s 2 2m(ve)t _
1 (1 KT m ()2 = == — 0

as ||k|| = oo, showing that (31) is uniformly bounded and therefore completing the proof of the first part.
The second part of this proposition follows from arguments similar to those in the proof of Proposition 5. [

The following regularity theorem summarizes the results of this subsection.
Theorem 18. Let b € H*(T") with s € R. Then there exists a unique solution U to the nonlocal diffusion
equation
dU

— =L%U@) +0b,
(32) dt 0+

U(0)=0.
Moreover, U € C*°((0, 00); HP(T™)), where p is as defined in (29).
Remark 19. The temporal regularity is in the sense of Gateaux differentiation.

Proof. The existence follows from Lemma 16 and Proposition 17. For the uniqueness, the proof is similar
to the proof of uniqueness in Theorem 7. The spatial regularity follows from Theorem 15 and the temporal
regularity follows from Proposition 17. U
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4.1. Regular functions as solutions of nonlocal diffusion equations with diffusion source. In this
section, we focus on functions b with absolutely summable Fourier coefficients, that is, ), ./ |bx| < 0.

Proposition 20. Let b € H*(T") such that ) ; _yn |l;k| <ooandlet B <n+4. Then
M(.x, ) € COO((O’ OO)),
forall x e T".

Proof. We use the Leibniz rule to differentiate under the sum. Let g (¢) = ((") — 1)/ m(vk))l;k elVkx
and consider

Yo lawl= )

0#keZ" O0#keZ"

m(vk)l

m(ve) ‘ Z""m( Ol

0#kezn

em(vk)l -1 A

m(vy)

zvkx

= > bl

0#£keZn

where in the last inequality, we used the fact that m(v;) < 0. Since 1/|m(vy)|, k # 0, is bounded and
Zkezn |br| < oo, we have g () is summable for any fixed . Moreover,

dgk _ hy M0t piveex
dt

is continuous for all k. Now fix # > 0. Then there exists T such that 0 < T < ¢. We define 6; := |l§k|em(”k)’.
Since m(v;) <0, for all k, we have

Or = |br] ™7 < |by ],

showing that 6; is summable. Moreover,

d ~ o
S| =l < Byl = 6.
Therefore,
du(x,t) d , ;
Py :bO+E Z gk(t)—b0—|- Z Zb MW piviex
0£kezn O;ékeZ" kezn

This shows that u is differentiable with respect to 7. For higher derivatives, let N > 2 be an integer. We
observe that
d" g

IN bem(ue)N~em e,
t

Define 6, = |13k| |m(vi)|N~1e™")T When B < n, there exists C > 0 such that |m(v)| < C. Thus,
= byl lm(u) [V e 0T < CN Ty,

showing that 6 is summable. When 8 > n, then ¢”"YT — 0 as | k|| — oo. Thus, |m(v;)|N " lem(WT <1
for sufficiently large ||k||. Hence 6; < |by|, showing that 6; is summable. Furthermore,

= |be| Im )|V =" < b | Im () |V 0T = 6

d" gx
dtN
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This implies that u(x, - ) is N-times continuously differentiable and

Nu(x,t) dV d" gi ~ N—=1_m j

’ _ _ _ - (vt Jivg-x

SN =y 2L s =D =) bilm(ug Ve e,
keZ" keZ" kez"

Since N is arbitrary, it follows that u(x, - ) € C*°((0, 00)). ]
From Theorem 15 and Proposition 20 we obtain the following regularity result.

Theorem 21. Letn > 1,8 > 0 and B < n+ 4. Assume that b € H*(T") and its Fourier coefficients are
summable. Then

(1) u € C>((0, 00); H*(T")), for B <n,
(2) u € C®((0, 00); HTE=(T™)), for B > n.

Convergence of solutions of the nonlocal diffusion equation (26) to the solution of the corresponding
classical diffusion equation is given next in Theorem 22 and Theorem 24.

Theorem 22. Letn > 1and b € H*(T"), with s € R. Suppose u is the solution of the classical diffusion
equation u; = Au + b with initial condition u|;—o = 0. For any § > 0, let u®>? be the solution of the
nonlocal diffusion equation

udP e,y = L3PubB(x, 1)+ b(x), xeT" t>0,

(33) {u‘s’ﬁ(x,O):O, xeT"

Then, fort > 0 and B <n,
lim u®P(-,0)=u(-,1) in H (T,
§—0*
and, forn < B <n+2,
lim «®P(-,0)=u(-, 1) in HP(T™).
§—0t
Proof. The Fourier coefficients satisfy iy = (€' —1) /m (v)) by and ity = (e~ 1" —1) /(= e |12)) b,
for k # 0. For < n, we have

A8, A
NP —uC Oy = Y (LKD) Ty P — i

ortes ()t [l |72 2
m(vg)t __ —IVk —
= Y a+ Pyl D_ “DFe
i m(w) vl

To pass the limit § — O™ inside the sum, it is sufficient to show that

(em(vk)f -1 (e—||Vk||2f -1

m(vg) —[[vell?

is uniformly bounded. Using (4), m(v) <0 for v € R", and thus,

(et 1) (eIl 1) - 1 1

= + .
m(vy) —[[vell? imol el
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Since 1/m(vy), k #0, and 1/(|Jve||?), k # 0, are bounded, we conclude that

(e 1y (eIl

m(vg) —[[vell?

is uniformly bounded. For the case 8 > n, consider

—n A8, ~
NP = D ppnipmy = Y A IEIPP P —

Orkes (vt —[lve [t 2
=ZGHWWHMWﬂWW4L@W2DVF
et m(vy) — vl

Since (1 + ||k||%)* |13k|2 is summable, to pass the limit inside the above sum, we show that the following
function in k that is given by

(MmOt 1) (e~ 1y |?

m(vg) —llviell?

(1+ [lk]|*)P"

is uniformly bounded. Since m(v) <0 for all v € R", we have

2 2
sﬂﬂWW%l 1).

(MmOt _ 1) (e_”‘)k”zl 1) .
im)|  vell?

(14 kB
m(vg) — vl

By using Theorem 2, there exists constant C > 0 such that |m(v)| > C ||k||#~". Furthermore, using the fact
that A ||k < ||vk]l < B ||k|| for positive constants A and B and since 8 —n <2, we have ||v||?> > A?||k|#~".
Therefore,

UMWW%I +1quMW% L 1)2
mol  wl?2) ~ Cllkl|f=n " A2|lk|B—n

_ 1 1\ /14 k2"
max| —, — —_— ,
N C?" A4 k1%

showing uniform boundedness. Whether f <n orn < 8 <n+2, we have lims_, o+ m(vr) = —||vg |12, which
implies that lims_o+ [[u®P (-, 1) —u(-, )|l gsrmy = 0, or limg_ g Ju®P (-, 1) — u (-, 0)|| gstp-n(pny = O,
respectively, and therefore completes the proof. U

A proof of the following lemma on the monotonicity of the multipliers can be found in [2].
Lemma 23. Let B/ < B <n+2. Then, for all v # 0, m*# (v) < m®F (v).

Theorem 24. Letn > 1,s € R and let b € H*(T"). Suppose u is the solution of the classical diffusion
equation u; = Au + b, with u|,—o = 0, and for any B < n + 2, let u®? be the solution of the nonlocal
diffusion equation (33). Then, fort > 0and 0 < € < 2,
lim  w®PC,0)=u(-, 1) in HP2E(Th).
B—(n+2)~
Proof. For 0 < € < 2, define B’ = n+2 — €. For any B > B’, we have from Theorem 15 that
ubf e HsHB=n(T"y ¢ HS>~€(T™). Furthermore, u € H*t?(T") ¢ H**?=¢(T"). Thus the limit makes



REGULARITY OF SOLUTIONS FOR NONLOCAL DIFFUSION EQUATIONS ON PERIODIC DISTRIBUTIONS 99

sense. Consider

2
(L (1K) [1br |1

e Pt 1 =l

m®P (ve) —[lvell>

P o) —uC Dy = Y (L[R2
0£keZn

Since b € H*(T"), in order to pass the limit in £ inside the sum, we show that the expression
m® Bt _ 1 eIk 1% _ 1 2

m®P (ve) —[[vell?

(14 [|k|I*)*€

is uniformly bounded for k # 0 and B € [B’, n +2). Applying Lemma 23,

by m* Pt _ 1 o=l _ 12 by 1 1 \?
A+ k|17 — <1+ k") ( + )
m%B (vy) — vkl ImSB ()| [lvell?
1 1\
<1+ ||k||2>2—f( — + ) :
Im%F ()| (el

From Theorem 2, there exists C > 0 such that |m5*ﬂ/(vk)| > C ||k||*~¢. Furthermore, there exists A > 0
such that ||vi|| > A||k||. Thus,

arm(— o Y Y carmre (e Y
o F ool T = ClE—= T A2k

1 1 2
2\2—
= (D e(cnknz—f * A2||k||2—6) |

which is uniformly bounded. Since limg_, (,42)- m(vr) = — ||k |%, the result follows. [

5. Propagation of discontinuities for the nonlocal diffusion equation

In this section, we study the propagation of discontinuities for the nonlocal diffusion equation in (7).
We emphasize that Theorem 11 implies that the nonlocal diffusion equation satisfies an instantaneous
smoothing effect when the integral kernel is singular with 8 > n and a gradual (over time) smoothing
effect for when B = n. However, for integrable kernels (8 < n), the nonlocal diffusion equation is
nonsmoothing. We investigate this latter case further by studying the propagation of discontinuities. To
this end, given a discontinuous initial data f € L>(T"), we show that for certain conditions on f and 8,
discontinuities persist and propagate. In particular, we show that in one-dimension, if f is piecewise
continuous, then the solution u is piecewise continuous and both f and u share the same locations of
jumps.

To study the propagation of discontinuities, we look for a decomposition of u, the solution of (7), of
the form

ux, 1) =v(x, 1) +g() f(x),

for some function v(x, t), which is continuous in x and satisfies v(x, 0) = 0, and some function g
satisfying g(0) = 1. This would imply that any discontinuity in f will persist to be a discontinuity in u
for all + > 0. We show that the magnitude of a jump discontinuity decays as ¢ increases.
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We observe that v satisfies
v=u— g fx)=L"Pu—g ) f(x)=L*Pv+gt) L f(x) — /(1) f (x).

Since B < n, we observe that

f0)=f @

L% f(x) =P
By Iy —x]P

dy =h(x) —af(x),

where
f) P
(34) h(x)=c5’ﬁ/ = dy = T a0 () ) xS (),
By Iy — x|IP [
and « is a constant given by
1 2 2—

35) a:c&ﬂ/ gy 2P

By Iy — x| §%(n—p)

Therefore,

v =L>Pv+ gt)h(x) —ag(t) f(x) — g ) f (x)
= L>Pv+ g(t)h(x) — f(x)(ag(t) — g'(t)).

Since g(¢) is unknown and we are looking for v(x, ¢), a continuous function in x which is independent
of f(x), weset ag(r) —g'(t) =0. Thus g(r) = e~ *" and v solves

(36) {vt =L%Pv+eh(x), xeT",t>0,

v(x,0) =0,

and therefore,

(37) u(x, 1) =v(x, 1) +e * f(x).
Hence,
(38) ﬁk — ﬁk _e—C\!l](/;c — j}cem(vk)t _e—Cx!l](/;C — ﬂ(l _e—(m(vk)—l—ot)t)em(vk)t.

It remains to find conditions on f and B to guarantee the continuity of v. Towards this end, we make
use of the following lemma, whose proof is similar to the proof of Theorem 3.2 in [2]. We note that the
constant « appears in the asymptotics formula (6).

Lemma 25. Letv € R" and let B < n. Suppose « is as defined in (35). Then

(5)r(=2) p-
dn+2-pTr(5+1)8 2F(ﬁ)2 CEH it < B <,
(n—BT(2)

N

m)+o ~

4n+2— BT (5 +1)8 (B~ g < st

In addition, we make use of the following lemma.
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Lemma 26. Let o be as defined in (35). Then,

Clte_at f n_l ﬂ
i < B <n,
| — o~ MmO+ mt | k||"—P 2
— fB= :
k|2 2

for some positive constants C| and C,.

Proof. When "—;1 < B < n, by using Lemma 25 and the definition of v, there exists C; > 0 such that

lim () + ) k"7 = C1,

k]| —o00
which implies that, for any € > 0,
Ci(l1—¢) Ci(l1+¢)
———— <m(y) ta < ——0—,
1k||™=F [1k||"=F
for sufficiently large ||k||. Thus

Ci(l—e) Ci(+er

K" P (1 — e WPy < ||k||" P (1 — e™ MORFTOy k[P (1 — e W),

and consequently,

Ci(l—e)t < Hklnim Ik|I" P (1 — e OO+ - €1 (1 +€)t.
— 00

Since € is arbitrary, we obtain

lim k| P (1 — e MWy — i,

k]| —o0
and thus,
—at
(1-— e—(m(Vk)—l—oe)t)em(uk)[ - M.
k| =F
The proof is similar for the case 8 < % .

Conditions on f and B to guarantee the continuity of v are given in the following result.

Theorem 27. Let v(x, t) be as in (37) and assume that fk satisfies

ifn_1 < B <n,

; kP4 2

~

n—1
T, YP=—H
(1] e

fore, ¢ > 0. Then, v(x, t) is continuous.
Proof. For % < B < n with fk ~ (1/(|Ik]|#*€)), by using Lemma 26, we have

Cte ™

D= fo(l — e~ mMFOy MmO )
k fk( ) ||k||n+e
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Figure 1. The slow decay of a discontinuity in the nonlocal diffusion equation with 8 < n.

Similarly, for 8 < 5! with fi ~ (1/(|lk]| "= %)), we have

A Cte ™
Ur = | — e~ mta)ry mt .
k= Ji( ) TR
By Proposition 3.3.12 in [18], we conclude that, for r > 0, v(-, 1) is continuous in both cases. 0

The following theorem summarizes the results in this section.

Theorem 28. Let B < n and let u be as given in (37) and assume that

if%(n—l)<,3<n,
ifB<3(n—1,

; 1k|P+e

~

n—1
k]| =+
for some €,¢ > 0. Then, if f is discontinuous at x then u is discontinuous at x.

Corollary 29. If f € L*>(T) is piecewise continuous, then u is piecewise continuous and f and u share
the same locations of jumps. Furthermore, the magnitude of a jump decays as t increases.

This is an immediate consequence of Theorem 28, since, for a piecewise continuous function f € LZ(T),

we have f; ~ %, for some C > 0.

A one-dimensional example for the propagation of a discontinuity in the nonlocal diffusion equation is
described below. Figure 1 shows the results of a numerical solution to the periodic nonlocal diffusion
problem u, = L%y on the interval (—10, 10) with § = 1, B = 1, and initial condition

x+1 if —1<x<0,
ux,0)=9x—-1 if0O<x <1,
0 otherwise.

In Figure 1, function values for x < 0 were plotted separately from those for x > 0 so that the jump is
apparent. The dashed lines indicate the values +e¢~%, showing the theoretical extremes of the jump.
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