BoMaNet: Boolean Masking of an Entire Neural Network

L)
ekt Anuj Dubey

o aanujdu@ncsu.edu
North Carolina State University
Raleigh, North Carolina

Rosario Cammarota
rosario.cammarota@intel.com
Intel Labs
San Diego, United States

Aydin Aysu
aaysu@ncsu.edu
North Carolina State University
Raleigh, North Carolina

ABSTRACT

Recent work on stealing machine learning (ML) models from infer-
ence engines with physical side-channel attacks warrant an urgent
need for effective side-channel defenses. This work proposes the
first fully-masked neural network inference engine design.

Masking uses secure multi-party computation to split the secrets
into random shares and to decorrelate the statistical relation of
secret-dependent computations to side-channels (e.g., the power
draw). In this work, we construct secure hardware primitives to
mask all the linear and non-linear operations in a neural network.
We address the challenge of masking integer addition by convert-
ing each addition into a sequence of XOR and AND gates and by
augmenting Trichina’s secure Boolean masking style. We improve
the traditional Trichina’s AND gates by adding pipelining elements
for better glitch-resistance and we architect the whole design to
sustain a throughput of 1 masked addition per cycle.

We implement the proposed secure inference engine on a Xil-
inx Spartan-6 (XC6SLX75) FPGA. The results show that masking
incurs an overhead of 3.5% in latency and 5.9 in area. Finally, we
demonstrate the security of the masked design with 2M traces.

KEYWORDS
Masking, neural networks, side-channel attacks, model stealing

1 INTRODUCTION

Physical side-channel attacks pose a major threat to the security of
cryptographic devices. Attacks like the Differential Power Analysis
(DPA) [27] can extract secret keys by exploiting the inherent cor-
relation between the secret-key-dependent data being processed
and the CMOS power consumption [9]. DPA has been shown to be
effective against many cryptographic implementations in the last
two decades [7, 16, 50]. Until recently, these attacks were confined
to cryptographic schemes. But lately, the Machine Learning (ML)
applications are shown to be vulnerable to physical side-channel
attacks [13, 21, 76], where an adversary aims to reverse engineer
the ML model. Indeed, these models are lucrative targets as they
are costly to develop and hence become valuable IPs for the com-
panies [65]. Knowledge about model parameters also eases fooling
the model using adversarial learning, which is a serious problem if
the model performs a critical task like fraud/spam detection [48].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICCAD ’20, November 2-5, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8026-3/20/11...$15.00
hitps://doi.org/10.1145/3400302.3415649

Unfortunately, most of the existing work on the physical side-
channel analysis of ML accelerators has focused only on attacks, not
defenses. To date, there are three publications focusing specifically
on the power/EM side-channel leakage of ML models. The first
two discuss some countermeasures but limit the discussion of the
mitigation to a qualitative level [21, 76]. The third one implements
a hybrid of masking and hiding based countermeasures and this
combination of empirical and provably secure mitigation is secure
in practice to the best capabilities or today’s attackers [13].

Masking uses secret-sharing to split the secrets into random
shares and to decorrelate the statistical relation of secret-dependent
computations to side-channels. Although similar work on crypto-
graphic hardware has been fully masked [3], the earlier work on
neural network hardware was partially masked to reduce costs [13].
Such solutions may work well for a regular IP where reasonable
security at a low-cost is sufficient. However, full masking is a better
alternative for IPs deployed in critical applications (like defense)
requiring stronger defenses against side-channel attacks.

In this work, we propose the design of the first fully-masked
neural network accelerator resistant against power-based side-
channel attacks. We construct novel masked primitives for the
various linear and non-linear operations in the network using gate-
level Boolean masking and masked look-up tables (LUT). We analyze
neural network-specific computations like weighted summations
in fully-connected layers and build specialized masked adders and
multiplexers to perform those operations in a secure way. We also
design a novel hardware that finds the greatest integer out of a set
of integers in a masked fashion, needed for the output layer.

We target an area-optimized Binarized Neural Network (BNN)
in our work because of their preference for edge-based neural
network inference [57, 71]. We optimize the hardware design to
reduce the impact of masking on the performance. Specifically, we
build an innovative adder-accumulator architecture that provides
a throughput of one addition per cycle even with a multi-cycle
masked adder with feedback. We reduce the effects of glitches [30]
in the masking elements by adding registers at every stage, to
synchronize the arrival of signals. We build the masked design in a
modular fashion starting from small Trichina’s AND gates blocks
to the large 20-bit masked full adder. We have pipelined the full
design to maintain a high throughput.

Finally, we implement both the baseline unmasked and the pro-
posed first-order secure masked neural network design on an FPGA.
We use the standard TVLA methodology to evaluate the first-
order security of the design and demonstrate no leakage up to 2M
traces [2]. Masking increases the latency by only 3.5% and the area
by 5.9%. Our goal in this paper is to provide the first fully-masked
design with certain optimizations and a practical evaluation of secu-
rity. We also discuss potential further optimizations and extensions
of masking for hardware design and security refinements.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3400302.3415649&domain=pdf&date_stamp=2020-12-17

Trusted Training Phase

Training Trained Model

. Parameters
Dataset Input
| Output
Input . ‘ Layer)
Laver Hidden Secret Model
’ ‘ Parameters

Lavers

Untrusted Inference Phase

Input
Programmable Secure bus Secure (Image)
: I Memaory
Logic (tamper-proof) e
{on-chip) Output

BNN Accelerator (Prediction)

Power Model and

|

Power :
Key Hypotheses I
|

|

I

Traces

Figure 1: Standard DPA threat model applied to ML model
stealing, where the trained neural network is deployed to
an edge device running in an untrusted environment.

2 THREAT MODEL

We adopt the standard DPA threat model in which an adversary has
direct physical access to the target device running inference [13, 21,
45], or can obtain power measurements remotely when the device
executes neural network computations [78)]. The adversary can
control the inputs and observe the corresponding outputs from the
device as in chosen-plaintext attacks.

Figure 1 shows our threat model where the training phase is
trusted but the trained model is deployed to an inference engine
operating in an untrusted environment. The adversary is after the
trained model parameters (e.g., weights and biases)—input data
privacy is out of scope [72].

We assume that the trained ML model is stored in a protected
memory and the standard techniques are used to securely transfer
it (i.e., bus snooping attacks are out of scope) [28]. The adversary,
therefore, has gray-box access to the device, i.e., it knows all the
design details up to the level of each individual logic gate but does
not know the trained ML model. We restrict the secret variables
to just the parameters and not the hyperparameters such as the
number of neurons, following earlier work [13, 44, 69]. In fact, an
adversary will still not be able to clone the model with just the hy-
perparameters if it does not possess the required compute power or
training dataset. This is analogous to the scenario in cryptography
where an adversary, even after knowing the implementation of a
cipher, cannot break it without the correct key.

We target a hardware implementation of the neural network, not
software. The design fully fits on the FPGA. Therefore, it does not
involve any off-chip memory access and executes with constant-
flow in constant time. These attributes make the design resilient
to any type of digital (memory, timing, access-pattern ,etc.) side-
channel attack. However, the physical side-channels like power
and EM emanations still exist; we address the power-based side-
channel leakages in our work. Other implementation attacks on
neural networks such as the fault attacks [4, 5] are out of scope.

3 BACKGROUND AND RELATED WORK

This section presents related work on the privacy of ML applica-
tions, the current state of side-channel defenses, preliminaries on
BNNs, and our BNN hardware design.

3.1 ML Model Extraction

Recent developments in the field of ML point to several motivating
scenarios that demand asset confidentiality. Firstly, training is a
computationally-intensive process and hence requires the model
provider to invest money on high-performance compute resources
(eg. a GPU cluster). The model provider might also need to invest
money to buy a labeled dataset for training or label an unstruc-
tured dataset. Therefore, knowledge about either the parameters or
hyperparameters can provide an unfair business advantage to the
user of the model, which is why the ML model should be private.

Theoretical model extraction analyzes the query-response pair
obtained by repeatedly querying an unknown ML model to steal
the parameters [23, 25, 55, 58]. This type of attack is similar to the
class of theoretical cryptanalysis in the cryptography literature.
Digital side-channels, by contrast, exploit the leakage of secret-
data dependent intermediate computations like access-patterns or
timing in the neural network computations to steal the parame-
ters [11, 14, 34, 75], which can usually be mitigated by making
the secret computations constant-flow and constant-time. Phys-
ical side-channels target the leak in the physical properties like
CMOS power-draw or electromagnetic emanations that will still
exist in a constant-flow/constant-time algorithm’s implementation
[13, 21, 40, 72, 73]. Mitigating physical side-channels are thus harder
than digital side-channels in hardware accelerator design and has
been extensively studied in the cryptography community.

3.2 Side-Channel Defenses

The researchers have proposed numerous countermeasures against
DPA. These countermeasures can be broadly classified as either
hiding-based or masking-based. The former aims to make the power-
consumption constant throughout the computation by using power-
balancing techniques [53, 67, 77]. The latter splits the sensitive
variable into multiple statistically independent shares to ensure
that the power consumption is independent of the sensitive variable
throughout the computation [3, 24, 35, 37, 56, 70].

The security provided by hiding-based schemes hinges upon
the precision of the back-end design tools to create a near-perfect
power-equalized circuit by balancing the load capacitances across
the leakage prone paths. This is not a trivial task and prior literature
shows how awell-balanced dual-rail based defense is still vulnerable
to localized EM attacks [41]. By contrast, masking transforms the
algorithm itself to work in a secure way by never evaluating the
secret variables directly, keeping the security mostly independent
of back-end design and making it a favorable choice over hiding.

3.3 Neural Network Classifiers

Neural network algorithms learn how to perform a certain task. In
the learning phase, the user sends a set of inputs and expected out-
puts to the machine (a.k.a., training), which helps it to approximate
(or learn) the function mapping the input-output pairs. The learned
function can then be used by the machine to generate outputs for
unknown inputs (a.k.a., inference).

Inputs Binary Weighted Activation
Function

Weights Sum

,""m +|.-’ |

Iy

lIl|

My i '

Iy / {
O'l A Jutput
Input O O Layer

Layer Hidden in,

Lavers

Figure 2: A typical Binarized Neural Network where the neu-

ron performs weighted summations on binarized weights,
and the activation function is a sign function.

A neural network consists of units called neurons (or nodes) and
these neurons are usually grouped into layers. The neurons in each
layer can be connected to the neurons in the previous and next
layers. Each connection has a weight associated with it, which is
computed during the training. The neurons work in a feed-forward
fashion passing information from one layer to the next.

The weights and biases can be initialized to be random values or
a carefully chosen set before training [29]. These weights and biases
are the critical parameters that our countermeasure aims to protect.
During training, a set of inputs along with the corresponding labels
are fed to the network. The network computes the error between
the actual outputs and the labels and tunes the weights and biases
to reduce it, converging to a state where the accuracy is acceptable.

3.4 Binarized Neural Networks
The weights and biases of a neural network are typically floating-
point numbers. However, high area, storage costs, and power de-
mands of floating-point hardware do not fare well with the require-
ments of the resource-constrained edge devices. Binarized Neural
Networks (BNNs) [8], with their low hardware cost and power
needs fit very well in this use-case while providing a reasonable
accuracy. BNNs restrict the weights and activations to binary values
(+1 and -1), which can easily be represented in hardware by a single
bit. This reduces the storage costs for the weights from floating-
point values to binary values. The XNOR-POPCOUNT operation
implemented using XNOR gates replaces the large floating-point
multipliers resulting in a huge area and performance gain [57].
Figure 2 depicts the neuron computation in a fully-connected
BNN. The neuron in the first hidden layer multiplies the input
values with their respective binarized weights. The generated prod-
ucts are added to the bias, and the result is fed to the activation
function, which is a sign function that binarizes the non-negative
and negative inputs to +1 to -1, repectively. Hence, the activations
in the subsequent layer are also binarized.

3.5 Our Baseline BNN Hardware Design

We consider a BNN having an input layer of 784 nodes, 3 hidden
layers of 1010 nodes each, and an output layer of 10 nodes. The
784 input nodes denote the 784 pixel values in the 28x28 grayscale
images of the Modified National Institute of Standards and Technol-
ogy (MNIST) database and 10 output nodes represent the 10 output
classes of the handwritten numerical digit.

P Sy
o Pixel Memory " max |!
1 -] :4
illg : P+/-PO
I
ing : i
in4 -]
W
] XNOR [7— |
weights t Y N $__ Layer Altivations

LWy Wy WD (BRAM)
Figure 3: A sequentialized hardware design of the baseline
BNN using a single adder.

a—r@—bﬁq/-a ‘ Ta: —»+a/-a
+1/-1 0/1

Figure 4: Multiplier expressed as a multiplexer in BNNs.

3.5.1 Weighted Summations. We choose to use a single adder in
the design and sequentialize all the additions in the algorithm to
reduce the area costs. Figure 3 shows our baseline BNN design. The
computation starts from the input layer pixel values stored in the
Pixel Memory. For each node of the first hidden layer, the hardware
multiplies 784 input pixel values one by one and accumulates the
sum of these products. The final summation is added with the bias
reusing the adder with a multiplexed input and fed to the activation
function. The hardware uses XNOR and POPCOUNT! operations
to perform weighted summations in the hidden layers. The final
layer summations are sent to the output logic.

In the input layer computations, the hardware multiplies an 8-
bit unsigned input pixel value with its corresponding weight. The
weight values are binarized to either 0 or 1 (representing a -1 or +1,
respectively). Figure 4 shows the realization of this multiplication
with a multiplexer that takes in the pixel value (a) and its 2’s com-
plement (—a) as the data inputs and weight (+1) as the select line.
The 8-bit unsigned pixel value, when multiplied by +1, needs to be
sign-extended to 9-bits, resulting in a 9-bit multiplexer.

3.5.2 Activation Function. The activation function binarizes the
non-negative and negative inputs to +1 and -1 respectively for each
node of the hidden layer. In hardware, this is implemented using a
simple NOT gate that takes the MSB of the summations as its input.

35.3 Output Layer. The summations in the output layer represent
the confidence score of each output class for the provided image.
Therefore, the final classification result is the class having the maxi-
mum confidence score. Figure 3 shows the hardware for computing
the classification result. As the adder generates output layer sum-
mations, they are sent to the output logic block that performs a
rolling update of the max register (max) if the newly received sum

!The POPCOUNT operation also involves an additional step of subtracting the number
of nodes (1010) from the final sum, which can be done as part of bias addition step.

aDalhOhl

=
=1
—+—

D

4
LT

YL

Figure 5: Trichina’s AND Gate implementation: glitch-prone
(left) and glitch-resistant (right). Flip-flops synchronize ar-
rival of signals at XOR gates’ inputs to mitigate glitches.

is greater than the previously computed max. In parallel, the hard-
ware also stores the index of the current max node. The index stored
after the final update is sent out as the final output of the neural
network. The hardware takes 2.8M cycles to finish one inference.

4 FULLY MASKING THE NEURAL NETWORK

This section discusses the hardware design and implementation
of all components in the masked neural network. Prior work on
masking of neural networks shows that arithmetic masking alone
cannot mask integer addition due to a leakage in the sign-bit [13].
Hence, we apply gate-level Boolean masking to perform integer
addition in a secure fashion. We express the entire computation of
the neural network as a sequence of AND and XOR operations and
apply gate-level masking on the resulting expression. XORs, being
linear, do not require any additional masking, and AND gates are
replaced with secure, Trichina style AND gates [70]. Furthermore,
we design specialized circuits for BNN’s unique components like
Masked Multiplexer and Masked Output Layer.

We first explain the notations in equations and figures. Any
variable without a subscript or superscript represents an N-bit
number. We use the subscript to refer to a single bit of the N-bit
number. For example, a7 refers to the 8" bit of a. The superscript
in masking refers to the different secret shares of a variable. To
refer to a particular share of a particular bit of an N-bit number, we
use both the subscript and the superscript. For example, ai refers to
the second Boolean share of the 5" bit of a. If a variable only has
the superscript (say i), we are referring to its full N-bit ith Boolean
share; N can also be equal to 1, in which case a is simply a bit. r (or
r;) denotes a fresh, random bit.

4.1 Why Trichina’s Masking Style?

Among the closely related masking styles [59], we chose to imple-
ment Trichina’s method due to its simplicity and implementation
efficiency. Figure 5 (left) shows the basic structure and functionality
of the Trichina’s gate, which implements a 2-bit, masked, AND
operation of ¢ = a - b. Each input (a and b) is split into two shares
(a® and @' s.t. a = a® @ @, and b® and B! s.t. b = b® @ b'). These
shares are sequentially processed with a chain of AND gates initi-
ated with a fresh random bit (r). A single AND operation thus uses
3 random bits. The technique ensures that output is the Boolean
masked output of the original AND function, i.e.,c = @ cl, while
all the intermediate computations are randomized.

Unfortunately, the straightforward adoption of Trichina’s AND
gate can lead to information leakage due to glitches [31]. For in-
stance, in Figure 5 (left) if the products ap - by and ag - by reach
the input of second XOR gate before random mask r reaches the
input of first XOR gate, the output at the XOR gate will evaluate
(glitch) to (ao - bo) @ (ao - b1) = ao - (bo @ b1) temporarily, which

roryrzag 3 b bid

Regular Full Adder Masked Full Adder

o

ou—
_%@4

Figure 6: Regular operation of a Full Adder (left) and its gate-
level masking using Trichina AND Gates (right).

leads to secret value b being unmasked. Therefore, we opted for
an extension of the Trichina’s AND gate by adding flip-flops to
synchronise the arrival of inputs at the XOR gates (see Figure 5
right). The only XOR gate not having a flip-flop at its input is the
leftmost XOR gate in the path of ¢1, which is not a problem be-
cause a glitching output at this gate does not combine two shares
of the same variable. Similar techniques have been used in past
[22]. Masking styles like the Threshold gates [20, 30, 49] may be
considered for even stronger security guarantees, but they will add
further area-performance-randomness overhead.

4.2 Masked Adder

We adopt the ripple-carry style of implementation for the adder. It
is formed using N 1-bit full adders where the carry-out from each
adder is the carry-in for the next adder in the chain, starting from
LSB. Therefore, ripple-carry configuration eases parameterization
and modular design of the Boolean masked adders.

4.2.1 Design of a Masked Full Adder. A 1-bit full adder takes as
input two operands and a carry-in and outputs the sum and the
carry, which are a function of the two operands and the carry-in. If
the input operand bits are denoted by a and b and carry-in bit by
¢, then the Boolean equation of the sum S and the carry C can be
described as follows:
S=aobac (1)
C=a-beb-coc-a (2)

Figure 6 shows the regular, 1-bit full adder (on the left), and the
resulting masked adder with Trichina’s AND gates (on the right).
In the rest of the subsection, we will discuss the derivation of the
masked full adder equations.

First step is to split the secret variables (a, b and c) into Boolean
shares. The hardware samples a fresh, random mask from a uniform
distribution and performs XOR with the original variable. If we
represent the random masks as a®, b° and co, then the masked
values a', b! and ¢! can be generated as follows:

al=aoed, b'=bab® cl=ca

®3)
A masking scheme always works on the two shares independently
without combining them at any point in the operation because that
will reconstruct the secret and create a side-channel leak.

The function of sum-generation is linear, making it easy to di-
rectly and independently compute the Boolean shares of S:

—c0 1
where, s=s"es
s'=d"eb’ac s'=a'ebla

fo ry 3 aﬁ ?Jé, bg h; 3 g s @, :| b?h:: s Iy fg a: a; bg bérg r,,,r”a: a'i bg b'i
|| 1 e s e o
IS B 'S ' ‘AN N S B NN I N N
=N o b | H
ci_"* MFA-3 MFA-2 L] MFA-1 L, MFA-0
T T T T T T T T
lCl ll LD l| lf\ LI ltl l1
s 5 5, s 55 5 55 5}

5i

op, 0 5¢

—°'| MFA-D | ¢, Delay ’—"l Delay ’—S”—'| Delay |‘
op 51 5

—‘-l Delay | op, | MFA-1| ¢, Delay }—1-{ Delay }»5_'.

S

0 1
OPn ={a,, a, b:, b:, Tan , Faned , Fanez }
=f? 1
Sn ={s, s}

Cn = {E?‘, C': } —
5cycles

Figure 7: Modular design of a masked 4-bit adder using
Masked Full Adders (top) and its pipelined version (bottom).

Unlike the sum-generation, carry-generation is a non-linear oper-
ation due to the presence of an AND operator. Hence, the hardware
cannot directly and independently compute the Boolean shares
€% and C! of C. We use the Trichina’s construction explained in
subsection 4.1 to mask carry-generation.

The hardware uses three Trichina’s AND gates to mask the three
AND operations in equation (2) using three random masks. This
generates two Boolean shares from each Trichina AND operation.
At this point, the expression is linear again, and therefore, the
hardware can redistribute the terms, similar to the masking of
sum operation. In the following equations, we use TG(x,y,r) to
represent the product x - y implemented via Trichina’s AND Gate
as illustrated in the following equation:

x-y:TG(x,y,r}:mueml

where m® and m! are the two Boolean shares of the product. Re-
placing each AND operation in equation (2) with TG, we can write

TG(a,b,ro) = d° @ d* @)
TG(b,c,r) =’ @ € (5)
TG(c,ar)=f" e f! ()

where d°, d', €%, ¢!, f9, and f! are the output shares from each
Trichina Gate. From equations (2), (4), (5), and (6) we get
carryout = TG(a,b,ry) ® TG(b,c,r1) ® TG(c, a,rz)

Replacing the TGs from equation (4), (5), and (6) and rearranging
the terms, we get

carryout = (d° @ e’ @ fO) @ (d' @el @ f1)

which can also be written as a combination of two Boolean shares
€? and C! where

C=d'aelaf’ cl=dlaeef!
Therefore, we create a masked full adder that takes in the Boolean
shares of the two bits to be added along with a carry-in and gives
out the Boolean shares of the sum and carry-out.

23

1
—_— meh” 4 W
msh msb ‘ 1 | 1 |
msb s msh

Regular Masked
Figure 8: The unmasked activation function (left) is a NOT

gate, and the masked version (right) receives two Boolean
shares of MSB from masked adder and inverts one of them.

+a—>]
+a—» vaa -a—s| Masked —(+a/-a)Pr,
s o,f}_—» LV

* =

0/1

Figure 9: Masking a regular multiplexer using a masked LUT
taking a fresh random mask r;.

4.2.2 The Modular Design of Pipelined N-bit Full Adder. The masked
full adders can be chained together to create an N-bit masked adder
that can add two masked N-bit numbers. Figure 7 (top) shows how
to construct a 4-bit masked adder as an example. We pipeline the N-
bit adder to yield a throughput of one by adding registers between
the full-adders corresponding to each bit (see Figure 7 (bottom)).

4.3 Masking of Activation Function

The baseline hardware implements the activation function as an
inverter as discussed in 3.5.2. In the masked version, the MSB out-
put from the adder is a pair of Boolean shares. To perform NOT
operation in a masked way, the hardware simply inverts one of the
Boolean shares as Figure 8 shows.

4.4 Masked Multiplexer

A 9-bit multiplexer is internally a set of parallel nine 1-bit multiplex-
ers. We implement the masked 1-bit multiplexer using a 4-input
2-output masked look-up table (LUT). Figure 9 shows the masked
LUT that takes in the original inputs (a, —a) and an additional fresh
random mask (r;) as inputs and outputs the random mask (r,) which
is simply the bypassed r; and the correct output XORed with the
random mask. We assume that each LUT operation is atomic. Since
the output functions are 4-input, 2-output, they can be mapped onto
the same LUT of the target FPGA [74]. Lesser number of inputs also
obviate the need for precautions like building a carefully balanced
tree of smaller input LUTs [26]. Advanced masking constructions
can be used to implement this function for a stronger security guar-
antee. As suggested in another work [26], masked look-ups can
also be implemented using ROMs if the target is an ASIC, since
ROMs are immutable and small in size. Thus, the (Boolean) masked
output from the LUTs ensures that the secret intermediate-variable
(multiplexed input pixel) always remains masked.

4.5 Masking the Output Layer

The hardware stores the 10 output layer summations in the form
of Boolean shares. To determine the classification result, it needs
to find the maximum value among the 10 masked output nodes.
Specifically, it needs to compare two signed values expressed as
Boolean shares. We transform the problem of masked comparison
to masked subtraction.

Figure 10 shows the hardware design of the masked output layer.
The hardware subtracts each output node value from the current
maximum and swaps the current maximum (old max shares) with

Shares of
output nodes(

Old max
shares

[Nl L, d
New max

Adder
shares
1‘ i AT
sub=1 i ;
Masked [»max0 i‘
3 Mux H ;
p>maxl -]

Figure 10: Masking of the Output Layer that uses a masked
subtractor and a masked multiplexer to find the node with
the maximum confidence score among the 10 output nodes.

‘ll‘ r

A

the node value (new max shares) if the MSB is 1 using a masked
multiplexer. An MSB of 1 signifies that the difference is negative and
hence the new sum is greater than the latest max. Instead of building
a new masked subtractor, we reuse the existing masked adder to
also function as a subtractor through a sub flag, which is set while
computing max. In parallel, the hardware uses one more masked
multiplexer-based update-circuit to update the Boolean shares of
the index corresponding to the current max node (not shown in
the Figure). This is to prevent known-ciphertext attacks, ciphertext
being the classification result in our case. Finally, the Masked Output
Logic computes the classification result in the form of (Boolean)
shares of the node’s index having the maximum confidence score.

Subtraction is essentially adding a number with the 2’s comple-
ment of another number. 2’s complement is computed by taking
bitwise 1’s complement and adding 1 to it. A bitwise 1’s complement
is implemented as an XOR operation with 1 and the addition of 1
is implemented by setting the initial carry-in to 1. The additional
XOR, being a linear operator, changes nothing with respect to the
masking of the new adder-subtractor circuit.

4.6 Scheduling of Operations

We optimize the scheduling in such a way that the hardware main-
tains a throughput of 1 addition per cycle. The latency of the masked
20-bit adder is 100 cycles. Therefore, the result from the adder will
only be available after 101 cycles® from the time it samples the
inputs. The hardware cannot feed the next input in the sequence
until the previous sum is available because of the data dependency
between the accumulated sum and the next accumulated sum. This
incurs a stall for 101 cycles leading to a total of 784 = 101 = 79184
cycles for each node computation. That is a 784X performance drop
over the unmasked implementation with a regular adder.

We solve the problem by finding useful work for the adder that
is independent of the summation in-flight, during the stalls. We
observe that computing the weighted summation of one node is
completely independent of the next node’s computation. The hard-
ware utilizes this independence to improve the throughput by start-
ing the next node computation while the result for the first node
arrives. Similarly, all the nodes up till 101 can be computed upon
concurrently using the same adder and achieve the exact same
throughput as the baseline design. This comes at the expense of
additional registers (see Figure 113) for storing 101 summations*
plus some control logic but a throughput gain of 784X (or 1010x

2Need an additional cycle for the accumulator register as well.

3The register file also has a demultiplexing and multiplexing logic to update and
consume the correct accumulated sum in sequence, which is not shown for simplicity.
“This is why we use 1010 neurons, which is a multiple of 101, in the hidden layers.

- i : / Register File
in, // Pixel Memory - \ Masked 18 o
in, Masked bias s iD ,+~,Output Logic]

. A A

in; - MUX Masked | 7]

ing T Adder B)
W1 f 7

[PRNG | XNOR [§ >
N 7
;tz 3 L Laver Activations

Figure 11: Hardware Design of the Fully Masked Neural Net-
work. The components related to masking are shown in dark
vellow. The register file helps in throughput optimization.

in hidden layers) is worthwhile. The optimization only works if
the number of next-layer nodes is greater than, and a multiple of
101. This restricts optimizing the output layer (of 10 nodes) and
contributes to the 3.5% increase in the latency of the masked design.

5 RESULTS

In this section, we describe the hardware setup used to implement
the neural network and capture power measurements, the leakage
assessment methodology that we follow to evaluate the security of
the proposed design, and the hardware implementation results.

5.1 Hardware Setup

We use Verilog for the front-end design and Xilinx ISE 14.7 for
the back-end. We use the DONT_TOUCH synthesis attribute and
disable the tool options like LUT combining, register reordering,
etc. to prevent any optimization in the masked components.

Qur side-channel evaluation platform is the SAKURA-G FPGA
board [19]. It hosts Xilinx Spartan-6 (XC6SLX75-2CSG484C) as
the main FPGA that executes the neural network inference. An
on-board amplifier amplifies the voltage drop across a 1Q shunt
resistor on the power supply line. We use Picoscope 3206D [66]
as the oscilloscope to capture the measurements from the board.
The design is clocked at 24MHz and the oscilloscope sampling
frequency is 125MHz. A higher sampling frequency leads to the
challenges that we discuss in Section 6.2. However, to ensure a
sound evaluation, we perform first and second-order t-tests on a
smaller unit of the design at a much higher precision: the design
frequency is 1.5MHz and the sampling frequency is 500MHz.

We use Riscure’s Inspector SCA [61] software to communicate
with the board and initiate a capture on the oscilloscope. By default,
the Inspector software does not support SAKURA-G board commu-
nication. Hence, we develop our own custom software modules to
automate the setup. The modules implement the communication
protocol and perform the register reads/writes on the FPGA to start
the inference and capture the result.

5.2 Leakage Evaluation

We perform the leakage assessment of the proposed design using
the non-specific fixed vs random t-tests, which is a common and
generic way of assessing the side-channel vulnerability in a given
implementation [2]. A t-score lying within the threshold range of
+4.5 implies that the power traces do not leak any information
about the data being processed, with up to 99.99% confidence. The
measurement and evaluation is quite involved and we refer the
reader to Section 6.2 for further details. We demonstrate the security

Input
orrelatior

Secret Weight Processing

] 1
1
=100 1
-150 122ms_
1

N
48 64 R0 96 112 128

Time (ms)

1
5 67 %0 96 112138 0 16 32
Time (ms)
Figure 12: TVLA results of the unmasked (left) and masked
(right) implementation. The results clearly show that the un-
masked design is insecure, whereas the masked design is se-
cure with 99.99% confidence (t-scores always below +4.5).

t-scores

t-scores
b bty NS — 1w e

> 3 4 s
Time (ps)

Figure 13: First-order (left) and second-order (right) t-tests
on Trichina’s AND gate at a low design frequency of 1.5MHz

and sampling frequency of 500MHz.
up to 2M traces, which is much greater than the first-order security
of the currently best-known defense that leaks at 40k traces [13].
Pseudo Random Number Generators (PRNG) produce the fresh,
random masks required for masking. We choose TRIVIUM [10]
as the PRNG, which is a hardware implementation friendly PRNG
specified as an International Standard under ISO/IEC 29192-3, but
any cryptographically-secure PRNG can be employed. TRIVIUM
generates 2 bits of output from an 80-bit key; hence, the PRNG
has to be re-seeded before the output space is exhausted.

5.2.1 First-order tests. We first perform the first-order t-test on the
design with PRNGs disabled, which is equivalent to an unmasked
(baseline/unprotected) design. Figure 12 (left) shows the result for
this experiment where we clearly observe significant leakages since
the t-scores are greater than the threshold of +4.5 for the entire ex-
ecution. Then, we perform the same test, but with PRNGs switched
on this time, which is equivalent to a masked design. Figure 12
(right) shows the results for this case, where we observe that the
t-scores never cross the threshold of +4.5 except the initial phase.
The initial phase leakages are due to the input correlations during
input layer computations. The hardware loads the input pixel after
every 101 cycles and feeds it to the masked multiplexer. The secret
variable is the weight, which is never exposed because the masked
multiplexer randomises the output using a fresh, random mask.

2 3 {
Time (ps)

5.2.2 High Precision First and Second-order tests. We performed
univariate second-order t-test on the fully masked design [64], but
1M traces were not sufficient to reveal the leakages. Due to the ex-
tremely lengthy measurement and evaluation times it was infeasible
to continue the test for more traces. Therefore, we perform first and
second-order evaluation on the isolated synchronized Trichina’s
AND gate, which is one of the main building blocks of the design.
We reduce the design frequency to 1.5MHz to increase the accu-
racy of the measurement and prevent any clock cycle aliasing. The

Table 1: Area (LUT/FF/BRAM) and Latency (in cycles) Com-
parison of the Unmasked and Masked Implementations.

Metric | Unmasked Masked Change
Area 1833/1125/163 | 9833/7624/163 | 5.3x / 6.8x / 1X
Latency | 2.85x 10° 2.94 % 10° 1.04x

Table 2: Block-level Area Distribution of the Unmasked and
Masked Implementations (LUT/FE/BRAM).

Design Blocks | Unmasked Masked Fraction(%)
Adder 10/0/0 954/1050/0 12/16/-
PRNGs 0/0/0 1125/1314/0 14/20/-

Output Layer 7/16/0 32/22/0 0.3/0.09/-
Throughput 0/20/0 5337/4040/0 66/62/-
Optimization
ROMs 411/1009/159 | 672/1009/159 4/-/-
RWMs 0/0/4 0/0/4 -
Misc 486/108/0 1233/2605/0 9/38/-

"-" denotes no change in the area of the unmasked and masked design.

SNR for a single gate was not sufficient to see leakage even at 10M
traces, hence we amplify the SNR by instantiating 32 independent
instances of the Trichina’s AND gate in the design, driven by the
same inputs. We present the results for this experiment in Figure 13
that shows no leakage in the first-order t-test but significant leak-
ages in the second-order t-tests for 500k traces. Thus, the successful
second-order t-test validates the correctness of our measurement
setup and the first-order masking implementation.

5.3 Masking Overheads

Table 1 shows that the impact of masking on the latency is 1.04x,
and on the number of LUTs and FFs is 5.3X and 6.7 respectively. We
also summarize the area contribution from each design component
in Table 2. The fourth column indicates what fraction of the total
increase in area (i.e., 8000 LUTs and 6499 FFs) does each component
contribute. Most of the area increase is due to the throughput
optimization logic—the register file accumulator logic described in
subsection 4.6. The masked adder contributes 12% and 16% to the
overall increase in the LUTs and FFs respectively. The increase due
to the output layer logic is minimal. ROMs refer to the read-only
memories storing the weights and bias values where the increase is
minimal®. RWMs refer to the read-write memories storing the layer
activations, which also do not show any increase as the masked
version stores two bits (the Boolean shares) instead of one for the
activations accommodated in the same BRAM tile.

We compare the area-delay product (ADP) of our proposed de-
sign, BoMaNet, to MaskedNet [13], where area is defined as the sum
of the number of LUTs and FFs, and delay is the latency in number
of cycles. The ADP of our design is 5 X 101° whereas the ADP of
MaskedNET is 6.4 x 108, which is approximately 80x lower. This is
expected since MaskedNet was designed for cost-effectiveness us-
ing partial masking, but on BoMaNet every operation is masked at
the gate-level to improve side-channel security. Similar overheads
were observed in previous works on Boolean masking of AES [36].

5The slight increase in the number of LUTs is because one of the memories is imple-
mented using LUTs that might redistribute even for the same memory size.

6 DISCUSSIONS

6.1 Proof-of-Concept vs. Optimizations

Qur solutions utilize simple yet effective techniques to mask an
inference engine. But certainly, there is scope for improvement both
in terms of the hardware design and the security countermeasures.
In this section, we discuss possible optimizations/extensions of our
work and alternate approaches taken in the field of privacy for ML.

6.1.1 Design Optimizations. The ripple-carry adder (RCA) used in
this work can be replaced with advanced adder architectures like
carry-lookahead [12], carry-skip [47], or Kogge-Stone [46] (KG).
These architectures commonly possess an additional logic block
to pre-compute the generate and propagate bits. Therefore, addi-
tional randomness will be needed to mask the non-linear generate
expression. All these adders have more combinational logic than
the ripple-carry adder, which may make it harder to avoid glitches.
To that end, prior work on TI-based secure versions of RCA and
KG can be extended [63]. Another potential optimization is the use
of other masking styles like DoM [38] or manual techniques [15]
to reduce the area and randomness overheads.

6.1.2 Limitations. We reduce glitch-related vulnerabilities using
registers at each stage, which is a low-cost, practical solution. Other
works have proposed stronger countermeasures, at the cost of
higher performance and area overheads [31, 38]. The quest for
stronger and more efficient countermeasures is never-ending; mask-
ing of AES is still being explored, even 20 years after the initial
work [24], due to the advent of more efficient or secure masking
schemes [32] and more potent attacks [52, 70].

Qur solution is first-order secure but there is scope for con-
struction of higher-order masked versions. However, higher-order
security is a delicate task; Moos et al. recently showed that a straight-
forward extension of masking schemes to higher-order suffers from
both local and compositional flaws [33] and masking extensions
were proposed in another recent work [18]. This is the first work
on fully-masked neural networks and we foresee follow ups as we
have experienced in the cryptographic research of AES masking,
even after 20 years of intensive study.

6.2 Measurement Challenges

We faced some unique challenges that are not generally seen with
the symmetric-key cryptographic evaluations. Inference becomes
a lengthy operation, especially for an area-optimized design—the
inference latency of our design is roughly 3 million cycles. For a
design frequency of 24MHz, the execution time translates to 122ms
per inference. If the oscilloscope samples at 125MHz the number of
sample points to be captured per power trace is equal to 15 million.
This significantly slows down the capturing of power traces. In
our case, capturing 2 million power traces took one week, which
means capturing 100 million traces as AES evaluation [32] will take
roughly a year. Performing TVLA on such large traces (28TB, in
our case) also takes a significant amount of time: it took 3 days
to get one t-score plot during our evaluations on a high-end PCS.
One possibility to avoid this problem is looking at a small subset
of representative traces of the computation [6], but, we instead
conduct a comprehensive evaluation of our design.

SIntel Core i9-9900K, 64GB RAM.

6.3 Theoretical vs Side-Channel Attacks
Theoretical model extraction by training a proxy model on a synthet-
ically generated dataset using the predictions from the unknown
victim model is an active area of research [23, 25]. These attacks
mostly assume a black-box access to the model and successfully
extract the model parameters after a certain number of queries.
This number ranges typically in the order of 22° [25]. By contrast,
physical side-channel attacks only require a few thousand queries
to successfully steal all the parameters [13]. This is partly due to fact
that physical side-channel attacks can extract information about
intermediate computations even in a black-box setting. Physical
side-channel attacks also do not require the generation of the syn-
thetic dataset, unlike most theoretical attacks.

6.4 Orthogonal ML Defences

There has been some work on defending the ML models against
stealing of inputs and parameters using other techniques like Ho-
momorphic Encryption (HE) and Secure Multi-Party Computation
(SMPC) [17, 51, 60], Watermarking [1, 62], and Trusted Execution
Engines (TEE) [39, 43, 68]. The survey by Isakov et al and the
NIST draft is a good reference for a more exhaustive list [42, 54].
Purely HE-based or HE+SMPC solutions initially incurred a large
overhead (30000 in CryptoNet [17] and 500 in SecureML [51]),
but follow-up work made them more efficient (13x in XONNJ[60]).
We propose masking, which is an extension of SMPC on hardware
and we believe that it is a promising direction for ML side-channel
defenses as it has been on cryptographic applications. Watermark-
ing techniques are punitive methods that cannot prevent physical
side-channel attacks. TEEs are subject to ever-evolving microarchi-
tectural attacks and typically are not available in edge/IoT nodes.

7 CONCLUSIONS AND FUTURE OUTLOOK

Physical side-channel analysis of neural networks is a new, promis-
ing direction in hardware security where the attacks are rapidly
evolving compared to defenses. We proposed the first fully-masked
neural network, demonstrated the security with up to 2M traces,
and quantified the overheads of a potential countermeasure. We ad-
dressed the key challenge of masking integer addition [13] through
Boolean masking. We furthermore presented ideas on how to mask
the unique linear and non-linear computations of a fully-connected
neural network that do not exist in cryptographic applications.

The large variety in neural network architectures in terms of
the quantization-level and the types of layer operations (e.g., Con-
volution, Maxpool, Softmax), and activation functions (e.g., ReLU,
Sigmoid, Tanh) presents a large design space for neural network
side-channel defenses. This paper focused on BNNs as they are a
good starting point. Our ideas serve as a benchmark to analyze the
vulnerabilities that exist in neural network computations and to
construct more robust and efficient countermeasures.

8 ACKNOWLEDGEMENTS

This project is supported in part by NSF under Grants No. 1943245
and SRC GRC Task 2908.001. We also thank Dr. Vikram Suresh and
Dr. Sohrab Aftabjahani for their valuable feedback on the design.

REFERENCES

[1] Yossi Adi et al. 2018. Turning Your Weakness Into a Strength: Watermarking
Deep Neural Networks by Backdooring. In USENIX Security '18.
[2] George Becker et al. 2013. Test Vector Leakage Assessment (TVLA) methodology
in practice. In International Cryptographic Module Conference, Vol. 1001.
[3] Johannes Blomer et al. 2005. Provably Secure Masking of AES. In Selected Areas
in Cryptography.
[4] Jakub Breier et al. 2018. Practical Fault Attack on Deep Neural Networks. In 2018
ACM SIGSAC Conference on Computer and Communications Security.
[5] Jakub Breier et al. 2020. SNIFF: Reverse Engineering of Neural Networks with
Fault Attacks. arXiv preprint arXiv:2002.11021 (2020).
[6] Mathieu Carbone et al. 2019. Deep Learning to Evaluate Secure RSA Implemen-
tations. TCHES 2019 (2019).
[7] Cong Chen et al. 2015. Differential Power Analysis of a McEliece Cryptosystem. In
International Conference on Applied Cryptography and Network Security. Springer.
[8] Matthieu Courbariaux et al. 2016. Binarized Neural Networks: Training Deep
Neural Networks with Weights and Activations Constrained to +1 or-1. (2016).
[9] Debayan Das et al. 2019. STELLAR: A Generic EM Side-Channel Attack Protection
through Ground-Up Root-cause Analysis. In HOST '19.
[10] Christophe De Canniére et al. 2008. Trivium. In New Stream Cipher Designs.
[11] Gaofeng Dong et al. 2019. Floating-Point Multiplication Timing Attack on Deep
Neural Network. In IEEE International Conference on Smart Internet of Things.
[12] Robert W Doran. 1988. Variants of an improved carry look-ahead adder. IEEE
Trans. Comput. 37, 9 (1988), 1110-1113.
[13] Anuj Dubey et al. 2019. MaskedNet: A Pathway for Secure Inference against
Power Side-Channel Attacks. arXiv preprint arXiv:1910.13063 (2019).
[14] Vasisht Duddu et al. 2018. Stealing Neural Networks via Timing Side Channels.
arXiv preprint arXiv:1812.11720 (2018).
[15] Amir Moradi et al. 2012. Glitch-Free Implementation of Masking in Modern
FPGAs. In HOST "12.
[16] Aesun Park et al. 2018. Side-Channel Attacks on Post-Quantum Signature
Schemes based on Multivariate Quadratic Equations. TCHES 2018, 3 (2018).
[17] Gilad-Bachrach et al. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In ICML. 201-210.
[18] Gaétan Cassiers et al. 2020. Hardware Private Circuits: From Trivial Composition
to Full Verification. ePrint, Report 2020/185. (2020).
[19] H. Guntur et al. 2014. Side-channel AttacK User Reference Architecture board
SAKURA-G. In 2014 IEEE 3rd Global Conference on Consumer Electronics (GCCE).
[20] Kris Tiri et al. 2007. Changing the Odds Against Masked Logic. In SAC 2006: 13th
Annual International Workshop on Selected Areas in Cryptography, Vol. 4356.
[21] Lejla Batina et al. 2019. CSI NN: Reverse Engineering of Neural Network Archi-
tectures Through Electromagnetic Side Channel. In USENIX Security "19.
[22] Monjur Alam et al. 2009. Effect of glitches against masked AES 5-box implemen-
tation and countermeasure. IET Information Security (2009).
[23] Matthew Jagielski et al. 2019. High Accuracy and High Fidelity Extraction of
Neural Networks. arXiv:cs.LG/1909.01838
[24] Mehdi-Laurent Akkar et al. 2001. An Implementation of DES and AES, Secure
against Some Attacks. In CHES 2001, Vol. 2162. Springer, Heidelberg, Germany.
[25] Nicholas Carlini et al. 2020. Cryptanalytic Extraction of Neural Network Models.
arXiv:cs.LG/2003.04884
[26] Oscar Reparaz et al. 2015. A Masked Ring-LWE Implementation. In CHES 2015.
[27] Paul C. Kocher et al. 1999. Differential Power Analysis. In Advances in Cryptology
— CRYPTO"99. Springer, Heidelberg, Germany.
[28] Rosario Cammarota et al. 2018. Machine Learning IP Protection. In ICCAD "18.
[29] Sinno Jialin Pan et al. 2010. A Survey on Transfer Learning. [EEE Transactions on
Knowledge and Data Engineering (2010).
[30] Stefan Mangard et al. 2005. Successfully Attacking Masked AES Hardware
Implementations. In CHES 2005.
[31] Svetla Nikova et al. 2006. Threshold Implementations Against Side-Channel
Attacks and Glitches. In ICICS '06.
[32] Thomas De Cnudde et al. 2016. Masking AES with d+1 Shares in Hardware. IACR
ePrint, 2016/631.
[33] Thorben Moos et al. 2019. Glitch-Resistant Masking Revisited. IACR TCHES 2019,
2 (2019).
[34] Xing Hu et al. 2019. Neural Network Model Extraction Attacks in Edge Devices
by Hearing Architectural Hints. arXiv:cs.CR/1903.03916
[35] Yuval Ishai et al. 2003. Private Circuits: Securing Hardware against Probing
Attacks. In Advances in Cryptology — CRYPTO 2003, Vol. 2729.
[36] Yuan Yao et al. 2018. Fault-Assisted Side-Channel Analysis of Masked Implemen-
tations. In HOST "18.
[37] Jovan D Goli¢ et al. 2003. Multiplicative Masking and Power Analysis of AES. In
CHES 2002, Vol. 2523. Springer, Heidelberg, Germany.
[38] Hannes GroB et al. 2016. Domain-Oriented Masking: Compact Masked Hardware
Implementations with Arbitrary Protection Order. IACR ePrint (2016).
[39] Lucjan Hanzlik et al. 2018. MLCapsule: Guarded Offline Deployment of Machine
Learning as a Service. arXiv preprint arXiv:1808.00590 (2018).

[40] Weizhe Hua et al. 2018. Reverse Engineering Convolutional Neural Networks
through Side-Channel Information Leaks. In DAC "18.

[41] Vincent Immler et al. 2017. Your Rails Cannot Hide From Localized EM: How
Dual-Rail Logic Fails on FPGAs. In CHES 2017.

[42] Mihailo Isakov et al. 2019. Survey of Attacks and Defenses on Edge-Deployed
Neural Networks. In HPEC "19.

[43] Mihailo Isakovet al. 2018. Preventing Neural Network Model Exfiltration in
Machine Learning Hardware Accelerators. In AsianHOST "18.

[44] Mika Juuti et al. 2019. PRADA: Protecting Against DNN Model Stealing Attacks.
In EuroS&P '19.

[45] Paul Kocher et al. 2011. Introduction to Differential Power Analysis. Journal of
Cryptographic Engineering 1 (2011).

[46] Peter M Kogge et al. 1973. A Parallel Algorithm for the Efficient Solution of a
General Class of Recurrence Equations. IEEE Trans. Comput. 100, 8 (1973).

[47] M Lehman et al. 1961. Skip Techniques for High-Speed Carry-Propagation in
Binary Arithmetic Units. IRE Transactions on Electronic Computers 4 (1961).

[48] Daniel Lowd et al. 2005. Adversarial Learning. In Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining.

[49] Stefan Mangard et al. 2005. Side-Channel Leakage of Masked CMOS Gates. In
Topics in Cryptology — CT-RSA 2005.

[50] Stefan Mangard et al. 2008. Power analysis attacks: Revealing the secrets of smart
cards. Vol. 31. Springer Science & Business Media.

[51] Payman Mohassel et al. 2017. Secureml: A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy (SF).

[52] Thorben Moos et al. 2017. Static Power Side-Channel Analysis of a Threshold
Implementation Prototype Chip. In DATE '17.

[53] Maxime Nassar et al. 2010. BCDL: A High Speed Balanced DPL for FPGA with
Global Precharge and No Early Evaluation. In DATE '10.

[54] NIST. 2019. A Taxonomy and Terminology of Adversarial Machine Learning.
https://nvlpubs.nist.gov/nistpubs/ir/ 2019/NIST.IR.8269- draft. pdf

[55] Seong Joon Oh et al. 2019. Towards Reverse-Engineering Black-Box Neural Net-
works. In Explainable Al Interpreting, Explaining and Visualizing Deep Learning.

[56] Elisabeth Oswald et al. 2005. A Side-Channel Analysis Resistant Description of
the AES 5-Box. In Fast Software Encryption.

[57] Mohammad Rastegari et al. 2016. XNOR-Net: Imagenet Classification using
Binary Convolutional Neural Networks. In ECCV "16.

[58] Robert Nikolai Reith et al. 2019. Efficiently Stealing Your Machine Learning
Models. In 18th ACM Workshop on Privacy in the Electronic Society.

[59] Oscar Reparaz et al. 2016. Additively Homomorphic Ring-LWE Masking. In
International Workshop on Post-Quantum Cryptography.

[60] M Sadegh Riazi et al. 2019. XONN: XNOR-based Oblivious Deep Neural Network
Inference. In USENIX Security "19.

[61] Riscure. 2019. Riscure Inspector. Retrieved May 7, 2020 from https://www.riscure.
com/uploads/2017/08/inspector_brochure.pdf

[62] BitaDarvish Rouhani et al. 2018. Deepsigns: A Generic Watermarking Framework
for IP Protection of Deep Learning Models. arXiv preprint arXiv:1804.00750 (2018).

[63] Tobias Schneider et al. 2015. Arithmetic Addition over Boolean Masking. In
Applied Cryptography and Network Security.

[64] Tobias Schneider et al. 2016. Leakage Assessment Methodology. Journal of
Cryptographic Engineering 6, 2 (2016), 85-99.

[65] Emma Strubell et al. 2019. Energy and Policy Considerations for Deep Learning
in NLP. arXiv preprint arXiv:1906.02243 (2019).

[66] Pico Technology. 2020. . https://www.picotech.com/oscilloscope/3000/picoscope-
3000-oscilloscope-specifications

[67] Kris Tirietal. 2004. A Logic Level Design Methodology for a Secure DPA Resistant
ASIC or FPGA implementation. In DATE ‘04, Vol. 1.

[68] Florian Tramer et a;. 2018. Slalom: Fast, verifiable and private execution of neural
networks in trusted hardware. arXiv preprint arXiv:1806.03287 (2018).

[69] Florian Tramér et al. 2016. Stealing Machine Learning Models via Prediction
APIs. In USENIX Security '16.

[70] Elena Trichina et al. 2004. Small Size, Low Power, Side Channel-Immune AES
Coprocessor: Design and Synthesis Results. In AES '04.

[71] Yaman Umuroglu et al. 2017. FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference. In FPGA "17.

[72] Lingxiao Wei et al. 2018. I Know What You See: Power Side-Channel Attack on
Convolutional Neural Network Accelerators. In ACSAC "18.

[73] Yun Xiang et al. 2020. Open DNN Box by Power Side-Channel Attack. IEEE
Transactions on Circuits and Systems II: Express Briefs (2020).

[74] Xilimx. 2010. Spartan-6 FPGA Configurable Logic Block User Guide. https://www.
xilinx.com/support/documentation/user_guides/ug384.pdf

[75] Mengjia Yan et al. 2020. Cache Telepathy: Leveraging Shared Resource Attacks
to Learn DNN Architectures. In USENIX Security 20.

[76] Honggang Yu et al. 2020. DeepEM: Deep Neural Networks Model Recovery
through EM Side-Channel Information Leakage. (2020).

[77] Pengyuan Yu et al. 2007. Secure FPGA Circuits using Controlled Placement and
Routing. In (CODES+IS55) "07.

[78] Mark Zhao et al. 2018. FPGA-based Remote Power Side-Channel Attacks. In 2018
IEEE Symposium on Security and Privacy (SP).

