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REVIEW

Statistical and machine learning methods for immunoprofiling based on single-cell 
data
Jingxuan Zhanga, Jia Lib, and Lin Lin a

aDepartment of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA; bDepartment of Statistics, Pennsylvania State University, 
University Park, PA, USA

ABSTRACT
Immunoprofiling has become a crucial tool for understanding the complex interactions between the immune 
system and diseases or interventions, such as therapies and vaccinations. Immune response biomarkers are 
critical for understanding those relationships and potentially developing personalized intervention strategies. 
Single-cell data have emerged as a promising source for identifying immune response biomarkers. In this 
review, we discuss the current state-of-the-art methods for immunoprofiling, including those for reducing the 
dimensionality of high-dimensional single-cell data and methods for clustering, classification, and prediction. 
We also draw attention to recent developments in data integration.
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Introduction

Immunoprofiling refers to the measurement and analysis of 
the immune responses in individuals, with the aim of disco
vering and understanding the specific immune responses asso
ciated with a particular disease or condition. Research tasks in 
immunoprofiling are diverse. For example, it is important to 
identify the immune responses that offer protection against 
infection or disease, as well as the prediction of an individual’s 
response to intervention. In many cases, clinical data collected 
during the course of intervention (such as treatment or vacci
nation) contain measurements of a group of individuals and 
their medical status and immune measurements before and/or 
after the interventions. As such, statistical analysis and 
machine learning methods are necessary to reveal the relation
ships between various quantities across different time points 
and in association with individuals’ outcomes.

The insights gained from immunoprofiling can be utilized 
to guide the development of new treatments or vaccines and to 
evaluate the effectiveness of existing therapies. For example, in 
the context of infectious diseases such as HIV, to date, RV144 
is the only HIV vaccine trial that shows a modest protective 
effect with the vaccine reduced the risk of HIV infection by 
31.2%.1 Immunoprofiling can help identify the immune 
responses associated with this reduced risk, which can guide 
the development of new

HIV vaccines by focusing on eliciting these responses in 
vaccinated individuals, thus potentially increasing the chances 
of a safer and more effective vaccine.2–5 Similarly, immu
notherapy is a rapidly growing field in the treatment of multi
ple cancer types.6–11 The clinical benefits are impressive, with 
the ability to produce the greatest possibility of long-term 
survival. However, only a fraction of patients achieves this. 
Immunoprofiling can be used to evaluate the effectiveness of 

immunotherapy treatments by measuring changes in the 
immune response and determining whether a therapy is effec
tive. It can also identify potential biomarkers that predict 
treatment response, allowing for personalized immunothera
peutic regimens for patients.

This review focuses on the single-cell technologies used in 
immunoprofiling. Those technologies provide assessments of 
gene and/or protein expressions to understand cellular 
immune responses, potentially bringing more insights and 
advancing the progress of immunotherapy and vaccine devel
opment. We list below the major technologies that generate 
single-cell data.

(1) Modern flow cytometry: Over 20 parameters are simul
taneously measured on hundreds of thousands to mil
lions of single cells.

(2) Mass cytometry or Cytometry by time-of-flight (CyTOF): 
Over 40 parameters are measured at the single-cell 
level.12

(3) Single-cell RNA sequencing (scRNA-seq): This technol
ogy can determine the transcriptome of individual 
cells.13,14

(4) Single-cell multi-omics data: This technology enables 
the simultaneous measurements of multiple biologi
cal layers in each individual cell, such as genome 
and transcriptome (G&T-seq),15 gDNA-mRNA 
sequencing (DR-Seq),16 DNA methylation and tran
scriptome (scM&T-seq),17 epitope and transcriptome 
(CITE-seq),18 and nucleosome, transcriptome, and 
methylation (scNMT-seq).19

While those advanced technologies enable researchers to 
achieve unprecedented resolution in tackling cellular heteroge
neity, the generated high-dimensional and large-scale single-cell 
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data pose significant analysis challenges for capturing and 
understanding immune cellular heterogeneity and detecting 
rare immune cell subsets.

The objective of this paper is to provide an overview of the 
current state of machine learning techniques and statistical 
modeling approaches used for analyzing and modeling single- 
cell immunological data. The paper focuses on the biological 
areas where advanced analysis methods are popularly devel
oped. We assume that the single-cell data have been pre- 
processed20–22 and potential batch effects23–33 have been prop
erly removed. One example pipeline of single-cell data analy
sis, which is the focus of this review paper, is shown in 
Figure 1. The main analysis tasks shown in the figure are 
discussed in the following sections.

The rest of the paper is organized as follows. Section 2 
contains a review of dimension reduction and visualization 
techniques for single-cell data. In Section 3, we provide an 
overview of clustering analysis. Subsequently, Section 4 is on 
prediction analysis methods, and Section 5 is on data integra
tion techniques. In Section 6, we present a case study analysis 
and discuss practical challenges. Finally, we conclude with 
discussions in Section 7. Due to space constraints, we summar
ize a few popular methods in each section and refer to some 
existing review papers in case readers are interested in more 
details about these methods or the ideas of other relevant 
methods.

Single-cell data dimension reduction and 
visualization

Single-cell data visualization is an indispensable first step in 
comprehending high-dimensional single-cell data and allows 
the visual comparisons of cellular heterogeneity across differ
ent conditions. Dimension reduction is a key technique to 
enable the visualization of high-dimensional data in a low- 
dimensional space. It can also facilitate downstream analysis. 
Xiang et al.34 provides a comprehensive review to compare 
different dimension reduction methods for scRNA-seq data. 

Those methods are also applicable to cytometry data. 
Traditional dimension reduction methods such as PCA (prin
cipal component analysis), t-SNE (t-distributed stochastic 
neighbor embedding),35 and UMAP36 are frequently used to 
obtain the low-dimensional representation of the single-cell 
data. PCA, being a linear method, identifies the linear combi
nations of the original variables with the highest variance. 
Thus, PCA has limitations in capturing complex nonlinear 
structures in high-dimensional data. On the other hand, 
t-SNE and UMAP are both nonlinear dimension reduction 
methods designed to reduce dimensionality while preserving 
the local structure, such as clusters. t-SNE uses t-distributed 
conditional probability to quantify pairwise similarities 
between samples. It aims to find a low-dimensional mapping 
to preserve the pairwise similarities from the high-dimensional 
data as well as possible. UMAP is a variant of t-SNE. Neither 
method is designed to preserve the global structure of the data 
and may produce false clusters in the low-dimensional 
representation.37

TriMap is a recent method proposed to preserve the 
global structure of high-dimensional data.38 This method is 
based on the concept of triplets, which are used to compare 
data points and evaluate the relationships between them. 
Specifically, TriMap assesses whether “point i is closer (or 
more similar) to point j than to point k” and utilizes this 
triplet-based approach to encourage neighboring data points 
to remain close to each other in the low-dimensional space 
while making distant points to remain far apart. On the 
other hand, PaCMAP (Pairwise Controlled Manifold 
Approximation Projection) is another method designed to 
optimize both local and global structures.37 PaCMAP 
achieves this by selecting a small subset of pairwise dis
tances, which are then used to control the mapping of the 
high-dimensional data onto a lower-dimensional space. By 
doing so, PaCMAP ensures that the mapping preserves the 
relative distances between nearby points (local structure) 
while allowing for more flexibility in the mapping of more 
distant points (global structure).

Figure 1. One example pipeline of single-cell data analysis.
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The use of deep neural networks (DNNs) is another strategy 
for dimensionality reduction, given their ability to handle 
large-scale datasets. DNNs are composed of multiple layers 
of interconnected nodes, also known as neurons. Each neuron 
typically applies a linear transform on its multi-dimensional 
input and passes a one-dimensional output through a non- 
linear function such as a sigmoid function or a hard thresh
olding function, which is then fed as an input feature to one or 
more nodes at the next layer. The input of the first layer is the 
raw data, and the output of the last layer is the final prediction 
or classification result. An introduction to DNN is referred to 
Goodfellow et al.39 The autoencoder (AE) is a type of DNN 
which comprises two main components: an encoder and 
a decoder. The encoder maps the high-dimensional input 
data, such as cells, to a low-dimensional representation, while 
the decoder maps the low-dimensional representation back to 
the original high-dimensional space. During training, the AE 
aims to minimize the discrepancy between the original input 
and the reconstructed output. In contrast to the discriminative 
nature of the AE, the variational autoencoder (VAE) is 
a generative model that learns a latent representation distribu
tion rather than a specific vector (for each cell), as learned by 
the AE. By using the learned latent representation distribution, 
the VAE can generate examples of the latent representations of 
cells. Thus, compared to standard AEs, VAEs not only can 
reduce dimensionality but also quantify the uncertainty of the 
latent representation. Many existing packages use AE or VAE 
for dimension reduction and visualization. For example, 
scScope40 uses AE to reduce dimensionality while simulta
neously imputing the dropout events. To do so, scScope gen
erates imputed input data based on the decoder output 
through an imputer layer. The imputed data is then sent 
back to the encoder, and an updated latent representation is 
learned in an end-to-end manner. scVI41 uses a VAE to learn 
scRNA-seq latent representation by leveraging information 
from similar cells and genes to approximate the underlying 
distribution while accounting for batch effects. scDHA42 oper
ates in a hierarchical manner, where a non-negative kernel AE 
is used to filter out non-significant information and a VAE to 
map data onto a low-dimensional space. This approach 
enables the separation of noises from biological signals in 
single-cell data. Brendel et al.43 provides a recent review 
paper to discuss the application of DNNs for scRNA-seq data 
analysis.

Cluster analysis for cell subsets identification

The primary objective of clustering single-cell data is to uncover 
and understand cellular heterogeneity and potentially reveal 
novel cell subsets. In the context of immunoprofiling, clustering 
facilitates the identification of different immune cell types and 
the recognition of distinctive immune cell patterns across con
ditions. The information derived from clustering analysis could 
potentially substantiate existing conjectures, inspire new 
hypotheses, and inform the design of further experimentation.

Cytometry data often involve large sample sizes, sometimes 
exceeding millions of cells per sample. The main challenge in 
this context lies in identifying cellular heterogeneity, particularly 
rare cell subsets, as the low probability clusters tend to be 
“concealed” by large background clusters in the data. On the 
other hand, for scRNA-seq data, the clustering task is compli
cated by the high dimensionality of the data, with the number of 
variables (genes) typically exceeding the number of cells. In 
addition, the high variability and drop-out rates, along with 
the low capture efficiency of scRNA-seq data, and their potential 
batch effects, can further complicate the clustering process. The 
single-cell multi-omics data raise new challenges for clustering 
analysis because different omics features are combined, resulting 
in more heterogeneous and higher dimensional data. The ana
lysis of single-cell multi-omics data will be discussed specifically 
in Section 5. In this section, we review clustering methods 
developed to cluster cytometry and scRNA-seq data, including 
K-means, hierarchical clustering, mixture model, community 
detection, and DNN-based approaches. In Figure 2, different 
types of clustering methods are compared in terms of their 
ability to handle various levels of data structures and their 
computational complexity. Several review papers on clustering 
analysis are provided by Weber and Robinson44; Petegrosso 
et al.45; Krzak et al.46; Liu et al.47; Yu et al.48 

K-means based clustering methods

K-means clustering is the most popular clustering approach, 
which iteratively applies Lloyd’s algorithm49 to find 
a prespecified number of K cluster centers (centroids) repre
senting the mean of the data points in each cluster. The 
objective is to assign cells to groups (centroids) such that 
cells belonging to the same group are close, but those in 
different groups are far apart. The major advantage of 
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Figure 2. Overview and comparison between each type of clustering methods.
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K-means clustering is that it scales linearly with the number of 
cells, so it is suitable for large datasets.

As K-means is locally optimal, it cannot guarantee the iden
tification of the global minimum, i.e., the unique clustering 
solution. For scRNA-seq data, this limitation is overcome by 
repeated utilization of K-means with different initializations and 
deriving a consensus clustering result, as demonstrated in SC3.50 

Another issue always encountered in practice is how to deter
mine the number of clusters K. SC350 addresses this issue by 
a method based on random matrix theory to determine the 
optimal K. RaceID51 uses the Gap statistic to determine the 
number of clusters. With respect to the cytometry data, to 
address the challenge of finding the optimal number of clusters, 
FlowPeaks52 performs a two-stage clustering approach. It first 
applies K-means with a large initial K, larger than the expected 
number of clusters in the data, and then applies a hierarchical 
clustering method based on the distance between the centroids 
of the K clusters to combine the nearest clusters into one cluster. 
Thus, FlowPeaks can effectively remove noise while ensuring 
that the final number of clusters is appropriate for the data.

K-means clustering also tends to bias toward identifying 
equal-sized clusters, potentially resulting in rare cell types 
being concealed within a larger group. To mitigate this issue, 
RaceID augments K-means with outlier detection to pinpoint 
rare cell types.51 To reduce the bias of equal-size clustering, 
Flock employs a grid-based method to identify high-density 
regions and use them as initial centroids for K-means cluster
ing. This reduces the bias of equal-size clustering.53 The 
recently developed method, DisRFC (Dissimilarity Random 
Forest Clustering),54 combines random forest and K-means 
to address some other limitations of K-means such as sensi
tivity to initialization and outliers along with the previously 
discussed issues (e.g., the tendency to converge to local optima 
and the bias toward equal-size clusters).

Hierarchical clustering based methods

Hierarchical clustering is a method for building a hierarchy of 
clusters based on the connectivity between data points. This 
approach creates a dendrogram, a tree-like structure, by 
repeatedly merging the closest pairs of clusters based on 
some similarity measure, either by starting with all data points 
in a single cluster and then splitting the cluster into smaller 
clusters until each data point is in its own cluster (divisive 
clustering), or by starting with each data point in its own 
cluster and merging the clusters iteratively until a single cluster 
is obtained (agglomerative clustering).

Unlike K-means clustering, hierarchical clustering does not 
require the prior specification of the number of clusters. The 
number of clusters can be determined afterward through visual 
inspection or by using measures such as elbow methods, 
Silhouette analysis, or Gap statistic.

To address the challenges of high-dimensional data, 
pcaReduce55 utilizes PCA to reduce the dimension before per
forming hierarchical clustering. SINCERA56 employs hierarch
ical clustering with centered Pearson correlation and average 
linkage as default to identify cell clusters. Additionally, CIDR57 

integrates an implicit imputation process to alleviate the effect of 

dropouts, uses principal coordinate analysis to reduce the 
dimension, and performs hierarchical clustering on the first 
few principal coordinates. The number of clusters is determined 
based on the Calinski – Harabasz index.58

FlowGrid59 is a computational framework for analyzing flow 
cytometry data. It combines density-based clustering and hier
archical clustering. Density-based clustering partitions the data 
into subsets, while hierarchical clustering organizes the subsets 
into a hierarchical structure, helping in identifying rare and low- 
density cell populations. FlowGrid also allows users to explore 
and visualize data at different levels of granularity and identify 
clusters that are biologically relevant. Recently, FlowGrid 
demonstrated fast clustering of very large scRNA-seq data.

Both Louvain and Leiden algorithms are community- 
detection-based clustering methods commonly used for cluster
ing large-scale single-cell data. The goal of community detection 
is to discover the communities in networks. A community in 
a network is a group of nodes having dense connections within 
the group and sparse connections with other groups. The 
Louvain algorithm is an agglomerative clustering method.60 It 
starts with each node (cell) in its own community and iteratively 
merges communities to maximize modularity. The modularity 
is a measure of the degree to which nodes in a community are 
more densely connected to each other than to nodes outside the 
community. The Louvain algorithm has been shown to be fast 
and scalable, making it a popular choice for clustering large 
single-cell datasets. The Leiden algorithm is an extension of 
the Louvain algorithm to overcome the resolution limit of the 
Louvain algorithm. The resolution limit is a problem where 
there is a minimum community size able to be resolved. Thus, 
it occurs when the algorithm merges small communities into 
larger ones, resulting in a loss of resolution. Both Louvain and 
Leiden algorithms are implemented in various software 
packages for single-cell data analysis, such as Seurat,61 

SCANPY,62 Monocle,63 and PARC.64

Statistical mixture modeling approach

Statistical mixture modeling is a widely adopted framework for 
model-based clustering. A finite mixture model, which has 
a density function represented by a convex combination of 
densities in a parametric family, offers the advantage of improv
ing the goodness of fit to data samples by increasing the number 
of mixture components. Among them, the finite Gaussian 
Mixture Model (GMM) is popularly used for clustering. The 
simplest approach to clustering based on a mixture model is to 
assign each mixture component to an individual cluster. 
However, clusters can have arbitrary shapes, and the parametric 
distribution of each mixture component is often inadequate to 
capture the different shapes of the clusters. Various strategies 
have been proposed to merge multiple mixture components so 
that an individual cluster can be more properly modeled.65–70 

Mixture modeling has become an established paradigm for 
clustering cytometry data.67,68–70,71,72,73 The mathematical for
mulation of a GMM is presented in Figure 3(a). We also show 
the density function given by an example GMM containing six 
components in Figure 3(b). This plot shows that Gaussian 
mixture components may overlap substantially, and thus the 
components are not equivalent to clusters. In fact, the shape of 
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the mixture density suggests that some components should be 
merged to form a cluster, an observation that has motivated 
some of the methods aforementioned.

Due to their high sparsity and high-dimensionality, scRNA- 
seq data are difficult to analyze. To overcome this challenge, 
ZIFA (Zero Inflated Factor Analysis) has been developed for 
data pre-processing before fitting the mixture model. ZIFA 
uses a factor analysis model for dimension reduction and 
accounts for the presence of zero inflation and technical 
noise in the data. Instead of reducing the dimension, 
HMMVB (Hidden Markov Model on Variable Blocks) is 
a mixture modeling framework that proposes to first partition 
variables into a sequence of subsets (variable blocks).74 Such 
information is typically available for flow cytometry data from 
domain knowledge about the lineage, maturation, and activa
tion of cells or can be computationally derived for scRNA-seq 
data. Hence, each additional variable block in the sequence 
corresponds to a lower-dimensional manifold for separating 
clusters at an increased level of granularity. Thus, it is effective 
at finding rare clusters for large-scale data and is computa
tionally efficient. Under the framework of mixture modeling, 
variable selection methods have also been developed.70,75,76 

Through variable selection, we can not only reduce the dimen
sion of data but also obtain more interpretable models.

DNN-based methods

DNN-based methods, particularly AEs and VAEs, have 
demonstrated great potential in clustering single-cell data. 
For example, scAIDE77 is a robust and highly scalable frame
work for clustering scRNA-seq data. scAIDE first uses 
a customized AE to learn a good representation of data and 
then applies a random projection hashing-based K-means 
algorithm to detect rare cell subsets. Random projection hash
ing reduces computational complexity and makes scAIDE 
scalable for large datasets. However, the AE in scAIDE is 
a relatively simple architecture compared to other DNNs. 
Thus, scAIDE may not be the best choice for extracting an 
effective non-linear representation for complicated data. 
Similarly, scDMFK78 uses VAE to learn the low-dimensional 
latent space and applies an adaptive fuzzy K-means algorithm 
with entropy regularization to perform probabilistic clustering. 

Noisy data points that do not clearly belong to any cluster are 
given less weights via entropy regularization penalty, 
a mechanism that reduces the effects of outliers in the data. 
Additionally, SAUCI79 proposes to use novel regularizations 
imposed on AE architecture so that the learned representation 
is better for clustering, batch correction, denoising and impu
tation, and visualization. SAUCI not only clusters data but also 
provides solutions for several other problems commonly 
encountered in single-cell data analysis. One advantage of 
using AEs or VAEs for clustering is that they can learn a low- 
dimensional representation of high-dimensional single-cell 
data while incorporating prior knowledge or assumptions 
about the data. For example, incorporating batch information 
can improve clustering performance and reduce batch effects. 
By using this low-dimensional representation, clustering algo
rithms can be applied more efficiently and accurately. While 
AE and VAE have shown promise in clustering single-cell data, 
they have some limitations. AE may suffer from overfitting, 
resulting in poor generalization to new data. As for VAE, the 
generative modeling approach has difficulty treating small 
datasets due to the stochastic nature of its sampling process.

The various schools of approaches discussed above have 
their respective pros and cons. K-means is appealing for its 
simplicity. However, K-means is intrinsically related to 
clustering based on GMMs with several constraints 
imposed on the model parameters. In light of this, statis
tical mixture modeling is more generic and has a solid 
probabilistic foundation for estimation. The probabilistic 
perspective enables us to understand the limitations of 
any given model and may point to ways to overcome 
them. As a result, there is a rich literature on clustering 
by statistical mixture modeling, addressing various chal
lenges encountered in high dimensional data. 
Agglomerative clustering, such as dendrograms, is flexible 
in the sense that only pairwise distances between instances 
are required. Users can tailor the definition of distance to 
embed prior knowledge. As long as the distance can be 
computed, the exact representation of each individual data 
point is not restricted. However, computing all the pair
wise distances does not scale well with large data, and to 
manually define a distance can be difficult. DNN-based 
methods have several advantages compared with other 

Figure 3. (a) Formula showing the density of a GMM. (b) The black curve shows the overall distribution of a GMM with 6 Gaussian distributions. Each Gaussian 
distribution is plotted in different colors.
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methods, such as their ability to handle and learn complex, 
high-dimensional data. However, DNNs require a large 
amount of training data, which are not always available. 
Furthermore, training DNNs is computationally expensive. 
It is also a challenge to configure and tune a typical DNN 
model because many hyperparameters are involved, such as 
the numbers of layers, neurons, and epochs, the learning 
rate, and the batch size.

Uncertainty assessment for clustering analysis

Clustering results obtained computationally are known to 
vary depending on different samples, algorithms used, or 
even initializations. To validate a clustering result, assessing 
the stability of the result seems to be the minimal we 
should do. While dimension reduction and visualization 
of the clustering results can provide a manual inspection, 
different dimension reductions can lead to different visua
lizations. Several clustering validation criteria have been 
proposed assuming that true cluster labels (cell types) are 
available, such as cluster stability, compactness, separation, 
and closeness to a given ground truth.80 However, in most 
cases, true cell labels are not available, evaluating clustering 
stability is then regarded as the issue of assessing clustering 
uncertainty. The idea is to generate perturbed versions of 
the data by performing bootstrap sampling or adding noise 
and obtaining a collection of clustering results. A stability 
measure is defined as the average of pairwise distances 
between clustering results across different perturbed data. 
Various distances have been used for partitions, such as the 
Rand index, and the method that generates a more stable 
clustering result is preferred. Existing work on clustering 
stability primarily addresses stability at the level of overall 
clustering results. However, for studies in which cell clus
ters are considered new findings, assessing the uncertainty 
of individual clusters is more pertinent. Recently, Li et al.81 

and Zhang et al.82 proposed aligning clusters across differ
ent perturbed data via soft matching solved by optimal 
transport. The main idea is illustrated in Figure 4. The 
cluster alignment enables quantification of the variation 
in the clustering result at the levels of both overall parti
tions and individual clusters. This method is useful in 

addressing the critical question of whether any cluster is 
an intrinsic or spurious pattern.

Predictive biomarkers detection

One major goal of immunoprofiling is to discern distinct 
immune response biomarkers capable of predicting an indivi
dual’s response to a particular intervention, such as treatment 
or vaccination. Biomarkers that can predict treatment out
comes are essential for immunotherapy, which can guide treat
ment decisions, allowing for personalized immunotherapeutic 
regimens and ultimately improving patient outcomes. In the 
case of vaccination, the predictive biomarkers allow the iden
tification of which individuals will respond to vaccines and 
which will not, thereby facilitating the design of more effective 
vaccines and their deployment to the public.

Single-cell data have emerged as a promising source for 
identifying immune response biomarkers. Since each indivi
dual will have at least one single-cell dataset, typically in the 
form of a matrix, there are two main types of approaches for 
predicting an individual’s outcome based on single-cell data. 
In the first type, the idea is to transform every data matrix into 
a feature vector. Specifically, summary statistics derived from 
the matrix are used, such as cell subset proportions and sum
mary measures on measured cell markers, including surface 
proteins, intracellular proteins, and gene expressions, all 
shown to be informative for predicting immune response. 
On the other hand, existing DNN-based methods can directly 
take the single-cell matrix data as an individual’s feature 
matrix (Section 4.1). Because the matrix dimension needs to 
be fixed for a DNN, sampling based on the original data is 
often applied. In the second type of approaches, the single-cell 
data matrix is treated as distributional data (Section 4.2) since 
the order of the rows in the matrix has no particular meaning 
(each row corresponds to a cell). A basic way of forming the 
distributional data is to take the feature vector of each cell as an 
element in an unordered set and to assign an equal probability 
to the vector of each cell. A more sophisticated approach can 
involve statistical modeling of the single-cell data of every 
individual, e.g., by GMM. Distributional data well preserve 
information in the data matrix but pose challenges for subse
quent analysis.

Figure 4. Uncertainty assessment for clustering results based on optimal transport.
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Vector or matrix data

Summary statistics typically form a high-dimensional immune 
feature vector per individual, and furthermore, we would like 
to include other bulk data and individual-level covariates in 
the feature vector. It is thus necessary to reduce the dimension 
of the feature vectors before fitting any predictive model, for 
instance, by methods discussed in Section 2. Unfortunately, 
dimension reduction decreases (arguably removes) the inter
pretability of the original features, making it especially difficult 
to identify predictive biomarkers. Alternatively, univariate 
analysis, such as removing features with low variance or com
paring immune features between two groups (e.g., responders 
vs. non-responders) via statistical tests, can be an effective first 
step for variable screening before fitting any model and select
ing predictive biomarkers.

Methods such as generalized linear regression, random 
forest,83 and K-Nearest Neighbor (KNN) regression and 
classification84 are commonly used as baseline models. For 
example, Babelomics85 uses the medians of gene expression 
levels as features and applies random-forest-based classifica
tion to select predictive biomarkers, whereas a benchmark 
testing shows that a support-vector-machine-based method 
can obtain better results in practice on high-dimensional 
data.86 Besides those default methods, by incorporating 
a linear mixed regression model with the individual-level ran
dom effect defined by the individual ID, Nowicka et al.87 

develops a new approach called HDCyto for the case of batch 
effect not removed in advance.

For regression-based methods, regularization is typically 
employed for data of high dimensions, e.g., L1 Lasso, L2 ridge, 
and elastic net. Through regularization, variable selection/ 
shrinkage is achieved, which prevents overfitting. Several mea
sures of variable importance have been developed for random 
forest models, e.g., Gini importance and permutation accuracy 
importance,88 based on which variables can be selected. The 
interpretation of the selected variables varies depending on the 
choice of the importance measure. KNN regression and classi
fication yield “black-box” prediction models that do not directly 
reveal which variables are important. A generic approach to 
select variables for black-box models is to apply step-wise greedy 
search (typically forward addition or backward deletion), which 
can be computationally intensive but nevertheless feasible when 
data are not too large or the training process is fast. Model 

selection criteria such as AIC (Akaike information criterion), 
BIC (Bayesian information criterion), and cross-validation accu
racy are usually used to determine how many variables and 
which variables should be selected.

Although using summary statistics as features allows us to 
detect potential biomarkers conveniently, this approach has 
a notable drawback – other distributional characteristics of 
a biomarker exhibited across cells, such as multi-modality, 
skewness, and variance, are ignored. Recently, DNNs have 
gained popularity as powerful tools for predicting outcomes 
from high-dimensional single-cell matrix data. For example, 
both CyTOF DL89 and CytoSet90 are example DNNs that 
directly take the single-cell matrix data as input. Both methods 
leverage cell-invariant permutation functions or pooling layers 
in conjunction with classifier layers. However, these 
approaches can be sensitive to batch effects and become com
putationally intensive when the noise level is high. 
Additionally, the requirement of an equal number of cells 
across individuals may cause a loss of information since cells 
are usually re-sampled from the original data. In addition, as 
black-box prediction models, DNNs lack model interpretabil
ity and transparency, posing a barrier for the identification of 
predictive biomarkers.

Distributional data

One major difference between single-cell data and the most 
common data encountered in machine learning is that every 
instance (individual) in a study is a data cloud – an unordered 
set of feature vectors (cells). We call such instances distribu
tional data in contrast to vector data. In the methods discussed 
above, various processes are applied first to convert every dis
tributional instance into a vector, for example, one that contains 
proportions of cell subsets. One potential limitation of the 
existing paradigm is that useful information in the distribution 
for making predictions may be missed when condensing the 
distribution into summary statistics. A different approach has 
been proposed to treat distributional data directly when making 
predictions. The main idea is to build a pseudo density on the 
space of distributions. In particular, Qiao and Li91 developed 
a pseudo-mixture model based on pairwise distances between 
instances, which is illustrated in Figure 5.

Figure 5. Pseudo-mixture modeling for distributional data. Left: Each individual/instance is represented by a distribution, indicated by a grey oval containing multiple 
feature vectors. The distribution is essentially a set of unordered vectors assigned with probabilities. Right: In the abstract space of distributions, each instance is a data 
point, and the distance between the distributions on the feature vector space is preserved in this abstract space.
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In the method by Qiao and Li,91 first, a distance between 
distributions is defined. One increasingly popular choice for 
a distance between distributions is the Wasserstein metric. For 
continuous distributions, the Wasserstein metric is usually 
estimated based on empirical distributions, that is, samples of 
distributions in which each sample point is assigned with 
a uniform weight. However, for high dimensional data, com
puting the Wasserstein distance based on samples suffers from 
the curse of dimensionality – an exponentially growing size of 
the sample in terms of the dimension is needed. Chen et al.78 

proposed to model high dimensional data using GMMs and 
then defined a semi-metric for GMMs, namely, Minimized 
Aggregated Wasserstein (MAW) distance. The MAW distance 
is computed by optimal transport between Gaussian compo
nents in two GMMs, where the Wasserstein metric between 
Gaussian distributions, provided by a closed formula, is taken 
as the baseline distance between the components. Once the 
distances between distributions are available, through 
a notation called hypothetical local mapping, the distances 
are used to estimate parameters in the pseudo-mixture 
model. Finally, the Bayes formula is applied to compute the 
posterior probabilities of classes based on the pseudo-mixture 
models estimated for each class. Although we have only used 
the pseudo-mixture model for classification applications, it is 
straightforward to extend the model to a regression setting.

One popular method for making predictions based on single- 
cell data relies on computing the proportions of cell types in 
a dataset. Suppose there are K cell types, a K-dimensional vector 
consisting of the proportions of cell types is obtained for every 
individual. Then any machine learning method for treating 
tabular data can be applied. This approach, however, requires 
that the cell type of each cluster in the single-cell dataset of any 
individual is known. If the clusters are generated by e.g., manual 
gating which is a default method for clustering flow cytometry 
data, the identities of clusters are given. On the other hand, if the 
clusters are generated by an algorithm and different clustering 
results are not aligned, we do not even know the correspondence 
between clusters of different individuals, not to mention the cell 
types of clusters. In such a scenario, the aforementioned 
approach cannot apply. In contrast, the pseudo-mixture- 
modeling approach works on the overall distributions instead 
of the clusters and thus does not require information on cell 
types. Another advantage of the pseudo-mixture-modeling 
approach is that it does not require a large collection of example 
cases to train. As will be shown by a case study in Section 6, the 
method yields competitive results for a collection of 24 indivi
duals. DNN-based methods, on the contrary, require signifi
cantly larger data to train.

A disadvantage of the basic pseudo-mixture-modeling 
approach is that the classifier obtained will not directly point 
to biomarkers. Overcoming this disadvantage is an interesting 
future work. One approach we have envisioned is to first align 
components in the GMMs (one for each individual), for 
instance, by the method of Li et al.81 We can then use a step- 
wise selection of components to find out which components 
are most useful for making prediction. These components can 
then serve as biomarkers. As the pseudo-mixture-modeling 
method is fast to train, step-wise selection of components is 
computationally efficient.

Data integration

There are two types of data integration problems: (1) Data 
integration with multiple views, which involves combining 
data (cells) from the same sample but collected using different 
experimental techniques or measuring multiple biological 
layers/modalities. Thus, the same set of cells are measured in 
different views. For example, integrating scRNA-seq data with 
single-cell epigenomic data to obtain a more comprehensive 
understanding of the regulatory mechanisms of gene expres
sion in individual cells; (2) Data integration with multiple 
sources, which involves combining data from different sam
ples or sources, such as different tissues, organisms, replicates, 
or platforms. In this case, the same type of measurement is 
made on different sets of cells. For example, integrating 
scRNA-seq data from multiple replicates to monitor the repro
ducibility of a biological experiment.

Data integration with multiple views

Recently, significant advances have been made in the field of 
single-cell isolation and barcoding technologies. This has pro
vided researchers with a unique opportunity to simultaneously 
profile multiple views (omics) such as DNA, mRNA, and 
proteins at a single-cell resolution.15–19,92 These innovative 
approaches offer a more comprehensive understanding of 
individual cells. The ultimate goal of integrating data from 
multiple views is to extract information from different mod
alities to enhance learning performance beyond what can be 
achieved with any single modality. This includes improve
ments in cell population characterization and regulatory net
works construction. Nevertheless, multi-omics single-cell data 
presents unique challenges. The data is often sparse and het
erogeneous among different omics feature spaces. In addition, 
different omics features can have large differences in dimen
sions. Different omics features do not necessarily carry equally 
important information toward a specific learning objective. To 
overcome these challenges, various integrative learning meth
ods have been developed.

Most existing methods combine data from multiple views 
into one using weights, transformations, or simplification 
based on similarity or dimension reduction. Downstream ana
lyses can then be performed based on the integrated data. 
Examples of such integration include Seurat V4,93 which uses 
weighted nearest-neighbor to learn the weights of different 
views and generates a similarity graph of cells based on 
a weighted combination of views; CiteFuse94 computes pair
wise cell similarity matrices for each view and subsequently 
merges the similarity matrices into one using a similarity net
work fusion algorithm. Other methods such as MOFA95 and 
MOFA+96 both use factor analysis to project the high- 
dimensional data onto a common latent space and learn view- 
invariant information. MOFA+ scales to large datasets; 
MoClust97 performs dimension reduction independently for 
each view using AEs and then employs contrastive learning to 
align the view-specific latent dimensions to form a fused repre
sentation of the data. In contrast, Cobolt,98 scMM,99 and 
scMVAE100 use a multi-modal VAE to jointly model the multi
ple views and learn a joint embedding of the single-cell data. 
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These methods represent a diverse range of approaches to the 
integration of single-cell multi-omics data and offer different 
trade-offs in terms of accuracy, scalability, and interpretability.

Data integration with multiple sources

To achieve meaningful insights from single-cell data sets that 
are generated from multiple sources, it is imperative to address 
the issue of systematic variations, also known as batch effects, 
that can confound downstream analyses. In light of this, var
ious methods have been developed to mitigate the impact of 
batch effects and align data sets to facilitate accurate compar
isons and integrative analysis.

One such method is the mutual nearest neighbors (MNN) 
approach.23 The MNN approach identifies cells in two data 
sets that share the nearest neighbors, and then utilizes the 
differences between these identified pairs to align one data 
set with the other. A similar strategy is implemented by the 
Seurat algorithm,27 which first computes the MNN in a lower 
dimensional space and then performs data integration. 
Alternatively, other methods such as scVI41 and scAlign101 

employ DNN embedding to align two data sets by seeking 
a common dimension-reduced space to encode the data sets. 
In a benchmark study conducted by Tran et al.33 the perfor
mance of various methods, including MNN, Seurat, scVI, and 
scAlign, were compared in terms of batch-effect correction.

Once batch effects have been properly removed, down
stream analysis can be conducted. A natural choice to integrate 
data from multiple sources is simply to combine them into 
a unified dataset for subsequent analysis. Another research 
direction is to consider the multi-source nature of the datasets. 
For example, Lin et al.102 developed an analysis framework to 
combine clustering results acquired from multiple sources. In 
many cases, the clustering analysis is often performed on each 
dataset independently for reasons such as scalability and the 
need to identify rare cell subsets. Assuming clustering results 
are obtained from each source. The clusters must be labeled 
consistently across samples to carry out a meaningful integra
tion and comparison among the cell clusters. To solve this 
problem, Lin et al.102 proposed to use a GMM to summarize 
the clustering result of each data set, where the cluster-specific 
sample mean and sample covariance are used to estimate the 
mean vector and covariance matrix for each Gaussian compo
nent, respectively. The prior probability of every component is 
set to be the proportion of cells in the corresponding cluster. 
Given the set of GMMs, an integrated clustering result can be 
obtained based on the notion of Wasserstein barycenter. This 
framework allows for flexibility in the choice of batch-effect 
removal and clustering methods. The process is illustrated in 
Figure 6. Another method, LIGER,103 uses integrative nonne
gative matrix factorization to compute a low-dimensional 
representation across all the data sources. Clustering is then 
performed, and a search for shared clusters is conducted based 
on a shared-factor-neighborhood graph.

Case study and practical challenges

In this section, we apply multiple methods introduced in pre
vious sections to analyze a dataset obtained from Chua et al.104 

This dataset contains scRNA-seq data obtained from 19 patients 
with COVID-19 and 5 COVID-negative donors. Specifically, all 
19 patients and 5 donors were tested through the primary 
infection site: the nasopharyngeal area (NS), where the scRNA- 
seq is used to predict the outcome of COVID infection. 
Moreover, multiple samples from both the upper and lower 
airways were collected on two of the patients using bronchial 
protected specimen brushes (PSB) and bronchial lavages (BL). 
This dataset provides us a good example to demonstrate a data 
integration process for single-cell data. In addition, the gender 
and age of each individual are provided as meta-data. By apply
ing Seurat using the R package Seurat to cluster the pooled NS 
cells from all 24 individuals, we show in Figure 7 the 22 identi
fied cell subsets from a total of 160,528 cells using different 
visualization methods: PCA, t-SNE, and UMAP. It is clear that 
PCA, as a linear dimension reduction algorithm, is unable to 
discern nonlinear cell patterns. Moreover, the nonlinear dimen
sion reduction methods yield remarkably different visualization. 
Low-dimensional visualization can be a convenient way to 
assess and identify potential biomarkers across conditions. For 
example, the two plots in the top row of Figure 8 show that the 
nonresident macrophage (nrMa) cell subset in one COVID- 
positive individual has a notably higher proportion than the 
same cell type in a selected COVID-negative individual. 
Similarly, by comparing samples obtained from different sites 
(NS, PSB and BL), neutrophils (Neu) is identified as the most 
dominant cell type in the NS sample, but this type of cells 
seldom appear in samples collected from PSB and BL.

Prediction

Next we perform prediction analysis to compare multiple meth
ods for classifying an individual’s COVID outcomes (positive 
versus negative) based on scRNA-seq data. Because of the small 
sample size, we use leave-one-out cross-validation (LOOCV) to 
evaluate prediction performance. A larger AUC (Area Under the 
Receiver Operating Characteristics Curve) for LOOCV indicates 
a more accurate prediction. We compare the following methods:

Figure 6. Data integration for clustering results obtained from different data 
sources by computing the MAW barycenter of GMMs.
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(1) Logistic regression with lasso penalty using the propor
tions of the identified 22 cell subsets as features and the 
individual-level meta-data as covariates.

(2) Logistic regression using the mean expression levels of 
nine selected genes as features and the individual-level 
meta-data as covariates.

(3) Random forest with mean expression levels of the 
nine genes and the individual-level covariates as 
input features. The number of trees is set to 100 
to ensure that every input sample is predicted at 
least a few times.

(4) KNN classification based on the mean expression levels 
of the nine genes and the individual-level covariates. The 
number of nearest neighbors K is 5, chosen according to 
the empirical rule of using the square root of the sample 
size.

(5) A DNN model: CyTOF DL combined with Adam opti
mization algorithm along with the learning rate of 
0.0001.

(6) Distributional data classification based on the GMMs 
estimated from the UMAP representation derived from 
the gene expression levels of the cells of each individual.

For methods 1–4, we perform analysis in R, for method 5, we 
use Python, and for method 6, we use Matlab. Different soft
ware platforms are used based on the availability of the codes.

More specifically, when using the proportions of cell subsets 
as features, we transform the features before fitting the logistic 
regression model. This pre-processing is needed because the 
resulting features form the so-called compositional data, i.e., 
the data lie on a simplex since the sum of the proportions is 1. 
A common technique to handle compositional data is to apply 
the centered log-ratio (clr) transform105 to map the feature 
vectors into an “unbounded” space. The transform clr uses the 
geometric mean of all features in one vector as a reference value 
and then takes the log of the ratio between each feature and the 
geometric mean. Because the sample size 24 is very small relative 
to the feature dimension of 22, we incorporate the lasso penalty 
into the logistic regression to prevent overfitting.

On the other hand, Chua et al.104 suggested some sets of 
genes that would be affected by the infection of COVID. For 
example, preferential ACE2 protein localization on motile cilia 
has been confirmed to be highly related with a strong infectiv
ity of ciliated cells by SARS-CoV-2 in vitro. Also, the nrMa cell 
subset that showed a highly inflammatory profile characterized 

Figure 7. PCA, t-SNE, and UMAP visualizations with individual cells pooled across 24 individuals color-coded by their cell subsets membership. The same color indicates 
the same cell subset across three visualizations.

Figure 8. Top row: UMAP visualizations of cells obtained from a COVID-negative individual (control sample) and those from a COVID-positive patient (COVID sample). 
For ease of comparison, only nrMA cell subset is colored in red, and the remaining cells are in gray. Bottom row: UMAP visualizations of cells obtained from the NS 
sample of a selected individual and PSB and BL sample of the same individual. Only Neu cell subset is colored in red for ease of comparison.
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by the expression of the chemokine encoding genes CCL2 
(encoding MCP1), CCL3 (encoding MIP1α), CCL20, CXCL1 
and CXCL3 and the pro-inflammatory cytokines IL1B, IL8, 
IL18, and TNF, was detected to be highly expressed in patients 
with critical COVID-19. Therefore, we select these genes 
a priori and obtain their mean expression levels for each 
sample (individual) as the representative features to predict 
the COVID infection outcome. Moreover, we also utilize 
CyTOF DL. This method requires an equal number of cells 
in all samples as input. We thus randomly sample cells with 
replacement so that each sample dataset has 16,000 cells. 
Figure 9 (Left) shows the ROC curves obtained by methods 
1–5. The DNN-based method performs poorly because of the 
small sample size (the number of individuals). In addition, the 
requirement of an equal number of cells in each sample may 
lead to distortion in the single-cell data because the number of 
cells from COVID-negative individuals ranges from a few 
hundred to a thousand cells, much smaller than 16,000. The 
random forest model and LASSO model perform similarly well 
by utilizing gene (marker) expression information and cell 
type proportions, respectively.

After performing feature selection, age is identified as 
a significant variable in both LASSO and random forest mod
els. Figure 10 shows the important features selected by LASSO 
(Top) and the random forest model (Bottom). In the LASSO 
logistic regression model, λ is the complexity parameter used 
in the L1 norm penalty term, which controls the bias-variance 
trade-off and results in the selection of important variables. 
When λ approaches zero, the solution of LASSO will approach 
the ordinary least square (OLS) estimator in a generalized 

linear model. On the other hand, if λ becomes larger and 
larger, all the regression coefficients will shrink to zero even
tually. More important variables will have coefficients that 
approach zero slower. In Figure 10 (Top), a trace plot is 
provided to show the change of the regression coefficient 
associated with each variable at the increase of λ (x-axis). 
The most important variables will have coefficients that 
become zero the latest. The trace plot shows that the propor
tions of Epithelial cell subtypes (e.g., basal, secretory, ionocyte, 
and squamous cells) and immune cell subtypes (e.g., mast cells) 
are the most significant variables to distinguish COVID and 
healthy individuals. On the other hand, in terms of mean 
expression levels, Model 2 selects CXCL1 and CXCL3 as 
important variables at the significance level of 0.05. These 
two genes are also ranked highly according to both accuracy 
and Gini index in the random forest model. In addition, CCL3 
is considered to be the most important feature by both mea
sures in the random forest model.

We also experiment with using the pseudo-mixture model 
to estimate the posterior probabilities of each individual’s 
infection status. Again, LOOCV is used to evaluate the perfor
mance with AUCs shown in Figure 9 (Right). Specifically, we 
first use a GMM to summarize the clustering result of each 
individual, i.e., the mean vector and covariance matrix for each 
Gaussian component is represented by the cluster-specific 
sample mean and sample covariance, respectively. The prior 
probability of every component is set to be the proportion of 
cells in the corresponding cluster. Here we do not assume the 
cell type of any component in the GMM of an individual is 
known. In other words, the clusters found in the individuals 

Figure 9. ROC curves. Left: Comparison of prediction performance among logistic regression with Lasso penalty using cell subsets proportions (Lasso(celltype), logistic 
regression, random forest and KNN with mean gene expressions (Logistic(meanecpr), RF(MeanExpr), KNN(MeanExpr)), and DNN method using the entire single-cell 
data (Dl(cellmat) in terms of LOOCV AUC. Right: Pseudo-mixture model for prediction based on MAW distances between GMMs. The cell types of the Gaussian 
components in the GMMs are assumed unknown. Three schemes are used. In the scheme indicated by the blue line, the Gaussian component weights are given by the 
proportion of data in the component and both the component mean and covariance matrix are considered when computing MAW. In the other two schemes, to 
emphasize rare components, a square-root transform (followed by normalization) is applied to the weights. The last two schemes differ by whether covariance matrices 
are considered when computing MAW.

HUMAN VACCINES & IMMUNOTHERAPEUTICS 11



are not subject to a unified taxonomy of cell types (aka, not 
aligned). Technical details about this method are referred to 
Qiao and Li.91 We test three schemes. In the basic scheme, we 
compute the pairwise MAW distance between the GMMs 
without altering the models. Considering that rare clusters/ 
components are often highly informative, but their importance 
tends to be undermined in the calculation of MAW due to the 
low component weights, we adjust the GMMs by using the 
normalized square roots of the component weights as the new 
weights and then compute the MAW (the second scheme). 
Note that applying the square root transform will increase 
weights at the lower end. We find that with this adjustment, 
the AUC improved from 0.88 to 0.94. It is also interesting to 
investigate whether the shape of each Gaussian component, 
which is captured by the covariance matrix, matters. We thus 
compute the MAW distance for the GMMs without consider
ing the covariance matrix or, equivalently, by assuming the 
covariance matrix is shared across the components. In this 
case, the MAW distance between GMMs is reduced to the 
Wasserstein metric between the discrete distributions over 
the component means. Again, the square root transform is 
applied to the component weights. The AUC obtained is 
0.89, which is notably lower than that achieved with shape 
information. This result shows that useful information is lost if 
we represent each component using only its mean vector. The 
distribution of data in a component is valuable modulo the 
effect of its mean.

Data integration across three sites

We perform data integration across samples obtained from 
three sites: NS, PSB, and BL from two COVID-positive patients. 
Chua et al.104 used Seurat to perform integration and clustered 
cells based on 3,000 genes that are identified as highly variable 
across the three sites. The authors then treated the clustering 
result as the ground truth and manually annotated the clusters.

We further perform integration using the MAW barycenter 
approach102 and LIGER to integrate clustering results across single 
cells from the three sites within each patient. For the MAW 
approach, we construct a GMM in the UMAP latent space based 
on the clustering result of the sample from each site. Each cluster is 
treated as one Gaussian component in the GMM with its compo
nent mean and covariance matrix estimated from cells in this 
cluster. The proportion of cells in each cluster is taken as the 
prior probability of the corresponding Gaussian component. 
Then the MAW barycenter of the three GMMs is computed for 
each patient, yielding a “consensus” distribution across three sites. 
The MAW barycenter is then used to recluster all the cells from 
each patient. Therefore, the resulting cluster labels are naturally 
aligned across different samples. For LIGER integration, we use 
R package LIGER. We first normalize and scale all the count 
matrices to account for differences in sequencing depth and 
efficiency between cells, processed by the built-in functions nor
malize and scaleNotCenter. Since the clustering performance of 
LIGER depends strongly on the tuning parameter “resolution,” we 
manually set it to match the number of clusters provided by 

Figure 10. Top: The trace plot is generated from the LASSO logistic regression model with cell type proportions as covariates. The plot shows that ionocyte, basal, 
secretory, squamous and mast (MC) cells are selected as significant cell type markers. Bottom: Variable importance are ranked according to two measures: mean 
decrease accuracy and mean decrease in Gini index. It shows that CCL3 has the largest mean decrease in both accuracy and Gini coefficient. Thus, it is considered as the 
most important variable, and potentially a biomarker indicating COVID infection.
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Seurat. The comparison of results obtained by MAW and LIGER 
for two patients are shown in Figure 11 (one row for each patient). 
The ground truth of cell types, referred to as “Seurat,” is visualized 
in the first column of Figure 11. Based on the plots in the figure, 
MAW yields clusters more similar to those in “Seurat.” We also 
numerically assess the similarity of clustering results to the ground 
truth by computing the adjusted Rand index (ARI) and Meila’s 
variation of information (VI). A higher value of ARI and a lower 
value of VI correspond to a higher level of agreement with the 
ground truth. For MAW, the ARIs of the two patients are (0.93, 
0.57), and the VIs are (0.84, 2.29). For LIGER, the ARIs are (0.57, 
0.45), and the VIs are (1.82, 2.31).

Discussion

Our study utilized various methods to analyze a scRNA-seq 
dataset obtained from Chua et al.,104 with the aim of identify
ing key cell populations and genes associated with COVID-19 
infection in the nasopharyngeal area. Our findings indicated 
that the nonresident macrophages (nrMa) were largely repre
sented in COVID-positive individuals. Furthermore, we 
observed significant differences in cell type distribution across 
samples collected from three different sites, with neutrophils 
(Neu) being the most dominant cell type in the NS sample, but 
seldom appearing in samples collected from PSB and BL. In 
addition, we identified the chemokine encoding gene CCL3, 
encoding MIP1α, as the most predictive biomarker for the 
infection outcome selected by both important measures. This 
finding may be biologically explained that nonresident macro
phages with overexpression of pro-inflammatory mediators 
like CCL3 could lead to an increase in monocyte recruitment 
and differentiation while finally resulting in a critical inflam
mation response. Notably, we found age-related differences in 
the immune response, with the elderly showing a stronger 
immune response compared to the youth. Our results were 
largely consistent with previous study. However, our study 
provided additional insights into the immune response to 
COVID-19, especially with regard to the role of nonresident 
macrophages and age-related differences in the immune 
response. While our study provides valuable insights, it also 

has some limitations. Firstly, the sample size is relatively small, 
which may limit the generalizability of our findings. Secondly, 
we focused on the nasopharyngeal area, and our findings may 
not apply to other infection sites. Future studies with larger 
sample sizes and including data from multiple infection sites 
will be needed to confirm and expand upon our findings.

Although we applied both clustering and classification meth
ods to study the COVID-19 patients, the methods are generally 
applicable to other problems in the areas such as vaccines and 
immunotherapy. In summary, we have handled two fundamen
tal types of data: tabular data and distributional data. The tabular 
data appear as more traditional data, like clinical data. The 
recently emerged single-cell data belongs to the distributional 
data type. In future work, there are potential extensions in 
methodology development. For example, there is ample room 
to improve existing methods so that the advantages of 
approaches developed separately for tabular and distributional 
data can be combined. Specifically, approaches for tabular data 
can exploit the algebraic structure of the data, but when the raw 
data are distributional, certain pre-processing must be carried 
out to convert them into tabular representations. What is the 
best way to convert distributional data into tabular data remains 
an open question. On the other hand, when we treat distribu
tional data, we can take into consideration the information 
missing from the tabular data. However, as these approaches 
rely on the distance between the distributions, they are not as 
flexible as matrix-based operations applied to tabular data. One 
possible direction is to encode the information captured by the 
comparison of the distributions as tabular features.

In conclusion, immunoprofiling is a rapidly growing 
field with enormous potential for improving our under
standing of the immune system. The statistical and machine 
learning methods reviewed in this paper demonstrate the 
power and utility of analyzing complex immunological data 
by cutting-edge technologies. The methods discussed, 
including flow cytometry, mass cytometry, scRNA-seq, and 
various algorithms, have enabled researchers to explore with 
unprecedented effectiveness the diversity and dynamics of 
immune cell populations and their interactions. 
Additionally, the application of machine learning 

Figure 11. UMAP visualizations of Seurat, MAW and LIGER for integrating multi-source scRNA-seq data from three different testing sites. Each row corresponds to 
a particular COVID-positive individual.
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techniques has facilitated the development of predictive 
models for patient outcomes and treatment responses, 
further advancing precision medicine approaches. Despite 
these successes, challenges remain, including standardiza
tion of protocols, interpretation of complex data, and the 
need for robust validation and replication studies. 
Nevertheless, statistical and machine learning methods 
hold a great promise for further advancing our understand
ing of the immune system and for improving the prediction 
of patient outcomes in a clinical setting.
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