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Abstract—We propose and experimentally demonstrate a reac- 
tive planning system for bipedal robots on unexplored, challenging 
terrain. The system includes: a multilayer local map for assess- 
ing traversability; an anytime omnidirectional control Lyapunov 
function for use with a rapidly exploring random tree star (RRT*) 
that generates a vector field for specifying motion between nodes; 
a subgoal finder when the final goal is outside of the current map; 
and a finite-state machine to handle high-level mission decisions. 
The system also includes a reactive thread that copes with robot 
deviations via a vector field, defined by a closed-loop feedback 
policy. The vector field provides real-time control commands to the 
robot’s gait controller as a function of instantaneous robot pose. 
The system is evaluated on various challenging outdoor terrains 
and cluttered indoor scenes in both simulation and experiment 
on Cassie Blue, a bipedal robot with 20 degrees of freedom. 
All implementations are coded in C++ with the robot operating 
system and are available at https://github.com/UMich-BipedLab/ 
CLF_reactive_planning_system. 

Index Terms—Autonomous robots, autonomous systems, legged 
locomotion, motion planning, path planning, robot sensing systems, 
robot motion, robot vision systems. 

I. INTRODUCTION 

OTION planning as a central component for autonomous 
navigation has been extensively studied over the last few 

decades. Algorithms such as RRT∗, A∗, and their variants focus 
on finding an (asymptotically) optimal path as computationally 
efficiently as possible [1], [2], [3], [4], [5], [6], [7], [8], [9]. 

The application of these algorithms relies on designing a control 
policy to track the planned path, resulting in waypoint following 
or pathway tracking. In turn, the tracking of path segments 
(between waypoints) leads to nonsmooth motion of the actual 
robot, due to abrupt acceleration or heading changes when 
transitioning between waypoints/pathways. 

This article seeks to develop a reactive planning system for 
bipedal robots on unexplored, unmapped, challenging terrains, 
and to provide high-rate (directional) velocity and heading com- 
mands to be realized by the robot’s low-level feedback-control 
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Fig. 1. In the top figure, Cassie Blue autonomously traverses the Wave Field 
via the proposed reactive planning system, comprised of a planning thread and a 
reactive thread. The planning thread involves a multi-layer local map to compute 
traversability, a subgoal finder, and an omnidirectional CLF RRT∗. Instead of 
a common waypoint-following or path-tracking strategy, the reactive thread 
copes with robot deviation while eliminating non-smooth motions via a vector 
field (defined by a closed-loop feedback policy) that provides real-time control 
commands to the robot’s gait controller as a function of instantaneous robot 
pose. The bottom figure is the elevation map built online. The red peaks are 
from the experimenters walking alongside Cassie. 

 
 

gait-generation algorithm. For this application, the nonsmooth 
aspects of the planned motions arising from waypoints/pathways 
transitions are detrimental to stability of the overall system. 
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Several approaches have been developed to address the non- 
smooth aspects of paths produced by motion planning, such 
as reactive motion planning [10], [11], [12], [13], [14], [15], 
[16], [17], [18] and feedback motion planning [19], [20], [21]. 
Fundamentally, these approaches replace paths to be followed 
with smooth vector fields whose solutions guide the robot’s 
evolution in its configuration space. 

We are inspired by the work of Park and Kuipers [20], [21], 
which proposed a control Lyapunov function (CLF) to realize 
reactive planning for a nonholonomic differential-drive wheeled 
robot. A CLF is a Lyapunov function for a closed-loop system, 
where at any given time instant, there exists a control input that 
renders the derivative of the Lyapunov function along the system 
dynamics negative definite. Hence, a CLF is associated with 
asymptotically approaching a goal; see Section III-A. While the 
underlying model of Park and Kuipers [20], [21] was designed 
for differential-drive robots, which is not directly applicable to a 
Cassie bipedal robot due to different dynamics and control laws, 
their basic concept is applicable; see Section III-B for a more 
detailed discussion. As part of our work, we design an appropri- 
ate CLF for robots capable of walking in any direction with any 
orientation. Moreover, we take into account features specific to 
bipeds, such as the limited lateral leg motion that renders lateral 
walking more laborious than sagittal plane walking. 

The feedback motion planning algorithm in Park and 
Kuipers [20] and [21] has not yet been evaluated on hardware. 
In general, there is a significant chasm between a planning algo- 
rithm and autonomous navigation on real robots. Most planning 
algorithms assume not only that a fully explored, noise-free, 
perfect map is given but also that the robot’s destination will 
always lie within this map. Moreover, the algorithms also assume 
a perfect robot pose and a perfect robot with ideal actuators 
that can execute an arbitrary trajectory. These assumptions 
are not practical. Therefore, utilizing a planning algorithm for 
autonomous navigation with real robots remains challenging. 
We propose and demonstrate experimentally an autonomous 
navigation system for a Cassie bipedal robot that is able to 
handle a noisy map in real-time, a distant goal that may not be 
in the initial map when the user decides where to send the robot, 
and importantly, a means to smoothly handle robot deviation. In 
addition, a rudimentary finite-state machine (FSM) is integrated 
to handle actions such as where to turn at intersections. 

 
II. RELATED WORK AND CONTRIBUTIONS 

Motion planning, an essential component of robot autonomy, 
has been an active area of research for multiple decades with 
an accompanying rich literature. In this section, we review 
several types of planning algorithms and summarize our main 
contributions. 

 
A. Sampling-Based Motion Planning 

Rapidly exploring tree (RRT) [1] stands out for its low com- 
plexity and high efficiency in exploring unknown configuration 
spaces. Its asymptotically optimal version — RRT∗ [5] — has 
also gained much attention and has contributed greatly to the 
spread of the RRT family. RRT, RRT∗, and variations on the 
basic algorithms, generate a collision-free path comprised of 

piece-wise linear paths between discrete poses of the robot [1], 
[2], [3], [4], [5], [6], [7], [8], [9], [22], [23]. However, abrupt 
(nondifferentiable) transitions between waypoints/pathways are 
an inherent issue with this family of planning algorithms and in 
addition, the generated trajectories do not account for control 
constraints. Therefore, to ensure the produced trajectories are 
feasible, additional expensive computations such as trajectory 
smoothing or optimization are often involved. A great deal of 
attention has been directed to this area, resulting in versions 
of RRT∗ [24], [25], [26], [27], [28], [29] that utilize different 
smoothing techniques or steering functions. 

Trajectory smoothing (B-spines, Dubins, or other parametric 
curves) is often designed independently of robot dynamics [30], 
[31], [32], which can lead to unbounded turning rate, accelera- 
tion, or jerk. Therefore, additional computations are necessary 
to validate the resulting smoothed trajectory. Furthermore, these 
methods are often ambiguous about how they treat robot devi- 
ations about the planned path and in the end provide open-loop 
control laws for tracking. 

 
B. Optimization-Based Planning and DARPA Subterranean 
Challenge 

Point-wise in time optimization- and model-based algorithms, 
such as CLF paired with quadratic programs, (CLF-QP), or, 
when integrated with Control Barrier Functions, (CLF-CBF- 
QP) [33], [34], [35], [36] have been developed to provide low- 
level control for safety. The techniques can be used in tandem 
with the proposed CLF to avoid obstacles smoothly. Data-driven 
planning and control algorithms for safety–critical systems 
are combining machine-learning [37], [38], model predictive 
control (MPC), reinforcement learning [39], or belief-space 
learning [40]. 

Majumdar and Tedrake [41] proposed the region of attraction 
for time-varying systems to divide the path into several over- 
lapping regions, similar to funnels [42], in which the system 
is invariant. To avoid numerical optimization for verifying the 
overlap of the regions and to allow generating stable trajectory 
from the funnels in the presence of disturbances, Tiseo et al. [43] 
presented a framework to combine the region of attraction and 
the stability properties of a fractal-impedance controller. The 
region of attraction is a function of a list of waypoints. They fit a 
force profile to the list of waypoints, so that the desired trajectory 
is an attractive set for an associated vector field. On the other 
hand, in our CLF reactive system, given a list of waypoints con- 
necting a starting point and a subgoal, a vector field provided by 
the proposed CLF—designed specifically for bipedal robots—is 
utilized to connect two consecutive waypoints. Therefore, the 
full resulting trajectory composed of several CLF vector fields 
is easy for bipedal robots to follow. The CLF is also used in 
the pruning process for the RRT∗, also ensuring that it favors 
trajectories that are the most compatible with the CLF, and hence 
the motions of the robot. 

Uncertainty-aware planning through networked belief-aware 
perceptual autonomy (NeBula) [44] from the DARPA Sub- 
terranean Challenge (DARPA SubT) [45] probabilistically 
fuses various sensing modalities to allow the robot to cre- 
ate belief-aware local maps. The underlying planner is 
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stochastic traversability evaluation and planning where they 
build an uncertainty-aware 2.5D traversability map to solve 
an online receding horizon MPC problem. Miller et al. [46] 
presented a quadruped with higher levels of autonomy to explore 
a tunnel environment in the 2019 DARPA SubT, where a heuris- 
tic cost function is designed to penalize sidestepping, whereas 
we design a CLF to account for it. To achieve autonomous 
exploration, MARBLE [47] proposes graph and frontier-based 
path planning algorithms on four-wheeled and tracked ground 
robots complimented with multirotor platforms in which a re- 
active centering controller for wheeled robots is implemented 
to the the system avoids obstacles while navigating the graph. 
The GBPlanner proposed in [48] builds and uses a real-time 
topological map during subterranean exploration. An overview 
of ground robotics systems for underground environments is 
provided in [49]. The research challenges faced in such robotics 
exploration missions span the domains of communications, 
perception, simultaneous localization, and mapping (SLAM), 
planning, and control. 

 
C. Reactive Planning 

Reactive planning contributes another significant concept to 
the motion planning literature [10], [11], [12], [13], [14], [15], 
[16], [17], [18], namely potential fields. In other words, the 
reactive planning replaces the concept of trajectory with that of 
a vector field arising as the gradient of a potential function. The 
method of potential fields seems to address all the issues raised 
in Section II-A for sampling-based methods. However, most of 
the experimental work has been carried out on flat ground and 
it is unclear how extensions to undulating terrain can be per- 
formed. The concept of combining sampling-based algorithms 
with reactive planning was developed in [19], [20], [21], which 
not only provides a feasible path to follow from RRT∗, but also a 
smooth feedback control law that instantaneously replans a path 
to the next goal as the robot deviates due to imperfections in the 
robot model in the robot’s hardware or terrain. The feedback laws 
greatly ameliorates the issue of nonsmooth paths. The feedback 
motion planning in [19] is based on a family of CLFs designed 
via linearization of the robot’s model around a sufficiently large 
set of points in the robot’s state space, LQR, and Sum of Squares 
(SoS), whereas the feedback motion planning of [20], [21] uses 
a single CLF and varies the associated equilibrium to set subgoal 
poses. 

The feedback motion planning of [20], [21] is the starting 
point for the work in this article. Park and Kuipers provide a 
novel form of RRT∗ for differential-drive wheeled robots, where 
a CLF is utilized as the steering function in the RRT∗ algorithm 
to evaluate the cost between nodes in the trees associated with 
RRT∗, and it replaces the waypoints that are typically used 
in planning algorithms. Together, these innovations result in 
a system where robot control and motion planning are tightly 
coupled. As explained in Section III-B, the CLF in [20] and 
[21] is designed for differential-drive wheeled robots which 
must respect nonholonomic constraints associated with wheels. 
In Section III-B, we propose a new goal-centric coordinate 
system and CLF that are appropriate for bipedal robots that 

are omnidirectional. While bipedal robots are omnidirectional, 
they typically have limited agility in the lateral direction. We 
show how to account for the relative ease of walking forward 
and backward, sideways, and turning as a function of distance 
from goal. In Section IV, we take these features of bipedal 
robots into account when connecting, exploring, and rewiring 
the trees in RRT∗. In addition, we show how to take terrain 
features, such as friction and elevation changes, into account; see 
Section V-B. This allows our Cassie robot to navigate undulating 
terrain. 

We note that sampling-based approaches exist that are more 
efficient than RRT∗, such as bidirectional RRT∗, informed 
RRT∗ [50], [51], and RRT∗-AB [52], [53]. We choose RRT∗ be- 
cause the CLF used in the growing, pruning, and rewiring of the 
tree is asymmetric, meaning the cost from node i to j is not equal 
to the cost from node j to node i. Therefore, the cost in growing 
the tree forward and backward are not the same. Search-based 
planners, such as A∗[54], Bi-directional A∗[55], or ANA∗[56] 
are efficient on 2-D graphs but not efficient in continuous space. 

 

D. Contributions 

In particular, the present work has the following contributions: 
1) We propose a novel 2-D smooth CLF with a closed-form 

solution to the feedback controller for omnidirectional 
robots. The 2-D CLF is designed such that when a goal 
is far from the robot position, the CLF controls the robot 
orientation to align with the goal while moving toward 
the goal. On the other hand, the robot walks to the goal 
disregarding its orientation if the goal is close. In addition, 
we study the behaviors of the CLF under different initial 
conditions and parameters. 

2) We define a closed-form distance measure from a pose 
(position and orientation) to a target position for omni- 
directional robots under a pose-centric polar coordinate. 
This distance metric nicely captures inherent features of 
Cassie-series robots, such as the low-cost of longitudinal 
movement and high-cost of lateral movement. 

3) We utilize the proposed CLF and the distance measure 
to form a new variation of RRT∗ (omnidirectional CLF- 
RRT∗) to tackle undulating terrains, in which both distance 
and traversability are included in the cost to solve the op- 
timal path problem. Moreover, as in [20], the optimal path 
is realized as a sequence of subgoals that are connected by 
integral curves of a set of vector fields, thereby providing 
reactive planning: in response to a disturbance, each vector 
field associated with the optimal path automatically guides 
the robot to a subgoal along a new integral curve of the 
vector field. 

4) We integrate all the above components together as a re- 
active planning system for challenging terrains/cluttered 
indoor environments. It contains a planning thread to 
guide Cassie to walk in highly traversable areas toward 
a distant goal on the basis of a multilayer map being built 
in real-time and a reactive thread to handle robot deviation 
via a closed-loop feedback control instead of a commonly 
used waypoint-following or path-tracking strategy. 
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We evaluate the reactive planning system by performing 
three types of experiments: 1) A simplified biped pendulum 
model (inputs are piece-wise constant, similar to Cassie-series 
robots) navigates various synthetic, noisy, challenging outdoor 
terrains, and cluttered indoor scenes. The system guides the 
robot to its goals in various scenes, both indoors and outdoors, 
with or without obstacles. The system also guides the robot to 
completion of several high-level missions, such as turning left 
at every intersection. 2) To verify that the outputs of the control 
commands are feasible for Cassie-series robots, the system gives 
commands to a Cassie whole-body dynamic simulator [57], 
which simulates 20 degrees of freedom (DoF) of Cassie in 
MATLAB Simmechanics on a 3-D terrain. 3) Last, the reactive 
planning system successfully allows Cassie Blue to complete 
several indoor and outdoor missions: a) walking in corridors 
and avoiding furniture in the Ford Robotics Building (FRB) 
at the University of Michigan; b) turning left when detected 
intersections of corridors and return to its initial position in FRB; 
and c) traversing parts of the Wave Field on the North campus 
of the University of Michigan, as shown in Fig. 1. 

The videos of the autonomy experiments can be found at [58]. 
All of the simulated environments, the experimental data, and 
the C++ implementations for the reactive planning system are 
made available at https://github.com/UMich-BipedLab/CLF_ 
reactive_planning_system [59]. 

The remainder of this article is organized as follows. Sec- 
tion III constructs the new CLF for bipeds and omnidirectional 
robots. The omnidirectional CLF-RRT∗ is introduced in Sec- 
tion IV. Section V integrates all the above components as a 
reactive planning system. Simulated and experimental evalua- 
tions of the proposed reactive system is presented in Section VI. 
Finally, Section VII concludes this article. 

 
III. CONSTRUCTION OF A CLF 

This section first provides an introduction to CLFs and then 
describes the reasons for creating a new CLF function, the 
construction of the CLF, and an analysis of its parameters. 

 
A. Lyapunov and CLF 

In this article, our goals and pseudogoals are chosen to be 
equilibrium points of the center of mass (CoM) dynamics of 
Cassie. A candidate Lyapunov function is a (locally) positive 
definite function that vanishes at an equilibrium point of a given 
dynamical system. If at each point of its definition, there exists a 
control input such that the derivative of the candidate Lyapunov 
function along the dynamics is negative definite, then it is called a 
CLF, or CLF for short. Hence, CLFs provide a means to specify 
a goal as well as a family of trajectories that converge to the 
goal from “arbitrary” points (sufficiently near) the goal. The 
trajectories are the solutions of the underlying dynamic model 
that are compatible with the Lyapunov function monotonically 
decreasing. 

We refer the reader to [60] for the formal definition. Consider 
O an open set about the origin of Rn, and 

x˙ = f (x, u) (1) 

a control system with x Rn is system state and u Rm 
control commands. A differentiable function V : [0, ) is 
a CLF if (i) V (x) = 0  x = 0 and for each 0 = x  , there 
exists u Rm such that V (x)f (x, u) < 0. Any feedback law 
u = α(x) such that V (x)f (x, α(x)) < 0 then renders the 
origin asymptotically stable. 

In [20], the output of their planner is a feedback function 
u = α(x) rendering a particular CLF negative definite. When 
the CLF is associated with a goal or pseudogoal of the planner, 
this becomes a particularly astute means for the planner to 
communicate its intentions to a low-level controller: the CLF 
specifies how the planner wants the robot to approach the goal 
from an entire open set of current states of the robot. This allows 
the immediate reaction to disturbances. We adopt this means in 
this article as well. 

 
B. Redesign of CLF Proposed in the Literature 

The 2-D CLF planner of [20], [21] has been designed for dif- 
ferentially driven nonholonomically constrained robots, whose 
dynamics and control laws are inappropriate for bipedal robots. 
Like most robot models, the work [20] assumes that the robot is 
able to continuously change its velocity and heading. However, 
this is not possible for underactuated bipeds such as Cassie 
Blue. According to the angular linear inverted pendulum (ALIP) 
model used for low-level feedback control of Cassie Blue [61], 
[62], [63], [64], [65], the heading angle and the longitudinal and 
lateral velocity commands can only be updated at the initiation of 
a step and not within a step. In particular, the low-level controller 
on a bipedal robot during the swing phase is controlling body 
posture and regulating foot placement at the end of the current 
step so that the CoM can achieve velocity and orientation goals 
over the next step or next few steps. Only minor instantaneous 
corrections to body velocity can be achieved during a given step 
of the robot. In other words, bipedal robots such as Cassie are 
not able to implement changes in velocity control commands 
during the current swing phase, but will instead execute the 
received control commands during the following swing phase. 
When piece-wise constant commands are applied to the existing 
2-D CLF of [20], [21], built around a Dubins car model, the 
closed-loop system will oscillate about the discrete heading 
directions as the robot approaches the goal pose, as explained in 
Fig. 2. This oscillation is undesirable as it can affect the robot’s 
balance. 

With a Dubins car model as used in [21] and [20], the linear 
velocity is always aligned with the heading angle of the vehicle, 
and hence this is also true as the vehicle approaches an equilib- 
rium pose. Consequently, a CLF for a target position must also 
include a target heading, therefore, a target pose. The vehicle 
must steer and align itself as it approaches the target. Cassie 
Blue, on the other hand, similar to an omnidirectional robot, is 
able to move laterally with zero forward velocity, which allows 
the robot to start with an arbitrary pose and arrive at a goal 
position with an arbitrary heading (i.e., start with a pose and end 
with a position). Lateral walking, however, requires more effort 
due to the limited workspace of the lateral hip joints on the robot 
and this should be taken into account when designing a CLF. 

https://github.com/UMich-BipedLab/CLF_reactive_planning_system
https://github.com/UMich-BipedLab/CLF_reactive_planning_system
https://github.com/UMich-BipedLab/CLF_reactive_planning_system
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Fig. 2. Plots show paths in 2-D generated by the CLF of [20], [21] for Dubins 
cars. At each point, the tangent to a path (t1 and t2 in the blowup) is the heading 
angle for the robot. These paths clearly fail to account for a biped’s ability to 
move laterally. Moreover, in practice, an underactuated robot such as Cassie 
Blue would experience chattering in the heading angle when approaching the 
goal (red arrow). Moreover, if the robot overshoots the goal, it would have to 
walk along a circle to return to the goal. For these reasons, a new CLF is needed. 

 
 

To avoid undesirable oscillating movement and account for 
lateral walking, a new candidate CLF is designed on the basis of 
an appropriate kinematics model for underactuated bipeds and 
other omnidirectional robots. 

 
C. State Representation 

As mentioned in Section III, Cassie Blue is able to walk in 
any direction. Therefore, we model Cassie Blue as an omnidi- 
rectional robot and reduce it to a directional point mass. We will 

 
 
 
 
 
 
 

Fig. 3. Illustration of the robot pose-centric polar representation (s = (r, δ)) 
for robot pose (xr, yr, θ) and target position = (xt, yt). Here, r is the radial 
distance to the target and δ is the angle between the heading angle θ of the robot 
and the line of sight from the robot to the goal. The longitudinal velocity, lateral 
velocity, and angular velocity are vx, vy and ω, respectively. 

 
 

is negative definite (and hence invertible) for all r > 0, the model 
(3) is over actuated for r > 0. 

Remark 2: Observe that δ < δ1 when the robot moves along 
the x-axis, as shown in Fig. 4(a). Therefore, vx sin(δ) is positive. 

account for the increased effort required to walk laterally when 
we design the CLF. 

Similarly, vy cos(δ) is negated because 
r 

δ < δ 1 when the robot 

Denote  = (xr, yr, θ) the robot pose and  = (xt, yt) the 
goal position in the world frame. Let s be the state of an 
omnidirectional robot represented in a robot pose-centric polar 
coordinate 

s = {(r, δ)|r ∈ R, and δ ∈ (−π, π]} (2) 

moves toward the y-axis, as shown in Fig. 4(b). 
We next note that the change of control variables 

vr cos(δ) sin(δ) vx 0 
vδ 

sin(δ) cos(δ) vy ω 

allows us to feedback linearize the model to a pair of integrators 
where  ( π, π]  is open on the left, r = 

(xt xr)2 + (yt yr)2, and δ is the angle between the 
heading angle of the robot (θ) and the line of sight from the 

r˙ = 
δ˙ 

−vr . vδ 

robot to the goal, as shown in Fig. 3. 
Remark 1: Park and Kuipers [20], [21] used target pose- 

centric polar coordinates because the wheelchair robot needed to 

We note that for this model, any positive definite quadratic 
function is automatically a CLF. For later use, we note that for 
all r > 0 

arrive at a target position with a target heading angle. In our case, 
we can use robot pose-centric coordinates because we have the 

(
vx

l 
:=

 (cos(δ) r sin(δ) 
l( 

vr 
l 

. (4) 
freedom to arrive at the target position with any heading angle. 
For bipeds, turning in place is easy, and thus, if orientation at 
the goal is critical, it can be handled as a final maneuver. 

 
D. Construction of CLF 

The kinematics of an omnidirectional robot is defined as 

vy sin(δ) −r cos(δ) vδ − ω 

As mentioned in Section III, lateral walking is more expensive 
than longitudinal walking because movement in the lateral hip 
joint is limited. A candidate CLF1£, in terms of the robot’s 
current pose and target (end) position, is defined as 

2 2 2 

(
r˙

l 
=

  − cos(δ) − sin(δ)
 (

vx
l 
+ 

(
0
l  

. (3) 
r + γ sin (βδ) 

£ = 2 (5) 
δ˙ 1 sin(δ)  − 1 cos(δ) v ω 

r r y 

In the above expression, we view vx, vy, and ω as control 
variables. Because the matrix 

− cos(δ) − sin(δ) 
1 sin(δ)  − 1 cos(δ) 

where γ is a weight on the orientation and the role of β > 0 will 
be described later. We next check that £ is a CLF. The derivative 

 
1In polar coordinate, the function £ is positive definite in the sense that £ = 

0 ⇒ r = 0, and when r = 0, the angle δ is arbitrary or undefined. 
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δ1 kr2 + r kδ2 + r v∗ =  r δ  

δ β 2
 

that with r = 2  2, the robot walks laterally to achieve the goal 

 

are invariant for the closed-loop system. From (8), the manifold 
Mδ is locally attractive for δ ∈ {0, π } and repulsive for δ = 

 π β 

2β . By selecting β > 0, the repulsive invariant manifold can 
be placed outside the field of view (FoV) of Cassie, as shown 
in Fig. 6. In practice, a FSM is needed so that the robot will 
initially turn in place so that it starts with the goal located within 
the FoV of its sensor suite. 

The next step is to set up an optimization such that the 
control variables (vx, vy, ω) satisfy (7) and take into account that 
walking sideways takes more effort than walking forward, for 
Cassie. Because the camera faces forward, walking backward is 
only selected if the robot is localized into an already built portion 
of the map. 

 
E. Closed-Form Solution 

Taking (4) as a constraint, we propose to select ω so as to keep 
vy small (limit lateral walking) by optimizing 

J = min 
vy,ω 

(vy)2 + αω2. (9) 

The parameter α>  0 allows us to penalize aggressive yaw 
motions ω, as will be illustrated in Section III-F. Plugging in 
the constraint (4), (9) leads to 

 
 
 

Fig. 4. This figure explains the signs in (3). On the top, δ increases when 
the robot moves parallel to the x-axis. Therefore, vx sin δ is positive. Similarly, 

J = min 
ω 

= min 
ω 

{[sin(δ)vr − r cos(δ)(vδ − ω)] + αω } 

{(sin(δ)vr) + [r cos(δ)(vδ − ω)] 

vy 
r 

2
 

r cos δ is negated because δ decreases when the robot moves toward the y-axis. 

of £ is 

− 2 sin(δ)vr(r cos(δ)(vδ − ω)) + αω }. 
A few algebraic calculations and the dropping of “constant 
terms” lead to 

£  ̇= rṙ  + βγ2 
2 

sin (2 β δ) δ̇ ω∗ = arg min 
ω 

{r cos (δ) (vδ − ω) 

The feedback 
= r(−vr)+  

βγ2 
sin(2βδ)vδ. (6) 

2 
 

which implies that 

+ 2rvr sin(δ) cos(δ)ω + αω2} 

 r  
(
α + r2 cos2(δ)

) 
ω∗ + r cos(δ) [vr sin(δ) − rvδ cos(δ)] = 0. 

vr = kr1 
r2 + r 

2 r 
 

The final result is 
(10) 

 
 

results in 

vδ = − β kδ1 k sin(2βδ) (7) 
+ r  

 
and then 

ω∗ = r cos(δ) [rvδ cos(δ) − vr sin(δ)] 
α + r2 cos2(δ) 

(11) 

£˙ = −  kr1   r2 − k γ2  r  sin2(2βδ) (8) 

which is negative for all r > 0, β > 0, kr1 > 0, kr2 > 0, kδ1 > 
0, and kδ2 > 0. It is emphasized that the proposed CLF under 
the robot-centric coordinate system is 2-D. Later, the cost func- 
tion for the RRT∗-based planner will be 3-D; see Section IV-B. 

 
 

y 
 
 

vx
∗ = 

α (v sin (δ) − rv cos (δ)) 
r2 cos (δ)2 + α 

vr cos (δ) r2 + α vδ sin (δ) r + α vr cos (δ) 
 

r2 cos (δ)2 + α 
. (12)

 

Work in [62], [66], [67] shows how to adapt the local model to 
the terrain in such a way that the model (7) is always valid and 
hence the 2-D CLF is applicable. 

Remark 3: From (7), it follows that δ˙ = vδ = 0 for 2βδ ∈ 
{0, ±π}. Therefore, the manifolds 

M :=
  

(r, δ) | r ≥ 0,δ ∈
  

0, π , ±  π
 
 

F. Qualitative Analysis of the Closed-Loop Trajectories 

The default parameters applied in this analysis are shown in 
Table I. Fig. 5 shows how the closed-loop trajectories vary as a 
function of heavy, medium, and light penalties on yaw motion, 
and three different initial distances from the target, with δ, the 
robot’s heading√relative to the target, fixed at −60◦. We observe 

2 

k 

δ2 
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DEFAULT VALUES OF PARAMETERS 

 
 

 
 

  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
Fig. 5. Distance to the target and the penalty on yaw motion in (9) both affect 
closed-loop behavior arising from the CLF. The arrows indicate the robot’s 
absolute heading. In each solution of the closed-loop system, the robot’s heading 
relative to the target is initialized at 60◦. When the robot is distant from the goal 
and the heading does not point toward the goal, it will align its relative heading 
to the target while approaching the goal. The level of alignment depends on the 
yaw motion penalty, α. On the other hand, when the robot is close to the goal, 
the closed-loop controller no longer adjusts the heading angle and employs a 
lateral motion to reach the goal. 

 
 

for all values of the penalty on yaw motion. With r = 15
√

2 
and α = 10, the robot aligns its heading to the target while 
walking to reduce its lateral movement, whereas with α = 100, 
it maintains its heading and combines lateral and longitudinal 
motion as needed to reach the goal. 

Fig. 6 shows how the closed-loop trajectories vary as a func- 
tion the initial relative heading to the target, when starting at a 
fixed distance of r = 15 m, and α = 10. As indicated in Table I, 
we are using β = 1.2, which yields FoV of 75◦. For relative 
heading “errors” less than 40◦, the robot aligns quickly to the 
target and longitudinal walking dominates. If quicker zeroing of 
the heading error is desired, a smaller value of α could be used 
or the robot could turn in place before starting a new segment. 

 
 

IV. OMNIDIRECTIONAL CLF-RRT∗ 

This section integrates the CLF proposed in Section III into 
the original RRT∗ algorithm. The resulting omnidirectional CLF 
RRT∗ provides feasible paths for (3) while (i) accounting for 
relative heading, (ii) the asymmetry in roles of target position and 
current pose induced by the CLF, and (iii) the fact that walking 
laterally is more challenging than walking in the longitudinal 
direction for robots such as Cassie. 

 

 
 

Fig. 6. This figure illustrated how the closed-loop trajectories generated by 
the CLF in (5) vary as a function the initial relative heading to the target, when 
starting at a fixed distance of r = 15 m, and α = 10. The arrows indicate the 
robot’s heading. As shown in Table I, we are using β = 1.2, which yields an 
FoV of 75◦. For relative heading “errors” less than 40◦, the robot aligns 
quickly to the target and longitudinal walking dominates. These motions should 
be compared to those in Fig. 5. 

 

A. Standard RRT∗ Algorithm 

The original RRT∗ [3] is a sampling-based, incremental plan- 
ner with guaranteed asymptotic optimality. In configuration 
space, RRT∗ grows a tree where leaves are states connected by 
edges of linear path segments with the minimal cost. In addition, 
RRT∗ considers nearby nodes of a sample to choose the best 
parent node and to rewire the graph if shorter path is possible to 
guarantee asymptotic optimality. 

 
B. Omnidirectional CLF-RRT∗ Algorithm 

The omnidirectional CLF-RRT∗ differs from the original 
RRT∗ in four aspects. First, the distance between two nodes 
is defined by the CLF in (5), which takes relative heading 
into account. Second, the steering/extending functions use the 
closed-loop trajectories generated by (12) to define paths be- 
tween nodes. Third, because the cost (5) between two nodes 
i and j is not symmetric (i.e., a different cost is assigned if 
node i is the origin versus it is the target), a distinction must be 
made between near-to nodes and near-from nodes. The above 
three aspects are common to the CLF-RRT∗ variant introduced 
in [20], [21]. Finally, when connecting, exploring, and rewiring 
the tree, additional terms are added to the cost (5) to account for 
the relative ease or difficulty of traversing the path. 

Our proposed RRT∗ modification is summarized below with 
notation that generally follows [4]. Let = (x, y, θ) x, y 
R and θ ( π, π] be the configuration space and let obs 
denote the obstacle region, which together define the free re- 
gion for walking free =  obs. The omnidirectional CLF 
RRT∗ solves the optimal path planning problem by growing a 
tree = (V, E), where V  free is a vertex set of poses con- 
nected by edges E of feasible path segments. Briefly speaking, 
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 Algorithm 2: nparent ← ChooseParent(NT , nnearest, nnew).  
 
 
 
 
 
 
 
 
 
 
 

 
  where (xt, yt) is the location of the robot at time t, C(xt, yt, zr) 

can depend upon elevation change with respect to the robot’s 

the proposed RRT∗ (see Algorithm 1) explores the configuration 
space by random sampling and extending nodes to grow the tree 
(explore the configuration space), just as in the classic RRT [1]. 
Considering nearby nodes of a sample to choose the best parent 
node and rewiring the graph guarantee asymptotic optimality 
(see Algorithm 2 and 3), as with the classic algorithm. As 
emphasized previously, a key difference lies in how the paths 
between vertices are generated. 

1) Sampling: This step randomly samples a pose nrand = 
(x, y, θ)  free. To facilitate faster convergence and to find bet- 
ter paths, we use several techniques such as sampling with a goal 
bias, limited search space, and Gaussian sampling. Specifically, 
given a subgoal and a degree of goal biasing, we bias samples 
to be from a Gaussian distribution centered about the subgoal; 
see Section V-B. Furthermore, we limit the sampling space to a 
sector in front of the robot. 

2) Distance: To account for the asymmetry in lateral versus 
longitudinal motions, as discussed in Section III-B, the distance 
d(ni, nk) from node ni to node nk in the tree  is defined by (5). 
Note that when computing the distance, ni is a pose (xi, yi, θi) 
and the heading of nk is ignored, meaning only its (xk, yk) 
values are used. 

Remark 4: As mentioned in Section III-D, the robot will 
rotate in place if the target point is outside the FoV. If rotating in 
place is laborious, one can also consider the following distance 
function: 

d(ni, nk) = £ + kδ max (|δ|− |U |, 0) (13) 

where £ is defined in (5), kδ is a positive constant, and U 
corresponds to a repulsive point (i.e., ±  π ) in Remark 3. 

3) Traversability of a Path: Let P = (xr, yr, zr, θ) be the 

current elevation, zr, ground slope, friction coefficient, or other 
terrain characteristics provided by the mapping software [68], 
[69], [70]. 

Remark 5: The planning system is designed so that any 
traversability index [71], [72] can be leveraged in the cost 
function on the local map to indicate the relative ease, difficulty, 
or safety of traversing a section of terrain. Therefore, the system 
can be readily adapted to different types of terrain. 

4) Cost Between Nodes: Let c(ni, nk) be the cost from ni to 
nk in the tree T , defined as 

c(ni, nk) = d(ni, nk)+ ktT(P, T ) (15) 

where kt trades terrain traversability versus distance. It sets how 
much more distance the overall mission is allowed to detour for 
a better traversable path. For all experiments conducted in this 
article, kt = 1. 

5) Nearby Nodes: Due to the use of the CLF function, the 
distinction between near-to nodes T and near-from nodes F 
is necessary. 

NT (ni, T , M, m) := {n ∈ V | d(n, ni) ≤ L(m) & 

|T(n, P) − T(ni, P)|≤  Tk} (16) 

where  is the absolute value, m is the number of nodes in 
the tree , and L(m) = η(log(n)/n)(1/ξ) with the constant η 
and dimension of space ξ (3 in our case) [6] and Tk is a positive 
constant. Similarly, the near-from nodes NF are determined by 

NF (ni, T , M, m) := {n ∈ V | d(ni, n) ≤ L(m) &  

|T(n, P) − T(ni, P)|≤ Tk}.  (17) 

6) Nearest Node: Given a node ni ∈ X , the tree T , and the 
current robot pose and denote T ( , ni, nj) the path2 connect- 
ing ni and nj. Finally, let T( , T ) be the cost of the path 
traversability, defined as a running cost along the trajectory of 
the robot, namely 

T(P, ) = 
X 

C(x ,y ,z ) (14) 

local map M, the nearest node is any node n∗ ∈T in the tree 
where the cost from n∗ to ni is minimum. 

7) Steering and Extending: The steering function generates 
a path segment T that starts from ni and ends exactly at nk. The 
extending function extends the path from ni toward nk until nk 
is reached or the distance traveled is T 

∀xt,yt∈T 
t  t r 

κ in which case it returns a 
new sample nnew at the end of the extension. 

8) Parent Choosing and Graph Rewiring: Choosing the best 2The path is generated from the CLF in Section III. parent node (see Algorithm 2) and rewiring the graph (see 

Algorithm 1: T = (V, E) ← Omnidirectional CLF RRT∗. 
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Fig. 7. This figure summarizes the proposed reactive planning system. The planning thread is built around RRT∗ and an omnidirectional CLF that is used to assign 
distances, define locally optimal path segments, search radius, and linking conditions for rewiring and choosing a parent. In addition, the planning thread contains 
a multilayer, robot-centric local map for computing traversability, a subgoal finder, and a FSM to choose subgoal locations guiding the robot to a distant goal. The 
terrain information extracted from the multilayer local map can be shared with a terrain-aware controller, such as [66]. Instead of a common waypoint-following 
or path-tracking strategy, the reactive thread copes with robot deviation while eliminating nonsmooth motions via a vector field (defined by a closed-loop feedback 
policy arising from the CLF). The vector field provides real-time control commands to the robot’s gait controller as a function of instantaneous robot pose. 

 
 
 

 

 Algorithm 3: T ← ReWire(T , NF , nmin, nnew).  
10) Node Insertion: Given the current tree  = (V, E) and 

a node v V , this step inserts the node n to V and creates an 
edge env from n to v. 

 

V. REACTIVE PLANNING SYSTEM 

The previous section provides a sparse set of paths from 
a robot’s initial location to a goal. The degree of optimality 

  depends on how long the planning algorithm is run. A typical 
update rate may be 5 Hz for real-time applications. When 
the robot is perturbed off the nominal path, one is left with 

Algorithm 3) guarantee asymptotic optimality. Let Cost(ni) be 
the cost from the root of the tree to the node ni. The parent 
nparent of a node nnew is determined by finding a node ni  T 
with smallest cost from the root to the node 

 
nparent = arg min Cost(nnear)+ c(nnear, nnew). (18) 

nnear∈NT 

After a parent node is chosen, nearby nodes  F are rewired 
if shorter paths are found. In our experiments, we used the 
extending function for exploration, and the steering function 
to find the best parent node and to rewire the graph. 

9) Collision Check: This step verifies whether a path T 
lies within the obstacle-free region of the configuration space. 
Note that additional constraints, such as curvature bounds and 
minimum clearance, can also be examined in this step. 

deciding how to reach the goal, say by tracking the nominal 
path with a PID controller. Important alternatives to this, called 
a high-frequency reactive planner or a feedback motion planner, 
were introduced in [10], [11], [12], [13], [14], [15], [16], [17], 
[18], [19]. A version based on the work of [20], [21] will be 
incorporated into our overall planning system. In addition, we 
take into account features in a local map. 

 
A. Elements of the Overall Planning System 

The overall objective of the planner system is to replace the 
commonly used waypoint-following or path-tracking strategies 
with a family of closed-loop feedback control laws that steer the 
robot along a sequence of collision-free sub-goals leading to the 
final goal. In simple terms, as in [19], [20], [21], we populate 
the configuration space with a discrete set of feedback control 
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laws that steer the robot from local chart about a subgoal to 
the subgoal itself. The collision free property is handled by the 
low-frequency planner at the current time. Others have used 
CBFs for this purpose [33], [34], [35], [36], [73], [74]. A FSM 
is integrated into the low-frequency planner to handle high-level 
mission requirements such as turning left at every intersection. 
The planning system is implemented with multithreading in 
C++ based on the ROS library [75]. One thread is for the 
planning and the other is for the reactive thread, as illustrated 
in Fig. 7. 

The planner assumes the initial robot pose, a final goal, and 
real-time map building are provided. It is assumed that the 
initial robot pose and final goal are initialized in an otherwise 
featureless metric map, with the robot’s initial pose as the origin. 
The featureless map is filled in by the real-time mapping pack- 
age [68], [69], [70] based on collected LiDAR and/or camera 
data. 

 
B. Planning Thread 

The planning thread deals with short-range planning (less than 
20 meters) at a frequency of 5–10 Hz. It includes a robot-centric 
local map, our omnidirectional CLF-RRT∗ algorithm of Sec- 
tion III, cost computation, a subgoal finder, and a FSM. 

1) Robot-Centric Local Map and Cost Computation: 
Fig. 8(a) shows the robot-centric multilayer local map (high- 
lighted area), which crops a submap centered around the robot’s 
current position from the global map provided by the mapping 
algorithm. The local map computes additional useful infor- 
mation such as terrain slope (local gradient), which is useful 
for assigning cost. Moreover, other necessary operations for 
different experiment scenes such as applying the Bresenham 
algorithm [76] to remove walkable area behind glass walls can 
be computed in this step, see Section VI-E. In addition, terrain 
information such as slopes, frictions, or staircase detection can 
be sent to a terrain-aware low-level controller [66]. The compu- 
tations with the local map are efficient compared to processing 
the full map. 

Remark 6: In the experiment videos, it can be seen that we 
covered many of the glass walls with paper to prevent LiDAR 
penetration and the labeling of the space behind the glass walls as 
walkable. However, some LiDAR measurements still penetrate 
the glass (such as the bottom part of Fig. 17) and resulting in 
unwanted walkable regions behind the glass; these are removed 
by the Bresenham algorithm [76]. 

2) Anytime Omnidirectional CLF-RRT∗ Planner: The any- 
time feature is a direct result of using RRT∗ as a planner. The 
algorithm can be queried at anytime to provide a suboptimal path 
comprised of wayposes, which the CLF (5) turns into real-time 
feedback laws for anytime replanning. 

3) Subgoal Finder and FSM: Ideally, a global planner [77], 
[78], [79] is present to guide the robot to a distant goal, which 
may not be viewable at the time of mission start [78]. In relatively 
simple situations such as that shown in Figs. 8 and 9, it is 
sufficient to complete many of short-term missions by position- 
ing a subgoal (green arrow) at the lowest cost (cost-to-come 
+ cost-to-goal) on an arc (blue arrows) to guide the robot to 

 

 
Fig. 8. Elevation map (colored by height) was built online while Cassie was 
autonomously traversing the Wave Field on the North Campus of the University 
of Michigan. The highlighted area is the smoothed, robot-centric local map. The 
blue arc and the green arrow (pointing from the red line to the white line) are 
the subgoal finder and the chosen sub-goal for the omnidirectional CLF RRT∗, 
respectively. The red shows the locally optimal path. 

 
 

the final goal. This subgoal finder is also used as a FSM to 
handle high-level missions such as making turn selections at 
intersections, or determining if there is an intersection; see 
Section VI-E. It is emphasized that the final path is connected 
by several subgoals determined locally by the subgoal finder. 
In the future, the sub-goal finder will be replaced with a global 
planner to achieve globally optimal paths. 

Remark 7: A subgoal is essentially an intermediate goal with 
the lowest cost (cost-to-come and cost-to-goal) in the local map 
and is determined by the FSM. It is emphasized that the local map 
contains all the available information at that specific timestamp. 
Therefore, the subgoal is always observable because it is within 
the local map. Subgoals are needed for planning systems to reach 
a final goal, which might be not observable by the sensors on the 
robot from its current position and orientation. Piecing together 
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Fig. 9.  Simulated scenes and results obtained with the proposed reactive planning system. On the left are cluttered indoor scenes with obstacles and holes, in 
the middle are noisy undulating outdoor terrains, and on the right, are high-level missions. Each grid in a map is 1 1 meter. The simulated robot is based on the 
ALIP model and accepts piece-wise constant inputs at the beginning of each step, is used in all simulation. The robot’s initial pose and position of the final goal 
were hand selected. The highlighted areas show the local maps being provided to the robot 8  8 for left and middle columns and 9  9 for the right column. In 
each case, the planner guided the robot to the goal. Animations of the simulations are available at [59]. All the figures are vector graphics, so one can enlarge in 
the browser for best viewing. 

 
trajectories from one sub-goal to another results in a trajectory 
from the initial position to the final destination. It is emphasized 
again that the subgoals are determined by the FSM based on 
the current available information in the local map and therefore 
the overall trajectory may not be globally optimal. To achieve 
a globally optimal path, the FSM should eventually be replaced 
by a global path planner [77], [78], [79]. 

Remark 8: Although each vector field associated to a CLF is 
continuous (even smooth), switching among CLFs can induce 
discontinuity. It is important to keep unchanged the way-pose 
and CLF combination the robot is currently targeting so as to 
ensure continuity. Updates can be made to further way-pose and 
CLF pairs in the path, but not the current ones; see Section VI-F 
for more details. 

 
C. Reactive Thread 

The work in [10], [11], [12], [13], [14], [15], [16], [17], [18] 
provided a significant alternative to the standard path tracking. 
Their high frequency reactive planners create a vector field on 
the configuration space whose integrals curves (i.e., solutions 
of the vector field) provide alternative paths to the goal. When 
the robot is perturbed, it immediately starts following the new 

path specified by the vector field, instead trying to asymptoti- 
cally rejoin the original path. The vector field is in essence an 
instantaneous replanner. 

In the reactive planner of [11], [13], the vector field arises from 
the gradient of a potential function defined on the configuration 
space. Here, we use the solutions of the closed-loop system 
associated with the CLF in (5) to define alternative paths in the 
configuration space. In essence, our feedback functions (12) and 
(11) provide instantaneous replanning of the control commands 
for the omnidirectional model (3). This reactive planner can be 
run at 300 Hz in real-time. 

The reactive thread is a reactive planner, in which the mo- 
tion of the robot is generated by a vector field that relies on 
a closed-loop feedback policy giving controller commands in 
real-time as a function of the instantaneous robot pose. In other 
words, the reactive planner utilizes the proposed CLF described 
in Section III to adjust controller commands automatically when 
the robot deviates from the optimal path. This thread steers the 
robot to the optimal path at 300 Hz. 

Remark 9: The “timing” of Cassie’s foot placement is inher- 
ently event-driven and stochastic. Even though a step cycle may 
be planned for 300 ms, variations in the terrain and deviations of 
the robot’s joints from nominal conditions result in foot-ground 
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contact being a random variable, with a mean of roughly 300 ms. 
Running the reactive planner at anything over 100 Hz essentially 
allows that Cassie’s gait controller, which runs at 2 kHz, is 
accepting the most up-to-date commands from the planner, even 
if a every other messages is lost over UDP transmission. 

 
VI. SIMULATION AND EXPERIMENTAL RESULTS 

The proposed reactive planning system integrates a local map, 
the omnidirectional CLF-RRT∗, and fast replanning from the 
reactive thread. We performed three types of evaluation of the 
reactive planning system. 

 
A. ALIP Robot With Simulated Challenging Outdoor Terrains 
and Indoor Cluttered Scenes 

We first ran the reactive planning system on several syn- 
thetic environments, in which an ALIP robot model [61], [62] 
navigated several simulated noisy, patchy, challenging outdoor 
terrains as well as cluttered indoor scenes. The ALIP robot suc- 
cessfully reached all the goals in different scenes. We tested the 
system on more than 10 different environments, both indoor and 
outdoor with and without obstacles. Due to space limitations, 
we only show the results of six simulations in Fig 9; see our 
GitHub [59] for videos and more results. 

Remark 10: The ALIP robot [61], [62] takes piece-wise con- 
stant inputs from the reactive planning system. Let g, H, τ be 
the gravity, the robot’s CoM height, and the time interval of a 
swing phase, respectively. The motion of an ALIP robot on the 
x-axis is defined as 
(
xk+1

l 
= 

( 
cosh(ξ) 1 sinh(ξ)

l (
xk

l
 

(
1 − cosh(ξ)

l 
p 

ẋk+1 ρ sinh(ξ) cosh(ξ) ẋk −ρ sinh(ξ) 
(19) 

where xk and x˙k are the contact position and the contact velocity 
of the swing foot on the x-axis, px is the CoM on the x-axis of 
the robot, ξ = ρτ and ρ = g/H. Similarly, the motion of the 
robot on the y-axis can be defined. 

Remark 11: Even though a full global map is given in each 
simulation environment, only the information in the local map 
is given to the planning system at each timestamp. The path 
generated from omnidirectional RRT∗ is asymptotically optimal 
within the local map, for the given time window. It is emphasized 
that no global information is provided to the planner which is 
why the resulting trajectory from the initial point to the goal may 
not be the shortest path. 

 
B. Validation of Control Command Feasibility Via a 
Whole-Body Cassie Simulator 

To ensure the control commands from the reactive planning 
system are feasible for Cassie-series bipedal robots, we sent the 
commands via User Datagram Protocol (UDP) from ROS [75] 
C++ to MATLAB-Simmechanics, which simulates a 20 DoF 
of Cassie, using footfalls on the specified terrain. The simu- 
lator then sent back the pose of the simulated Cassie robot 
to the planning system to plan for the optimal path via UDP. 
The planner system successfully took the simulated Cassie to 
the goal without falling, as shown in Fig. 10. 

 
 
 

Fig. 10. Simulation of a C++-implementation of the reactive planner on full- 
dynamic model of Cassie, which accounts for all 20 degrees of freedom of the 
robot in Matlab-SimMechanics and includes a 3-D terrain model. The reactive 
planning system receives the pose of the simulated Cassie via User Datagram 
Protocol (UDP). Cassie’s simulator receives and executes the resulting control 
commands via UDP. The planning system successfully takes the simulated 
Cassie to the goal without falling. An animation is available at [59]. 

 
 

C. Perception Suite Design and Hardware System Integration 

To allow the robot to perceive its surroundings under dif- 
ferent lighting conditions and environments, we designed a 
perception suite that consists of an RGB-D camera (Intel 
RealSenseTM D435) and a 32-Beam Velodyne ULTRA Puck 
LiDAR. Two fans cool a Jetson AGX Xavier with Graphics 
Processing Unit (GPU). A router, a USB hub, and an internet 
switch are utilized for communication from users and the robot to 
the perception suite. Finally, a 12-volt Lithium Polymer battery 
powers up all the sensors. Fig. 11 shows the design of the full 
sensor suite and the step files are available at [80]. 

The weight of the sensor suite, with batteries and everything 
included, is 8.5 Kg. We use an industrial-grade router and 
internet switch to ensure stable connections among the sensors, 

+ x 
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Fig. 11. Computer-aided design (CAD) of the sensor suite. The left shows the 
front view of the sensor suite and the right shows the back. 

 
 

 
Fig. 12. Left shows the sensor suite with different sensors, and the right shows 
the sensor suite mounted on Cassie Blue. 

 

GPU, and the secondary computer on the Cassie robot. Fig. 12 
shows all the sensors mounted on the perception suite. 

 
D. Software System Integration for Real-Time Deployment 

System integration is critical for real-time use. Fig. 13 shows 
the integrated system, distribution, and frequency of each com- 
putation. In particular, the sensor calibrations are performed 
via [81], [82], [83], [84], [85], [86], [87], [88]. The invariant 
Extended Kalman Filter (InEKF) [89], [90] is used to estimate 
the state of Cassie Blue at 2 kHz. Images are segmented via 
MobileNets [91] and a LiDAR point cloud is projected back 
to the segmented image to produce a 3-D segmented point 
cloud. The resulting point clouds are then utilized to build a 
multilayer map (MLM) [68], [69], [70], [92], [93]. The reactive 
planning system then crops the MLM around the robot position 
to create a local map and performs several operations to acquire 
extra information, as described in Section V-B. In addition, the 
reactive planner receives the robot poses from the InEKF at 
300 Hz to adjust the control commands that guide the robot 

to the nominal subposes via the proposed CLF; see Section III 
and Section V-C. The control commands are then sent to Cassie 
Blue’s gait controller [61], [94], [95] via UDP. 

 
E. Full Autonomy Experiments With Cassie Blue 

We conducted several indoor and outdoor full autonomy 
experiments with Cassie Blue. The running cost in (14) was 
selected as 

C(xt, yt, zr) := Ce(xt, yt)+ 0.5Cs(xt, yt) 

+ 0.3(Ce(xt, yt) − zr) (20) 

where Ce(xt, yt), Cs(xt, yt) are the elevation and the magnitude 
of the gradient at a point (xt, yt), respectively. 

1) The Wave Field: We achieved full autonomy with Cassie 
Blue on the Wave Field, located on the North campus of the 
University of Michigan, an earthen sculpture designed by Maya 
Lin [96]; see Fig. 14(a). The Wave Field consists of sinusoidal 
humps with a depth of approximately 1.5 m from the bottom of 
the valleys to the crest of the humps; there is a second sinusoidal 
pattern running orthogonal to the main pattern, which adds 25 cm 
ripples peak-to-peak even in the valleys. Fig. 14(b) shows the 
top-view of the resulting trajectory of the reactive planning 
system. The planning system guided Cassie Blue to walk in 
the valley (the more traversable area), as shown in Fig. 14(c). 
The planning system navigated Cassie Blue around a hump 
that protrudes into one of the valleys, as shown in Fig. 14(d). 
Fig. 15 shows the control commands sent to Cassie Blue. This 
experiment was presented in the Legged Robots Workshop at 
ICRA 2021; the video can be viewed at [97]. The video of the 
Wave Field experiment is uploaded and can be found at [58] 
and [59]. 

Remark 12: We conducted most of the experiments at night 
because there are fewer people walking around. Because of the 
intrinsic properties of LiDAR sensors, ambient lighting does 
not affect their measurements; see [85] for more details about 
LiDAR properties. 

2) Turn Left at Detected Intersections of Corridors and Avoid 
Obstacles: We conducted two experiments of this type on the 
first floor of the FRB at the University of Michigan. The experi- 
ments’ scenes consist of corridors and an open area cluttered 
with tables and couches, which are considered as obstacles 
(height greater than 30 cm from the mapping package), as 
shown in Fig. 16. To detect the intersections of the corridors, we 
group walkable segments within a ring around Cassie Blue. Each 
walkable segment either links with an existing cluster or creates 
a new cluster via the single-linkage agglomerative hierarchical 
clustering algorithm3 [99], where the linkage criteria is the Eu- 
clidean distance. If there are more than two clusters of walkable 
segments, we consider there exists an intersection. Subsequently, 
Cassie Blue makes a left turn at the detected intersection. After 
exiting the corridors, the robot reaches an open area cluttered 
with furniture and performs obstacle avoidance. Under the 
proposed reactive planning system, Cassie Blue completed the 

 
3We chose this clustering algorithm because the number of clusters is un- 

known. Therefore, algorithms like K-Means Clustering [98] cannot be used. 



2106 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023 

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 01,2023 at 20:15:24 UTC from IEEE Xplore. Restrictions apply. 

 

 

P 

 

 
 

Fig. 13. Illustration of how the various processes in the overall autonomy system are distributed and their computation frequencies. The larger boxes indicate 
various modules such as data acquisition, planning, and control. The smaller boxes are colored according to the processor that runs them. 

 
 

 
 

Fig. 14. Experimental results on the Wave Field. The top-left shows the 
experiment terrain, the Wave Field, on the North Campus of the University 
of Michigan. The top-right shows a bird’s-eye view of the resulting trajectory 
from the reactive planning system. The bottom-left shows a back-view of the 
trajectory produced by the planning system as Cassie Blue walks in a valley 
(highly traversable area) of the Wave Field. The bottom-right demonstrates 
the planning system avoiding areas of higher cost. The red peaks are from the 
experimenters walking alongside Cassie. 

 
 
 

experiments without falling or colliding with obstacles. The total 
distance traveled was about 80 m. The experiment videos can 
be viewed at [100] and [59]. 

3) Turn Right At Detected Intersections of Corridors and 
Return to the Initial Position: This experiment was conducted 
on the second floor of the FRB and the experiment scene contains 
four long corridors with glass walls. Some of the LiDAR beams 
penetrated glass a certain points along the corridors, causing the 
mapping algorithm to consider area behind the glass walls as free 
and walkable. We applied the Bresenham line algorithm [76] to 
remove the walkable area behind the glass walls. The computa- 
tion of the Bresenham algorithm is not expensive because it is 
only applied within the local map, mentioned in Section V-B. 
The proposed reactive planning system successfully guided 
Cassie Blue back to its initial position, as shown in Fig. 17. 
The total distance traveled was about 200 m. The experiment 
videos can be viewed at [101] and [59]. 

 
F. Experiment Discussion 

In the two indoor experiments, Cassie exhibited a walk- 
and-stop motion. Where does it come from? As mentioned in 
Section V, the planning threading runs at 5 Hz. At the kth update, 
there will be an optimal path k, comprised of a number of way- 
poses connected by CLFs. Although each vector field associated 
to a CLF is continuous (even smooth), switching among CLFs 
can induce discontinuity. This discontinuity induces Cassie’s 
walk-and-stop motion seen in the videos of the indoor experi- 
ments. How? At each planning update, the entire tree was being 
discarded and a new one constructed. In particular, the closest 
way-pose to Cassie was being reset every 200 ms, and thus the 
robot was never allowed to evolve along the integral curves of 
the vector field. 
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Fig. 15.  Control commands sent to Cassie Blue. UDP packet drops show up as vertical lines. When these occur, the controller uses the previous value. 
 
 

 
 

Fig. 16. Resulting trajectories on the first floor of the FRB3. The map colored 
by height was built online while Cassie was guided by the planning system. The 
green lines are the resulting trajectories and green patches in the map are tables 
and furniture considered obstacles. 

Fig. 17. Experimental results on the second floor of the FRB. The top shows 
glass walls, which lead to refection of LiDAR lasers and creating walkable area 
behind the wall. The bottom illustrates the resulting (200 m) trajectory produced 
by the planning system as Cassie Blue walks. It is remarked that the plot is based 
on pure odometry so no loop closure is performed [89]. 
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The solution is straightforward: at the (k + 1)-st planning 
update, we leave the first unreached way-pose fixed in the path 

k to ensure continuity. In addition, to fully utilize the optimal 
path from the previous update, we keep the current optimal path 

k as a branch and prune all the samples from the kth update. 
This provides a warm start for the (k+1)-st update, as long as 

the path k is still valid and collision-free. If a dynamic obstacle 
has invalidated the path between the robot’s current position and 
the first unreached way-pose, then the entire tree is discarded, 
as before. With these changes made, we conducted several addi- 
tional experiments to confirm that it resolves the walk-and-stop 

movement. The experiments can be viewed at [102] and [59]. 
 

VII. CONCLUSION 

We presented a novel reactive planning system that consists 
of a 5-Hz planning thread to guide a robot to a distant goal 
and a 300-Hz CLF-based reactive thread to cope with robot 
deviations. In simulation, we evaluated the reactive planning 
system on 10 challenging outdoor terrains and cluttered indoor 
scenes. In experiments on Cassie Blue, a bipedal robot with 20 
DoF, we performed fully autonomous navigation outdoors on 
sinusoidally varying terrain and indoors in cluttered hallways 
and an atrium. 

The planning thread uses a multilayer, robot-centric local map 
to compute traversability for challenging terrains, a subgoal 
finder, and a FSM to choose a subgoal location as well as 
omnidirectional CLF-RRT∗ to find an asymptotically optimal 
path for Cassie to walk in a traversable area. The omnidirectional 
CLF-RRT∗ utilizes the newly proposed CLF as the steering 
function and the distance measure on the CLF manifold in the 
RRT∗ algorithm. Both the proposed CLF and the distance mea- 
sure have a closed-form solution. The distance measure nicely 
accounts for the inherent “features” of Cassie-series robots, such 
as high-cost for lateral movement. The robot’s motion in the 
reactive thread is generated by a vector field depending on a 
closed-loop feedback policy providing control commands to the 
robot in real-time as a function of instantaneous robot pose. 
In this manner, problems typically encountered by waypoint- 
following and pathway-tracking strategies when transitioning 
between waypoints or pathways (unsmooth motion, sudden 
turning, and abrupt acceleration) are resolved. 

In the future, we shall combine CBF [33], [34], [35], [36], 
[73], [74] with the CLF in the reactive thread to handle dynamic 
obstacles. In addition, the current local map is a 2.5D, multilayer 
grid map with fixed resolution; it is also interesting to see how 
to efficiently represent a continuous local map. An obstacle in 
the local map is assigned simply by height that the robot cannot 
step over; how to robustly determine an object is an obstacle or 
not is also an interesting research. Furthermore, how to extend 
the CLF to 3-D is another interesting area for future research. 

 
ACKNOWLEDGMENT 

This article solely reflects the opinions and conclusions of its 
authors and not the funding entities. The authors would like 
to thank Lu Gan and Ray Zhang for their assistance in the 
development of the autonomy package used on Cassie Blue in 

these experiments and Yukai Gong and Dianhao Chen for the 
low-level gait controller used in Cassie. They would also like 
to thank Dianhao Chen, Jinze Liu, Jenny Tan, Dongmyeong 
Lee, Jianyang Tang, and Peter Wrobel, Minzhe Li, Lu Gan, Ray 
Zhang, Yukai Gong, and Oluwami Dosunmu-Ogunbi for their 
assistance in the experiments. The first author thanks to Jong Jin 
Park, Collin Johnson, Peter Gaskell, and Prof. Benjamin Kuipers 
for kindly providing insightful discussion for their work. The 
first author thanks Wonhui Kim for useful conversations. 

 
 

REFERENCES 
[1] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for 

path planning,” 1998. 
[2] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” 

Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001. 
[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal 

motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, 2011. 
[4] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime 

motion planning using the RRT*,” in Proc. IEEE Int. Conf. Robot. 
Automat., 2011, pp. 1478–1483. 

[5] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms 
for optimal motion planning,” Robot. Sci. Syst. VI, vol. 104, no. 2, 2010. 
[Online]. Available: http://www.roboticsproceedings.org/rss06/p34.pdf 

[6] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning 
using incremental sampling-based methods,” in Proc. IEEE Conf. Decis. 
Control, 2010, pp. 7681–7687. 

[7] Y. Li, W. Wei, Y. Gao, D. Wang, and Z. Fan, “PQ-RRT*: An improved 
path planning algorithm for mobile robots,” Expert Syst. Appl., vol. 152, 
2020, Art. no. 113425. 

[8] L. Palmieri, S. Koenig, and K. O. Arras, “RRT-based nonholonomic 
motion planning using any-angle path biasing,” in Proc. IEEE Int. Conf. 
Robot. Automat., 2016, pp. 2775–2781. 

[9] J. Wang, M. Q.-H. Meng, and O. Khatib, “EB-RRT: Optimal motion 
planning for mobile robots,” IEEE Trans. Automat. Sci. Eng., vol. 17, 
no. 4, pp. 2063–2073, Oct. 2020. 

[10] F. Golbol, M. M. Ankarali, and A. Saranli, “Rg-trees: Trajectory-free 
feedback motion planning using sparse random reference governor trees,” 
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 6506–6511. 

[11] O. Arslan and D. E. Koditschek, “Sensor-based reactive navigation in 
unknown convex sphere worlds,” Int. J. Robot. Res., vol. 38, no. 2–3, 
pp. 196–223, 2019. 

[12] S. Paternain, D. E. Koditschek, and A. Ribeiro, “Navigation functions for 
convex potentials in a space with convex obstacles,” IEEE Trans. Autom. 
Control, vol. 63, no. 9, pp. 2944–2959, Sep. 2017. 

[13] O. Arslan and D. E. Koditschek, “Exact robot navigation using power 
diagrams,” in Proc. IEEE Int. Conf. Robot. Automat., 2016, pp. 1–8. 

[14] D. E. Koditschek and E. Rimon, “Robot navigation functions on man- 
ifolds with boundary,” Adv. Appl. Math., vol. 11, no. 4, pp. 412–442, 
1990. 

[15] E. Rimon, “Exact robot navigation using artificial potential functions,” 
Ph.D. dissertation, Yale Univ., New Haven, CT, USA, 1990. 

[16] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile 
robots,” IEEE Trans. Syst., Man, Cybern., vol. 19, no. 5, pp. 1179–1187, 
Sep./Oct. 1989. 

[17] D. Koditschek, “Exact robot navigation by means of potential functions: 
Some topological considerations,” in Proc. IEEE Int. Conf. Robot. Au- 
tomat., 1987, vol. 4, pp. 1–6. 

[18] J. V. Gómez, A. Lumbier, S. Garrido, and L. Moreno, “Planning robot 
formations with fast marching square including uncertainty conditions,” 
Robot. Auton. Syst., vol. 61, no. 2, pp. 137–152, 2013. 

[19] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR- 
trees: Feedback motion planning via sums-of-squares verification,” Int. 
J. Robot. Res., vol. 29, no. 8, pp. 1038–1052, 2010. 

[20] J. J. Park and B. Kuipers, “A smooth control law for graceful motion of 
differential wheeled mobile robots in 2D environment,” in Proc. IEEE 
Int. Conf. Robot. Automat., 2011, pp. 4896–4902. 

[21] J. J. Park and B. Kuipers, “Feedback motion planning via non-holonomic 
RRT* for mobile robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots 
Syst., 2015, pp. 4035–4040. 

http://www.roboticsproceedings.org/rss06/p34.pdf


HUANG AND GRIZZLE: EFFICIENT ANYTIME CLF REACTIVE PLANNING SYSTEM FOR A BIPEDAL ROBOT ON UNDULATING TERRAIN 2109 

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 01,2023 at 20:15:24 UTC from IEEE Xplore. Restrictions apply. 

 

 

 

[22] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree: 
A fast marching sampling-based method for optimal motion planning in 
many dimensions,” Int. J. Robot. Res., vol. 34, no. 7, pp. 883–921, 2015. 

[23] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query 
sampling-based motion planning with quick replanning,” Int. J. Robot. 
Res., vol. 35, no. 7, pp. 797–822, 2016. 

[24] G. Vailland, V. Gouranton, and M. Babel, “Cubic bézier local path planner 
for non-holonomic feasible and comfortable path generation,” in Proc. 
IEEE Int. Conf. Robot. Automat., 2021, pp. 7894–7900. 

[25] C. Lau and K. Byl, “Smooth RRT-connect: An extension of RRT-connect 
for practical use in robots,” in Proc. IEEE Int. Conf. Technol. Practical 
Robot Appl., 2015, pp. 1–7. 

[26] W. G. Aguilar, S. Morales, H. Ruiz, and V. Abad, “RRT* GL based 
optimal path planning for real-time navigation of UAVs,” in Int. 
Work- Conf. Artif. Neural Netw., Cham, Switzerland: Springer, 2017, 
pp. 585–595. 

[27] X. Lan and S. Di Cairano, “Continuous curvature path planning for semi- 
autonomous vehicle maneuvers using RRT,” in Proc. IEEE Eur. Control 
Conf., 2015, pp. 2360–2365. 

[28] H.-T. L. Chiang and L. Tapia, “COLREG-RRT: An RRT-based 
COLREGS-compliant motion planner for surface vehicle navigation,” 
IEEE Robot. Automat. Lett., vol. 3, no. 3, pp. 2024–2031, Jul. 2018. 

[29] T. T. Enevoldsen, C. Reinartz, and R. Galeazzi, “COLREGS-informed 
RRT* for collision avoidance of marine crafts,” 2021, arXiv:2103.14426. 

[30] V. Parque and T. Miyashita, “Smooth curve fitting of mobile 
robot trajectories using differential evolution,” IEEE Access, vol. 8, 
pp. 82855–82866, 2020. 

[31] A. Zdevsar and I. vSkrjanc, “Optimum velocity profile of multiple 
bernstein-bézier curves subject to constraints for mobile robots,” ACM 
Trans. Intell. Syst. Technol., vol. 9, no. 5, pp. 1–23, 2018. 

[32] T. Jusko and E. Stoll, Scalable Trajectory Optimization Based on 
Bézier Curves, Braunschweig, Germany: Deutsche Luft-und Raum- 
fahrtkongress, 2016. [Online]. Available: https://www.researchgate.net/ 
publication/327043649_Scalable_Trajectory_Optimization_based_on_ 
Bezier_Curves 

[33] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier 
function based quadratic programs for safety critical systems,” IEEE 
Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017. 

[34] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function 
based quadratic programs with application to adaptive cruise control,” in 
Proc. IEEE Conf. Decis. Control, 2014, pp. 6271–6278. 

[35] Y. Chen, H. Peng, and J. Grizzle, “Obstacle avoidance for low-speed 
autonomous vehicles with barrier function,” IEEE Trans. Control Syst. 
Technol., vol. 26, no. 1, pp. 194–206, Jan. 2018. 

[36] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control 
barrier functions for safety critical control,” IFAC-PapersOnLine, vol. 48, 
no. 27, pp. 54–61, 2015. 

[37] N. Wagener, C.-A. Cheng, J. Sacks, and B. Boots, “An online learning 
approach to model predictive control,” 2019, arXiv:1902.08967. 

[38] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, 
“Information-theoretic model predictive control: Theory and applica- 
tions to autonomous driving,” IEEE Trans. Robot., vol. 34, no. 6, 
pp. 1603–1622, Dec. 2018. 

[39] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model- 
based reinforcement learning with stability guarantees,” Adv. Neural Inf. 
Process. Syst., vol. 30, pp. 908–919, 2017. [Online]. Available: https: 
//dl.acm.org/doi/10.5555/3294771.3294858 

[40] S.-K. Kim, R. Thakker, and A.-A. Agha-Mohammadi, “Bi-directional 
value learning for risk-aware planning under uncertainty,” IEEE Robot. 
Automat. Lett., vol. 4, no. 3, pp. 2493–2500, Jul. 2019. 

[41] A. Majumdar and R. Tedrake, “Robust online motion planning with 
regions of finite time invariance,” in Algorithmic Foundations of Robotics 
X. Berlin, Heidelberg: Springer, 2013, pp. 543–558. 

[42] V. Vasilopoulos, G. Pavlakos, K. Schmeckpeper, K. Daniilidis, and D. 
E. Koditschek, “Reactive navigation in partially familiar planar environ- 
ments using semantic perceptual feedback,” Int. J. Robot. Res., vol. 41, 
no. 1, pp. 85–126, 2022. 

[43] C. Tiseo, V. Ivan, W. Merkt, I. Havoutis, M. Mistry, and S. Vijayaku- 
mar, “A passive navigation planning algorithm for collision-free control 
of mobile robots,” in Proc. IEEE Int. Conf. Robot. Automat., 2021, 
pp. 8223–8229. 

[44] A. Agha et al., “Nebula: Quest for robotic autonomy in challenging 
environments; team costar at the darpa subterranean challenge,” 2021, 
arXiv:2103.11470. 

[45] “Darpa subterranean challenge.” [Online]. Available: https://www. 
subtchallenge.com 

[46] I. D. Miller et al., “Mine tunnel exploration using multiple quadrupedal 
robots,” IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 2840–2847, 
Apr. 2020. 

[47] M. T. Ohradzansky et al., “Multi-agent autonomy: Advancements and 
challenges in subterranean exploration,” 2021, arXiv:2110.04390. 

[48] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and M. 
Hutter, “Graph-based subterranean exploration path planning using aerial 
and legged robots,” J. Field Robot., vol. 37, no. 8, pp. 1363–1388, 
2020. 

[49] D. Tardioli et al., “Ground robotics in tunnels: Keys and lessons learned 
after 10 years of research and experiments,” J. Field Robot., vol. 36, no. 6, 
pp. 1074–1101, 2019. 

[50] J. D. Gammell, S.S. Srinivasa, and T. D. Barfoot, “Informed RRT*: 
Optimal sampling-based path planning focused via direct sampling of 
an admissible ellipsoidal heuristic,” in Proc. IEEE/RSJ Int. Conf. Intell. 
Robots Syst., 2014, pp. 2997–3004. 

[51] R. Mashayekhi, M. Y. I. Idris, M. H. Anisi, I. Ahmedy, and I. Ali, 
“Informed RRT*-connect: An asymptotically optimal single-query path 
planning method,” IEEE Access, vol. 8, pp. 19842–19852, 2020. 

[52] I. Noreen, A. Khan, H. Ryu, N. L. Doh, and Z. Habib, “Optimal path 
planning in cluttered environment using RRT*-AB,” Intell. Serv. Robot., 
vol. 11, no. 1, pp. 41–52, 2018. 

[53] I. Noreen, A. Khan, K. Asghar, and Z. Habib, “A path-planning per- 
formance comparison of RRT*-AB with MEA* in a 2-dimensional 
environment,” Symmetry, vol. 11, no. 7, 2019, Art. no. 945. [Online]. 
Available: https://www.mdpi.com/2073-8994/11/7/945 

[54] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic 
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern., 
vol. 4, no. 2, pp. 100–107, Jul. 1968, doi: 10.1109/tssc.1968.300136. 

[55] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A. 
search meets graph theory,” in Proc. 16th Annu. ACM-SIAM symp. 
Discrete algorithms, vol. 5. Citeseer, Jan. 2005, pp. 156–165. [Online]. 
Available: https://dl.acm.org/doi/10.5555/1070432.1070455 

[56] J. Van Den Berg, R. Shah, A. Huang, and K. Goldberg, “Any- 
time nonparametric a,” in Proc. 25th AAAI Conf. Artif. Intell., 2011, 
pp. 105–111. [Online]. Available: https://www.aaai.org/ocs/index.php/ 
AAAI/AAAI11/paper/view/3680/3826 

[57] Agility Robotics, “Cassie Simulators,” 2018. [Online]. Available: http: 
//www.agilityrobotics.com/sims/ 

[58] J. Huang, “Fully autonomous on the wave field 2021,” 2021. [Online]. 
Available: https://youtu.be/gE3Y-2Q3gco 

[59] J. K. Huang and Jessy W. Grizzle, “omni-directional CLF reactive 
planning system for tough terrains,” 2020. [Online]. Available: https: 
//github.com/UMich-BipedLab/CLF_reactive_planning_system 

[60] E. D. Sontag, Mathematical Control Theory: Deterministic Finite Di- 
mensional Systems, vol. 6. Springer, 2013. 

[61] Y. Gong and J. Grizzle, “Angular momentum about the contact point for 
control of bipedal locomotion: Validation in a lip-based controller,” 2020, 
arXiv:2008.10763. 

[62] S. Kajita and K. Tani, “Study of dynamic biped locomotion on 
rugged terrain-derivation and application of the linear inverted pendu- 
lum mode,” in Proc. IEEE Int. Conf. Robot. Automat., 1991, vol. 2, 
pp. 1405–1411. 

[63] R. Blickhan, “The spring-mass model for running and hopping,” J. 
Biomech., vol. 22, no. 11, pp. 1217–1227, 1989. [Online]. Available: 
https://www.sciencedirect.com/science/article/pii/0021929089902248 

[64] J. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable walking for 
biped robots: Analysis via systems with impulse effects,” IEEE Trans. 
Autom. Control, vol. 46, no. 1, pp. 51–64, Jan. 2001. 

[65] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning 
with centroidal dynamics and full kinematics,” in Proc. IEEE-RAS Int. 
Conf. Humanoid Robots, 2014, pp. 295–302. 

[66] G. Gibson, O. Dosunmu-Ogunbi, Y. Gong, and J. Grizzle, “Terrain-aware 
foot placement for bipedal locomotion combining model predictive con- 
trol, virtual constraints, and the alip,” 2021, arXiv:2109.14862. 

[67] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 
3D linear inverted pendulum mode: A simple modeling for a biped 
walking pattern generation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots 
Syst. Expanding Societal Role Robot. Next Millennium, 2001, vol. 1, 
pp. 239–246. 

[68] P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, and R. Siegwart, 
“Robot-centric elevation mapping with uncertainty estimates,” in Proc. 
Int. Conf. Climbing Walking Robots, 2014 pp. 433–440. 

[69] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic terrain mapping 
for mobile robots with uncertain localization,” IEEE Robot. Automat. 
Lett., vol. 3, no. 4, pp. 3019–3026, Oct. 2018. 

https://www.researchgate.net/publication/327043649_Scalable_Trajectory_Optimization_based_on_Bezier_Curves
https://www.researchgate.net/publication/327043649_Scalable_Trajectory_Optimization_based_on_Bezier_Curves
https://www.researchgate.net/publication/327043649_Scalable_Trajectory_Optimization_based_on_Bezier_Curves
https://dl.acm.org/doi/10.5555/3294771.3294858
https://dl.acm.org/doi/10.5555/3294771.3294858
https://www.subtchallenge.com/
https://www.subtchallenge.com/
https://www.mdpi.com/2073-8994/11/7/945
https://dx.doi.org/10.1109/tssc.1968.300136
https://dl.acm.org/doi/10.5555/1070432.1070455
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3680/3826
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3680/3826
http://www.agilityrobotics.com/sims/
http://www.agilityrobotics.com/sims/
https://youtu.be/gE3Y-2Q3gco
https://github.com/UMich-BipedLab/CLF_reactive_planning_system
https://github.com/UMich-BipedLab/CLF_reactive_planning_system
https://www.sciencedirect.com/science/article/pii/0021929089902248


2110 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023 

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 01,2023 at 20:15:24 UTC from IEEE Xplore. Restrictions apply. 

 

 

 

[70] L. Gan, R. Zhang, J. W. Grizzle, R. M. Eustice, and M. Ghaffari, 
“Bayesian spatial kernel smoothing for scalable dense semantic map- 
ping,” IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 790–797, Apr. 2020. 

[71] H. Lee and W. Chung, “A self-training approach-based traversability 
analysis for mobile robots in urban environments,” in Proc. IEEE Int. 
Conf. Robot. Automat., 2021, pp. 3389–3394. 

[72] T. Shan, J. Wang, B. Englot, and K. Doherty, “Bayesian generalized 
kernel inference for terrain traversability mapping,” in Proc. Conf. Robot. 
Learn., 2018, pp. 829–838. 

[73] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath, “3D 
dynamic walking on stepping stones with control barrier functions,” in 
Proc. IEEE Conf. Decis. Control, 2016, pp. 827–834. 

[74] Q. Nguyen, X. Da, J. Grizzle, and K. Sreenath, “Dynamic walking 
on stepping stones with gait library and control barrier functions,” in 
Algorithmic Foundations of Robotics XII. Cham, Switzerland: Springer, 
2020, pp. 384–399. 

[75] M. Quigley et al., “ROS: An open-source robot operating sys- 
tem,” in Proc. ICRA Workshop Open Source Softw., 2009. [Online]. 
Available: https://www.researchgate.net/publication/233881999_ROS_ 
an_open-source_Robot_Operating_System 

[76] J. E. Bresenham, “Algorithm for computer control of a digital plotter,” 
IBM Syst. J., vol. 4, no. 1, pp. 25–30, 1965. 

[77] J.-K. Huang, Y. Tan, D. Lee, V. R. Desaraju, and J. W. Grizzle, “In- 
formable multi-objective and multi-directional RRT* system for robot 
path planning,” 2022. 

[78] F. Blochliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart, 
“Topomap: Topological mapping and navigation based on visual slam 
maps,” in Proc. IEEE Int. Conf. Robot. Automat., 2018, pp. 3818–3825. 

[79] J. Janos, V. Vonasek, and R. Penicka, “Multi-goal path planning us- 
ing multiple random trees,” IEEE Robot. Automat. Lett., vol. 6, no. 2, 
pp. 4201–4208, Apr. 2021. 

[80] J. K. Huang and J. W. Grizzle, “Cassie torso design,” 2021. [On- 
line]. Available: https://github.com/UMich-BipedLab/torso_design_ 
for_cassie 

[81] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart, 
“Extending kalibr: Calibrating the extrinsics of multiple IMUs and 
of individual axes,” in Proc. IEEE Int. Conf. Robot. Automat., 2016, 
pp. 4304–4311. 

[82] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial 
calibration for multi-sensor systems,” in Proc. IEEE/RSJ Int. Conf. Intell. 
Robots Syst., 2013, pp. 1280–1286. 

[83] L. Oth, P. Furgale, L. Kneip, and R. Siegwart, “Rolling shutter camera 
calibration,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, 
pp. 1360–1367. 

[84] J. Huang and J. W. Grizzle, “Improvements to target-based 3D LiDAR 
to camera calibration,” IEEE Access, vol. 8, pp. 134101–134110, 2020. 

[85] J. K. Huang, S. Wang, M. Ghaffari, and J. W. Grizzle, “LiDARTag: A 
real-time fiducial tag system for point clouds,” IEEE Robot. Automat. 
Lett., vol. 6, no. 3, pp. 4875–4882, Jul. 2021. 

[86] J.-K. Huang, C. Feng, M. Achar, M. Ghaffari, and J. W. Grizzle, “Global 
unifying intrinsic calibration for spinning and solid-state LiDARs,” 2020, 
arXiv:2012.03321. 

[87] J. K. Huang and J. W. Grizzle, “Extrinsic LiDAR camera calibra- 
tion,” 2019. [Online]. Available: https://github.com/UMich-BipedLab/ 
extrinsic_lidar_camera_calibration 

[88] J. K. Huang, C. Feng, M. Achar, M. Ghaffari, and J. W. Grizzle, “Intrin- 
sic LiDAR calibration,” 2019. [Online]. Available: https://github.com/ 
UMich-BipedLab/LiDAR_intrinsic_calibration 

[89] R. Hartley, M. G. Jadidi, J. Grizzle, and R. M. Eustice, “Contact-aided 
invariant extended Kalman filtering for legged robot state estimation,” 
in Proc. Robot.: Sci. Syst. Conf, Pittsburgh, Pennsylvania, Jun. 2018. 
[Online]. Available: http://www.roboticsproceedings.org/rss14/p50.pdf 

[90] R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-aided 
invariant extended Kalman filtering for robot state estimation,” Int. J. 
Robot. Res., vol. 39, no. 4, pp. 402–430, 2020. 

[91] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks 
for mobile vision applications,” 2017, arXiv:1704.04861. 

[92] L. Gan et al., “Multi-task learning for scalable and dense multi-layer 
bayesian map inference,” 2021, arXiv:2106.14986. 

[93] L. Gan, J. W. Grizzle, R. M. Eustice, and M. Ghaffari, “Energy-based 
legged robots terrain traversability modeling via deep inverse reinforce- 
ment learning,” IEEE Robot. Automat. Lett., vol. 7, no. 4, pp. 8807–8814, 
Oct. 2022. 

[94] Y. Gong and J. Grizzle, “Zero dynamics, pendulum models, and angular 
momentum in feedback control of bipedal locomotion,” J. Dyn. Syst., 
Meas., Control, vol. 144, no. 12, 2021, Art. no. 121006. 

[95] Y. Gong et al., “Feedback control of a cassie bipedal robot: Walking, 
standing, and riding a segway,” in Proc. IEEE Amer. Control Conf., 2019, 
pp. 4559–4566. 

[96] “The wave field on the north campus of the university of Michigan,” 
https://arts.umich.edu/museums-cultural-attractions/wave-field/ 

[97] “ICRA 2021 Workshop on legged robots (towards real-world deployment 
of legged robots),” Accessed: Jun. 10, 2021. [Online]. Available: https: 
//youtu.be/0Gg8BTs6HLY 

[98] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory, 
vol. 28, no. 2, pp. 129–137, Mar. 1982. 

[99] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32, 
no. 3, pp. 241–254, 1967. 

[100] J. K. Huang et al., “Cassie autonomously navigates around obstacles,” 
2021. [Online]. Available: https://youtu.be/3HVJotA-w4Y 

[101] J. K. Huang et al., “Cassie autonomously navigates in four long 
corridors (200 meters),” 2021. [Online]. Available: https://youtu.be/ 
PT2mVaKTdT8 

[102] J. K. Huang et al., “Cassie autonomous navigation: Smooth motion,” 
2021. [Online]. Available: https://youtu.be/nPGs4AWLLSg 

 
 
 
 
 

Jiunn-Kai Huang received the Ph.D. degree in 
robotics from the University of Michigan, Ann Arbor, 
MI, USA, in 2022. 

He was in charge of building a full stack of au- 
tonomy pipeline for the system integration of Cassie 
Blue, a bipedal robot with 20 degrees of freedom. 
His research focused on autonomy of bipedal robots, 
encompassing sensor fusion, pose estimation, and 
motion planning. 

 
 
 
 
 
 

Jessy W. Grizzle (Life Fellow, IEEE) received the 
Ph.D. degree in electrical engineering from The Uni- 
versity of Texas at Austin, Austin, TX, USA, in 1983. 
He is currently a Professor of robotics with the Uni- 
versity of Michigan, where he holds the titles of the 
Elmer Gilbert Distinguished University Professor and 
the Jerry and Carol Levin Professor of Engineering. 
He jointly holds 16 patents dealing with emissions 

reduction in passenger vehicles through improved 
control system design. 

Prof. Grizzle is a Fellow IFAC. He was a recipient 
of the Paper of the Year Award from the IEEE Vehicular Technology Society in 
1993, the George S. Axelby Award in 2002, the Control Systems Technology 
Award in 2003, the Bode Prize in 2012, the IEEE Transactions on Control Sys- 
tems Technology Outstanding Paper Award in 2014, and the IEEE Transactions 
on Automation Science and Engineering, Googol Best New Application Paper 
Award in 2019. His work on bipedal locomotion has been the object of numerous 
plenary lectures and has been featured on CNN, ESPN, Discovery Channel, 
The Economist, Wired Magazine, Discover Magazine, Scientific American, and 
Popular Mechanics. 

https://www.researchgate.net/publication/233881999_ROS_an_open-source_Robot_Operating_System
https://www.researchgate.net/publication/233881999_ROS_an_open-source_Robot_Operating_System
https://github.com/UMich-BipedLab/torso_design_for_cassie
https://github.com/UMich-BipedLab/torso_design_for_cassie
https://github.com/UMich-BipedLab/extrinsic_lidar_camera_calibration
https://github.com/UMich-BipedLab/extrinsic_lidar_camera_calibration
https://github.com/UMich-BipedLab/LiDAR_intrinsic_calibration
https://github.com/UMich-BipedLab/LiDAR_intrinsic_calibration
http://www.roboticsproceedings.org/rss14/p50.pdf
https://arts.umich.edu/museums-cultural-attractions/wave-field/
https://youtu.be/0Gg8BTs6HLY
https://youtu.be/0Gg8BTs6HLY
https://youtu.be/3HVJotA-w4Y
https://youtu.be/PT2mVaKTdT8
https://youtu.be/PT2mVaKTdT8
https://youtu.be/nPGs4AWLLSg

