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Abstract

Multi-view data can be generated from diverse sources, by different technologies, and in

multiple modalities. In various fields, integrating information from multi-view data has

pushed the frontier of discovery. In this paper, we develop a new approach for multi-view

clustering, which overcomes the limitations of existing methods such as the need of pooling

data across views, restrictions on the clustering algorithms allowed within each view, and

the disregard for complementary information between views. Our new method, called CPS-

merge analysis, merges clusters formed by the Cartesian product of single-view cluster

labels, guided by the principle of maximizing clustering stability as evaluated by CPS analy-

sis. In addition, we introduce measures to quantify the contribution of each view to the for-

mation of any cluster. CPS-merge analysis can be easily incorporated into an existing

clustering pipeline because it only requires single-view cluster labels instead of the original

data. We can thus readily apply advanced single-view clustering algorithms. Importantly,

our approach accounts for both consensus and complementary effects between different

views, whereas existing ensemble methods focus on finding a consensus for multiple

clustering results, implying that results from different views are variations of one clustering

structure. Through experiments on single-cell datasets, we demonstrate that our approach

frequently outperforms other state-of-the-art methods.

Author summary

Advances in single-cell profiling technologies have made it possible to measure various

types of features from a single cell. In this new type of data, known as multimodal single-

cell data, each cell has numerical measurements from multiple views. Analyzing multi-

modal data has opened up new horizons for single-cell genomics, where clustering is a

fundamental analysis for validating existing hypotheses or discovering insights when little

prior knowledge is available. Existing clustering methods either combine data from differ-

ent modalities for simultaneous processing or use integration algorithms to aggregate

clustering results from multiple views. In this paper, we propose a new approach called

CPS-merge analysis, which considers both consensus and complementary effects among

clustering results across views and provides a quantified contribution of each view. The
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approach operates on single-view cluster labels, enabling the use of advanced clustering

algorithms in any individual view. Furthermore, since CPS-merge analysis does not

require pooling the original data, it can be applied to distributed sources or data with shar-

ing concerns. This new approach tackles the problem of multi-view clustering from a

novel combinatorial perspective and has the potential to become a widely used and effec-

tive tool.

Introduction

Multi-view data are becoming increasingly prevalent in real-world applications. For example,

a data entry of a subject can contain image, audio, and text data. Single-cell genomics is a

prominent biomedical area where multi-view data often arise. In the literature on single-cell

data analysis, the term “multimodal” is usually used instead of “multi-view”. In this paper, we

use them interchangeably. To apply our methods developed here, data in different views can

be of different modalities. For instance, RNA expression levels of cells can reveal much of the

cellular heterogeneity, and many advanced techniques and tools have been developed to ana-

lyze such data, e.g., Matrix factorization [1] for revealing low-dimensional structure, CIDER

[2] for clustering. However, other data modalities, e.g., DNA, protein expression, are found

necessary to fully understand the cellular mechanics [3, 4]. RNA expression is often inadequate

to separate immune cells that are molecularly similar but functionally distinct, and many sub-

populations of T cells, indistinguishable by scRNA-seq data, are identifiable in other modalities

[5, 6]. These examples present the following case: each view contains useful information about

an instance, and the information in different views is complementary to some degree. A well-

designed learning algorithm that leverages all the views can greatly improve performance. In

particular, analytical tools for multimodal single-cell data have helped reconstruct gene regula-

tory networks, a significant leap forward for revealing the inner workings of biological systems

[7, 8]. In biomedical multi-view learning, several related but different tasks have been pursued,

e.g., multi-view classification [9], multi-view clustering [10], multi-view deconvolution [11],

and multi-view data integration [12]. Here, we focus on unsupervised multi-view clustering,

used to reveal the underlying cellular structure that can assist downstream analysis.

The authors of [13] proposed to divide multi-view clustering methods for genomics data

into three types: early, intermediate, and late integration. The early integration type contains

methods that concatenate variables across all the views. Many drawbacks, e.g., the sharp

increase in dimension, the neglect of special statistical properties of particular views, have been

noted for such methods [14]. These issues, especially severe for multimodal single-cell data,

are mitigated to some extent by intermediate integration methods. According to a few highly

regarded surveys on multi-view learning [15–18], intermediate integration methods include

well-known multi-view clustering algorithms that belong to four schools: co-training, multiple

kernel clustering, multi-view subspace clustering, and multi-view graph clustering. These

methods combine data from multiple views into one set using weights, transformations, or

simplification based on similarity or dimension reduction. In contrast, the late integration

methods, which mostly belong to ensemble clustering methods, generate aggregated clusters

based on clustering results obtained in every single view. Example methods of late integration

ensemble clustering include [19–22]. Specifically, in [21, 22], dissimilarity measures between

clusters in different results are computed based on the cluster membership of samples in each

result. Dendrogram clustering is then applied to yield an integrated clustering result.
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Ensemble clustering methods are popular for treating multi-view data, for example, the

fast multi-view clustering via ensembles (FastMICE) method [23]. However, not all ensemble

methods strictly adhere to the early, intermediate, and late integration taxonomy. FastMICE

[23] is of particular interest because it employs a hybrid of early and late integration. This

method of mixed early-late integration aims to identify a consensus among view-group clus-

tering results, with each view group containing a random number of views, such as a single

view or multiple views. The clusters in multi-view groups may be established using early

integration.

Late integration methods overcome some disadvantages of early or intermediate integra-

tion [19–22]. Apparently, it is straightforward for such methods to incorporate advanced clus-

tering methods developed for single-view data since they operate on single-view cluster labels

instead of the original data. Consequently, late integration methods are easier to adopt when

data in multiple views cannot be pooled, for instance, due to privacy concerns. On the other

hand, the advantages of late integration come at a cost. Since such methods only examine the

single-view cluster labels for integration, naturally, relevant information in the original data

but not retained in cluster labels cannot be leveraged.

There are two primary principles for multi-view clustering, namely, the consensus principle
[24] and the complementary principle [15]. The consensus principle assumes a shared cluster-

ing structure across all views, so clustering results from different views are considered varia-

tions of a single clustering result. Methods developed under this principle seek a plausible

“average” of the clustering results. In contrast, the complementary principle emphasizes that

clusters may only emerge when data from all views are analyzed together, as is often observed

with single-cell data. Early integration methods naturally follow this principle since original

data from all views are combined. However, incorporating the complementary principle into

late integration methods is challenging because they only have access to cluster labels from dif-

ferent views. In fact, existing late integration clustering methods ignore the complementary

effect between views.

Most methods in the intermediate integration type also ignore the complementary princi-

ple. For instance, multi-view clustering algorithms by co-training [25, 26] make the underlying

assumptions of sufficiency and compatibility: (a) each view is sufficient for clustering on its

own, (b) the target function of both views predict the same labels for co-occurring features

with a high probability, and so on. Under the sufficiency assumption, co-training methods aim

at maximizing agreement between two views (consensus principle). In addition, the compati-

bility assumption restricts clustering algorithms allowed. Specifically, similar algorithms are

used in different views. Not only co-training methods but also other methods in the intermedi-

ate integration type, e.g., multiple kernel clustering [27–29], multi-view subspace clustering

[30–33], and multi-view graph clustering [34–36], are by construction not ready to leverage

state-of-the-art algorithms for clustering single-view data. Furthermore, the multiple kernel

clustering methods do not scale well with the sample size due to the quadratic complexity

(in sample size) for computing the kernel matrix. The multiple subspace clustering methods

assume implicitly that a shared latent subspace across the views determines the clusters (the

spirit of the consensus principle). Multi-view graph clustering methods, aiming at finding a

fusion graph from multiple views, are vulnerable to noisy datasets because it ignores inconsis-

tency between views [37]. A number of algorithms have been designed specifically for multi-

modal single-cell data, e.g., weighted-nearest neighbor (WNN) analysis [5], totalVI [38], and

multi-omics factor analysis v2 (MOFA+) [39]. Based on the comparison in [5], WNN is the

state-of-the-art multimodal single-cell clustering algorithm, but it is a multi-view graph clus-

tering approach with disadvantages discussed previously. Last but not least, the intermediate
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integration methods must centralize the multiple views at the data level and hence are not

applicable to distributed data.

In this paper, we aim at developing a late integration method that accounts for both the

consensus and complementary principles. Although late integration has many benefits for sin-

gle-cell data, existing methods overlook the importance of the complementary principle. We

illustrate the significance of this principle through three simulated scenarios, with detailed

findings provided in Fig A, Fig B, and Fig C in S1 Appendix. Our results demonstrate that the

complementary effect between views plays an essential role for identifying meaningful clusters.

Our novel algorithm called Covering Point Set Merge (CPS-merge) analysis contributes to

the paradigm of late integration by combining the two principles, namely, the consensus and

complementary principles. In CPS-merge analysis, we create Cartesian product clusters based

on single-view clusters. Many product clusters may arise due to randomness and may not rep-

resent meaningful subgroups. To address this issue, we have developed a computationally effi-

cient approach to merge product clusters by considering the uncertainty level of each cluster.

Furthermore, we propose a new measure to quantify the contribution of each view to the iden-

tification of any final cluster. This measure is valuable for understanding cell heterogeneity in

single-cell studies.

Materials and methods

Overview of analysis pipeline

The pipeline of CPS-merge analysis is shown in Fig 1. CPS-merge analysis generates an aggre-

gated multi-view clustering result by the following modules.

• Module 1: Data are perturbed by random noises in each view. A collection of clustering

results (aka, partitions) are obtained from the perturbed data using a view-specific and user-

specified clustering algorithm. The same algorithm is applied to the original data to yield a

clustering result which we call reference partition. Then clusters in different clustering results

are aligned with the reference partition via optimal transport, a step to remove inconsistency

in the cluster labels used in different results.

• Module 2: We form new clusters by the Cartesian product of the clusters from two or more

views, that is, each ordered pair (or k-tuples in general) of cluster labels from the two views

defines one cluster.

• Module 3: To obtain a final clustering result, we merge unstable clusters progressively to

maximize tightness given a specified number of final clusters. The tightness measure is

defined in [40], which quantifies the clustering stability. A comprehensive review of cluster-

ing stability is referred to [41]. If the number of Cartesian product clusters at the start of

merging is large (for example, more than 100), we conduct a first-stage merging by bipartite

clustering. Otherwise, we directly begin the second-stage merging using Covering Point Set

(CPS) analysis, available via the R package OTclust [40].

The output of CPS-merge analysis contains an integrated clustering result and quantities

that measure the contribution of each view to the final clusters. The Cartesian product clusters

from multiple views capture the complementary effects between the views. On the other hand,

these clusters are subject to merging based on cross-view correspondence between clusters.

We establish this correspondence by CPS analysis under the consensus principle. The cross-

view correspondence exists as a mapping between clusters or between the so-called super-clus-

ters, the former by optimal transport and the latter by bipartite clustering.
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The computation complexity of CPS-merge analysis depends on all the modules. In Module

1, the complexity of generating perturbed data is linear in sample size. The complexity of the

single-view clustering algorithms used can vary. However, many clustering algorithms have

linear complexity in sample size. In Module 2 and 3, CPS-merge analysis involves optimal

transport or bipartite clustering applied to the single-view clusters instead of the original data

points. Hence the complexity is quadratic in the number of clusters, which is usually much

smaller than the sample size. In summary, if the single-view clustering algorithms have linear

complexity in sample size, the complexity of CPS-merge analysis will also be linear unless the

number of clusters is in the same order as the sample size.

Although there are usually two views in current multimodal single-cell datasets, our

method extends straightforwardly to more than two views. In such a case, our method can be

applied either directly to the Cartesian product clusters across all the views or progressively to

two views at a time, e.g., aggregating the first two views into one and then taking the third view

as the other view, so on so forth. Without loss of generality, we assume there are two views in

our discussion. Next, we elaborate on each module in CPS-merge analysis.

Module 1: Generate coherent cluster labels within each view

Because our algorithm aims at maximizing the overall tightness of a clustering result, we need

to generate random variations of a clustering result within each view to evaluate tightness. The

tightness measure is defined for both individual clusters and the entire partition to quantify

the level of uncertainty. We first explain in the steps listed below how to obtain random varia-

tions of a clustering result. Details for the definition and computation of the tightness of a clus-

ter are provided at the end of this Section.

1. Apply clustering to the original single-view data and call the result reference partition.

2. Perturb the original single-view data by adding random noise to each point. The noise is

sampled from a Gaussian distribution with mean zero and variances adjusted with the data.

We usually set the variance to be 10% of the average within-cluster variance. Repeat the per-

turbation step to obtain multiple perturbed versions of the whole dataset.

3. Obtain a collection of partitions by applying a user-chosen clustering algorithm to every

perturbed dataset.

4. Align clusters in those partitions with the clusters in the reference partition.

Note that our algorithm works with any baseline clustering algorithm chosen for a single

view. Thus users can easily incorporate state-of-the-art clustering algorithms. Because of

the unsupervised nature of clustering, Step (4) to align clusters (the reference partition as a

benchmark) is necessary since cluster labels used in different partitions are not automatically

Fig 1. The pipeline of CPS-merge analysis. When there are more than two views, users can either directly treat the Cartesian product clusters with

higher orders or conduct step-wise merging such that two views are treated at each step. Current mutlimodal single-cell datasets only contain two views.

https://doi.org/10.1371/journal.pcbi.1011044.g001
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consistent. For instance, even if two partitions are identical, the cluster labels may be per-

muted. In practice, precise correspondence between clusters in two partitions rarely exists. We

use a cluster alignment algorithm based on optimal transport [42]. Next, we explain how clus-

tering results are aligned within each view. More details can be found in [42].

Suppose there are two partitions denoted by PðpÞ
, p = 1, 2, each contains kp clusters

CðpÞ

1 ; . . . ;CðpÞ

kp
. The alignment between clusters is captured by a so-called cluster aligning matrix:

W ¼ ðwi;jÞi¼1;...;k1;j¼1;...;k2
; wi;j 2 ½0; 1� :

The entry wi,j is a coupling/matching weight between Cð1Þ

i and Cð2Þ

j , a higher value indicating

a stronger match. For example, if Pð2Þ contains the same clusters in Pð1Þ but with permuted

labels, W will encode the permutation by having wi,j > 0 if the ith cluster in Pð1Þ is the jth clus-

ter in Pð2Þ and wi,j0 = 0 if j0 6¼ j. In general, W can specify partial matching between clusters in

order to handle more complicated situations, e.g., k1 6¼ k2, one cluster splitting into multiple

clusters, etc. W is solved by optimal transport (OT) with the objective of minimizing the

weighted sum of distances between every pair of clusters across the two partitions. OT ensures

that if the two clustering results are permuted versions of each other, the permutation will be

identified through the solution for W.

Suppose each cluster CðpÞ

i is assigned with a significance weight qðpÞ

i , with
Pkp

i¼1 q
ðpÞ

i ¼ 1. Usu-

ally, qðpÞ

i is the proportion of data points in CðpÞ

i . Let d(�, �) be the distance between two clusters.

We solve W by OT:

D ðPð1Þ
;Pð2Þ

Þ ≜ min
W

Xk1

i¼1

Xk2

j¼1
wi;jd ðCð1Þ

i ;Cð2Þ

j Þ

s:t:
Pk2

j¼1
wi;j ¼ qð1Þ

i ; 8i ¼ 1; . . . ; k1

Pk1

i¼1
wi;j ¼ qð2Þ

j ; 8j ¼ 1; . . . ; k2

wi;j ⩾ 0; 8i ¼ 1; . . . ; k1; j ¼ 1; . . . ; k2:

ð1Þ

The Jaccard distance is adopted as the distance between clusters, i.e.,

dðCð1Þ

i ;Cð2Þ

j Þ ¼ 1 � jCð1Þ

i \ Cð2Þ

j j=jCð1Þ

i [ Cð2Þ

j j ;

where |�| means the cardinality of a set, “\” the intersection of sets, and “[” the union of sets.

The first two constraints on wi,j’s ensure that the total influence of any cluster is determined by

its proportion. The objective is to minimize the weighted sum of the matching costs between

clusters. The minimized objective function DðPð1Þ;Pð2ÞÞ is defined as the distance between the

two partitions, often called the Wasserstein distance. Consider Pð2Þ
as the reference partition.

After obtaining W, we normalize its ith row and define gi;j ¼ wi;j=q
ð1Þ

i (qð1Þ

i is the proportion

of data points in Cð1Þ

i ), which indicates the proportion of cluster Cð1Þ

i mapped to cluster Cð2Þ

j .

Denote this cluster mapping matrix as Gð1Þ ¼ ðg
ð1Þ

i;j Þi¼1;...;k1;j¼1;...;k2
.

For the general case of aligning with more than two partitions, suppose we have a reference

partition PðrÞ that contains κ clusters: CðrÞ
1 ; . . . ;CðrÞ

k
. Let the proportion of points in CðrÞ

j be qðrÞ
j ,

j = 1, . . ., κ. Similarly, suppose we have m other partitions to align with the reference, and each

partition PðpÞ
contains kp clusters CðpÞ

1 ; . . . ;CðpÞ

kp
. Let the proportion of points in cluster CðpÞ

i

be qðpÞ

i , i = 1, . . ., kp, p = 1, . . ., m. We align each PðpÞ
with PðrÞ

. Let the cluster aligning

matrix from PðpÞ
to PðrÞ

be WðpÞ ¼ ðwðpÞ

i;j Þi¼1;...;kp ;j¼1;...;k
and the cluster mapping matrix be
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GðpÞ ¼ ðg
ðpÞ

i;j Þi¼1;...;kp ;j¼1;...;k
. Denote the cluster-posterior matrix of partition PðpÞ

by

PðpÞ ¼ ðprðpÞ

h;i Þh¼1;...;n;i¼1;...;kp
, where prðpÞ

h;i is the posterior probability of the hth data point belong-

ing to cluster CðpÞ

i . We then define the aligned cluster-posterior matrix based on PðpÞ
but “trans-

lated” to the cluster labels of the reference PðrÞ
by

Pðp!rÞ ¼ ðprðp!rÞ
h;j Þh¼1;...;n;j¼1;...;k

¼ PðpÞGðpÞ :

Each row of the cluster-posterior matrix P(p!r) is regarded as the posterior probabilities of

the corresponding point belonging to each cluster in the reference clustering result. We then

use the maximum a posteriori (MAP) rule to assign the aligned cluster labels (i.e., the cluster

labels used in the reference partition) to the sample points in partition PðpÞ
; p ¼ 1; . . . ;m. In

this way, we obtain a collection of clustering results with consistent cluster labels under each

view. Next, three key definitions are provided below.

Covering Point Set (CPS). Suppose we have already obtained the cluster mapping matrix

Γ(p). Similarly, we normalize W(p) column-wise to obtain

~GðpÞ ¼ ð~g
ðpÞ

i;j Þi¼1;...;k1;j¼1;...;k
; ~g i;j ¼ wi;j=q

ðrÞ
j ;

where qðrÞ
j is the proportion of data points in CðrÞ

j . Based on Γ(p) and ~GðpÞ, four types of topologi-

cal relationships between clusters are defined: “match”, “split”, “merge”, and “lack of corre-

spondence”. For example, CðpÞ

i and CðrÞ
j match if γi,j ⩾ z and ~g i;j ⩾ z, where z is a relaxation

threshold set between 0.5 and 1. If the “match” relationship holds between CðpÞ

i and CðrÞ
j , they

are considered to be the same cluster but possibly labeled differently in PðpÞ and PðrÞ. Detailed

definitions about all topological relationships are referred to [42].

Suppose for the kth cluster in the reference clustering result, there is a collection of matched

clusters Si, i = 1, . . ., m, each is a subset of the whole dataset {x1, . . ., xn}. Then the covering

point set (CPS) Sα of cluster k at a coverage level α is defined as the smallest set such that at

least 100(1 − α)% of Si’s are subsets of Sα, that is, to solve the optimization problem: minS|S|,

s.t.
Pm

i¼1
1ðSi�SÞ ⩾ mð1 � aÞ (we use the Least Impact First Targeted-removal algorithm devel-

oped in [42]). In summary, CPS, a counterpart of the confidence interval of a numerical esti-

mation, is a set of possible points for one cluster at a certain level of coverage.

Tightness. Suppose there are m other partitions in total, and the proportion of partitions

that have a cluster “matched” with the kth cluster in the reference partition is pk (e.g., some

partitions can have “lack of correspondence” or other relationships for reference cluster k).

For those partitions that contain a matched cluster to cluster k, let the corresponding cluster k
be sets Si, i = 1, . . ., mk, mk ⩽m, pk = mk/m. At the coverage level α, let Sα be CPS of cluster k.

The tightness of cluster k is defined as

RtðkÞ ¼ pk �

Pmk
i¼1

jSij=jSaj

mk
:

Also, the overall tightness of the whole partition, denoted by �Rt, is defined as the average over

the tightness values of individual clusters. A larger value of tightness indicates more stable

clustering.

Cluster Alignment and Points based (CAP) separability. We first compute the CPS of

each cluster in the reference partition, denoted by SaðC
ðrÞ
j Þ. Large overlap between the CPSs of

different clusters indicates poor separation between them. The Cluster Alignment and Points
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based (CAP) separability between two clusters CðrÞ
j and CðrÞ

j0 is defined as

dcap CðrÞ
j ;CðrÞ

j0

� �
¼ d Sa CðrÞ

j

� �
; Sa CðrÞ

j0

� �� �
;

where d(�, �) can be any distance between two sets of points. We use the Jaccard distance which

lies in [0, 1].

Module 2: Form Cartesian product clusters

Suppose a collection of aligned clustering results have been obtained in each of the two views.

Let the number of clusters in the first view be κA and that in the second view be κB. Denote the

reference partition for the first view by A and the collection of m clustering results (obtained

from the perturbed data) byA ¼ fAð1Þ
; . . . ;AðmÞ

g, where AðpÞ
is the pth clustering result and

p = 1, . . ., m. For brevity of notation, we record each clustering result by the cluster labels for

the n sample points: AðpÞ
¼ ðaðpÞ

1 ; . . . ; aðpÞ
n Þ, where aðpÞ

h 2 f1; . . . ; kAg, h = 1, . . ., n. Similarly,

for the second view, let the reference partition be B and the collection of clustering results

beB ¼ fBð1Þ
; . . . ;BðmÞ

g, where BðpÞ
¼ ðbðpÞ

1 ; . . . ; bðpÞ
n Þ, p = 1, . . ., m, and bðpÞ

h 2 f1; . . . ; kBg,

h = 1, . . ., n. After cluster alignment with the reference partition A (or B), described in the pre-

vious subsection, the cluster labels in any AðpÞ
(or BðpÞ

) are consistent with those used in A (or

B). In the subsequent discussion, we assume this is always the case.

Consider a random pair of clustering results in the two views: AðpaÞ
and BðpbÞ

. For every

point h, the pair of cluster labels ðaðpaÞ

h ; bðpbÞ

h Þ determines the Cartesian product cluster which

the point belongs to. The total number of Cartesian product clusters is κA × κB. We denote the

Cartesian product clustering result of these two clustering results by

ðAðpaÞ
;BðpbÞ

Þ ¼ ððaðpaÞ

1 ; bðpbÞ

1 Þ; . . . ; ðaðpaÞ

n ; bðpbÞ

n ÞÞ :

We simply call ðAðpaÞ
;BðpbÞ

Þ a product partition and ðaðpaÞ

k ; bðpbÞ

k Þ a product label. Let the Carte-

sian product of the two setsA andB be

A �B ¼ fðAðpaÞ
;BðpbÞ

Þ; pa ¼ 1; . . . ;m; pb ¼ 1; . . . ;mg :

To reduce computation, our algorithm uses a subset ofA �B to carry out the analysis:

C ¼ fðAðpÞ
;BðpÞ

Þ; p ¼ 1; . . . ;mg. Since clustering results in different views are obtained inde-

pendently, C is formed essentially by randomly pairing up the partitions across the two views

and keeping m pairs.

Module 3: Integration across multiple views

Optimization objective of multi-view clustering. If we assume the clustering results in

the two views are fully complementary, the product clusters induced by ðA;BÞ (the product

partition of reference clustering results in the two views) can be taken as the final clusters, an

example shown in Fig 2c. In practice, however, the views are usually not fully complementary.

Moreover, the number of clusters in the product partition is often too large (roughly in the

exponential order of the number of views). Due to randomness in data and nuances in the

clustering algorithms, an observed product cluster, e.g., all the points with product label (1, 2),

may not truly exist. We thus propose to merge the product clusters such that the overall

tightness of the final clusters is maximized. The perturbed versions of ðA;BÞ, specifically,

ðAðpÞ
;BðpÞ

Þ, provide the basis for computing the tightness of product clusters. Let the product

clusters generated by ðA;BÞ be denoted by labels (ξA, ξB), ξA 2 {1, . . ., κA}, ξB 2 {1, . . ., κB}.

PLOS COMPUTATIONAL BIOLOGY Multi-view clustering by CPS-merge analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011044 April 17, 2023 8 / 21

https://doi.org/10.1371/journal.pcbi.1011044


Suppose the desired number of clusters is κ1. How the product clusters are merged into κ1

clusters is given by a many-to-one mapping from a product label to a label in the set {1, 2, . . .,

κ1}. Denote the mapping from the product clusters to the final clusters by f, where f(ξA, ξB) 2

{1, . . ., κ1}. Denote the tightness of the kth cluster by Rt(k), k = 1, . . ., κ1. The kth cluster is

formed by the points in all the product clusters (ξA, ξB) such that f(ξA, ξB) = k. Then the optimi-

zation objective is:

arg max
f

Xk1

k¼1

RtðkÞ : ð2Þ

The above optimization problem is intrinsically combinatorial. We thus propose a greedy

algorithm that exploits a two-stage merging procedure. The first stage is optional and aims

at improving computational efficiency. If the number of clusters in the product partition is

small to begin with (e.g., fewer than 100), we can skip the first-stage merging and thus bipartite

clustering.

First-stage: Generating and aligning super-clusters across views. In the first-stage

merging, we use bipartite clustering to generate the so-called super-clusters. Correspondence

between clusters in different views can happen at a structural level higher than the original

clusters. For instance, a cluster may split into several clusters in another view, or vice versa,

multiple clusters may merge into one. Bipartite clustering aims at finding groups of clusters

(aka, super-clusters) for which cross-view correspondence is sharp. With details to be

explained shortly, super-clusters help decrease the number of Cartesian product clusters that

proceed to the second-stage merging, thus improving computational efficiency. For large

product clusters containing high proportions of data points, we determine how they aggregate

mostly in the second-stage merging, while smaller product clusters are more likely to be com-

bined based on super-clusters. Note that we do not replace the original clusters by super-

Fig 2. First-stage merging of Cartesian product clusters based on bipartite clustering. (a) Bipartite clustering yields super-clusters, each containing

multiple clusters in every view. A super-cluster is marked by a given color, and the same super color is shown by different shapes in the two views. Any

super-cluster of interaction effects will be treated as a merged product cluster in later analysis. (b) The off-diagonal white blocks correspond to

unmatched product (UP) super-clusters. The diagonal colored blocks correspond to matched product (MP) super-clusters. (c) A simple case that the

true clusters are the product clusters from two views. The information from the two views is fully complementary.

https://doi.org/10.1371/journal.pcbi.1011044.g002
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clusters. The restrictive usage of super-clusters reflects a careful balance of applying the con-

sensus and complementary principles.

We build a bipartite graph [43, 44] for the clusters in the reference partitions A and B
under the two views respectively. Let the nodes in set U correspond one-to-one with the clus-

ters in A and the nodes in V correspond with those in B. Edges exist only between a node in U
and a node in V. Recall that there are κA clusters �1; . . . ; �kA

in the first view, and κB clusters

c1; . . . ; ckB
in the second view. A cluster aligning matrix W (a κA × κB matrix) is computed to

indicate the extent of matching between any ϕi, i = 1, . . ., κA, and ψj, j = 1, . . ., κB. We compute

W using OT in the same way as that described in Section “Module 1: Generate coherent cluster

labels within each view”. For each ðAðpÞ
;BðpÞ

Þ 2 C , let the cluster aligning matrix between AðpÞ

and BðpÞ
be W(p), p = 1, . . ., m. We define the average of W(p)’s, W ¼

Xm

p¼1

WðpÞ=m, as the match-

ing weight matrix. The matching weight matrix W ¼ ð�wi;jÞi¼1;...;kA ;j¼1;...;kB
, and �wi;j is taken as the

edge weight between nodes ϕi and ψj, a larger �wi;j indicating a stronger connection between ϕi
and ψj. Then we use the Leiden algorithm [45, 46] for bipartite clustering. Each cluster gener-

ated in this way is what we call a super-cluster, containing in general multiple clusters in both

views.

Next, we illustrate the first-stage merging with an example shown in Fig 2. Suppose 4

super-clusters S1, . . ., S4 are formed, each containing multiple clusters in every view. For

instance, suppose ϕ1, ϕ2, ψ1, and ψ2 belong to S1 (two from each view). Product clusters formed

by two cluster labels belonging to the same super-cluster—those shown in the colored diagonal

blocks in Fig 2b—are kept for further analysis in the second-stage merging, e.g., (ϕ1, ψ1), (ϕ1,

ψ2). A product cluster will lie in an off-diagonal white block if the two cluster labels belong to

different super-clusters, e.g., (ϕ1, ψ3), (ϕ2, ψ3). We call (Si, Sj), i 6¼ j, an unmatched product (UP)
super-cluster, and (Si, Si) a matched product (MP) super-cluster.

In a nutshell, we will analyze the product clusters belonging to a UP super-cluster at the

granularity of the super-cluster but those belonging to an MP super-cluster at the granularity

of the original product clusters. Specifically, we merge all the product clusters in any UP

super-cluster—they become a single cluster in the second-stage. Because of the nature of bipar-

tite clustering, small product clusters tend to locate in UP super-clusters. For example, in Fig

2a, only the following clusters proceed to the second-stage: all (Si, Sj), i 6¼ j, and all (ϕm, ψn)
with ϕm and ψn belonging to the same Si. Since the product clusters (ϕi, ψj)’s capture the inter-

action effects between the two views, in our approach, the interaction effect between clusters

in the same super-cluster will be examined at a more refined granularity.

In practice, it is possible that some product clusters are empty. Obviously, empty clusters

will not feature in later analysis. Furthermore, we often observe clusters that hardly arise,

which we call “rare clusters”. In particular, suppose there are m clustering results. If a product

cluster label is not taken by sample points at least m times across the m results (less than one

time per result on average), we say it is “rare”. Points assigned with a rare cluster label are re-

labeled by a majority vote. For any such point, we find its most frequent cluster label among

the m results and assign this label to this point in all the results.

Second-stage: Separability-based merging to maximize tightness. Recall that the refer-

ence partitions in the two views are A and B, containing κA and κB clusters respectively. In

addition, the two views have multiple aligned clustering results, randomly paired up to pro-

duce m Cartesian product clustering results: C ¼ fðAðpÞ
;BðpÞ

Þ; p ¼ 1; . . . ;mg. For the conve-

nience of the following discussion, suppose the first-stage merging has generated κ0 clusters

assigned with labels 1, . . ., κ0. Let the mapping from (ξA, ξB), ξA 2 {1, . . ., κA}, ξB 2 {1, . . ., κB}
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to those κ0 labels be g0(ξA, ξB) 2 {1, . . ., κ0}. Note that if the first-stage merging is skipped, g0 is

just the one-to-one identical mapping (otherwise, a many-to-one mapping). Denote the clus-

tering result induced by g0 on ðA;BÞ by C, which contains clusters C1; . . . ;Ck0
. We call C the

combined reference partition. To generate the combined partition based on any ðAðpÞ
;BðpÞ

Þ,

p = 1, . . ., m, we apply OT to align the Cartesian product clusters of ðAðpÞ
;BðpÞ

Þ with those of C,

in the same way as described in Section “Module 1: Generate coherent cluster labels within

each view”. Denote the pth combined partition obtained from ðAðpÞ
;BðpÞ

Þ by CðpÞ
, and let

eC ¼ fCðpÞ
; p ¼ 1; . . . ;mg.

To solve optimization problem Eq (2), clusters in C are merged based on a quantity called

Cluster Alignment and Points based (CAP) separability [42]. A higher separability corresponds

to a lower similarity. These tools are collectively called CPS (Covering Point Set) analysis. To

conduct CPS analysis, we only need cluster membership information for a collection of clus-

tering results. In our case, the reference partition is C and the collection of clustering results

obtained from perturbed datasets is eC . Since it is computationally infeasible to examine all the

possible ways of merging the clusters into κ1 final clusters, we propose to recursively merge

clusters, two at a time, in the same manner as creating a dendrogram.

CPS merging. We use the pair-wise separability measure between clusters, provided by

CPS analysis, as the cluster distance. We also compute the tightness of every cluster, a higher

value of tightness indicating higher stability (or lower uncertainty). Suppose Ci is the most

unstable cluster. Ci usually yields low separability from many other clusters, but the lowest

pair-wise separability does not necessarily arise between Ci and some other cluster. To increase

the overall tightness, we first merge Ci with a cluster closest to it, that is, in terms of low separa-

bility. After every merge, the per-cluster tightness and pair-wise separability measures are

updated. The merging continues recursively, producing a dendrogram. In our experiment, we

stop the process when the required number of clusters (usually the average tightness exceeds

0.8) is reached. The computation required is more intense than the usual way of generating

dendrograms using a linkage scheme because we cannot update the separability or tightness

recursively based on a linkage function. These quantities are computed from scratch after

every merge. We thus have designed an accelerated version of the merging process, which is

presented below.

Accelerated CPS merging. At each step of merging, we set a threshold for the tightness of

clusters. Any cluster with tightness below the threshold will be merged with its closest cluster.

This rule essentially allows multiple merges to occur in one round without updating separabil-

ity or tightness. After all such clusters are processed, we update tightness and separability mea-

sures. If some of the updated tightness measures still fall below the same threshold, we repeat

the procedure, sometimes going through several rounds under a fixed threshold. If the tight-

ness of every cluster is above the current threshold, merging can also continue if we gradually

increase the threshold. In practice, the thresholds are usually set as 0.35, 0.5, 0.65, 0.8. We can

apply other stopping criteria, for instance, each cluster reaching a minimum size, or a certain

number of clusters having been reached (excluding singletons or tiny clusters). In most cases,

the result converges at threshold 0.8 or meets another stopping criterion, e.g., reaching a

required total number of clusters. If computational efficiency is a concern, this accelerated

merging scheme is a close substitute to the first scheme. Users also have the option to combine

the two schemes, for instance, applying the second scheme first to reduce the number of clus-

ters to a certain level and then switching to the first scheme.

After the second-stage merging, we obtain a many-to-one mapping of cluster labels from

{1, . . ., κ0} to {1, . . ., κ1}, κ1 ⩽ κ0, which is denoted by g1. Applying g1 to C, the combined refer-

ence partition, we obtain the final clustering result, denoted by F that contains κ1 clusters
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F1; . . . ; Fk1
. In summary, the composite mapping f = g1 � g0 is a solution to the optimization

problem Eq (2). Next, we present an approach to quantify the contribution of each view to the

formation of any cluster. Understanding the role of each view in the generation of clusters is

helpful in single-cell studies.

Evaluating cluster-wise contribution of each view

Clusters in the final result F usually do not correspond well with clusters in any single view,

e.g., A or B. We propose two methods to assess the contribution of each view to the existence

of any cluster in F . The two methods are suitable for different scenarios.

In the first scenario, we assume that final clusters Fk, k = 1, . . ., κ1, have been approximately

captured in a single view, which generally varies with the cluster. We treat F as the reference

partition and the raw partitions f ~Að1Þ; . . . ; ~AðmÞg (or f~Bð1Þ; . . . ; ~BðmÞg) that have not been

aligned with the single-view reference partition from the first view (or the second) as perturbed

clustering results of F . We can then carry out CPS analysis and compute the tightness for each

cluster Fk. Let the tightness for Fk computed from the results in the lth view be Rt(k, l), l = 1, 2.

Extension to more than two views is straightforward. Then we define the contribution of the

lth view to cluster Fk by

zk;l ¼
Rtðk; lÞ

P
l0Rtðk; l0Þ

:

If ∑l0 Rt(k, l0) = 0, let zk,l = 0.5. We call zk,l tightness-based contribution. The rationale for the

definition of zk,l is that if Fk is stable in one view but not in another, the former view plays the

dominant role in the rise of Fk. Apparently, the defined cluster-wise contribution of each view

is between 0 and 1, a higher score indicating a higher contribution.

The definition of contribution presented above is based on the notion that the degree of

uncertainty reflects the level of significance or contribution. This same concept has been uti-

lized by existing methods that use a local weighting strategy, as seen in [47, 48]. However,

these methods presuppose that different partitions are independently generated. In our sce-

nario, since different partitions within a single view are obtained by the same method on

slightly perturbed data, the independence assumption is not appropriate, making those meth-

ods unsuitable for direct application.

We note, however, zk,l is not a good choice to quantify the contribution of each view when

Rt(k, l)’s across all the views are low. In such a case, no cluster in any single view corresponds

reasonably well with Fk. For instance, cluster Fk is identified due to interaction effects. It is thus

questionable to compare the contribution of views based on stability or tightness measures.

We will use a different measure described below.

CPS analysis applied to the reference partition F and the partitions from the lth view, e.g.,
f ~Að1Þ; . . . ; ~AðmÞg from the first view, provide us the cluster aligning matrix WðpÞ

l , p = 1, . . ., m,

l = 1, 2. WðpÞ

l is a matrix of size κp,l × κ1, where κp,l is the number of clusters in the pth partition

from the lth view. Then we calculate the cluster aligning vector VðpÞ

l ¼ 1T
kp;l
WðpÞ

l =kp;l and the

matching weight vector �Vl ¼
Xm

p¼1

V ðpÞ

l =m. Let the the kth element in �Vl be vk,l, k = 1, . . ., κ1,

which is the average matching weight of cluster Fk under the lth view. Similar to zk,l, we define

the contribution of the lth view to Fk by

Zk;l ¼
vk;lP
l0vk;l0

:
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If ∑l0 vk,l0 = 0, let ηk,l = 0.5. We call ηk,l matching-weight-based contribution. The rationale for

the definition of ηk,l is that if Fk receives a larger weight in one view compared to another, we

assume that the former view is more important for the existence of Fk. In our experiments,

we use ηk,l instead of zk,l if more than 40% of the clusters in the reference partition have tight-

ness 0.

Results

In this section, we present the experimental results of CPS-merge analysis and its accelerated

version (referred to as A-CPS-merge) on three multimodal scRNA-seq datasets. Table 1 sum-

marizes basic information about the three datasets. Details on how the datasets are pre-pro-

cessed are provided in their respective sub-sections. We also conducted extensive simulation

studies with results provided in Table A and Table B in S1 Appendix.

We compare results with the following popular methods for multi-view clustering.

1. Co-training clustering (Co-train): The EM algorithm for mixture of categorical data is used

(implemented in R package mvc [49]).

2. Multiple kernel clustering (MKC): This method is based on localized multiple kernel k-

means (implemented in R package klic [50]).

3. Multiple subspace clustering (MSC): Two-level weighted subspace clustering (implemented

in R package wskm [51]) is used.

4. Ensemble clustering: This method is based on a hybrid bipartite graph formulation [52]

(implemented in GitHub repository ClusterEnsembles [53]). We input the entire col-

lection of clustering results used in CPS-merge analysis to the ensemble algorithm so that

the comparison with CPS-merge is fair. We also performed ensemble clustering using the

default input of the software and obtained similar results.

5. Deep co-clustering (DeepCC): DeepCC [54] utilizes a deep autoencoder to learn a

low-dimensional representation of the multi-view data, and employs a variant of

Gaussian Mixture Model (GMM) for clustering (implemented in GitHub repository

Deep-Co-Clustering [55]).

6. Weighted-nearest neighbor (WNN): WNN is developed for multimodal single-cell clustering

[5] (implemented in R package Seurat [56]). Briefly speaking, WNN generates weights

for every modality based on within-modality prediction and cross-modality prediction of

each cell and uses them to create a k-nearest neighbor (KNN) graph, based on which clus-

tering is performed.

7. Concatenation cluster analysis (CCA): We concatenated features from all the views. Then

function FindClusters in the R package Seurat is applied to cluster the concatenated

feature vectors.

We measure clustering performance by three metrics: the adjusted Rand index (ARI) [57],

normalized mutual information (NMI) [58] and F-measure [59]. NMI measures the amount

Table 1. Summary of the three multi-view datasets after pre-processing.

Dataset # Instances Dimensions (View 1, View 2) # Clusters

HBMC 30672 (50, 24) 27

PBMC1 10032 (50, 49) 14

PBMC2 161764 (50, 50) 31

https://doi.org/10.1371/journal.pcbi.1011044.t001
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of information shared by two clustering results. F-measure is the harmonic mean of precision

and recall, assuming the ground truth is provided. All three metrics lie in [0, 1], with 1 indicat-

ing identical clustering. We use UMAP [60] to visualize the clustering result in each view.

The hyperparameters in our method include α (CPS analysis coverage level), δ2 (the vari-

ance of Gaussian noise to generate perturbed data), κ1 (the number of final clusters), and m
(the number of perturbed clustering results). The effects of α and δ2 have been studied in

[40]. We suggest α = 0.1 and δ2 be set as 10% of the average within-cluster variance of the

original data. We have also conducted a sensitivity analysis to study the performance under

different values of κ1 and m. Results show that the performance of CPS-merge is stable when

κ1 deviates from the true value. There is a general trend of better performance at a larger m
until m reaches a certain level. Detailed results with discussion are provided in Table C and

Fig D in S1 Appendix.

Multimodal single-cell data

We now analyze three gold-standard multimodal single-cell datasets to demonstrate the com-

petitive performance of CPS-merge analysis and the quantification of the cluster-wise contri-

bution of each view. In Table 2, the performance of CPS-merge on the three datasets is

compared with six other algorithms listed previously. For the competing methods, default

parameter settings in the algorithms are used. The algorithm MKC becomes computationally

infeasible for HBMC and PBMC2 because of the quadratic (in sample size) complexity of com-

puting the kernel matrix. We thus cannot report its performance. For single-view clustering

(View 1, View 2 in Table 2), data are pre-processed to reduce dimension before being clus-

tered. Details on the dimension reduction methods used in each view will be provided shortly

when we discuss each dataset separately. The single-view data are then clustered using the

FindClusters function in the R package Seurat.

CITE-seq Human Bone Marrow Cells (HBMC). This dataset [61] is generated by the

CITE-seq technology [62]. CITE-seq can simultaneously quantify RNA and surface protein

abundance at the single-cell level by sequencing antibody-derived tags (ADTs). Thus each

individual cell is measured in two views: RNA and protein (ADT). Moreover, each view indi-

vidually is inadequate to identify all the cell types [61]. The data consist of 30, 672 human bone

marrow cells (HBMC) of 27 different cell types.

For this example, we use one of the most popular single-cell clustering R packages Seurat
for analyzing both views. Specifically, in each view, we follow the default Seurat clustering

Table 2. Clustering results on three muti-view datasets (HBMC, PBMC1 and PBMC2) obtained by 8 methods (first 8 columns). Performance is measured by ARI,

NMI and F-measure. Columns View 1 and View 2 are single-view clustering results on each dataset, where View 1 refers to RNA data in datasets and View 2 refers to ADT

(protein) data in HBMC and PBMC2, and ATAC data in PBMC1. The highest ARI, NMI and F-measure achieved for each dataset are in bold.

ARI

(NMI)

[F-measure]

Co-train MKC MSC Ensemble DeepCC WNN CCA CPS-merge A-CPS-merge View 1 View 2

HBMC 0.695 0.014 0.270 0.416 0.733 0.706 0.823 0.819 0.672 0.654

(0.774) (0.041) (0.565) (0.457) (0.812) (0.812) (0.815) (0.815) (0.768) (0.758)

[0.723] [0.084] [0.303] [0.482] [0.756] [0.732] [0.841] [0.838] [0.707] [0.681]

PBMC1 0.635 0.003 0.241 0.484 0.203 0.764 0.744 0.829 0.829 0.829 0.668

(0.748) (0.025) (0.438) (0.650) (0.309) (0.804) (0.812) (0.839) (0.839) (0.839) (0.738)

[0.673] [0.096] [0.320] [0.532] [0.289] [0.795] [0.776] [0.850] [0.850] [0.850] [0.707]

PBMC2 0.463 0.006 0.204 0.142 0.649 0.620 0.824 0.764 0.600 0.643

(0.692) (0.011) (0.484) (0.310) (0.791) (0.761) (0.808) (0.764) (0.740) (0.764)

[0.499] [0.071] [0.241] [0.209] [0.678] [0.651] [0.846] [0.796] [0.634] [0.675]

https://doi.org/10.1371/journal.pcbi.1011044.t002
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procedure. We first log normalize the RNA data and perform the centered log-ratio transfor-

mation for ADT. We then perform dimension reduction using PCA, keeping the first 50 com-

ponents for RNA and the first 24 components for ADT. For both RNA and ADT, the number

of components follows the default setting in Seurat. Lastly, we perform cluster analysis

using Seurat default functions FindNeighbors and FindClusters. The argument

called resolution in FindClusters controls the number of clusters obtained. In multi-

modal single-cell data analysis, we either use the default resolution or slightly adjust it so that

the number of clusters in a single view is similar to the ground-truth number of clusters. The

single-view clustering results are visualized in Fig 3b and 3e. When comparing with the true

cell type labels, shown in Fig 3a and 3d, we see that neither view can precisely identify all the

clusters.

Results by CPS-merge analysis are shown in Fig 3c and 3f. ARI is 0.823 for CPS-merge

and 0.819 for A-CPS-merge. Compared with the two single-view results, the most obvious

improvement is the identification of CD14 Mono cell. As aforementioned, MKC failed to run

due to the large sample size. MSC, Ensemble clustering and DeepCC yield poor accuracy. Co-

train and WNN achieve relatively high ARI, but lower than that of CPS-merge analysis. CCA

performs slightly better than single-view clustering, but not as accurately as CPS-merge analy-

sis in terms of ARI.

To evaluate the cluster-wise contribution of each view, we find that more than 40% of

the clusters in the final result have tightness 0, suggesting that the matching-weight-based

contribution is more appropriate here. As studied in [5, 6, 63], RNA is more informative for

recognizing the progenitor populations (GMP, HSC, LMPP, Prog_B1, Prog_B2, Prog_DC,

Fig 3. UMAP visualization for HBMC data and the clustering results. (a) True clusters on RNA. (b) Single-view clustering result on RNA. (c) CPS-

merge analysis result on RNA. (d) True clusters on Protein (ADT). (e) Single-view clustering result on Protein (ADT). (f) CPS-merge analysis result on

Protein (ADT).

https://doi.org/10.1371/journal.pcbi.1011044.g003
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Prog_MK, Prog_RBC), while protein is more informative for distinguishing T cells (CD4

Memory, CD4 Naive, CD8 Effector_1, CD8 Effector_2, CD8 Memory_1, CD8 Memory_2,

CD8 Naive, gdT, MAIT, Treg). By our analysis, the contribution of RNA to clusters corre-

sponding to progenitor populations is on average 0.653, and the contribution of protein to

clusters corresponding to T cells is on average 0.688. Therefore, our measures of the cluster-

wise contribution of each view indicate that the RNA view plays a dominant role in separating

progenitor populations while the protein view is more important for separating T cells. These

findings are consistent with existing domain insights.

10x Multiome Human Peripheral Blood Mononuclear Cells (PBMC1). This dataset is

generated by the 10x Genomics Multiome (https://support.10xgenomics.com/single-cell-

multiome-atac-gex/datasets) ATAC + RNA kit [39], which contains 10032 peripheral blood

mononuclear cells (PBMC) of 14 different cell types (Fig 4). Each cell has measurements in

two views: RNA and ATAC (Assay for Transposase-Accessible Chromatin). As described in

[64], ATAC-seq has much lower coverage and worse signal-to-noise than RNA-seq. Therefore,

RNA provides most of the information for the clusters to be revealed, while ATAC can be used

as an ancillary view. Motivated by the prior information, we use RNA as the dominant view

and do not perturb the RNA data.

In each view, we follow the standard clustering procedure, which is slightly different

between RNA and ATAC. For RNA data, we perform clustering as we have done with the

HBMC data. For ATAC, we pre-process the data using R package Signac [65], which runs

term frequency inverse document frequency (TF-IDF) normalization on the data and carries

out dimension reduction by singular value decomposition (SVD) (we keep the 2nd to 50th

Fig 4. UMAP visualization for PBMC1 data and the clustering results. (a) Truth clusters on RNA. (b) Single-view clustering result on RNA. (c) CPS-

merge analysis result on RNA. (d) Truth clusters on ATAC. (e) Single-view clustering result on ATAC. (f) CPS-merge analysis result on ATAC.

https://doi.org/10.1371/journal.pcbi.1011044.g004
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principal components according to Seurat as the first component is typically correlated with

the sequencing depth). Next, we use the default FindNeighbors and FindClusters
functions in Seurat to cluster data.

The single-view clustering results are visualized in Fig 4b and 4e. The ARI of the single-

view clustering result is 0.829 for the view RNA and 0.668 for ATAC. CPS-merge and A-CPS-

merge yield the same ARI of 0.829. This result suggests that ATAC do not contribute extra

information about the clusters in this dataset. As shown in Table 2, Co-train, MKC, MSC,

Ensemble clustering, and DeepCC all perform worse than clustering in any single view. In par-

ticular, the ARIs obtained by WNN and CCA are 0.764 and 0.744 respectively, worse than the

result obtained in the RNA view. This comparison indicates that ATAC is not very useful for

clarifying the true clusters.

CITE-seq Human Peripheral Blood Mononuclear Cells (PBMC2). The last multimodal

single-cell dataset is also from peripheral blood mononuclear cells (PBMC). It is generated by

CITE-seq and provided in [5]. It consists of 161, 754 cells with 31 different cell types. Same as

in the previous dataset, we have two views: RNA and protein (ADT), but both views contribute

substantially to the identification of clusters. This dataset has already been pre-processed. We

simply apply Seurat to perform clustering in each view. The single-view clustering results

are shown in Fig 5b and 5e. CPS-merge analysis yields an ARI value of 0.823 (A-CPS-merge

analysis achieves ARI 0.764). Again, MKC failed to run because of the large sample size, and

the other methods do not yield substantially better results than those obtained in any single

view.

Fig 5. UMAP visualization for PBMC2 data and the clustering results. (a) True clusters on RNA. (b) Single-view clustering result on RNA. (c) CPS-

merge analysis result on RNA. (d) True clusters on Protein (ADT). (e) Single-view clustering result on Protein (ADT). (f) CPS-merge analysis result on

Protein (ADT).

https://doi.org/10.1371/journal.pcbi.1011044.g005
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As for evaluating the cluster-wise contribution of each view, we find again that more than

40% of the clusters in the final result have tightness 0. Thus the matching-weight-based contri-

bution is more suitable to use. The contribution of the protein view to clusters corresponding

to CD8+ and CD4+ T cells is on average 0.622, consistent with the fact that these two cell types

are usually mixed in the transcriptome data but separated clearly in the protein data.

Discussion

In this paper, we have introduced CPS-merge analysis, a new method for multi-view data clus-

tering that is guided by both the consensus and complementary principles. As a late integra-

tion method, CPS-merge only requires cluster labels obtained from single views, making it

compatible with advanced clustering algorithms designed for single-view data. We have also

proposed novel measures to quantify the contribution of each view to the formation of any

cluster. These measures have been validated using real datasets and domain knowledge.

However, CPS-merge has limitations in two scenarios where additional information is

required for accurate results. The first scenario is when the final partition is highly unstable

(e.g., the average cluster tightness falls below 0.65). While such cases can be easily identified,

caution is necessary when interpreting the results. The second scenario is when stable but

incorrect clustering results are generated in certain single views. As our algorithm uses cluster

stability to perform merging, it cannot address this issue. One potential remedy is to identify

which views are ancillary a priori, allowing the algorithm to adjust accordingly.

As suggested by one reviewer, exploring online learning for multi-view clustering is a

promising direction for future research. Since CPS-merge analysis only uses cluster member-

ships but not the original data, it can be employed in an incremental learning mode as long as

the clustering algorithms used in individual views allow online learning. Numerous clustering

algorithms can be easily adapted to online learning, for instance, by representing previous data

using per-cluster statistics, e.g., mean vectors and covariance matrices. Based on these stored

representations, new data batches can be clustered or assigned to new clusters without access-

ing past data. Neural networks can also assist with online clustering. For instance, deep auto-

encoders can encode the original data in lower dimensions, which are typically easier to

cluster, particularly under an online learning paradigm. Additionally, neural networks are fre-

quently trained in batch mode, making them naturally suited for online learning. One chal-

lenge to consider for biomedical data, such as single-cell data, is that various data batches often

contain batch effects that must be eliminated. Current methods for removing batch effects typ-

ically require processing all data in one view together, preventing effective online learning.

Albeit interesting, how to overcome this issue in online learning is beyond the scope of our

method here.

Supporting information

S1 Appendix. This file contains the description of the simulation study and sensitivity

analysis.
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