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a Bipedal Robot on Undulating Terrain
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Abstract—We propose and experimentally demonstrate a reac-
tive planning system for bipedal robots on unexplored, challenging
terrain. The system includes: a multilayer local map for assess-
ing traversability; an anytime omnidirectional control Lyapunov
function for use with a rapidly exploring random tree star (RRT*)
that generates a vector field for specifying motion between nodes;
a subgoal finder when the final goal is outside of the current map;
and a finite-state machine to handle high-level mission decisions.
The system also includes a reactive thread that copes with robot
deviations via a vector field, defined by a closed-loop feedback
policy. The vector field provides real-time control commands to the
robot’s gait controller as a function of instantaneous robot pose.
The system is evaluated on various challenging outdoor terrains
and cluttered indoor scenes in both simulation and experiment
on Cassie Blue, a bipedal robot with 20 degrees of freedom.
All implementations are coded in C++ with the robot operating
system and are available at https://github.com/UMich-BipedLab/
CLF _reactive_planning_system.

Index Terms—Autonomous robots, autonomous systems, legged
locomotion, motion planning, path planning, robot sensing systems,
robot motion, robot vision systems.

[. INTRODUCTION

OTION planning as a central component for autonomous
Mavigation has been extensively studied over the last few
decades. Algorithms such as RRT*, A*, and their variants focus
on finding an (asymptotically) optimal path as computationally

efficiently as possible [1], [2], [3], [4], [5], [6], [7], [8], [9]-
The application of these algorithms relies on designing a control
policy to track the planned path, resulting in waypoint following
or pathway tracking. In turn, the tracking of path segments
(between waypoints) leads to nonsmooth motion of the actual
robot, due to abrupt acceleration or heading changes when
transitioning between waypoints/pathways.

This article seeks to develop a reactive planning system for
bipedal robots on unexplored, unmapped, challenging terrains,
and to provide high-rate (directional) velocity and heading com-
mands to be realized by the robot’s low-level feedback-control
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Fig. 1. In the top figure, Cassie Blue autonomously traverses the Wave Field
via the proposed reactive planning system, comprised of a planning thread and a
reactive thread. The planning thread involves a multi-layer local map to compute
traversability, a subgoal finder, and an omnidirectional CLF RRT*. Instead of
a common waypoint-following or path-tracking strategy, the reactive thread
copes with robot deviation while eliminating non-smooth motions via a vector
field (defined by a closed-loop feedback policy) that provides real-time control
commands to the robot’s gait controller as a function of instantaneous robot
pose. The bottom figure is the elevation map built online. The red peaks are
from the experimenters walking alongside Cassie.

gait-generation algorithm. For this application, the nonsmooth
aspects of the planned motions arising from waypoints/pathways
transitions are detrimental to stability of the overall system.
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Several approaches have been developed to address the non-
smooth aspects of paths produced by motion planning, such
as reactive motion planning [10], [11], [12], [13], [14], [15],
[16], [17], [18] and feedback motion planning [19], [20], [21].
Fundamentally, these approaches replace paths to be followed
with smooth vector fields whose solutions guide the robot’s
evolution in its configuration space.

We are inspired by the work of Park and Kuipers [20], [21],
which proposed a control Lyapunov function (CLF) to realize
reactive planning for a nonholonomic differential-drive wheeled
robot. A CLF is a Lyapunov function for a closed-loop system,
where at any given time instant, there exists a control input that
renders the derivative of the Lyapunov function along the system
dynamics negative definite. Hence, a CLF is associated with
asymptotically approaching a goal; see Section III-A. While the
underlying model of Park and Kuipers [20], [21] was designed
for differential-drive robots, which is not directly applicable to a
Cassie bipedal robot due to different dynamics and control laws,
their basic concept is applicable; see Section III-B for a more
detailed discussion. As part of our work, we design an appropri-
ate CLF for robots capable of walking in any direction with any
orientation. Moreover, we take into account features specific to
bipeds, such as the limited lateral leg motion that renders lateral
walking more laborious than sagittal plane walking.

The feedback motion planning algorithm in Park and
Kuipers [20] and [21] has not yet been evaluated on hardware.
In general, there is a significant chasm between a planning algo-
rithm and autonomous navigation on real robots. Most planning
algorithms assume not only that a fully explored, noise-free,
perfect map is given but also that the robot’s destination will
always lie within this map. Moreover, the algorithms also assume
a perfect robot pose and a perfect robot with ideal actuators
that can execute an arbitrary trajectory. These assumptions
are not practical. Therefore, utilizing a planning algorithm for
autonomous navigation with real robots remains challenging.
We propose and demonstrate experimentally an autonomous
navigation system for a Cassie bipedal robot that is able to
handle a noisy map in real-time, a distant goal that may not be
in the initial map when the user decides where to send the robot,
and importantly, a means to smoothly handle robot deviation. In
addition, a rudimentary finite-state machine (FSM) is integrated
to handle actions such as where to turn at intersections.

II. RELATED WORK AND CONTRIBUTIONS

Motion planning, an essential component of robot autonomy,
has been an active area of research for multiple decades with
an accompanying rich literature. In this section, we review
several types of planning algorithms and summarize our main
contributions.

A. Sampling-Based Motion Planning

Rapidly exploring tree (RRT) [1] stands out for its low com-
plexity and high efficiency in exploring unknown configuration

spaces. Its asymptotically optimal version — RRT* [5] — has
also gained much attention and has contributed greatly to the
spread of the RRT family. RRT, RRT*, and variations on the
basic algorithms, generate a collision-free path comprised of
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piece-wise linear paths between discrete poses of the robot [1],
[21, [31, [4], [5], [6], [7]. [8], [9], [22], [23]. However, abrupt
(nondifferentiable) transitions between waypoints/pathways are
an inherent issue with this family of planning algorithms and in
addition, the generated trajectories do not account for control
constraints. Therefore, to ensure the produced trajectories are
feasible, additional expensive computations such as trajectory
smoothing or optimization are often involved. A great deal of
attention has been directed to this area, resulting in versions
of RRT* [24], [25], [26], [27], [28], [29] that utilize different
smoothing techniques or steering functions.

Trajectory smoothing (B-spines, Dubins, or other parametric
curves) is often designed independently of robot dynamics [30],
[31], [32], which can lead to unbounded turning rate, accelera-
tion, or jerk. Therefore, additional computations are necessary
to validate the resulting smoothed trajectory. Furthermore, these
methods are often ambiguous about how they treat robot devi-
ations about the planned path and in the end provide open-loop
control laws for tracking.

B. Optimization-Based Planning and DARPA Subterranean
Challenge

Point-wise in time optimization- and model-based algorithms,
such as CLF paired with quadratic programs, (CLF-QP), or,
when integrated with Control Barrier Functions, (CLF-CBF-
QP) [33], [34], [35], [36] have been developed to provide low-
level control for safety. The techniques can be used in tandem
with the proposed CLF to avoid obstacles smoothly. Data-driven
planning and control algorithms for safety—critical systems
are combining machine-learning [37], [38], model predictive
control (MPC), reinforcement learning [39], or belief-space
learning [40].

Majumdar and Tedrake [41] proposed the region of attraction
for time-varying systems to divide the path into several over-
lapping regions, similar to funnels [42], in which the system
is invariant. To avoid numerical optimization for verifying the
overlap of the regions and to allow generating stable trajectory
from the funnels in the presence of disturbances, Tiseo et al. [43]
presented a framework to combine the region of attraction and
the stability properties of a fractal-impedance controller. The
region of attraction is a function of a list of waypoints. They fit a
force profile to the list of waypoints, so that the desired trajectory
is an attractive set for an associated vector field. On the other
hand, in our CLF reactive system, given a list of waypoints con-
necting a starting point and a subgoal, a vector field provided by
the proposed CLF—designed specifically for bipedal robots—is
utilized to connect two consecutive waypoints. Therefore, the
full resulting trajectory composed of several CLF vector fields
is easy for bipedal robots to follow. The CLF is also used in
the pruning process for the RRT*, also ensuring that it favors
trajectories that are the most compatible with the CLF, and hence
the motions of the robot.

Uncertainty-aware planning through networked belief-aware
perceptual autonomy (NeBula) [44] from the DARPA Sub-
terranean Challenge (DARPA SubT) [45] probabilistically
fuses various sensing modalities to allow the robot to cre-
ate belief-aware local maps. The underlying planner is
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stochastic traversability evaluation and planning where they
build an uncertainty-aware 2.5D traversability map to solve
an online receding horizon MPC problem. Miller et al. [46]
presented a quadruped with higher levels of autonomy to explore
a tunnel environment in the 2019 DARPA SubT, where a heuris-
tic cost function is designed to penalize sidestepping, whereas
we design a CLF to account for it. To achieve autonomous
exploration, MARBLE [47] proposes graph and frontier-based
path planning algorithms on four-wheeled and tracked ground
robots complimented with multirotor platforms in which a re-
active centering controller for wheeled robots is implemented
to the the system avoids obstacles while navigating the graph.
The GBPlanner proposed in [48] builds and uses a real-time
topological map during subterranean exploration. An overview
of ground robotics systems for underground environments is
provided in [49]. The research challenges faced in such robotics
exploration missions span the domains of communications,
perception, simultaneous localization, and mapping (SLAM),
planning, and control.

C. Reactive Planning

Reactive planning contributes another significant concept to
the motion planning literature [10], [11], [12], [13], [14], [15],
[16], [17], [18], namely potential fields. In other words, the
reactive planning replaces the concept of trajectory with that of
a vector field arising as the gradient of a potential function. The
method of potential fields seems to address all the issues raised
in Section II-A for sampling-based methods. However, most of
the experimental work has been carried out on flat ground and
it is unclear how extensions to undulating terrain can be per-
formed. The concept of combining sampling-based algorithms
with reactive planning was developed in [19], [20], [21], which
not only provides a feasible path to follow from RRT*, but also a
smooth feedback control law that instantaneously replans a path
to the next goal as the robot deviates due to imperfections in the
robot model in the robot’s hardware or terrain. The feedback laws
greatly ameliorates the issue of nonsmooth paths. The feedback
motion planning in [19] is based on a family of CLFs designed
via linearization of the robot’s model around a sufficiently large
set of points in the robot’s state space, LQR, and Sum of Squares
(SoS), whereas the feedback motion planning of [20], [21] uses
a single CLF and varies the associated equilibrium to set subgoal
poses.

The feedback motion planning of [20], [21] is the starting
point for the work in this article. Park and Kuipers provide a
novel form of RRT* for differential-drive wheeled robots, where
a CLF is utilized as the steering function in the RRT* algorithm
to evaluate the cost between nodes in the trees associated with
RRT*, and it replaces the waypoints that are typically used
in planning algorithms. Together, these innovations result in
a system where robot control and motion planning are tightly
coupled. As explained in Section III-B, the CLF in [20] and
[21] is designed for differential-drive wheeled robots which
must respect nonholonomic constraints associated with wheels.
In Section III-B, we propose a new goal-centric coordinate
system and CLF that are appropriate for bipedal robots that
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are omnidirectional. While bipedal robots are omnidirectional,
they typically have limited agility in the lateral direction. We
show how to account for the relative ease of walking forward
and backward, sideways, and turning as a function of distance
from goal. In Section IV, we take these features of bipedal
robots into account when connecting, exploring, and rewiring
the trees in RRT*. In addition, we show how to take terrain
features, such as friction and elevation changes, into account; see
Section V-B. This allows our Cassie robot to navigate undulating
terrain.

We note that sampling-based approaches exist that are more
efficient than RRT*, such as bidirectional RRT*, informed
RRT* [50], [51], and RRT*-AB [52], [53]. We choose RRT* be-
cause the CLF used in the growing, pruning, and rewiring of the
tree is asymmetric, meaning the cost from node i to j is not equal
to the cost from node j to node i. Therefore, the cost in growing
the tree forward and backward are not the same. Search-based
planners, such as A*[54], Bi-directional A*[55], or ANA*[56]

are efficient on 2-D graphs but not efficient in continuous space.

D. Contributions

In particular, the present work has the following contributions:

1) We propose a novel 2-D smooth CLF with a closed-form
solution to the feedback controller for omnidirectional
robots. The 2-D CLF is designed such that when a goal
is far from the robot position, the CLF controls the robot
orientation to align with the goal while moving toward
the goal. On the other hand, the robot walks to the goal
disregarding its orientation if the goal is close. In addition,
we study the behaviors of the CLF under different initial
conditions and parameters.

2) We define a closed-form distance measure from a pose
(position and orientation) to a target position for omni-
directional robots under a pose-centric polar coordinate.
This distance metric nicely captures inherent features of
Cassie-series robots, such as the low-cost of longitudinal
movement and high-cost of lateral movement.

3) We utilize the proposed CLF and the distance measure
to form a new variation of RRT* (omnidirectional CLF-
RRT*) to tackle undulating terrains, in which both distance
and traversability are included in the cost to solve the op-
timal path problem. Moreover, as in [20], the optimal path
is realized as a sequence of subgoals that are connected by
integral curves of a set of vector fields, thereby providing
reactive planning: in response to a disturbance, each vector
field associated with the optimal path automatically guides
the robot to a subgoal along a new integral curve of the
vector field.

4) We integrate all the above components together as a re-
active planning system for challenging terrains/cluttered
indoor environments. It contains a planning thread to
guide Cassie to walk in highly traversable areas toward
a distant goal on the basis of a multilayer map being built
in real-time and a reactive thread to handle robot deviation
via a closed-loop feedback control instead of a commonly
used waypoint-following or path-tracking strategy.
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We evaluate the reactive planning system by performing
three types of experiments: 1) A simplified biped pendulum
model (inputs are piece-wise constant, similar to Cassie-series
robots) navigates various synthetic, noisy, challenging outdoor
terrains, and cluttered indoor scenes. The system guides the
robot to its goals in various scenes, both indoors and outdoors,
with or without obstacles. The system also guides the robot to
completion of several high-level missions, such as turning left
at every intersection. 2) To verify that the outputs of the control
commands are feasible for Cassie-series robots, the system gives
commands to a Cassie whole-body dynamic simulator [57],
which simulates 20 degrees of freedom (DoF) of Cassie in
MATLAB Simmechanics on a 3-D terrain. 3) Last, the reactive
planning system successfully allows Cassie Blue to complete
several indoor and outdoor missions: a) walking in corridors
and avoiding furniture in the Ford Robotics Building (FRB)
at the University of Michigan; b) turning left when detected
intersections of corridors and return to its initial position in FRB;
and c) traversing parts of the Wave Field on the North campus
of the University of Michigan, as shown in Fig. 1.

The videos of the autonomy experiments can be found at [58].
All of the simulated environments, the experimental data, and
the C++ implementations for the reactive planning system are
made available at https://github.com/UMich-BipedLab/CLF
reactive_planning_system [59].

The remainder of this article is organized as follows. Sec-
tion III constructs the new CLF for bipeds and omnidirectional
robots. The omnidirectional CLF-RRT* is introduced in Sec-
tion IV. Section V integrates all the above components as a
reactive planning system. Simulated and experimental evalua-
tions of the proposed reactive system is presented in Section VI.
Finally, Section VII concludes this article.

III. CONSTRUCTION OF A CLF

This section first provides an introduction to CLFs and then
describes the reasons for creating a new CLF function, the
construction of the CLF, and an analysis of its parameters.

A. Lyapunov and CLF

In this article, our goals and pseudogoals are chosen to be
equilibrium points of the center of mass (CoM) dynamics of
Cassie. A candidate Lyapunov function is a (locally) positive
definite function that vanishes at an equilibrium point of a given
dynamical system. If at each point of its definition, there exists a
control input such that the derivative of the candidate Lyapunov
function along the dynamics is negative definite, then it is called a
CLF, or CLF for short. Hence, CLFs provide a means to specify
a goal as well as a family of trajectories that converge to the
goal from “arbitrary” points (sufficiently near) the goal. The
trajectories are the solutions of the underlying dynamic model
that are compatible with the Lyapunov function monotonically
decreasing.

We refer the reader to [60] for the formal definition. Consider

O an open set about the origin of P, and

x = f(x, u) M
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a control system with x 2" is system state and u R™
control commands. A differentiable function o, [0, ) is
aCLFif (i) V(x) = 0> x =0 and for each = ¢ Q, there
exists udR™ such that V (x)f (x, u) < 0. Any feedback law
u = a(x) such that W (x)f (x, a(x)) < O then renders the
origin asymptotically stable.

In [20], the output of their planner is a feedback function
u = a(x) rendering a particular CLF negative definite. When
the CLF is associated with a goal or pseudogoal of the planner,
this becomes a particularly astute means for the planner to
communicate its intentions to a low-level controller: the CLF
specifies how the planner wants the robot to approach the goal
from an entire open set of current states of the robot. This allows
the immediate reaction to disturbances. We adopt this means in
this article as well.

B. Redesign of CLF Proposed in the Literature

The 2-D CLF planner of [20], [21] has been designed for dif-
ferentially driven nonholonomically constrained robots, whose
dynamics and control laws are inappropriate for bipedal robots.
Like most robot models, the work [20] assumes that the robot is
able to continuously change its velocity and heading. However,
this is not possible for underactuated bipeds such as Cassie
Blue. According to the angular linear inverted pendulum (ALIP)
model used for low-level feedback control of Cassie Blue [61],
[62], [63], [64], [65], the heading angle and the longitudinal and
lateral velocity commands can only be updated at the initiation of
a step and not within a step. In particular, the low-level controller
on a bipedal robot during the swing phase is controlling body
posture and regulating foot placement at the end of the current
step so that the CoM can achieve velocity and orientation goals
over the next step or next few steps. Only minor instantaneous
corrections to body velocity can be achieved during a given step
of the robot. In other words, bipedal robots such as Cassie are
not able to implement changes in velocity control commands
during the current swing phase, but will instead execute the
received control commands during the following swing phase.
When piece-wise constant commands are applied to the existing
2-D CLF of [20], [21], built around a Dubins car model, the
closed-loop system will oscillate about the discrete heading
directions as the robot approaches the goal pose, as explained in
Fig. 2. This oscillation is undesirable as it can affect the robot’s
balance.

With a Dubins car model as used in [21] and [20], the linear
velocity is always aligned with the heading angle of the vehicle,
and hence this is also true as the vehicle approaches an equilib-
rium pose. Consequently, a CLF for a target position must also
include a target heading, therefore, a target pose. The vehicle
must steer and align itself as it approaches the target. Cassie
Blue, on the other hand, similar to an omnidirectional robot, is
able to move laterally with zero forward velocity, which allows
the robot to start with an arbitrary pose and arrive at a goal
position with an arbitrary heading (i.c., start with a pose and end
with a position). Lateral walking, however, requires more effort
due to the limited workspace of the lateral hip joints on the robot
and this should be taken into account when designing a CLF.
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Fig.2. Plots show paths in 2-D generated by the CLF of [20], [21] for Dubins
cars. At each point, the tangent to a path (1 and ¢ in the blowup) is the heading
angle for the robot. These paths clearly fail to account for a biped’s ability to
move laterally. Moreover, in practice, an underactuated robot such as Cassie
Blue would experience chattering in the heading angle when approaching the
goal (red arrow). Moreover, if the robot overshoots the goal, it would have to
walk along a circle to return to the goal. For these reasons, a new CLF is needed.

To avoid undesirable oscillating movement and account for
lateral walking, a new candidate CLF is designed on the basis of
an appropriate kinematics model for underactuated bipeds and
other omnidirectional robots.

C. State Representation

As mentioned in Section III, Cassie Blue is able to walk in
any direction. Therefore, we model Cassie Blue as an omnidi-
rectional robot and reduce it to a directional point mass. We will
account for the increased effort required to walk laterally when
we design the CLF.

Denote p = (xr, yr, 0) the robot pose and = (xt, yr) the
goal position in the world frame. Let s be the state of an
omnidirectional robot represented in a robot pose-centric polar
coordinate

s={(r,6)|lre R, and 6§ € (—m, l} )

where (m is open on the Ileft, r=

(xt— x)2+(yc yn? and & is the angle between the

heading angle of the robot (6) and the line of sight from the
robot to the goal, as shown in Fig. 3.

Remark 1: Park and Kuipers [20], [21] used target pose-
centric polar coordinates because the wheelchair robot needed to
arrive at a target position with a target heading angle. In our case,
we can use robot pose-centric coordinates because we have the
freedom to arrive at the target position with any heading angle.
For bipeds, turning in place is easy, and thus, if orientation at
the goal is critical, it can be handled as a final maneuver.

D. Construction of CLF
The kinematics of an omnidirectional robot is defined as

(| ® (6 C1 (i
: —Cos — sin Uy 0 3
7. C .
5§ = Lsin(6) —1cos( v T e ©)
r r y
In the above expression, we view Ux, Uy, and @ as control
variables. Because the matrix

—cos(6)  —sin()
Lsin(6) —1cos(6)
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Fig. 3. [Illustration of the robot pose-centric polar representation (s = (7, 8))
for robot pose (xr, yr, 6) and target positionG = (x:, yi). Here, r is the radial
distance to the target and & is the angle between the heading angle 6 of the robot
and the line of sight from the robot to the goal. The longitudinal velocity, lateral
velocity, and angular velocity are vy, vy and @, respectively.

is negative definite (and hence invertible) for all » > 0, the model
(3) is over actuated for r > 0.

Remark 2: Observe that 6 < §' when the robot moves along
the x-axis, as shown in Fig. 4(a). Therefore, 2 sin(d) is positive.
r

Similarly, 2 cos(6) is negated because 6 < & when the robot

moves toward the y-axis, as shown in Fig. 4(b).
We next note that the change of control variables

(Url (cos(é') sin(é')l(vxl (OI
vs T &n’@ _—@COS, vy e

allows us to feedback linearize the model to a pair of integrators

r — ~Ur

9] Us
We note that for this model, any positive definite quadratic
function is automatically a CLF. For later use, we note that for
allr>0 I

( ' I(
cos(6) rsin(0) Ur
vy = sin(6) —rcos(8)

As mentioned in Section 11, lateral walking is more expensive
than longitudinal walking because movement in the lateral hip
joint is limited. A candidate CLF'£L, in terms of the robot’s

current pose and target (end) position, is defined as

2 2 2
r +vy sin

&= ) )

where y is a weight on the orientation and the role of 8 > 0 will
be described later. We next check that £1is a CLF. The derivative

“

Vs — @

UIn polar coordinate, the function &£ is positive definite in the sense that £ =
0 = r=0, and when r = 0, the angle 6 is arbitrary or undefined.
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Y g =(x,
' .( V)

A}

(1)) % = (xp yt)

(b)

Fig. 4. This figure explains the signs in (3). On the top, § increases when
the robot moves parallel to the x-axis. Therefore, 2* sin & is positive. Similarly,

-
Y4 cos 6isnegated because & decreases when the robot moves toward the y-axis.

of £is
. 2 .
£=r+ ﬁTV sin (2.8 6) 6
By .
= r(—vn)+ TV sin(280)vs. (6)
The feedback
Ur = kn s
ko + 1
o sin(280 ™
=_ — sin
Us ﬁkm Ky + 7
results in
krl

r
2 _ o 12— sin2(2 8
P T R sin2B0) ®)

which is negative forall r >0, 8 >0, kri >0, kro >0, ks1 >
0, and ksy > 0. It is emphasized that the proposed CLF under
the robot-centric coordinate system is 2-D. Later, the cost func-
tion for the RRT*-based planner will be 3-D; see Section IV-B.
Work in [62], [66], [67] shows how to adapt the local model to
the terrain in such a way that the model (7) is always valid and
hence the 2-D CLF is applicable.

Remark 3: From (7), it follows that § = vs =0 for 236 €
{0, =m}. Therefore, the manifolds

£=—

M= (r,6)|r=0,6€ 0, ,i;n

= I
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are invariant for the closed-loop system. From (8), the manifold
Manis locally attractive for § € {0, %} and repulsive for § =
i;ﬁ' By selecting 8 > 0, the repulsive invariant manifold can
be placed outside the field of view (FoV) of Cassie, as shown
in Fig. 6. In practice, a FSM is needed so that the robot will
initially turn in place so that it starts with the goal located within
the FoV of its sensor suite.

The next step is to set up an optimization such that the
control variables (vx, vy, ®) satisty (7) and take into account that
walking sideways takes more effort than walking forward, for
Cassie. Because the camera faces forward, walking backward is
only selected if the robot is localized into an already built portion
of the map.

E. Closed-Form Solution

Taking (4) as a constraint, we propose to select @ so as to keep
vy small (limit lateral walking) by optimizing

J =min (vy)2 + ae?. 9)
Uy, ®
The parameter a> 0 allows us to penalize aggressive yaw

motions @, as will be illustrated in Section III-F. Plugging in
the constraint (4), (9) leads to

J = min {[sin()vr — reos(8)(ve — ®)]?+aw }
= moi)n {(sin(6)vr) 2+ [rcos(6)(vs — @)]

— 2sin(8)vrcos(8)(vs — @) + ae .

A few algebraic calculations and the dropping of “constant
terms” lead to

®* = argmin {r2cos (8) (vs — ®)*
(0]

+ 2rur sin(6) cos(6)w + aa?}

which implies that
a+ 12 cos?(6) o* + rcos(6) [vrsin(d) — rvs cos(6)] = 0.
(10)
The final result is
o = rcos(9) [rvs cos(6) — vrsin(6)] (11
a + r? cos?(6)
and then
=@ (v, sin (6) — rvg cos (6))
v 2 cos (6)2 +a
vrcos (6) 2 + avs sin (0) r+ a vr cos ()
bt = (2

r?cos (6)2 +a

F. Qualitative Analysis of the Closed-Loop Trajectories

The default parameters applied in this analysis are shown in
Table I. Fig. 5 shows how the closed-loop trajectories vary as a
function of heavy, medium, and light penalties on yaw motion,
and three different initial distances from the target, with 6, the
robot’s heading yelative to the target, fixed at —60°. We observe
that with r =2 2, the robot walks laterally to achieve the goal
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TABLE I
DEFAULT VALUES OF PARAMETERS
o 3 D ]"r'l ll'/",_’ ]'v(\'l l"t’;i.'
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2F =
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Fig. 5. Distance to the target and the penalty on yaw motion in (9) both affect
closed-loop behavior arising from the CLF. The arrows indicate the robot’s
absolute heading. In each solution of the closed-loop system, the robot’s heading
relative to the target is initialized at_60°. When the robot is distant from the goal
and the heading does not point toward the goal, it will align its relative heading
to the target while approaching the goal. The level of alignment depends on the
yaw motion penalty, a. On the other hand, when the robot is close to the goal,
the closed-loop controller no longer adjusts the heading angle and employs a
lateral motion to reach the goal.

for all values of the penalty on yaw motion. With r =15 2
and a = 10, the robot aligns its heading to the target while
walking to reduce its lateral movement, whereas with a = 100,
it maintains its heading and combines lateral and longitudinal
motion as needed to reach the goal.

Fig. 6 shows how the closed-loop trajectories vary as a func-
tion the initial relative heading to the target, when starting at a
fixed distance of r = 15 m, and a = 10. As indicated in Table I,
we are using 3 = 1.2, which yields FoV of,75°. For relative
heading “errors” less than 40°, the robot aligns quickly to the
target and longitudinal walking dominates. If quicker zeroing of
the heading error is desired, a smaller value of a could be used
or the robot could turn in place before starting a new segment.

IV. OMNIDIRECTIONAL CLF-RRT*

This section integrates the CLF proposed in Section III into
the original RRT* algorithm. The resulting omnidirectional CLF
RRT* provides feasible paths for (3) while (i) accounting for
relative heading, (ii) the asymmetry in roles of target position and
current pose induced by the CLF, and (iii) the fact that walking
laterally is more challenging than walking in the longitudinal
direction for robots such as Cassie.

2099

151 § =0° ® goal position
g=100 | 5 =30°
10+
§ =60°
5 L
E ok 0 =74.5°
> o
&
-5f % +7
L \&Y“”” x5 =20°
-10t v
N s
‘\r& 750 X § =50°
_15 =
-20 -10 0 10 20
x [m]

Fig. 6. This figure illustrated how the closed-loop trajectories generated by
the CLF in (5) vary as a function the initial relative heading to the target, when
starting at a fixed distance of r =15 m, and a = 10. The arrows indicate the

robot’s heading. As shown in Table I, we are using 8 = 1.2, which yields an
FoV of Z5°. For relative heading “errors” less than 40°, the robot aligns
quickly to the target and longitudinal walking dominates. These motions should

be compared to those in Fig. 5.

A. Standard RRT* Algorithm

The original RRT* [3] is a sampling-based, incremental plan-
ner with guaranteed asymptotic optimality. In configuration
space, RRT* grows a tree where leaves are states connected by
edges of linear path segments with the minimal cost. In addition,
RRT* considers nearby nodes of a sample to choose the best
parent node and to rewire the graph if shorter path is possible to
guarantee asymptotic optimality.

B. Omnidirectional CLF-RRT* Algorithm

The omnidirectional CLF-RRT* differs from the original
RRT* in four aspects. First, the distance between two nodes
is defined by the CLF in (5), which takes relative heading
into account. Second, the steering/extending functions use the
closed-loop trajectories generated by (12) to define paths be-
tween nodes. Third, because the cost (5) between two nodes
i and j is not symmetric (i.e., a different cost is assigned if
node iis the origin versus it is the target), a distinction must be
made between near-to nodes and near-from nodes. The above
three aspects are common to the CLF-RRT* variant introduced
in [20], [21]. Finally, when connecting, exploring, and rewiring
the tree, additional terms are added to the cost (5) to account for
the relative ease or difficulty of traversing the path.

Our proposed RRT* modification is summarized below with
notation that generally follows [4]. Let X = {x, y, 0) ), y
R and 6 ¢ (i, m] }be the configuration space and let Xobs
denote the obstacle region, which together define the free re-
gion for walking Xfee = X obs- The omnidirectional CLF
RRT* solves the optrmal path planning problem by growing a
tree T= (V, E), where V ¢ . is a vertex set of poses con-
nected by edges E of feasible path segments. Briefly speaking,
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Algorithm 1: T = (V, E) — Omnidirectional CLF RRT*.
1 T <+ InitializeTree();

2 T < InsertNode((. nipi. T);

3 for i=/ to N do

4 Neand <— Sample(/)

5 Nuearest < Nearest(7 . 1yna)
6 (Nnew- 7))+ Extend(nuearest- Mrand- #)
7 ift ObstacleFree(.7') then

8

o

N < NearTo(T . ngew- | V])

Nmin < ChooseParent(N . npearest- Maew )
10 T + InsertNode(r,in. 1new- 1)
1 N« NearFrom(T . npew. |[V])
12 T« ReWire(T. Np. nyin. Mnew)

13 return 7

the proposed RRT* (see Algorithm 1) explores the configuration
space by random sampling and extending nodes to grow the tree
(explore the configuration space), just as in the classic RRT [1].
Considering nearby nodes of a sample to choose the best parent
node and rewiring the graph guarantee asymptotic optimality
(see Algorithm 2 and 3), as with the classic algorithm. As
emphasized previously, a key difference lies in how the paths
between vertices are generated.

1) Sampling: This step randomly samples a pose Nuand =
(% Y, O)e Xiee To facilitate faster convergence and to find bet-
ter paths, we use several techniques such as sampling with a goal
bias, limited search space, and Gaussian sampling. Specifically,
given a subgoal and a degree of goal biasing, we bias samples
to be from a Gaussian distribution centered about the subgoal;
see Section V-B. Furthermore, we limit the sampling space to a
sector in front of the robot.

2) Distance: To account for the asymmetry in lateral versus
longitudinal motions, as discussed in Section III-B, the distance
d(ni, nx) from node 7; to node nk in the treey is defined by (5).
Note that when computing the distance, ni is a pose (xi, yi, 6i)
and the heading of ny is ignored, meaning only its (Xk, Yk)
values are used.

Remark 4: As mentioned in Section III-D, the robot will
rotate in place if the target point is outside the FoV. If rotating in
place is laborious, one can also consider the following distance
function:

d(ni, nk) = £ + ks max (| 6| — |UJ, 0) (13)

where £ is defined in (5), ks is a positive constant, and U
corresponds to a repulsive point (i.e., £ % ) in Remark 3.

3) Traversability of a Path: Let P = (xr, yr, zr, 6) be the
current robot pose and denote ¢ (P, ni, nj) the path? connect-
ing ni and n;. Finally, let T( B g ) be the cost of the path
traversability, defined as a running cost along the trajectory of
the robot, namely X

) = Cx,y,z) (14)

T(P,
J t t r
VXr,ytET

2The path is generated from the CLF in Section IIL.

Algorithm 2: nyaent — ChooseParent(NT, Muearests Moew)-

1 /‘IPQUVCHI < ,[”L‘IU'L\\[

2 Cparent < COSUNnearest) + C(Mnearest- Thew)

3 for n,., € Ny do

4 T Steer(Npear Mnew )

s if ObstacleFree(.7") then

o " = Cost(npear) + ¢(Mnears Maew)

7 if ¢/ < Cost(n,) and ¢ < ¢y then

Mparent £ Thear

hi ¢
/
9 Cparent —c

10 return 7 pen

where (X, y) is the location of the robot at time ¢, C(xt, yt, zr)

can depend upon elevation change with respect to the robot’s
current elevation, zr, ground slope, friction coefficient, or other
terrain characteristics provided by the mapping software [68],
[69], [70].

Remark 5: The planning system is designed so that any
traversability index [71], [72] can be leveraged in the cost
function on the local map to indicate the relative ease, difficulty,
or safety of traversing a section of terrain. Therefore, the system
can be readily adapted to different types of terrain.

4) Cost Between Nodes: Let c(n;, ni) be the cost from ni to

nk in the tree T, defined as

o(ni, nk) = d(n;, nk)+ kil(P, o) (15)

where k: trades terrain traversability versus distance. It sets how
much more distance the overall mission is allowed to detour for
a better traversable path. For all experiments conducted in this
article, k= 1.

5) Nearby Nodes: Due to the use of the CLF function, the
distinction between near-to nodes N7 and near-from nodes r
is necessary.

Nr(n, T,M,m):={ne€ V | d(n,n) < L(m) &

IT(n, P) — T(n, P)|< T} (16)

where | .js the absolute value, m is the number of nodes in
the tree T, and L(m) = n(log(n)/n)(1/9 with the constant n
and dimension of space ¢ (3 in our case) [6] and T« is a positive
constant. Similarly, the near-from nodes Nr are determined by

Nr(n, T,M,m):={n€ V | d(n,n) < L(m) &

I'T(n,P) — T(n, P)| < T (17)

6) Nearest Node: Given anode n; € X, the tree T, and the
local map M, the nearest node is any node nx €T in the tree
where the cost from 7« to ni is minimum.

7) Steering and Extending: The steering function generates
a path segment ¢ that starts from n; and ends exactly at n«. The
extending function extends the path from ni toward n« until nk
is reached or the distance traveled is

K in which case it returns a
new sample Mnew at the end of the extension.

pafént fEa (daeopingorid i apRavwiirginghorsing e hest
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Fig. 7. This figure summarizes the proposed reactive planning system. The planning thread is built around RRT* and an omnidirectional CLF that is used to assign
distances, define locally optimal path segments, search radius, and linking conditions for rewiring and choosing a parent. In addition, the planning thread contains
amultilayer, robot-centric local map for computing traversability, a subgoal finder, and a FSM to choose subgoal locations guiding the robot to a distant goal. The

terrain information extracted from the multilayer local map can be shared with a terrain-aware controller, such as [66]. Instead of a common waypoint-following
or path-tracking strategy, the reactive thread copes with robot deviation while eliminating nonsmooth motions via a vector field (defined by a closed-loop feedback

policy arising from the CLF). The vector field provides real-time control commands to the robot’s gait controller as a function of instantaneous robot pose.

Algorithm 3: T < ReWire(T , NF, Mimin, Naew)-
1 for Nyear € ~“‘\":‘/7'\‘\{”1/1m}' do

2 T <Steer(Npew- Mocar)

3 if ObstacleFree(.7") and

4 Cost(Nye) + (Mo Myear) < Cost(n,,0q,) then
5 L T < Re-Connect(nyew - Mpear- 7))

o return 7

Algorithm 3) guarantee asymptotic optimality. Let Cost(ni) be
the cost from the root of the treeT to the node ni The parent
Mparent OF @ Node 7Myew is determined by finding a node & N 7
with smallest cost from the root to the node

Nparent = arg min Cost(Mnear)+ C(Mnear, Naew)- (18)

Moear ENT

After a parent node is chosen, nearby nodes NF are rewired
if shorter paths are found. In our experiments, we used the
extending function for exploration, and the steering function
to find the best parent node and to rewire the graph.

9) Collision Check: This step verifies whether a path ¢
lies within the obstacle-free region of the configuration space.
Note that additional constraints, such as curvature bounds and
minimum clearance, can also be examined in this step.

10) Node Insertion: Given the current treeT = (V, E) and
anode v £V, this step inserts the node n to V and creates an
edge enw from n to v.

V. REACTIVE PLANNING SYSTEM

The previous section provides a sparse set of paths from
a robot’s initial location to a goal. The degree of optimality
depends on how long the planning algorithm is run. A typical
update rate may be 5 Hz for real-time applications. When
the robot is perturbed off the nominal path, one is left with
deciding how to reach the goal, say by tracking the nominal
path with a PID controller. Important alternatives to this, called
a high-frequency reactive planner or a feedback motion planner,
were introduced in [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19]. A version based on the work of [20], [21] will be
incorporated into our overall planning system. In addition, we
take into account features in a local map.

A. Elements of the Overall Planning System

The overall objective of the planner system is to replace the
commonly used waypoint-following or path-tracking strategies
with a family of closed-loop feedback control laws that steer the
robot along a sequence of collision-free sub-goals leading to the
final goal. In simple terms, as in [19], [20], [21], we populate
the configuration space with a discrete set of feedback control
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laws that steer the robot from local chart about a subgoal to
the subgoal itself. The collision free property is handled by the
low-frequency planner at the current time. Others have used
CBFs for this purpose [33], [34], [35], [36], [73], [74]. A FSM
is integrated into the low-frequency planner to handle high-level
mission requirements such as turning left at every intersection.
The planning system is implemented with multithreading in
C++ based on the ROS library [75]. One thread is for the
planning and the other is for the reactive thread, as illustrated
in Fig. 7.

The planner assumes the initial robot pose, a final goal, and
real-time map building are provided. It is assumed that the
initial robot pose and final goal are initialized in an otherwise
featureless metric map, with the robot’s initial pose as the origin.
The featureless map is filled in by the real-time mapping pack-
age [68], [69], [70] based on collected LiDAR and/or camera
data.

B. Planning Thread

The planning thread deals with short-range planning (less than
20 meters) at a frequency of 5—10 Hz. It includes a robot-centric
local map, our omnidirectional CLF-RRT* algorithm of Sec-
tion I1I, cost computation, a subgoal finder, and a FSM.

1) Robot-Centric Local Map and Cost Computation:
Fig. 8(a) shows the robot-centric multilayer local map (high-
lighted area), which crops a submap centered around the robot’s
current position from the global map provided by the mapping
algorithm. The local map computes additional useful infor-
mation such as terrain slope (local gradient), which is useful
for assigning cost. Moreover, other necessary operations for
different experiment scenes such as applying the Bresenham
algorithm [76] to remove walkable area behind glass walls can
be computed in this step, see Section VI-E. In addition, terrain
information such as slopes, frictions, or staircase detection can
be sent to a terrain-aware low-level controller [66]. The compu-
tations with the local map are efficient compared to processing
the full map.

Remark 6: In the experiment videos, it can be seen that we
covered many of the glass walls with paper to prevent LIDAR
penetration and the labeling of the space behind the glass walls as
walkable. However, some LiDAR measurements still penetrate
the glass (such as the bottom part of Fig. 17) and resulting in
unwanted walkable regions behind the glass; these are removed
by the Bresenham algorithm [76].

2) Anytime Omnidirectional CLF-RRT* Planner: The any-
time feature is a direct result of using RRT* as a planner. The
algorithm can be queried at anytime to provide a suboptimal path
comprised of wayposes, which the CLF (5) turns into real-time
feedback laws for anytime replanning.

3) Subgoal Finder and FSM: 1deally, a global planner [77],
[78], [79] is present to guide the robot to a distant goal, which
may not be viewable at the time of mission start [78]. In relatively
simple situations such as that shown in Figs. 8 and 9, it is
sufficient to complete many of short-term missions by position-
ing a subgoal (green arrow) at the lowest cost (cost-to-come
+ cost-to-goal) on an arc (blue arrows) to guide the robot to

IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

(b)

Fig. 8. Elevation map (colored by height) was built online while Cassie was
autonomously traversing the Wave Field on the North Campus of the University
of Michigan. The highlighted area is the smoothed, robot-centric local map. The
blue arc and the green arrow (pointing from the red line to the white line) are
the subgoal finder and the chosen sub-goal for the omnidirectional CLF RRT*,
respectively. The red shows the locally optimal path.

the final goal. This subgoal finder is also used as a FSM to
handle high-level missions such as making turn selections at
intersections, or determining if there is an intersection; see
Section VI-E. It is emphasized that the final path is connected
by several subgoals determined locally by the subgoal finder.
In the future, the sub-goal finder will be replaced with a global
planner to achieve globally optimal paths.

Remark 7: A subgoal is essentially an intermediate goal with
the lowest cost (cost-to-come and cost-to-goal) in the local map
and is determined by the FSM. It is emphasized that the local map
contains all the available information at that specific timestamp.
Therefore, the subgoal is always observable because it is within
the local map. Subgoals are needed for planning systems to reach
a final goal, which might be not observable by the sensors on the
robot from its current position and orientation. Piecing together
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(a) (b) (©
(d) (e) ®

Fig. 9.

Simulated scenes and results obtained with the proposed reactive planning system. On the left are cluttered indoor scenes with obstacles and holes, in

the middle are noisy undulating outdoor terrains, and on the right, are high-level missions. Each grid in a map is 1 1 meter. The simulated robot is based on the
ALIP model and accepts piece-wise constant inputs at the beginning of each step, is used in all simulation. The robot’s initial pose and position of the final goal
were hand selected. The highlighted areas show the local maps being provided to the robot 8y 8 for left and middle columns and 9 9 for the right column. In
each case, the planner guided the robot to the goal. Animations of the simulations are available at [59]. All the figures are vector graphics, so one can enlarge in

the browser for best viewing.

trajectories from one sub-goal to another results in a trajectory
from the initial position to the final destination. It is emphasized
again that the subgoals are determined by the FSM based on
the current available information in the local map and therefore
the overall trajectory may not be globally optimal. To achieve
a globally optimal path, the FSM should eventually be replaced
by a global path planner [77], [78], [79].

Remark 8: Although each vector field associated to a CLF is
continuous (even smooth), switching among CLFs can induce
discontinuity. It is important to keep unchanged the way-pose
and CLF combination the robot is currently targeting so as to
ensure continuity. Updates can be made to further way-pose and
CLF pairs in the path, but not the current ones; see Section VI-F
for more details.

C. Reactive Thread

The work in [10], [11], [12], [13], [14], [15], [16], [17], [18]
provided a significant alternative to the standard path tracking.
Their high frequency reactive planners create a vector field on
the configuration space whose integrals curves (i.e., solutions
of the vector field) provide alternative paths to the goal. When
the robot is perturbed, it immediately starts following the new

path specified by the vector field, instead trying to asymptoti-
cally rejoin the original path. The vector field is in essence an
instantaneous replanner.

In the reactive planner of [11], [13], the vector field arises from
the gradient of a potential function defined on the configuration
space. Here, we use the solutions of the closed-loop system
associated with the CLF in (5) to define alternative paths in the
configuration space. In essence, our feedback functions (12) and
(11) provide instantaneous replanning of the control commands
for the omnidirectional model (3). This reactive planner can be
run at 300 Hz in real-time.

The reactive thread is a reactive planner, in which the mo-
tion of the robot is generated by a vector field that relies on
a closed-loop feedback policy giving controller commands in
real-time as a function of the instantaneous robot pose. In other
words, the reactive planner utilizes the proposed CLF described
in Section 111 to adjust controller commands automatically when
the robot deviates from the optimal path. This thread steers the
robot to the optimal path at 300 Hz.

Remark 9: The “timing” of Cassie’s foot placement is inher-
ently event-driven and stochastic. Even though a step cycle may
be planned for 300 ms, variations in the terrain and deviations of
the robot’s joints from nominal conditions result in foot-ground
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contact being a random variable, with a mean of roughly 300 ms.
Running the reactive planner at anything over 100 Hz essentially
allows that Cassie’s gait controller, which runs at 2 kHz, is
accepting the most up-to-date commands from the planner, even
if a every other messages is lost over UDP transmission.

VI. SIMULATION AND EXPERIMENTAL RESULTS

The proposed reactive planning system integrates a local map,
the omnidirectional CLF-RRT*, and fast replanning from the

reactive thread. We performed three types of evaluation of the
reactive planning system.

A. ALIP Robot With Simulated Challenging Outdoor Terrains
and Indoor Cluttered Scenes

We first ran the reactive planning system on several syn-
thetic environments, in which an ALIP robot model [61], [62]
navigated several simulated noisy, patchy, challenging outdoor
terrains as well as cluttered indoor scenes. The ALIP robot suc-
cessfully reached all the goals in different scenes. We tested the
system on more than 10 different environments, both indoor and
outdoor with and without obstacles. Due to space limitations,
we only show the results of six simulations in Fig 9; see our
GitHub [59] for videos and more results.

Remark 10: The ALIP robot [61], [62] takes piece-wise con-
stant inputs from the reactive planning system. Let g, H, t be
the gravity, the robot’s CoM height, and the time interval of a
swing phase, respectively. The motion of an ALIP robot on the
x-axis is defined as
( |

Xic+1
Xi+1

e« l
cosh(&) & sinh(§ (xk 4+ 1 —cosh($)
psinh(§)  cosh(§) Xk —psinh(§ 19)

1

where xi and x '« are the contact position and the contact velocity
of the swing foot on the x-ajyis. px is the CoM on the x-axis of
the robot, £ = pt and p = g/H. Similarly, the motion of the
robot on the y-axis can be defined.

Remark 11: Even though a full global map is given in each
simulation environment, only the information in the local map
is given to the planning system at each timestamp. The path
generated from omnidirectional RRT* is asymptotically optimal
within the local map, for the given time window. It is emphasized
that no global information is provided to the planner which is
why the resulting trajectory from the initial point to the goal may
not be the shortest path.

B. Validation of Control Command Feasibility Via a
Whole-Body Cassie Simulator

To ensure the control commands from the reactive planning
system are feasible for Cassie-series bipedal robots, we sent the
commands via User Datagram Protocol (UDP) from ROS [75]
C++ to MATLAB-Simmechanics, which simulates a 20 DoF
of Cassie, using footfalls on the specified terrain. The simu-
lator then sent back the pose of the simulated Cassie robot
to the planning system to plan for the optimal path via UDP.
The planner system successfully took the simulated Cassie to
the goal without falling, as shown in Fig. 10.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

Fig. 10. Simulation of a C++-implementation of the reactive planner on full-
dynamic model of Cassie, which accounts for all 20 degrees of freedom of the
robot in Matlab-SimMechanics and includes a 3-D terrain model. The reactive
planning system receives the pose of the simulated Cassie via User Datagram
Protocol (UDP). Cassie’s simulator receives and executes the resulting control
commands via UDP. The planning system successfully takes the simulated
Cassie to the goal without falling. An animation is available at [59].

C. Perception Suite Design and Hardware System Integration

To allow the robot to perceive its surroundings under dif-
ferent lighting conditions and environments, we designed a
perception suite that consists of an RGB-D camera (Intel
RealSense™ D435) and a 32-Beam Velodyne ULTRA Puck
LiDAR. Two fans cool a Jetson AGX Xavier with Graphics
Processing Unit (GPU). A router, a USB hub, and an internet
switch are utilized for communication from users and the robot to
the perception suite. Finally, a 12-volt Lithium Polymer battery
powers up all the sensors. Fig. 11 shows the design of the full
sensor suite and the step files are available at [80].

The weight of the sensor suite, with batteries and everything
included, is 8.5 Kg. We use an industrial-grade router and
internet switch to ensure stable connections among the sensors,
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(a) (b)

Fig. 11. Computer-aided design (CAD) of the sensor suite. The left shows the
front view of the sensor suite and the right shows the back.

(@) (b)

Fig. 12. Left shows the sensor suite with different sensors, and the right shows
the sensor suite mounted on Cassie Blue.

GPU, and the secondary computer on the Cassie robot. Fig. 12
shows all the sensors mounted on the perception suite.

D. Software System Integration for Real-Time Deployment

System integration is critical for real-time use. Fig. 13 shows
the integrated system, distribution, and frequency of each com-
putation. In particular, the sensor calibrations are performed
via [81], [82], [83], [84], [85], [86], [87], [88]. The invariant
Extended Kalman Filter (InEKF) [89], [90] is used to estimate
the state of Cassie Blue at 2 kHz. Images are segmented via
MobileNets [91] and a LiDAR point cloud is projected back
to the segmented image to produce a 3-D segmented point
cloud. The resulting point clouds are then utilized to build a
multilayer map (MLM) [68], [69], [70], [92], [93]. The reactive
planning system then crops the MLM around the robot position
to create a local map and performs several operations to acquire
extra information, as described in Section V-B. In addition, the
reactive planner receives the robot poses from the InEKF at
300 Hz to adjust the control commands that guide the robot
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to the nominal subposes via the proposed CLF; see Section III
and Section V-C. The control commands are then sent to Cassie
Blue’s gait controller [61], [94], [95] via UDP.

E. Full Autonomy Experiments With Cassie Blue

We conducted several indoor and outdoor full autonomy
experiments with Cassie Blue. The running cost in (14) was
selected as

C(xt, Yt, 2zr) = Ce(xt, yr)+ 0.5Cs(xt, yy)

+ O.3(Ce()Ct, yt) - Zr) (20)

where Ce(xt, yt), Cs(xt, yi) are the elevation and the magnitude
of the gradient at a point (xt, yi), respectively.

1) The Wave Field: We achieved full autonomy with Cassie
Blue on the Wave Field, located on the North campus of the
University of Michigan, an earthen sculpture designed by Maya
Lin [96]; see Fig. 14(a). The Wave Field consists of sinusoidal
humps with a depth of approximately 1.5 m from the bottom of
the valleys to the crest of the humps; there is a second sinusoidal
pattern running orthogonal to the main pattern, which adds 25 cm
ripples peak-to-peak even in the valleys. Fig. 14(b) shows the
top-view of the resulting trajectory of the reactive planning
system. The planning system guided Cassie Blue to walk in
the valley (the more traversable area), as shown in Fig. 14(c).
The planning system navigated Cassie Blue around a hump
that protrudes into one of the valleys, as shown in Fig. 14(d).
Fig. 15 shows the control commands sent to Cassie Blue. This
experiment was presented in the Legged Robots Workshop at
ICRA 2021; the video can be viewed at [97]. The video of the
Wave Field experiment is uploaded and can be found at [58]
and [59].

Remark 12: We conducted most of the experiments at night
because there are fewer people walking around. Because of the
intrinsic properties of LiDAR sensors, ambient lighting does
not affect their measurements; see [85] for more details about
LiDAR properties.

2) Turn Left at Detected Intersections of Corridors and Avoid
Obstacles: We conducted two experiments of this type on the
first floor of the FRB at the University of Michigan. The experi-
ments’ scenes consist of corridors and an open area cluttered
with tables and couches, which are considered as obstacles
(height greater than 30 cm from the mapping package), as
shown in Fig. 16. To detect the intersections of the corridors, we
group walkable segments within a ring around Cassie Blue. Each
walkable segment either links with an existing cluster or creates
a new cluster via the single-linkage agglomerative hierarchical
clustering algorithm? [99], where the linkage criteria is the Eu-
clidean distance. If there are more than two clusters of walkable
segments, we consider there exists an intersection. Subsequently,
Cassie Blue makes a left turn at the detected intersection. After
exiting the corridors, the robot reaches an open area cluttered
with furniture and performs obstacle avoidance. Under the
proposed reactive planning system, Cassie Blue completed the

3We chose this clustering algorithm because the number of clusters is un-
known. Therefore, algorithms like K-Means Clustering [98] cannot be used.
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Fig. 14. Experimental results on the Wave Field. The top-left shows the
experiment terrain, the Wave Field, on the North Campus of the University
of Michigan. The top-right shows a bird’s-eye view of the resulting trajectory
from the reactive planning system. The bottom-left shows a back-view of the
trajectory produced by the planning system as Cassie Blue walks in a valley
(highly traversable area) of the Wave Field. The bottom-right demonstrates
the planning system avoiding areas of higher cost. The red peaks are from the
experimenters walking alongside Cassie.

experiments without falling or colliding with obstacles. The total
distance traveled was about 80 m. The experiment videos can
be viewed at [100] and [59].

3) Turn Right At Detected Intersections of Corridors and
Return to the Initial Position: This experiment was conducted
on the second floor of the FRB and the experiment scene contains
four long corridors with glass walls. Some of the LIDAR beams
penetrated glass a certain points along the corridors, causing the
mapping algorithm to consider area behind the glass walls as free
and walkable. We applied the Bresenham line algorithm [76] to
remove the walkable area behind the glass walls. The computa-
tion of the Bresenham algorithm is not expensive because it is
only applied within the local map, mentioned in Section V-B.
The proposed reactive planning system successfully guided
Cassie Blue back to its initial position, as shown in Fig. 17.
The total distance traveled was about 200 m. The experiment
videos can be viewed at [101] and [59].

F. Experiment Discussion

In the two indoor experiments, Cassie exhibited a walk-
and-stop motion. Where does it come from? As mentioned in
Section V, the planning threading runs at 5 Hz. At the kth update,
there will be an optimal path px, comprised of a number of way-
poses connected by CLFs. Although each vector field associated
to a CLF is continuous (even smooth), switching among CLFs
can induce discontinuity. This discontinuity induces Cassie’s
walk-and-stop motion seen in the videos of the indoor experi-
ments. How? At each planning update, the entire tree was being
discarded and a new one constructed. In particular, the closest
way-pose to Cassie was being reset every 200 ms, and thus the
robot was never allowed to evolve along the integral curves of
the vector field.
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Fig. 15. Control commands sent to Cassie Blue. UDP packet drops show up as vertical lines. When these occur, the controller uses the previous value.

Fig. 17. Experimental results on the second floor of the FRB. The top shows
glass walls, which lead to refection of LIDAR lasers and creating walkable area
behind the wall. The bottom illustrates the resulting (200 m) trajectory produced
by the planning system as Cassie Blue walks. It is remarked that the plot is based
on pure odometry so no loop closure is performed [89].

Fig. 16. Resulting trajectories on the first floor of the FRB3. The map colored
by height was built online while Cassie was guided by the planning system. The
green lines are the resulting trajectories and green patches in the map are tables
and furniture considered obstacles.
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The solution is straightforward: at the (k+ 1)-st planning
update, we leave the first unreached way-pose fixed in the path
P« to ensure continuity. In addition, to fully utilize the optimal
path from the previous update, we keep the current optimal path
P « as a branch and prune all the samples from the kth update.

This provides a warm start for the (k+1)-st update, as long as
the pathPrk is still valid and collision-free. If a dynamic obstacle
has invalidated the path between the robot’s current position and
the first unreached way-pose, then the entire tree is discarded,
as before. With these changes made, we conducted several addi-

tional experiments to confirm that it resolves the walk-and-stop
movement. The experiments can be viewed at [102] and [59].

VII. CONCLUSION

We presented a novel reactive planning system that consists
of a 5-Hz planning thread to guide a robot to a distant goal
and a 300-Hz CLF-based reactive thread to cope with robot
deviations. In simulation, we evaluated the reactive planning
system on 10 challenging outdoor terrains and cluttered indoor
scenes. In experiments on Cassie Blue, a bipedal robot with 20
DoF, we performed fully autonomous navigation outdoors on
sinusoidally varying terrain and indoors in cluttered hallways
and an atrium.

The planning thread uses a multilayer, robot-centric local map
to compute traversability for challenging terrains, a subgoal
finder, and a FSM to choose a subgoal location as well as
omnidirectional CLF-RRT* to find an asymptotically optimal
path for Cassie to walk in a traversable area. The omnidirectional
CLF-RRT* utilizes the newly proposed CLF as the steering
function and the distance measure on the CLF manifold in the
RRT* algorithm. Both the proposed CLF and the distance mea-
sure have a closed-form solution. The distance measure nicely
accounts for the inherent “features” of Cassie-series robots, such
as high-cost for lateral movement. The robot’s motion in the
reactive thread is generated by a vector field depending on a
closed-loop feedback policy providing control commands to the
robot in real-time as a function of instantaneous robot pose.
In this manner, problems typically encountered by waypoint-
following and pathway-tracking strategies when transitioning
between waypoints or pathways (unsmooth motion, sudden
turning, and abrupt acceleration) are resolved.

In the future, we shall combine CBF [33], [34], [35], [36],
[73], [74] with the CLF in the reactive thread to handle dynamic
obstacles. In addition, the current local map is a 2.5D, multilayer
grid map with fixed resolution; it is also interesting to see how
to efficiently represent a continuous local map. An obstacle in
the local map is assigned simply by height that the robot cannot
step over; how to robustly determine an object is an obstacle or
not is also an interesting research. Furthermore, how to extend
the CLF to 3-D is another interesting area for future research.
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