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ABSTRACT

Immunoprofiling has become a crucial tool for understanding the complex interactions between the immune
system and diseases or interventions, such as therapies and vaccinations. Immune response biomarkers are
critical for understanding those relationships and potentially developing personalized intervention strategies.
Single-cell data have emerged as a promising source for identifying immune response biomarkers. In this
review, we discuss the current state-of-the-art methods for immunoprofiling, including those for reducing the
dimensionality of high-dimensional single-cell data and methods for clustering, classification, and prediction.
We also draw attention to recent developments in data integration.

Introduction

Immunoprofiling refers to the measurement and analysis of
the immune responses in individuals, with the aim of disco-
vering and understanding the specific immune responses asso-
ciated with a particular disease or condition. Research tasks in
immunoprofiling are diverse. For example, it is important to
identify the immune responses that offer protection against
infection or disease, as well as the prediction of an individual’s
response to intervention. In many cases, clinical data collected
during the course of intervention (such as treatment or vacci-
nation) contain measurements of a group of individuals and
their medical status and immune measurements before and/or
after the interventions. As such, statistical analysis and
machine learning methods are necessary to reveal the relation-
ships between various quantities across different time points
and in association with individuals’ outcomes.

The insights gained from immunoprofiling can be utilized
to guide the development of new treatments or vaccines and to
evaluate the effectiveness of existing therapies. For example, in
the context of infectious diseases such as HIV, to date, RV144
is the only HIV vaccine trial that shows a modest protective
effect with the vaccine reduced the risk of HIV infection by
31.2%." Immunoprofiling can help identify the immune
responses associated with this reduced risk, which can guide
the development of new

HIV vaccines by focusing on eliciting these responses in
vaccinated individuals, thus potentially increasing the chances
of a safer and more effective vaccine.””> Similarly, immu-
notherapy is a rapidly growing field in the treatment of multi-
ple cancer types.° " The clinical benefits are impressive, with
the ability to produce the greatest possibility of long-term
survival. However, only a fraction of patients achieves this.
Immunoprofiling can be used to evaluate the effectiveness of
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immunotherapy treatments by measuring changes in the
immune response and determining whether a therapy is effec-
tive. It can also identify potential biomarkers that predict
treatment response, allowing for personalized immunothera-
peutic regimens for patients.

This review focuses on the single-cell technologies used in
immunoprofiling. Those technologies provide assessments of
gene and/or protein expressions to understand cellular
immune responses, potentially bringing more insights and
advancing the progress of immunotherapy and vaccine devel-
opment. We list below the major technologies that generate
single-cell data.

(1) Modern flow cytometry: Over 20 parameters are simul-
taneously measured on hundreds of thousands to mil-
lions of single cells.

(2) Mass cytometry or Cytometry by time-of-flight (CyTOF):
Over 40 parameters are measured at the single-cell
level."”

(3) Single-cell RNA sequencing (scRNA-seq): This technol-
ogy can determine the transcriptome of individual
cells.”>'*

(4) Single-cell multi-omics data: This technology enables
the simultaneous measurements of multiple biologi-
cal layers in each individual cell, such as genome
and transcriptome (G&T-seq),'”> gDNA-mRNA
sequencing (DR-Seq),'® DNA methylation and tran-
scriptome (scM&T-seq),"” epitope and transcriptome
(CITE-seq),'® and nucleosome, transcriptome, and
methylation (scNMT-seq)."’

While those advanced technologies enable researchers to
achieve unprecedented resolution in tackling cellular heteroge-
neity, the generated high-dimensional and large-scale single-cell
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Figure 1. One example pipeline of single-cell data analysis.

data pose significant analysis challenges for capturing and
understanding immune cellular heterogeneity and detecting
rare immune cell subsets.

The objective of this paper is to provide an overview of the
current state of machine learning techniques and statistical
modeling approaches used for analyzing and modeling single-
cell immunological data. The paper focuses on the biological
areas where advanced analysis methods are popularly devel-
oped. We assume that the single-cell data have been pre-
processed”’ > and potential batch effects** > have been prop-
erly removed. One example pipeline of single-cell data analy-
sis, which is the focus of this review paper, is shown in
Figure 1. The main analysis tasks shown in the figure are
discussed in the following sections.

The rest of the paper is organized as follows. Section 2
contains a review of dimension reduction and visualization
techniques for single-cell data. In Section 3, we provide an
overview of clustering analysis. Subsequently, Section 4 is on
prediction analysis methods, and Section 5 is on data integra-
tion techniques. In Section 6, we present a case study analysis
and discuss practical challenges. Finally, we conclude with
discussions in Section 7. Due to space constraints, we summar-
ize a few popular methods in each section and refer to some
existing review papers in case readers are interested in more
details about these methods or the ideas of other relevant
methods.

Single-cell data dimension reduction and
visualization

Single-cell data visualization is an indispensable first step in
comprehending high-dimensional single-cell data and allows
the visual comparisons of cellular heterogeneity across differ-
ent conditions. Dimension reduction is a key technique to
enable the visualization of high-dimensional data in a low-
dimensional space. It can also facilitate downstream analysis.
Xiang et al.>* provides a comprehensive review to compare
different dimension reduction methods for scRNA-seq data.
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Those methods are also applicable to cytometry data.
Traditional dimension reduction methods such as PCA (prin-
cipal component analysis), t-SNE (t-distributed stochastic
neighbor embedding),”> and UMAP’® are frequently used to
obtain the low-dimensional representation of the single-cell
data. PCA, being a linear method, identifies the linear combi-
nations of the original variables with the highest variance.
Thus, PCA has limitations in capturing complex nonlinear
structures in high-dimensional data. On the other hand,
t-SNE and UMAP are both nonlinear dimension reduction
methods designed to reduce dimensionality while preserving
the local structure, such as clusters. t-SNE uses t-distributed
conditional probability to quantify pairwise similarities
between samples. It aims to find a low-dimensional mapping
to preserve the pairwise similarities from the high-dimensional
data as well as possible. UMAP is a variant of t-SNE. Neither
method is designed to preserve the global structure of the data
and may produce false clusters in the low-dimensional
representation.”’

TriMap is a recent method proposed to preserve the
global structure of high-dimensional data.”® This method is
based on the concept of triplets, which are used to compare
data points and evaluate the relationships between them.
Specifically, TriMap assesses whether “point i is closer (or
more similar) to point j than to point k” and utilizes this
triplet-based approach to encourage neighboring data points
to remain close to each other in the low-dimensional space
while making distant points to remain far apart. On the
other hand, PaCMAP (Pairwise Controlled Manifold
Approximation Projection) is another method designed to
optimize both local and global structures.”” PaCMAP
achieves this by selecting a small subset of pairwise dis-
tances, which are then used to control the mapping of the
high-dimensional data onto a lower-dimensional space. By
doing so, PACMAP ensures that the mapping preserves the
relative distances between nearby points (local structure)
while allowing for more flexibility in the mapping of more
distant points (global structure).



The use of deep neural networks (DNNs) is another strategy
for dimensionality reduction, given their ability to handle
large-scale datasets. DNNs are composed of multiple layers
of interconnected nodes, also known as neurons. Each neuron
typically applies a linear transform on its multi-dimensional
input and passes a one-dimensional output through a non-
linear function such as a sigmoid function or a hard thresh-
olding function, which is then fed as an input feature to one or
more nodes at the next layer. The input of the first layer is the
raw data, and the output of the last layer is the final prediction
or classification result. An introduction to DNN is referred to
Goodfellow et al.>* The autoencoder (AE) is a type of DNN
which comprises two main components: an encoder and
a decoder. The encoder maps the high-dimensional input
data, such as cells, to a low-dimensional representation, while
the decoder maps the low-dimensional representation back to
the original high-dimensional space. During training, the AE
aims to minimize the discrepancy between the original input
and the reconstructed output. In contrast to the discriminative
nature of the AE, the variational autoencoder (VAE) is
a generative model that learns a latent representation distribu-
tion rather than a specific vector (for each cell), as learned by
the AE. By using the learned latent representation distribution,
the VAE can generate examples of the latent representations of
cells. Thus, compared to standard AEs, VAEs not only can
reduce dimensionality but also quantify the uncertainty of the
latent representation. Many existing packages use AE or VAE
for dimension reduction and visualization. For example,
scScope®® uses AE to reduce dimensionality while simulta-
neously imputing the dropout events. To do so, scScope gen-
erates imputed input data based on the decoder output
through an imputer layer. The imputed data is then sent
back to the encoder, and an updated latent representation is
learned in an end-to-end manner. scVI*' uses a VAE to learn
scRNA-seq latent representation by leveraging information
from similar cells and genes to approximate the underlying
distribution while accounting for batch effects. scDHA** oper-
ates in a hierarchical manner, where a non-negative kernel AE
is used to filter out non-significant information and a VAE to
map data onto a low-dimensional space. This approach
enables the separation of noises from biological signals in
single-cell data. Brendel et al.*> provides a recent review
paper to discuss the application of DNNs for scRNA-seq data
analysis.
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Cluster analysis for cell subsets identification

The primary objective of clustering single-cell data is to uncover
and understand cellular heterogeneity and potentially reveal
novel cell subsets. In the context of immunoprofiling, clustering
facilitates the identification of different immune cell types and
the recognition of distinctive immune cell patterns across con-
ditions. The information derived from clustering analysis could
potentially substantiate existing conjectures, inspire new
hypotheses, and inform the design of further experimentation.

Cytometry data often involve large sample sizes, sometimes
exceeding millions of cells per sample. The main challenge in
this context lies in identifying cellular heterogeneity, particularly
rare cell subsets, as the low probability clusters tend to be
“concealed” by large background clusters in the data. On the
other hand, for scRNA-seq data, the clustering task is compli-
cated by the high dimensionality of the data, with the number of
variables (genes) typically exceeding the number of cells. In
addition, the high variability and drop-out rates, along with
the low capture efficiency of scRNA-seq data, and their potential
batch effects, can further complicate the clustering process. The
single-cell multi-omics data raise new challenges for clustering
analysis because different omics features are combined, resulting
in more heterogeneous and higher dimensional data. The ana-
lysis of single-cell multi-omics data will be discussed specifically
in Section 5. In this section, we review clustering methods
developed to cluster cytometry and scRNA-seq data, including
K-means, hierarchical clustering, mixture model, community
detection, and DNN-based approaches. In Figure 2, different
types of clustering methods are compared in terms of their
ability to handle various levels of data structures and their
computational complexity. Several review papers on clustering
analysis are provided by Weber and Robinson®*; Petegrosso
et al.*®; Krzak et al.*% Liu et al.*’; Yu et al.*®

K-means based clustering methods

K-means clustering is the most popular clustering approach,
which iteratively applies Lloyd’s algorithm® to find
a prespecified number of K cluster centers (centroids) repre-
senting the mean of the data points in each cluster. The
objective is to assign cells to groups (centroids) such that
cells belonging to the same group are close, but those in
different groups are far apart. The major advantage of
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Figure 2. Overview and comparison between each type of clustering methods.
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K-means clustering is that it scales linearly with the number of
cells, so it is suitable for large datasets.

As K-means is locally optimal, it cannot guarantee the iden-
tification of the global minimum, i.e., the unique clustering
solution. For scRNA-seq data, this limitation is overcome by
repeated utilization of K-means with different initializations and
deriving a consensus clustering result, as demonstrated in SC3.”
Another issue always encountered in practice is how to deter-
mine the number of clusters K. SC3°* addresses this issue by
a method based on random matrix theory to determine the
optimal K. RaceID”! uses the Gap statistic to determine the
number of clusters. With respect to the cytometry data, to
address the challenge of finding the optimal number of clusters,
FlowPeaks>* performs a two-stage clustering approach. It first
applies K-means with a large initial K, larger than the expected
number of clusters in the data, and then applies a hierarchical
clustering method based on the distance between the centroids
of the K clusters to combine the nearest clusters into one cluster.
Thus, FlowPeaks can effectively remove noise while ensuring
that the final number of clusters is appropriate for the data.

K-means clustering also tends to bias toward identifying
equal-sized clusters, potentially resulting in rare cell types
being concealed within a larger group. To mitigate this issue,
RaceID augments K-means with outlier detection to pinpoint
rare cell types.”’ To reduce the bias of equal-size clustering,
Flock employs a grid-based method to identify high-density
regions and use them as initial centroids for K-means cluster-
ing. This reduces the bias of equal-size clustering.”> The
recently developed method, DisRFC (Dissimilarity Random
Forest Clustering),54 combines random forest and K-means
to address some other limitations of K-means such as sensi-
tivity to initialization and outliers along with the previously
discussed issues (e.g., the tendency to converge to local optima
and the bias toward equal-size clusters).

Hierarchical clustering based methods

Hierarchical clustering is a method for building a hierarchy of
clusters based on the connectivity between data points. This
approach creates a dendrogram, a tree-like structure, by
repeatedly merging the closest pairs of clusters based on
some similarity measure, either by starting with all data points
in a single cluster and then splitting the cluster into smaller
clusters until each data point is in its own cluster (divisive
clustering), or by starting with each data point in its own
cluster and merging the clusters iteratively until a single cluster
is obtained (agglomerative clustering).

Unlike K-means clustering, hierarchical clustering does not
require the prior specification of the number of clusters. The
number of clusters can be determined afterward through visual
inspection or by using measures such as elbow methods,
Silhouette analysis, or Gap statistic.

To address the challenges of high-dimensional data,
pcaReduce™ utilizes PCA to reduce the dimension before per-
forming hierarchical clustering. SINCERA>® employs hierarch-
ical clustering with centered Pearson correlation and average
linkage as default to identify cell clusters. Additionally, CIDR>
integrates an implicit imputation process to alleviate the effect of

dropouts, uses principal coordinate analysis to reduce the
dimension, and performs hierarchical clustering on the first
few principal coordinates. The number of clusters is determined
based on the Calinski - Harabasz index.”®

FlowGrid™ is a computational framework for analyzing flow
cytometry data. It combines density-based clustering and hier-
archical clustering. Density-based clustering partitions the data
into subsets, while hierarchical clustering organizes the subsets
into a hierarchical structure, helping in identifying rare and low-
density cell populations. FlowGrid also allows users to explore
and visualize data at different levels of granularity and identify
clusters that are biologically relevant. Recently, FlowGrid
demonstrated fast clustering of very large scRNA-seq data.

Both Louvain and Leiden algorithms are community-
detection-based clustering methods commonly used for cluster-
ing large-scale single-cell data. The goal of community detection
is to discover the communities in networks. A community in
a network is a group of nodes having dense connections within
the group and sparse connections with other groups. The
Louvain algorithm is an agglomerative clustering method.*’ It
starts with each node (cell) in its own community and iteratively
merges communities to maximize modularity. The modularity
is a measure of the degree to which nodes in a community are
more densely connected to each other than to nodes outside the
community. The Louvain algorithm has been shown to be fast
and scalable, making it a popular choice for clustering large
single-cell datasets. The Leiden algorithm is an extension of
the Louvain algorithm to overcome the resolution limit of the
Louvain algorithm. The resolution limit is a problem where
there is a minimum community size able to be resolved. Thus,
it occurs when the algorithm merges small communities into
larger ones, resulting in a loss of resolution. Both Louvain and
Leiden algorithms are implemented in various software
packages for single-cell data analysis, such as Seurat,’!
SCANPY,** Monocle,*® and PARC.**

Statistical mixture modeling approach

Statistical mixture modeling is a widely adopted framework for
model-based clustering. A finite mixture model, which has
a density function represented by a convex combination of
densities in a parametric family, offers the advantage of improv-
ing the goodness of fit to data samples by increasing the number
of mixture components. Among them, the finite Gaussian
Mixture Model (GMM) is popularly used for clustering. The
simplest approach to clustering based on a mixture model is to
assign each mixture component to an individual cluster.
However, clusters can have arbitrary shapes, and the parametric
distribution of each mixture component is often inadequate to
capture the different shapes of the clusters. Various strategies
have been proposed to merge multiple mixture components so
that an individual cluster can be more properly modeled.>”°
Mixture modeling has become an established paradigm for
clustering cytometry data.’”%®7%”!"%7> The mathematical for-
mulation of a GMM is presented in Figure 3(a). We also show
the density function given by an example GMM containing six
components in Figure 3(b). This plot shows that Gaussian
mixture components may overlap substantially, and thus the
components are not equivalent to clusters. In fact, the shape of
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the mixture density suggests that some components should be
merged to form a cluster, an observation that has motivated
some of the methods aforementioned.

Due to their high sparsity and high-dimensionality, scRNA-
seq data are difficult to analyze. To overcome this challenge,
ZIFA (Zero Inflated Factor Analysis) has been developed for
data pre-processing before fitting the mixture model. ZIFA
uses a factor analysis model for dimension reduction and
accounts for the presence of zero inflation and technical
noise in the data. Instead of reducing the dimension,
HMMVB (Hidden Markov Model on Variable Blocks) is
a mixture modeling framework that proposes to first partition
variables into a sequence of subsets (variable blocks).”* Such
information is typically available for flow cytometry data from
domain knowledge about the lineage, maturation, and activa-
tion of cells or can be computationally derived for scRNA-seq
data. Hence, each additional variable block in the sequence
corresponds to a lower-dimensional manifold for separating
clusters at an increased level of granularity. Thus, it is effective
at finding rare clusters for large-scale data and is computa-
tionally efficient. Under the framework of mixture modeling,
variable selection methods have also been developed.”®”>”°
Through variable selection, we can not only reduce the dimen-
sion of data but also obtain more interpretable models.

DNN-based methods

DNN-based methods, particularly AEs and VAEs, have
demonstrated great potential in clustering single-cell data.
For example, scAIDE’” is a robust and highly scalable frame-
work for clustering scRNA-seq data. scAIDE first uses
a customized AE to learn a good representation of data and
then applies a random projection hashing-based K-means
algorithm to detect rare cell subsets. Random projection hash-
ing reduces computational complexity and makes scAIDE
scalable for large datasets. However, the AE in scAIDE is
a relatively simple architecture compared to other DNNG.
Thus, scAIDE may not be the best choice for extracting an
effective non-linear representation for complicated data.
Similarly, scDMFK”® uses VAE to learn the low-dimensional
latent space and applies an adaptive fuzzy K-means algorithm
with entropy regularization to perform probabilistic clustering.

Noisy data points that do not clearly belong to any cluster are
given less weights via entropy regularization penalty,
a mechanism that reduces the effects of outliers in the data.
Additionally, SAUCI”® proposes to use novel regularizations
imposed on AE architecture so that the learned representation
is better for clustering, batch correction, denoising and impu-
tation, and visualization. SAUCI not only clusters data but also
provides solutions for several other problems commonly
encountered in single-cell data analysis. One advantage of
using AEs or VAEs for clustering is that they can learn a low-
dimensional representation of high-dimensional single-cell
data while incorporating prior knowledge or assumptions
about the data. For example, incorporating batch information
can improve clustering performance and reduce batch effects.
By using this low-dimensional representation, clustering algo-
rithms can be applied more efficiently and accurately. While
AE and VAE have shown promise in clustering single-cell data,
they have some limitations. AE may suffer from overfitting,
resulting in poor generalization to new data. As for VAE, the
generative modeling approach has difficulty treating small
datasets due to the stochastic nature of its sampling process.
The various schools of approaches discussed above have
their respective pros and cons. K-means is appealing for its
simplicity. However, K-means is intrinsically related to
clustering based on GMMs with several constraints
imposed on the model parameters. In light of this, statis-
tical mixture modeling is more generic and has a solid
probabilistic foundation for estimation. The probabilistic
perspective enables us to understand the limitations of
any given model and may point to ways to overcome
them. As a result, there is a rich literature on clustering
by statistical mixture modeling, addressing various chal-
lenges encountered in high dimensional data.
Agglomerative clustering, such as dendrograms, is flexible
in the sense that only pairwise distances between instances
are required. Users can tailor the definition of distance to
embed prior knowledge. As long as the distance can be
computed, the exact representation of each individual data
point is not restricted. However, computing all the pair-
wise distances does not scale well with large data, and to
manually define a distance can be difficult. DNN-based
methods have several advantages compared with other
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methods, such as their ability to handle and learn complex,
high-dimensional data. However, DNNs require a large
amount of training data, which are not always available.
Furthermore, training DNNs is computationally expensive.
It is also a challenge to configure and tune a typical DNN
model because many hyperparameters are involved, such as
the numbers of layers, neurons, and epochs, the learning
rate, and the batch size.

Uncertainty assessment for clustering analysis

Clustering results obtained computationally are known to
vary depending on different samples, algorithms used, or
even initializations. To validate a clustering result, assessing
the stability of the result seems to be the minimal we
should do. While dimension reduction and visualization
of the clustering results can provide a manual inspection,
different dimension reductions can lead to different visua-
lizations. Several clustering validation criteria have been
proposed assuming that true cluster labels (cell types) are
available, such as cluster stability, compactness, separation,
and closeness to a given ground truth.*” However, in most
cases, true cell labels are not available, evaluating clustering
stability is then regarded as the issue of assessing clustering
uncertainty. The idea is to generate perturbed versions of
the data by performing bootstrap sampling or adding noise
and obtaining a collection of clustering results. A stability
measure is defined as the average of pairwise distances
between clustering results across different perturbed data.
Various distances have been used for partitions, such as the
Rand index, and the method that generates a more stable
clustering result is preferred. Existing work on clustering
stability primarily addresses stability at the level of overall
clustering results. However, for studies in which cell clus-
ters are considered new findings, assessing the uncertainty
of individual clusters is more pertinent. Recently, Li et al.*'
and Zhang et al.** proposed aligning clusters across differ-
ent perturbed data via soft matching solved by optimal
transport. The main idea is illustrated in Figure 4. The
cluster alignment enables quantification of the variation
in the clustering result at the levels of both overall parti-
tions and individual clusters. This method is useful in
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Figure 4. Uncertainty assessment for clustering results based on optimal transport.

addressing the critical question of whether any cluster is
an intrinsic or spurious pattern.

Predictive biomarkers detection

One major goal of immunoprofiling is to discern distinct
immune response biomarkers capable of predicting an indivi-
dual’s response to a particular intervention, such as treatment
or vaccination. Biomarkers that can predict treatment out-
comes are essential for immunotherapy, which can guide treat-
ment decisions, allowing for personalized immunotherapeutic
regimens and ultimately improving patient outcomes. In the
case of vaccination, the predictive biomarkers allow the iden-
tification of which individuals will respond to vaccines and
which will not, thereby facilitating the design of more effective
vaccines and their deployment to the public.

Single-cell data have emerged as a promising source for
identifying immune response biomarkers. Since each indivi-
dual will have at least one single-cell dataset, typically in the
form of a matrix, there are two main types of approaches for
predicting an individual’s outcome based on single-cell data.
In the first type, the idea is to transform every data matrix into
a feature vector. Specifically, summary statistics derived from
the matrix are used, such as cell subset proportions and sum-
mary measures on measured cell markers, including surface
proteins, intracellular proteins, and gene expressions, all
shown to be informative for predicting immune response.
On the other hand, existing DNN-based methods can directly
take the single-cell matrix data as an individual’s feature
matrix (Section 4.1). Because the matrix dimension needs to
be fixed for a DNN, sampling based on the original data is
often applied. In the second type of approaches, the single-cell
data matrix is treated as distributional data (Section 4.2) since
the order of the rows in the matrix has no particular meaning
(each row corresponds to a cell). A basic way of forming the
distributional data is to take the feature vector of each cell as an
element in an unordered set and to assign an equal probability
to the vector of each cell. A more sophisticated approach can
involve statistical modeling of the single-cell data of every
individual, e.g., by GMM. Distributional data well preserve
information in the data matrix but pose challenges for subse-
quent analysis.

Comparison

alignment

Uncertainty
assessment
[ X3

[\"2



Vector or matrix data

Summary statistics typically form a high-dimensional immune
feature vector per individual, and furthermore, we would like
to include other bulk data and individual-level covariates in
the feature vector. It is thus necessary to reduce the dimension
of the feature vectors before fitting any predictive model, for
instance, by methods discussed in Section 2. Unfortunately,
dimension reduction decreases (arguably removes) the inter-
pretability of the original features, making it especially difficult
to identify predictive biomarkers. Alternatively, univariate
analysis, such as removing features with low variance or com-
paring immune features between two groups (e.g., responders
vs. non-responders) via statistical tests, can be an effective first
step for variable screening before fitting any model and select-
ing predictive biomarkers.

Methods such as generalized linear regression, random
forest,®” and K-Nearest Neighbor (KNN) regression and
classification® are commonly used as baseline models. For
example, Babelomics® uses the medians of gene expression
levels as features and applies random-forest-based classifica-
tion to select predictive biomarkers, whereas a benchmark
testing shows that a support-vector-machine-based method
can obtain better results in practice on high-dimensional
data.®® Besides those default methods, by incorporating
a linear mixed regression model with the individual-level ran-
dom effect defined by the individual ID, Nowicka et al.*’
develops a new approach called HDCyto for the case of batch
effect not removed in advance.

For regression-based methods, regularization is typically
employed for data of high dimensions, e.g., L; Lasso, L, ridge,
and elastic net. Through regularization, variable selection/
shrinkage is achieved, which prevents overfitting. Several mea-
sures of variable importance have been developed for random
forest models, e.g., Gini importance and permutation accuracy
importance,” based on which variables can be selected. The
interpretation of the selected variables varies depending on the
choice of the importance measure. KNN regression and classi-
fication yield “black-box” prediction models that do not directly
reveal which variables are important. A generic approach to
select variables for black-box models is to apply step-wise greedy
search (typically forward addition or backward deletion), which
can be computationally intensive but nevertheless feasible when
data are not too large or the training process is fast. Model

\

Feature space
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selection criteria such as AIC (Akaike information criterion),
BIC (Bayesian information criterion), and cross-validation accu-
racy are usually used to determine how many variables and
which variables should be selected.

Although using summary statistics as features allows us to
detect potential biomarkers conveniently, this approach has
a notable drawback - other distributional characteristics of
a biomarker exhibited across cells, such as multi-modality,
skewness, and variance, are ignored. Recently, DNNs have
gained popularity as powerful tools for predicting outcomes
from high-dimensional single-cell matrix data. For example,
both CyTOF DL and CytoSet®® are example DNNs that
directly take the single-cell matrix data as input. Both methods
leverage cell-invariant permutation functions or pooling layers
in conjunction with classifier layers. However, these
approaches can be sensitive to batch effects and become com-
putationally intensive when the noise level is high.
Additionally, the requirement of an equal number of cells
across individuals may cause a loss of information since cells
are usually re-sampled from the original data. In addition, as
black-box prediction models, DNNs lack model interpretabil-
ity and transparency, posing a barrier for the identification of
predictive biomarkers.

Distributional data

One major difference between single-cell data and the most
common data encountered in machine learning is that every
instance (individual) in a study is a data cloud - an unordered
set of feature vectors (cells). We call such instances distribu-
tional data in contrast to vector data. In the methods discussed
above, various processes are applied first to convert every dis-
tributional instance into a vector, for example, one that contains
proportions of cell subsets. One potential limitation of the
existing paradigm is that useful information in the distribution
for making predictions may be missed when condensing the
distribution into summary statistics. A different approach has
been proposed to treat distributional data directly when making
predictions. The main idea is to build a pseudo density on the
space of distributions. In particular, Qiao and Li’" developed
a pseudo-mixture model based on pairwise distances between
instances, which is illustrated in Figure 5.

Distance Pseudo-mixture modeling
Distance preserved
U o [ °
/
instances
~

3
>

Abstract space of distributions

Figure 5. Pseudo-mixture modeling for distributional data. Left: Each individual/instance is represented by a distribution, indicated by a grey oval containing multiple
feature vectors. The distribution is essentially a set of unordered vectors assigned with probabilities. Right: In the abstract space of distributions, each instance is a data
point, and the distance between the distributions on the feature vector space is preserved in this abstract space.
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In the method by Qiao and Li,”" first, a distance between
distributions is defined. One increasingly popular choice for
a distance between distributions is the Wasserstein metric. For
continuous distributions, the Wasserstein metric is usually
estimated based on empirical distributions, that is, samples of
distributions in which each sample point is assigned with
a uniform weight. However, for high dimensional data, com-
puting the Wasserstein distance based on samples suffers from
the curse of dimensionality - an exponentially growing size of
the sample in terms of the dimension is needed. Chen et al.”®
proposed to model high dimensional data using GMMs and
then defined a semi-metric for GMMs, namely, Minimized
Aggregated Wasserstein (MAW) distance. The MAW distance
is computed by optimal transport between Gaussian compo-
nents in two GMMs, where the Wasserstein metric between
Gaussian distributions, provided by a closed formula, is taken
as the baseline distance between the components. Once the
distances between distributions are available, through
a notation called hypothetical local mapping, the distances
are used to estimate parameters in the pseudo-mixture
model. Finally, the Bayes formula is applied to compute the
posterior probabilities of classes based on the pseudo-mixture
models estimated for each class. Although we have only used
the pseudo-mixture model for classification applications, it is
straightforward to extend the model to a regression setting.

One popular method for making predictions based on single-
cell data relies on computing the proportions of cell types in
a dataset. Suppose there are K cell types, a K-dimensional vector
consisting of the proportions of cell types is obtained for every
individual. Then any machine learning method for treating
tabular data can be applied. This approach, however, requires
that the cell type of each cluster in the single-cell dataset of any
individual is known. If the clusters are generated by e.g., manual
gating which is a default method for clustering flow cytometry
data, the identities of clusters are given. On the other hand, if the
clusters are generated by an algorithm and different clustering
results are not aligned, we do not even know the correspondence
between clusters of different individuals, not to mention the cell
types of clusters. In such a scenario, the aforementioned
approach cannot apply. In contrast, the pseudo-mixture-
modeling approach works on the overall distributions instead
of the clusters and thus does not require information on cell
types. Another advantage of the pseudo-mixture-modeling
approach is that it does not require a large collection of example
cases to train. As will be shown by a case study in Section 6, the
method yields competitive results for a collection of 24 indivi-
duals. DNN-based methods, on the contrary, require signifi-
cantly larger data to train.

A disadvantage of the basic pseudo-mixture-modeling
approach is that the classifier obtained will not directly point
to biomarkers. Overcoming this disadvantage is an interesting
future work. One approach we have envisioned is to first align
components in the GMMs (one for each individual), for
instance, by the method of Li et al.* We can then use a step-
wise selection of components to find out which components
are most useful for making prediction. These components can
then serve as biomarkers. As the pseudo-mixture-modeling
method is fast to train, step-wise selection of components is
computationally efficient.

Data integration

There are two types of data integration problems: (1) Data
integration with multiple views, which involves combining
data (cells) from the same sample but collected using different
experimental techniques or measuring multiple biological
layers/modalities. Thus, the same set of cells are measured in
different views. For example, integrating scRNA-seq data with
single-cell epigenomic data to obtain a more comprehensive
understanding of the regulatory mechanisms of gene expres-
sion in individual cells; (2) Data integration with multiple
sources, which involves combining data from different sam-
ples or sources, such as different tissues, organisms, replicates,
or platforms. In this case, the same type of measurement is
made on different sets of cells. For example, integrating
scRNA-seq data from multiple replicates to monitor the repro-
ducibility of a biological experiment.

Data integration with multiple views

Recently, significant advances have been made in the field of
single-cell isolation and barcoding technologies. This has pro-
vided researchers with a unique opportunity to simultaneously
profile multiple views (omics) such as DNA, mRNA, and
proteins at a single-cell resolution.>”'>*> These innovative
approaches offer a more comprehensive understanding of
individual cells. The ultimate goal of integrating data from
multiple views is to extract information from different mod-
alities to enhance learning performance beyond what can be
achieved with any single modality. This includes improve-
ments in cell population characterization and regulatory net-
works construction. Nevertheless, multi-omics single-cell data
presents unique challenges. The data is often sparse and het-
erogeneous among different omics feature spaces. In addition,
different omics features can have large differences in dimen-
sions. Different omics features do not necessarily carry equally
important information toward a specific learning objective. To
overcome these challenges, various integrative learning meth-
ods have been developed.

Most existing methods combine data from multiple views
into one using weights, transformations, or simplification
based on similarity or dimension reduction. Downstream ana-
lyses can then be performed based on the integrated data.
Examples of such integration include Seurat V4,” which uses
weighted nearest-neighbor to learn the weights of different
views and generates a similarity graph of cells based on
a weighted combination of views; CiteFuse” computes pair-
wise cell similarity matrices for each view and subsequently
merges the similarity matrices into one using a similarity net-
work fusion algorithm. Other methods such as MOFA®® and
MOFA+°® both use factor analysis to project the high-
dimensional data onto a common latent space and learn view-
invariant information. MOFA+ scales to large datasets;
MoClust” performs dimension reduction independently for
each view using AEs and then employs contrastive learning to
align the view-specific latent dimensions to form a fused repre-
sentation of the data. In contrast, Cobolt,”® scMM,” and
scMVAE'” use a multi-modal VAE to jointly model the multi-
ple views and learn a joint embedding of the single-cell data.



These methods represent a diverse range of approaches to the
integration of single-cell multi-omics data and offer different
trade-offs in terms of accuracy, scalability, and interpretability.

Data integration with multiple sources

To achieve meaningful insights from single-cell data sets that
are generated from multiple sources, it is imperative to address
the issue of systematic variations, also known as batch effects,
that can confound downstream analyses. In light of this, var-
ious methods have been developed to mitigate the impact of
batch effects and align data sets to facilitate accurate compar-
isons and integrative analysis.

One such method is the mutual nearest neighbors (MNN)
approach.”> The MNN approach identifies cells in two data
sets that share the nearest neighbors, and then utilizes the
differences between these identified pairs to align one data
set with the other. A similar strategy is implemented by the
Seurat algorithm,27 which first computes the MNN in a lower
dimensional space and then performs data integration.
Alternatively, other methods such as scVI*' and scAlign'”'
employ DNN embedding to align two data sets by seeking
a common dimension-reduced space to encode the data sets.
In a benchmark study conducted by Tran et al.”> the perfor-
mance of various methods, including MNN, Seurat, scVI, and
scAlign, were compared in terms of batch-effect correction.

Once batch effects have been properly removed, down-
stream analysis can be conducted. A natural choice to integrate
data from multiple sources is simply to combine them into
a unified dataset for subsequent analysis. Another research
direction is to consider the multi-source nature of the datasets.
For example, Lin et al.'” developed an analysis framework to
combine clustering results acquired from multiple sources. In
many cases, the clustering analysis is often performed on each
dataset independently for reasons such as scalability and the
need to identify rare cell subsets. Assuming clustering results
are obtained from each source. The clusters must be labeled
consistently across samples to carry out a meaningful integra-
tion and comparison among the cell clusters. To solve this
problem, Lin et al.'”® proposed to use a GMM to summarize
the clustering result of each data set, where the cluster-specific
sample mean and sample covariance are used to estimate the
mean vector and covariance matrix for each Gaussian compo-
nent, respectively. The prior probability of every component is
set to be the proportion of cells in the corresponding cluster.
Given the set of GMMs, an integrated clustering result can be
obtained based on the notion of Wasserstein barycenter. This
framework allows for flexibility in the choice of batch-effect
removal and clustering methods. The process is illustrated in
Figure 6. Another method, LIGER,'®* uses integrative nonne-
gative matrix factorization to compute a low-dimensional
representation across all the data sources. Clustering is then
performed, and a search for shared clusters is conducted based
on a shared-factor-neighborhood graph.

Case study and practical challenges

In this section, we apply multiple methods introduced in pre-
vious sections to analyze a dataset obtained from Chua et al."**
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Source 1
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Figure 6. Data integration for clustering results obtained from different data
sources by computing the MAW barycenter of GMMs.

This dataset contains scRNA-seq data obtained from 19 patients
with COVID-19 and 5 COVID-negative donors. Specifically, all
19 patients and 5 donors were tested through the primary
infection site: the nasopharyngeal area (NS), where the scRNA-
seq is used to predict the outcome of COVID infection.
Moreover, multiple samples from both the upper and lower
airways were collected on two of the patients using bronchial
protected specimen brushes (PSB) and bronchial lavages (BL).
This dataset provides us a good example to demonstrate a data
integration process for single-cell data. In addition, the gender
and age of each individual are provided as meta-data. By apply-
ing Seurat using the R package Seurat to cluster the pooled NS
cells from all 24 individuals, we show in Figure 7 the 22 identi-
fied cell subsets from a total of 160,528 cells using different
visualization methods: PCA, t-SNE, and UMAP. It is clear that
PCA, as a linear dimension reduction algorithm, is unable to
discern nonlinear cell patterns. Moreover, the nonlinear dimen-
sion reduction methods yield remarkably different visualization.
Low-dimensional visualization can be a convenient way to
assess and identify potential biomarkers across conditions. For
example, the two plots in the top row of Figure 8 show that the
nonresident macrophage (nrMa) cell subset in one COVID-
positive individual has a notably higher proportion than the
same cell type in a selected COVID-negative individual.
Similarly, by comparing samples obtained from different sites
(NS, PSB and BL), neutrophils (Neu) is identified as the most
dominant cell type in the NS sample, but this type of cells
seldom appear in samples collected from PSB and BL.

Prediction

Next we perform prediction analysis to compare multiple meth-
ods for classifying an individual’s COVID outcomes (positive
versus negative) based on scRNA-seq data. Because of the small
sample size, we use leave-one-out cross-validation (LOOCV) to
evaluate prediction performance. A larger AUC (Area Under the
Receiver Operating Characteristics Curve) for LOOCYV indicates
a more accurate prediction. We compare the following methods:
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Figure 7. PCA, t-SNE, and UMAP visualizations with individual cells pooled across 24 individuals color-coded by their cell subsets membership. The same color indicates
the same cell subset across three visualizations.
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Figure 8. Top row: UMAP visualizations of cells obtained from a COVID-negative individual (control sample) and those from a COVID-positive patient (COVID sample).
For ease of comparison, only nrMA cell subset is colored in red, and the remaining cells are in gray. Bottom row: UMAP visualizations of cells obtained from the NS
sample of a selected individual and PSB and BL sample of the same individual. Only Neu cell subset is colored in red for ease of comparison.

(1)

()

3)

(4)

Logistic regression with lasso penalty using the propor-
tions of the identified 22 cell subsets as features and the
individual-level meta-data as covariates.

Logistic regression using the mean expression levels of
nine selected genes as features and the individual-level
meta-data as covariates.

Random forest with mean expression levels of the
nine genes and the individual-level covariates as
input features. The number of trees is set to 100
to ensure that every input sample is predicted at
least a few times.

KNN classification based on the mean expression levels
of the nine genes and the individual-level covariates. The
number of nearest neighbors K is 5, chosen according to
the empirical rule of using the square root of the sample
size.

A DNN model: CyTOF DL combined with Adam opti-
mization algorithm along with the learning rate of
0.0001.

Distributional data classification based on the GMMs
estimated from the UMAP representation derived from
the gene expression levels of the cells of each individual.

For methods 1-4, we perform analysis in R, for method 5, we
use Python, and for method 6, we use Matlab. Different soft-
ware platforms are used based on the availability of the codes.

More specifically, when using the proportions of cell subsets
as features, we transform the features before fitting the logistic
regression model. This pre-processing is needed because the
resulting features form the so-called compositional data, i.e.,
the data lie on a simplex since the sum of the proportions is 1.
A common technique to handle compositional data is to apply
the centered log-ratio (clr) transform'% to map the feature
vectors into an “unbounded” space. The transform clr uses the
geometric mean of all features in one vector as a reference value
and then takes the log of the ratio between each feature and the
geometric mean. Because the sample size 24 is very small relative
to the feature dimension of 22, we incorporate the lasso penalty
into the logistic regression to prevent overfitting.

On the other hand, Chua et al.'"* suggested some sets of
genes that would be affected by the infection of COVID. For
example, preferential ACE2 protein localization on motile cilia
has been confirmed to be highly related with a strong infectiv-
ity of ciliated cells by SARS-CoV-2 in vitro. Also, the nrMa cell
subset that showed a highly inflammatory profile characterized



by the expression of the chemokine encoding genes CCL2
(encoding MCP1), CCL3 (encoding MIP1«), CCL20, CXCL1
and CXCL3 and the pro-inflammatory cytokines IL1B, IL8,
IL18, and TNF, was detected to be highly expressed in patients
with critical COVID-19. Therefore, we select these genes
a priori and obtain their mean expression levels for each
sample (individual) as the representative features to predict
the COVID infection outcome. Moreover, we also utilize
CyTOF DL. This method requires an equal number of cells
in all samples as input. We thus randomly sample cells with
replacement so that each sample dataset has 16,000 cells.
Figure 9 (Left) shows the ROC curves obtained by methods
1-5. The DNN-based method performs poorly because of the
small sample size (the number of individuals). In addition, the
requirement of an equal number of cells in each sample may
lead to distortion in the single-cell data because the number of
cells from COVID-negative individuals ranges from a few
hundred to a thousand cells, much smaller than 16,000. The
random forest model and LASSO model perform similarly well
by utilizing gene (marker) expression information and cell
type proportions, respectively.

After performing feature selection, age is identified as
a significant variable in both LASSO and random forest mod-
els. Figure 10 shows the important features selected by LASSO
(Top) and the random forest model (Bottom). In the LASSO
logistic regression model, A is the complexity parameter used
in the L1 norm penalty term, which controls the bias-variance
trade-off and results in the selection of important variables.
When A approaches zero, the solution of LASSO will approach
the ordinary least square (OLS) estimator in a generalized

1.00

_——1

0.75

sensitivity
o
@
g

0.25

Methods
LASSO(Celltype) , AUC = 0.94
RF(MeanExpr) , AUC = 0.94

KNN(MeanExpr) , AUC = 0.91
‘ DL(CellMat) , AUC = 0.52

|

0.00

sensitivity
o
@
g

Logistic(MeanExpr) , AUC = 0.96

HUMAN VACCINES & IMMUNOTHERAPEUTICS ‘ 1

linear model. On the other hand, if A becomes larger and
larger, all the regression coefficients will shrink to zero even-
tually. More important variables will have coefficients that
approach zero slower. In Figure 10 (Top), a trace plot is
provided to show the change of the regression coefficient
associated with each variable at the increase of A (x-axis).
The most important variables will have coefficients that
become zero the latest. The trace plot shows that the propor-
tions of Epithelial cell subtypes (e.g., basal, secretory, ionocyte,
and squamous cells) and immune cell subtypes (e.g., mast cells)
are the most significant variables to distinguish COVID and
healthy individuals. On the other hand, in terms of mean
expression levels, Model 2 selects CXCL1 and CXCL3 as
important variables at the significance level of 0.05. These
two genes are also ranked highly according to both accuracy
and Gini index in the random forest model. In addition, CCL3
is considered to be the most important feature by both mea-
sures in the random forest model.

We also experiment with using the pseudo-mixture model
to estimate the posterior probabilities of each individual’s
infection status. Again, LOOCYV is used to evaluate the perfor-
mance with AUCs shown in Figure 9 (Right). Specifically, we
first use a GMM to summarize the clustering result of each
individual, i.e., the mean vector and covariance matrix for each
Gaussian component is represented by the cluster-specific
sample mean and sample covariance, respectively. The prior
probability of every component is set to be the proportion of
cells in the corresponding cluster. Here we do not assume the
cell type of any component in the GMM of an individual is
known. In other words, the clusters found in the individuals
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Figure 9. ROC curves. Left: Comparison of prediction performance among logistic regression with Lasso penalty using cell subsets proportions (Lasso(celltype), logistic
regression, random forest and KNN with mean gene expressions (Logistic(meanecpr), RF(MeanExpr), KNN(MeanExpr)), and DNN method using the entire single-cell
data (Dl(cellmat) in terms of LOOCV AUC. Right: Pseudo-mixture model for prediction based on MAW distances between GMMs. The cell types of the Gaussian
components in the GMMs are assumed unknown. Three schemes are used. In the scheme indicated by the blue line, the Gaussian component weights are given by the
proportion of data in the component and both the component mean and covariance matrix are considered when computing MAW. In the other two schemes, to
emphasize rare components, a square-root transform (followed by normalization) is applied to the weights. The last two schemes differ by whether covariance matrices
are considered when computing MAW.
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Figure 10. Top: The trace plot is generated from the LASSO logistic regression model with cell type proportions as covariates. The plot shows that ionocyte, basal,
secretory, squamous and mast (MC) cells are selected as significant cell type markers. Bottom: Variable importance are ranked according to two measures: mean
decrease accuracy and mean decrease in Gini index. It shows that CCL3 has the largest mean decrease in both accuracy and Gini coefficient. Thus, it is considered as the

most important variable, and potentially a biomarker indicating COVID infection.

are not subject to a unified taxonomy of cell types (aka, not
aligned). Technical details about this method are referred to
Qiao and Li.”! We test three schemes. In the basic scheme, we
compute the pairwise MAW distance between the GMMs
without altering the models. Considering that rare clusters/
components are often highly informative, but their importance
tends to be undermined in the calculation of MAW due to the
low component weights, we adjust the GMMs by using the
normalized square roots of the component weights as the new
weights and then compute the MAW (the second scheme).
Note that applying the square root transform will increase
weights at the lower end. We find that with this adjustment,
the AUC improved from 0.88 to 0.94. It is also interesting to
investigate whether the shape of each Gaussian component,
which is captured by the covariance matrix, matters. We thus
compute the MAW distance for the GMMs without consider-
ing the covariance matrix or, equivalently, by assuming the
covariance matrix is shared across the components. In this
case, the MAW distance between GMMs is reduced to the
Wasserstein metric between the discrete distributions over
the component means. Again, the square root transform is
applied to the component weights. The AUC obtained is
0.89, which is notably lower than that achieved with shape
information. This result shows that useful information is lost if
we represent each component using only its mean vector. The
distribution of data in a component is valuable modulo the
effect of its mean.

Data integration across three sites

We perform data integration across samples obtained from
three sites: NS, PSB, and BL from two COVID-positive patients.
Chua et al.'" used Seurat to perform integration and clustered
cells based on 3,000 genes that are identified as highly variable
across the three sites. The authors then treated the clustering
result as the ground truth and manually annotated the clusters.

We further perform integration using the MAW barycenter
approach'®” and LIGER to integrate clustering results across single
cells from the three sites within each patient. For the MAW
approach, we construct a GMM in the UMAP latent space based
on the clustering result of the sample from each site. Each cluster is
treated as one Gaussian component in the GMM with its compo-
nent mean and covariance matrix estimated from cells in this
cluster. The proportion of cells in each cluster is taken as the
prior probability of the corresponding Gaussian component.
Then the MAW barycenter of the three GMMs is computed for
each patient, yielding a “consensus” distribution across three sites.
The MAW barycenter is then used to recluster all the cells from
each patient. Therefore, the resulting cluster labels are naturally
aligned across different samples. For LIGER integration, we use
R package LIGER. We first normalize and scale all the count
matrices to account for differences in sequencing depth and
efficiency between cells, processed by the built-in functions nor-
malize and scaleNotCenter. Since the clustering performance of
LIGER depends strongly on the tuning parameter “resolution,” we
manually set it to match the number of clusters provided by
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Figure 11. UMAP visualizations of Seurat, MAW and LIGER for integrating multi-source scRNA-seq data from three different testing sites. Each row corresponds to

a particular COVID-positive individual.

Seurat. The comparison of results obtained by MAW and LIGER
for two patients are shown in Figure 11 (one row for each patient).
The ground truth of cell types, referred to as “Seurat,” is visualized
in the first column of Figure 11. Based on the plots in the figure,
MAW yields clusters more similar to those in “Seurat.” We also
numerically assess the similarity of clustering results to the ground
truth by computing the adjusted Rand index (ARI) and Meila’s
variation of information (VI). A higher value of ARI and a lower
value of VI correspond to a higher level of agreement with the
ground truth. For MAW, the ARISs of the two patients are (0.93,
0.57), and the VIs are (0.84, 2.29). For LIGER, the ARIs are (0.57,
0.45), and the VIs are (1.82, 2.31).

Discussion

Our study utilized various methods to analyze a scRNA-seq
dataset obtained from Chua et al.,'** with the aim of identify-
ing key cell populations and genes associated with COVID-19
infection in the nasopharyngeal area. Our findings indicated
that the nonresident macrophages (nrMa) were largely repre-
sented in COVID-positive individuals. Furthermore, we
observed significant differences in cell type distribution across
samples collected from three different sites, with neutrophils
(Neu) being the most dominant cell type in the NS sample, but
seldom appearing in samples collected from PSB and BL. In
addition, we identified the chemokine encoding gene CCL3,
encoding MIPla, as the most predictive biomarker for the
infection outcome selected by both important measures. This
finding may be biologically explained that nonresident macro-
phages with overexpression of pro-inflammatory mediators
like CCL3 could lead to an increase in monocyte recruitment
and differentiation while finally resulting in a critical inflam-
mation response. Notably, we found age-related differences in
the immune response, with the elderly showing a stronger
immune response compared to the youth. Our results were
largely consistent with previous study. However, our study
provided additional insights into the immune response to
COVID-19, especially with regard to the role of nonresident
macrophages and age-related differences in the immune
response. While our study provides valuable insights, it also

has some limitations. Firstly, the sample size is relatively small,
which may limit the generalizability of our findings. Secondly,
we focused on the nasopharyngeal area, and our findings may
not apply to other infection sites. Future studies with larger
sample sizes and including data from multiple infection sites
will be needed to confirm and expand upon our findings.

Although we applied both clustering and classification meth-
ods to study the COVID-19 patients, the methods are generally
applicable to other problems in the areas such as vaccines and
immunotherapy. In summary, we have handled two fundamen-
tal types of data: tabular data and distributional data. The tabular
data appear as more traditional data, like clinical data. The
recently emerged single-cell data belongs to the distributional
data type. In future work, there are potential extensions in
methodology development. For example, there is ample room
to improve existing methods so that the advantages of
approaches developed separately for tabular and distributional
data can be combined. Specifically, approaches for tabular data
can exploit the algebraic structure of the data, but when the raw
data are distributional, certain pre-processing must be carried
out to convert them into tabular representations. What is the
best way to convert distributional data into tabular data remains
an open question. On the other hand, when we treat distribu-
tional data, we can take into consideration the information
missing from the tabular data. However, as these approaches
rely on the distance between the distributions, they are not as
flexible as matrix-based operations applied to tabular data. One
possible direction is to encode the information captured by the
comparison of the distributions as tabular features.

In conclusion, immunoprofiling is a rapidly growing
field with enormous potential for improving our under-
standing of the immune system. The statistical and machine
learning methods reviewed in this paper demonstrate the
power and utility of analyzing complex immunological data
by cutting-edge technologies. The methods discussed,
including flow cytometry, mass cytometry, scRNA-seq, and
various algorithms, have enabled researchers to explore with
unprecedented effectiveness the diversity and dynamics of
immune cell populations and their interactions.
Additionally, the application of machine learning
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techniques has facilitated the development of predictive
models for patient outcomes and treatment responses,
further advancing precision medicine approaches. Despite
these successes, challenges remain, including standardiza-
tion of protocols, interpretation of complex data, and the

need for robust validation and replication

studies.

Nevertheless, statistical and machine learning methods
hold a great promise for further advancing our understand-
ing of the immune system and for improving the prediction
of patient outcomes in a clinical setting.
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